JP2017181134A - Method for inspecting sealing performance of container - Google Patents

Method for inspecting sealing performance of container Download PDF

Info

Publication number
JP2017181134A
JP2017181134A JP2016065003A JP2016065003A JP2017181134A JP 2017181134 A JP2017181134 A JP 2017181134A JP 2016065003 A JP2016065003 A JP 2016065003A JP 2016065003 A JP2016065003 A JP 2016065003A JP 2017181134 A JP2017181134 A JP 2017181134A
Authority
JP
Japan
Prior art keywords
water
container
organic compound
soluble organic
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016065003A
Other languages
Japanese (ja)
Other versions
JP6197906B1 (en
Inventor
渡辺 学夫
Gakuo Watanabe
学夫 渡辺
充久 新宮
Mitsuhisa Shingu
充久 新宮
康一 赤路
Koichi Akaji
康一 赤路
雅久 津野田
Masahisa Tsunoda
雅久 津野田
栄伸 隅谷
Yoshinobu Sumitani
栄伸 隅谷
伽耶子 大木
Kanako Oki
伽耶子 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Group Holdings Ltd filed Critical Toyo Seikan Group Holdings Ltd
Priority to JP2016065003A priority Critical patent/JP6197906B1/en
Priority to PCT/JP2017/009878 priority patent/WO2017169680A1/en
Application granted granted Critical
Publication of JP6197906B1 publication Critical patent/JP6197906B1/en
Publication of JP2017181134A publication Critical patent/JP2017181134A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for inspecting sealing performances which can accurately detect even a slight sealing failure (micro-leak) of a container to be filled with sealed liquid.SOLUTION: The method for inspecting sealing performances of a container to be filled with sealed liquid includes the steps of filling pure water into a container and sealing the pure water in the container; performing an invasion processing on a water-soluble organic compound into the container filled with sealed pure water by holding the container in an aqueous solution of the water-soluble organic compound; and inspecting the sealing performance of the container by taking the pure water out of the container and determining the amount of the water-soluble organic compound mixed in the pure water by a liquid chromatograph and a mass spectrometer.SELECTED DRAWING: None

Description

本発明は、液体を充填・密封する容器の密封性検査方法に関する。   The present invention relates to a method for inspecting a sealing property of a container filled and sealed with a liquid.

可撓性樹脂から成るボトル及びカップ等の容器は、容易に成形され且つ量産することが可能であるばかりか、軽量であることなどから、各種飲料等の液体が充填された飲料詰め容器として広く使用されている。   Containers such as bottles and cups made of flexible resin are not only easily molded and mass-produced, but also lightweight, so they are widely used as beverage stuffing containers filled with liquids such as various beverages. It is used.

このような飲料詰め容器では、衛生上の観点から、飲料及び容器(蓋を含む)がいずれも殺菌されていることが必要であり、例えば、飲料等の液体を加熱殺菌して高温のまま容器に充填・密封する、或いは液体を容器に充填・密封してレトルト殺菌する、という充填・殺菌法が一般に採用されている。また、容器及びキャップを殺菌剤や熱水によって殺菌しておき、加熱殺菌及び冷却された飲料等の液体を充填・密封するという充填・密封の全ての工程を無菌環境下で行うアセプティック充填法も広く採用されている。   In such a beverage stuffing container, from the viewpoint of hygiene, it is necessary that both the beverage and the container (including the lid) are sterilized. In general, a filling and sterilization method is used in which a container is filled and sealed, or a liquid is filled and sealed in a container and retort sterilized. There is also an aseptic filling method in which the container and cap are sterilized with a sterilizing agent or hot water, and all filling and sealing processes, such as filling and sealing liquids such as heat sterilized and cooled, are performed in an aseptic environment. Widely adopted.

さらに、加熱を伴わない殺菌方法として、高圧処理を利用する方法も知られている(例えば特許文献1)。
この方法は、食品等の被処理液体が充填・密封されている可撓性容器を、高圧シリンダ内における圧媒を有していない空の処理室に前記容器を充填し、その後、前記容器を圧縮することで被処理液体を取り囲んでいる液体に等方圧を発生させて、被処理液体を高圧処理し、これにより殺菌或いは静菌(菌の不活性化)が行われるというものである。この方法では、食品等の被処理液体の加熱が不要であるため、被処理液体中の各種成分の加熱劣化が防止され、さらに異臭の発生もない。従って、このような高圧処理による殺菌方法は、非炭酸系の飲料、例えば各種の果汁や、トマトなどに代表される野菜のジュースなどの充填・密封に特に有用である。非炭酸系の飲料は、鮮度が要求されるため、加熱による鮮度低下を防止することが求められているからである。
このような背景から、本出願人は、非炭酸系飲料が充填された容器を高圧処理する容器詰め飲料の製造方法を提案した(特願2015−093019)。
Furthermore, a method using high-pressure treatment is also known as a sterilization method not involving heating (for example, Patent Document 1).
In this method, a flexible container filled and sealed with a liquid to be treated such as food is filled into an empty processing chamber having no pressure medium in a high-pressure cylinder, and then the container is filled. By compressing, an isotropic pressure is generated in the liquid surrounding the liquid to be processed, and the liquid to be processed is subjected to a high-pressure treatment, whereby sterilization or bacteriostasis (bacterial inactivation) is performed. In this method, it is not necessary to heat the liquid to be processed such as food, so that various components in the liquid to be processed are prevented from being deteriorated by heating, and no off-flavor is generated. Accordingly, such a high-pressure sterilization method is particularly useful for filling and sealing non-carbonated beverages such as various fruit juices and vegetable juices represented by tomatoes. This is because non-carbonated beverages are required to be fresh, and thus are required to prevent a decrease in freshness due to heating.
From such a background, the present applicant has proposed a method for producing a container-packed beverage in which a container filled with a non-carbonated beverage is subjected to high-pressure treatment (Japanese Patent Application No. 2015-093019).

ところで、飲料詰め容器としては、上述した種々の殺菌方法と同時に、容器の密封性を確保することが重要である。例えば、ヒートシールなどの融着によらず、蓋体を用いての物理的接触や嵌合などにより容器をシールする手段では、この密封状態を確認することが必要となる。特に、水を加圧媒体とする高圧処理を利用した殺菌方法では、液体(内溶液)が充填・密封されている容器を、圧力室内で水中に保持して加圧されるため、加圧媒体である水の浸入が著しく微量の場合、具体的には僅か1滴程度の水の侵入であっても(マイクロリーク)、加圧媒体である水を介して微生物が容器内に侵入してしまい、内容液の変敗などを生じてしまうことがある。このため、液体が充填・密封される容器の密封性を精度よく検査することが極めて重要となる。   By the way, as a beverage stuffing container, it is important to ensure the sealing property of the container simultaneously with the various sterilization methods described above. For example, a means for sealing a container by physical contact or fitting using a lid, regardless of fusion such as heat sealing, requires confirmation of this sealed state. In particular, in a sterilization method using high-pressure treatment using water as a pressurized medium, a container filled with a liquid (inner solution) is sealed and pressurized in water in a pressure chamber. When the intrusion of water is extremely small, specifically, even if only one drop of water enters (micro leak), microorganisms enter the container through the water that is the pressurized medium. In some cases, the liquid content may deteriorate. For this reason, it is very important to accurately inspect the sealing performance of the container filled and sealed with the liquid.

容器の密封性を検査する方法としては、ジエチルパラフェニレンジアミン(DPD)が塩素による酸化によって発色することを利用して、比色によって塩素濃度を測定する方法(DPD法)が一般に採用されている。   As a method for inspecting the sealing property of a container, a method of measuring chlorine concentration by colorimetry (DPD method) utilizing the color development of diethyl paraphenylenediamine (DPD) by oxidation with chlorine is generally employed. .

DPD法での検出限界は、残留塩素濃度で0.1ppmであり、検出限界としては問題のないレベルにあるが、この反応の発色は極めて不安定であり、残留塩素が存在しない場合にも、数秒で発色してしまうという問題がある。即ち、残留塩素濃度による密封性の検査は、その精度が低い。また、残留塩素がある程度の濃度で存在するようなサンプルについての濃度測定には利用できるが、残留塩素を含んでいないか或いは残留塩素濃度が極めて低いサンプルについての濃度測定には利用できない。例えば、上述した水を加圧媒体とした高圧処理に適用し得るような密封性を有しているか否かを判断するための検査方法としては適当でない。   The detection limit in the DPD method is 0.1 ppm in terms of residual chlorine concentration, which is at a level that does not cause a problem as the detection limit, but the color development of this reaction is extremely unstable, and even when there is no residual chlorine, There is a problem that color develops in a few seconds. That is, the accuracy of the sealing test based on the residual chlorine concentration is low. Further, it can be used for concentration measurement of a sample in which residual chlorine exists at a certain concentration, but cannot be used for concentration measurement of a sample that does not contain residual chlorine or has a very low residual chlorine concentration. For example, it is not suitable as an inspection method for judging whether or not it has a sealing property that can be applied to the above-described high-pressure treatment using water as a pressurized medium.

特開平5−23118号公報JP-A-5-23118

従って、本発明の目的は、液体を充填・密封する容器について、僅かな密封不良(マイクロリーク)でも高精度で検出可能な容器の密封性検査方法を提供することにある。   Accordingly, it is an object of the present invention to provide a container sealability inspection method capable of detecting with high accuracy even a slight sealing failure (micro leak) for a container filled and sealed with a liquid.

本発明によれば、液体を充填・密封する容器の密封性検査方法において、
前記容器内に純水を密封・充填し、
前記純水が充填・密封された容器を、水溶性有機化合物の水溶液中に保持することにより該容器内への水溶性有機化合物の侵入処理を行い、
この後、該容器内に充填された純水を取り出し、液体クロマトグラフ・質量分析計により、該純水中に混入した前記水溶性有機化合物の量を定量する、容器の密封性検査方法が提供される。
According to the present invention, in the method for inspecting the sealing property of a container filled and sealed with liquid,
Sealing and filling pure water in the container,
By holding the container filled and sealed with pure water in an aqueous solution of a water-soluble organic compound, the water-soluble organic compound is infiltrated into the container,
After this, a container sealing test method is provided in which pure water filled in the container is taken out and the amount of the water-soluble organic compound mixed in the pure water is quantified by a liquid chromatograph / mass spectrometer. Is done.

本発明の検査方法においては、
(1)前記容器がボトルであり、該ボトルに前記純水を充填した後、該ボトルの口部にキャップを螺子装着することにより密封性を確保するものであること、
(2)前記容器は、前記純水を充填・密封した後、高圧処理が行われるものであること、
(3)前記純水が充填・密封された容器をパウチに挿入し、次いで、該パウチ内に前記水溶性有機化合物の水溶液を充填し、この後、該パウチの開口部をヒートシールし、この状態で高圧処理を行うことにより、前記水溶性有機化合物の侵入処理を行うこと、
(4)前記水溶性有機化合物が、20℃での水に対する溶解度(w/v%)が1g/100ml以上であること、
(5)前記水溶性有機化合物が、有機カルボン酸、アミノ酸またはポリフェノールであること、
(6)前記水溶性有機化合物がクエン酸であること、
(7)定量された純水中の前記水溶性有機化合物の量から、該純水中に侵入した水の量を算出すること、
が好適である。
In the inspection method of the present invention,
(1) The container is a bottle, and after the bottle is filled with the pure water, a sealing cap is secured by screwing a cap on the mouth of the bottle.
(2) The container is to be subjected to high pressure treatment after filling and sealing with the pure water.
(3) Insert the container filled and sealed with pure water into the pouch, then fill the pouch with the aqueous solution of the water-soluble organic compound, and then heat-seal the opening of the pouch. Performing an intrusion treatment of the water-soluble organic compound by performing a high-pressure treatment in a state;
(4) The water-soluble organic compound has a solubility (w / v%) in water at 20 ° C. of 1 g / 100 ml or more.
(5) The water-soluble organic compound is an organic carboxylic acid, amino acid or polyphenol,
(6) The water-soluble organic compound is citric acid,
(7) calculating the amount of water penetrating into the pure water from the quantified amount of the water-soluble organic compound in the pure water;
Is preferred.

本発明の容器の密封性検査方法では、純水を容器に充填・密封し、これを水溶性有機化合物の水溶液中に保持して水溶液有機化合物の容器内への侵入処理が行われ、容器内の純水中に移行した水溶性有機化合物の量が、液体クロマトグラフ・質量分析計により定量され、この量により容器の密封性が十分に確保できているか否かが検査される。
かかる検査方法によれば、極めて僅かな密封不良も確認することができる。例えば、定量された純水中の前記水溶性有機化合物の量から、該純水中に侵入した水の量を算出することにより、内容液の変敗を生じるような侵入水の量を算出することができ、これにより、内容液の変敗を生じないような密封性が確保されているか否かを検査することができる。具体的には、液体クロマトグラフ・質量分析計の検出限界が0.1ppmであった場合、250mlの容器に、20w/v%の水溶性有機化合物の侵入水量を計算でき、その検出限界は0.125μlと計算できる。
また、僅かな密封不良を検出することができるため、例えば、螺子キャップを容器口部に装着して密封性を確保するような密封手段において、本発明の容器の密封性検査方法を適用することにより、螺子キャップの適正な巻き締め角度を判定することができ、これは、本発明の大きな利点である。
In the container sealability inspection method of the present invention, pure water is filled and sealed in a container, and this is held in an aqueous solution of a water-soluble organic compound to perform an intrusion treatment of the aqueous organic compound into the container. The amount of the water-soluble organic compound transferred into the pure water is quantified by a liquid chromatograph / mass spectrometer, and it is inspected whether or not the sealing property of the container is sufficiently secured by this amount.
According to such an inspection method, it is possible to confirm a very slight sealing failure. For example, by calculating the amount of water that has infiltrated into the pure water from the amount of the water-soluble organic compound in the quantified pure water, the amount of intrusion water that causes deterioration of the content liquid is calculated. Thus, it is possible to inspect whether or not the sealing property is secured so as not to cause deterioration of the content liquid. Specifically, when the detection limit of the liquid chromatograph / mass spectrometer is 0.1 ppm, the amount of intrusion water of a 20 w / v% water-soluble organic compound can be calculated in a 250 ml container, and the detection limit is 0. .125 μl can be calculated.
Further, since a slight sealing failure can be detected, for example, the sealing property inspection method for a container according to the present invention is applied to a sealing means for securing a sealing property by attaching a screw cap to the container mouth portion. Can determine the proper tightening angle of the screw cap, which is a great advantage of the present invention.

本発明の容器の密封性検査方法において、純水中に侵入した水溶性有機化合物(クエン酸)の量を定量するために使用される液体クロマトグラフ・質量分析計により得られた全イオンカレントクロマトグラムのチャートの例を示す図。In the container sealing test method of the present invention, a total ion current chromatograph obtained by a liquid chromatograph / mass spectrometer used for quantifying the amount of a water-soluble organic compound (citric acid) invading pure water. The figure which shows the example of the chart of a gram.

本発明の容器の密封性検査方法は、検査試料液として純水を使用し、検出液として水溶性有機化合物の水溶液を使用する。即ち、密封性を確認するための容器内に検査試料液である純水を充填し、密封した後、所定の侵入処理を行い、純水中に移行する水溶性有機化合物の量を定量することにより、密封性を検査するというものである。   The container sealability inspection method of the present invention uses pure water as a test sample solution and an aqueous solution of a water-soluble organic compound as a detection solution. That is, after filling a container for confirming the sealing property with pure water as a test sample solution and sealing, predetermined intrusion treatment is performed, and the amount of the water-soluble organic compound transferred into the pure water is quantified. By this, the sealing property is inspected.

検査試料液として使用する純水は、各種の塩類(イオン)や残留塩素及びその他の不純物を蒸留、イオン交換、逆浸透等により除去したものであり、例えば導電率が1〜10MΩ・cmのものが使用される。   Pure water used as a test sample solution is obtained by removing various salts (ions), residual chlorine and other impurities by distillation, ion exchange, reverse osmosis, etc., for example, having a conductivity of 1 to 10 MΩ · cm Is used.

また、検出液に使用される水溶性有機化合物としては、20℃での水に対する溶解度(w/v%)が1g/100ml以上のものが好適に使用される。水に対する溶解度が低いものは、後述する侵入処理によって容器内(純水)への移行量が少なく、検出液として不適当である。
このような溶解度を有する水溶性有機化合物として、例えば、クエン酸、リンゴ酸、酒石酸等の有機カルボン酸類(好ましくは、液体クロマトグラフ・質量分析計の移動相として多用するギ酸、酢酸を除く)、グルタミン酸などのアミノ酸類、カテキンなどのポリフェノール類を挙げることができ、水に対する溶解度が最も高く且つ容易に入手できるという観点から、クエン酸が最も好適である。
In addition, as the water-soluble organic compound used in the detection solution, those having a solubility (w / v%) in water at 20 ° C. of 1 g / 100 ml or more are preferably used. Those having low solubility in water are not suitable as a detection solution because the amount of transfer into the container (pure water) is small due to the intrusion process described later.
Examples of water-soluble organic compounds having such solubility include organic carboxylic acids such as citric acid, malic acid and tartaric acid (preferably excluding formic acid and acetic acid which are frequently used as a mobile phase of a liquid chromatograph / mass spectrometer), Amino acids such as glutamic acid and polyphenols such as catechin can be mentioned, and citric acid is most preferable from the viewpoint that it has the highest solubility in water and is readily available.

また、検査対象の容器の形態や該容器に適用される密封手段は、特に限定されるものではなく、例えばヒートシールにより密封されるカップ状容器などにも本発明を適用することは可能であるが、本発明は、容器の口部に蓋体を物理的に接触させて密封を形成するボトルに好適に適用される。このような密封形式を採用する場合、特に密封性が問題となるため、本発明の利点を効果的に活かすためにも、このような密封形式が採用されるボトルの密封検査に本発明は好適である。
また、上記のような蓋体による密封形式の中でも、螺子係合の蓋体であるキャップをボトルの口部に装着する螺子タイプのものが、本発明の利点を最大限に活用することができる。即ち、キャップをボトル口部に打栓して嵌め込むタイプの密封形式では、密封性を検査することはできたとしても、この結果に応じて密封性を調整することはできないが、螺子タイプのものでは、先にも述べたように、キャップの巻き締め角度を調整し、例えば設定よりも大きな巻き締め角度で巻き締めることにより、密封性を調整することが可能となるからである。
Further, the form of the container to be inspected and the sealing means applied to the container are not particularly limited. For example, the present invention can be applied to a cup-shaped container sealed by heat sealing. However, the present invention is preferably applied to a bottle in which a lid is physically brought into contact with a mouth portion of a container to form a seal. When such a sealing type is adopted, the sealing property becomes a problem in particular, so that the present invention is suitable for the sealing inspection of the bottles adopting such a sealing type in order to effectively utilize the advantages of the present invention. It is.
Further, among the sealing types by the lid as described above, a screw type that attaches a cap, which is a screw engaging lid, to the mouth of the bottle can maximize the advantages of the present invention. . That is, in the sealing type in which the cap is plugged into the bottle mouth portion, even though the sealing performance can be inspected, the sealing performance cannot be adjusted according to this result. This is because, as described above, the sealing performance can be adjusted by adjusting the tightening angle of the cap, for example, by tightening at a tightening angle larger than the setting.

本発明においては、上述した密封形式が採用される容器内に、検査試料液である純水を充填し、該容器を密封した後、この容器(以下、検査容器と呼ぶことがある)を検出液である水溶性有機化合物の水溶液中に保持して侵入処理を行う。
このとき、用いる水溶性有機化合物水溶液の濃度は、質量分析装置の検出感度を最大に活かす理由から、飽和濃度で行うことも良いが、クエン酸のような十分に溶解性の高い物質であれば、20w/v%以下の濃度でも良い。
In the present invention, a container employing the above-described sealed form is filled with pure water as a test sample solution, and after sealing the container, this container (hereinafter sometimes referred to as a test container) is detected. An intrusion treatment is performed by holding the solution in an aqueous solution of a water-soluble organic compound.
At this time, the concentration of the water-soluble organic compound aqueous solution to be used may be a saturated concentration for the purpose of maximizing the detection sensitivity of the mass spectrometer, but if it is a sufficiently soluble substance such as citric acid. The concentration may be 20 w / v% or less.

侵入処理は、例えば、パウチ内に検査容器を入れ、さらに、上記の検出液をヘッドスペースが形成されないように充填した後、このパウチの開口部をヒートシールにより閉じ、この状態に、検査容器を一定時間保持することにより行われるが、この保持条件は、検査しようとする容器が採用される殺菌方式等に応じて同等の負荷がかかるように設定される。   Intrusion processing is performed, for example, by placing a cuvette in a pouch, and further filling the above-described detection liquid so that a head space is not formed, and then closing the opening of this pouch by heat sealing. The holding condition is set so that an equivalent load is applied according to the sterilization method in which the container to be inspected is adopted.

例えば、高圧処理による殺菌が行われる容器では、高圧処理と同等の温度で且つ同等の圧力が同等時間加わるように保持する。また、内容液が熱間充填された後冷却される容器では、同等の温度に加熱し次いで冷却して検査容器内が減圧状態に維持されるようにして侵入処理が行われる。   For example, in a container that is sterilized by high-pressure treatment, the container is held so that the same pressure is applied for the same time at the same temperature as the high-pressure treatment. Further, in a container that is cooled after being hot-filled with the content liquid, the intrusion process is performed so that the inside of the cuvette is maintained in a reduced pressure state by heating to the same temperature and then cooling.

尚、上記の侵入処理に用いるパウチは、異物の侵入が防止され、水溶性有機化合物の酸化劣化が生じない程度の適度な密封性を示すものであればよく、その材質は制限されない。例えば、ポリエチレン等のポリオレフィンフィルムからなるものであってもよいし、エチレンビニルアルコール共重合体等のガスバリア性樹脂の中間層を備えた多層フィルムであってもよい。   The pouch used for the intrusion treatment is not limited as long as it has an appropriate hermeticity that prevents entry of foreign substances and does not cause oxidative deterioration of the water-soluble organic compound. For example, it may be made of a polyolefin film such as polyethylene, or may be a multilayer film provided with an intermediate layer of a gas barrier resin such as an ethylene vinyl alcohol copolymer.

上記の侵入処理の終了後は、パウチから検査容器を取り出し、この容器表面に検出液(水溶性有機化合物の水溶液)が残存しないように、水洗し、乾燥した後、該容器内に充填されている純水の一部を汚染がないようにピペット等で、液体クロマトグラフィー測定用の試験管瓶に取り出す。具体的には、容器の底部或いは胴部に半田ゴテ等により孔をあけ、ピペットで取り出せばよい。   After completion of the above intrusion process, the inspection container is taken out from the pouch, washed with water and dried so that the detection liquid (aqueous solution of water-soluble organic compound) does not remain on the surface of the container. Remove a portion of the pure water with a pipette etc. into a test tube bottle for liquid chromatography measurement so that there is no contamination. Specifically, a hole may be formed in the bottom or body of the container with a soldering iron or the like and taken out with a pipette.

このようにして検査容器から取り出された純水中の水溶性有機化合物の濃度を、それ自体公知の液体クロマトグラフ・質量分析計を用いて定量する。
かかる定量は、例えば、既知の濃度の水溶性有機化合物の水溶液を用いて検量線を作成しておき、この検量線に基づいて水溶性有機化合物の濃度を算出することにより行われる。
Thus, the density | concentration of the water-soluble organic compound in the pure water taken out from the test container is quantified using a liquid chromatograph / mass spectrometer known per se.
Such quantification is performed, for example, by preparing a calibration curve using an aqueous solution of a water-soluble organic compound having a known concentration and calculating the concentration of the water-soluble organic compound based on the calibration curve.

例えば、全イオンカレントクロマトグラムのチャートを示す図1を参照して、純水のチャートではピークが存在していないが、クエン酸濃度が1ppmの水溶液のチャート0.5min前後のところにクエン酸に由来するピークが存在している。このようにして、濃度既知のクエン酸水溶液を用いてピークの高さから検量線を作成しておく。
図1には、上記の純水及びクエン酸1ppmのチャートと共に、試料No.1〜3のチャートが示されている。即ち、このチャートから、試料No.1及び3は、クエン酸のピークが発現しておらず、液体クロマトグラフ・質量分析計の検出限界が1ppmであった場合においてはクエン酸濃度が検出限界以下であり、クエン酸が侵入しておらず、従って密封性が有効に保持されていることが判る。
また、試料No.2では、クエン酸のピークが発現しており、このピーク強度から、0.93ppmのクエン酸が容器内に侵入しており、密封性を調整することが必要であることがわかる。また、このクエン酸量から、後述する水溶性化合物の定量からの侵入水量算出方法により、容器内に侵入した水の量(侵入水量)も算出することができる。例えば、検出液として20w/v%濃度のクエン酸水溶液を使用し、容器の充填水量を250mlとした場合には、1.25μlの水が容器内に侵入していたと計算できる。
For example, referring to FIG. 1 showing a chart of the total ion current chromatogram, there is no peak in the pure water chart, but the citric acid concentration is about 0.5 min in an aqueous solution having a citric acid concentration of 1 ppm. A derived peak is present. In this way, a calibration curve is prepared from the peak height using an aqueous citric acid solution with a known concentration.
FIG. 1 shows a sample No. 1 together with the chart of pure water and citric acid 1 ppm. 1 to 3 charts are shown. That is, from this chart, the sample No. In Nos. 1 and 3, the citric acid peak was not expressed, and when the detection limit of the liquid chromatograph / mass spectrometer was 1 ppm, the citric acid concentration was below the detection limit, and citric acid had entered. Thus, it can be seen that the sealing performance is effectively maintained.
Sample No. In No. 2, the peak of citric acid is expressed, and it can be seen from this peak intensity that 0.93 ppm of citric acid has entered the container, and it is necessary to adjust the sealing property. Further, from this amount of citric acid, the amount of water that has entered the container (intrusion water amount) can also be calculated by a method for calculating the amount of intrusion water from the determination of the water-soluble compound described later. For example, when a 20 w / v% aqueous citric acid solution is used as the detection solution and the filling water amount of the container is 250 ml, it can be calculated that 1.25 μl of water has entered the container.

本発明によれば、このようにして、検査対象の容器の密封性を精度よく検査することができ、この検査結果に応じて、密封性の調整を行うこともできる。
特に本発明は、各種の果汁やジュースなどの非炭酸飲料が充填・密封される容器において、鮮度を損なわずに殺菌するために高圧処理が行われる容器の密封性の確認のために好適に適用される。
According to the present invention, the sealing property of the container to be inspected can be inspected with high accuracy in this manner, and the sealing property can be adjusted according to the inspection result.
In particular, the present invention is suitably applied to confirm the sealing property of a container in which high-pressure treatment is performed for sterilization without impairing freshness in a container filled and sealed with non-carbonated beverages such as various fruit juices and juices. Is done.

本発明の優れた利点を次の実験例で説明する。
液体クロマトグラフ・質量分析計による水溶性有機化合物の定量、水溶性有機化合物の定量から侵入水量を求めることの可否を確認するため、以下の分析、定量を行った。
The superior advantages of the present invention are illustrated in the following experimental example.
The following analysis and quantification were performed in order to confirm the possibility of determining the amount of intrusion water from the quantification of the water-soluble organic compound and the quantification of the water-soluble organic compound using a liquid chromatograph / mass spectrometer.

<液体クロマトグラフ・質量分析計の分析条件>
(1)分析機器・分析条件
液体クロマトグラフ装置:アジレントテクノロジー社製 1260 Infinity Series
質量分析装置:アジレントテクノロジー社製 6430 Triple Quad LS/MS
カラム:SB−C18 ZORBAX(φ1.8μm,2.1×50mm)
移動相:0.1%ギ酸、流速0.4ml/min
フラグメンター電圧:75V
乾燥ガス:窒素ガス(350℃)
乾燥ガス流量:12l/min
ネブライザー圧:60psig
キャピラリー電圧:3500V
オーブン温度:40℃
注入量:5μl
イオン化法:ESI(選択イオンモニタリング法(m/z191.1))
測定:Negative検出モード
測定時間:1分間
(2)クエン酸検量線の作成
和光純薬工業社製クエン酸試薬(特級、純度>98%)を用いて10ppmの標準溶液を作成し、段階的に希釈を行い、0.1ppm,0.25ppm,0.5ppm,1.0ppmのクエン酸水溶液を作成した。その後、0.45μmメンブランフィルタでろ過後、測定に供した。測定から得られたクエン酸由来シグナル(m/z191.1)の積分値から、検量線を作成した。
(3)水溶性化合物の定量からの侵入水量算出方法
充填水量をXml、水溶性化合物の濃度をYw/v%、液体クロマトグラフ・質量分析計による水溶性化合物の検出量をZppmとした時、下記計算式により侵入水量(μl)を算出できる。
<計算式>
侵入水量(μl)=Z/10000Y*1000X
例えば、容器の充填水量が250mlであり、20w/v%クエン酸水溶液を用いて後述する方法で試験を行った場合、クエン酸の検出量が1ppmであった場合の侵入水量(μl)は、1/(10000*20)*1000*250=1.25となる。
<Analysis conditions for liquid chromatograph / mass spectrometer>
(1) Analytical instruments / analysis conditions Liquid chromatograph: 1260 Infinity Series manufactured by Agilent Technologies
Mass spectrometer: 6430 Triple Quad LS / MS manufactured by Agilent Technologies
Column: SB-C18 ZORBAX (φ1.8 μm, 2.1 × 50 mm)
Mobile phase: 0.1% formic acid, flow rate 0.4 ml / min
Fragmentor voltage: 75V
Drying gas: Nitrogen gas (350 ° C)
Dry gas flow rate: 12 l / min
Nebulizer pressure: 60 psig
Capillary voltage: 3500V
Oven temperature: 40 ° C
Injection volume: 5 μl
Ionization method: ESI (Selected ion monitoring method (m / z 191.1))
Measurement: Negative detection mode Measurement time: 1 minute (2) Preparation of a citric acid calibration curve A 10 ppm standard solution is prepared step by step using a citric acid reagent (special grade, purity> 98%) manufactured by Wako Pure Chemical Industries, Ltd. Dilution was performed to prepare 0.1 ppm, 0.25 ppm, 0.5 ppm, and 1.0 ppm citric acid aqueous solutions. Then, it filtered for 0.45 micrometer membrane filter and used for the measurement. A calibration curve was created from the integrated value of the citric acid-derived signal (m / z 191.1) obtained from the measurement.
(3) Intrusion water amount calculation method from determination of water-soluble compound When the amount of water charged is Xml, the concentration of the water-soluble compound is Yw / v%, and the amount of water-soluble compound detected by a liquid chromatograph / mass spectrometer is Zppm, The amount of intrusion water (μl) can be calculated by the following formula.
<Calculation formula>
Intrusion water volume (μl) = Z / 10000Y * 1000X
For example, when the amount of water filled in the container is 250 ml and a test is performed by the method described later using a 20 w / v% citric acid aqueous solution, the amount of intrusion water (μl) when the detected amount of citric acid is 1 ppm is 1 / (10000 * 20) * 1000 * 250 = 1.25.

<実験1>
満注容積268mlのPETボトルに3.3℃の純水を250ml充填し、38φポリエチレン樹脂製キャップをボトル口部にゼロ位置で嵌合し、所定角度365度巻締めて密封した各種サンプルボトルを作成した。
その後、各種サンプルボトルをナイロン/ポリエチレンの多層フィルムから成るパウチに挿入し、20w/v%濃度のクエン酸水溶液(検出液)を、ヘッドスペースを形成せずに充填してパウチの開口部をヒートシールし、これらのパウチを水温3.3℃、600MPa、2分の高圧加工処理を行った。
<Experiment 1>
Filled with 268 ml of PET bottle with a full volume of 268 ml, filled with 250 ml of 3.3 ° C pure water, fitted with a 38φ polyethylene resin cap at the zero position at the bottle mouth, wound around a predetermined angle of 365 degrees, and sealed various sample bottles. Created.
After that, various sample bottles are inserted into a pouch made of a nylon / polyethylene multilayer film, and a 20 w / v% aqueous citric acid solution (detection solution) is filled without forming a head space to heat the opening of the pouch. The pouches were sealed and subjected to high pressure processing at a water temperature of 3.3 ° C. and 600 MPa for 2 minutes.

上記の高圧処理後、ボトルをパウチから取り出し、ボトル表面にクエン酸溶液が残存しないように水道水で洗浄、乾燥後、半田ごてで胴部に孔を空け、ピペットにてボトル内の純水を汚染が無いようにPSスクリュー管瓶に2ml採取した。
この採取した純水を、液体クロマトグラフ・質量分析計を用いて分析し、上述した予め分析して求めた検量線からクエン酸濃度を定量し、このクエン酸濃度から侵入水量を求めたところ、定量限界のクエン酸濃度0.1ppm以下、侵入水量0.125μl以下であった。
なお、1ppmのクエン酸標準溶液の測定データからS/N(信号/ノイズ)比を求め、その3倍を検出限界として算出した結果、上述した分析機器と分析方法を用いた試験法での検出限界は0.1ppm以下であった。即ち、充填水量が250mlであり、20w/v%濃度のクエン酸水溶液が使用された場合においては、計算により、侵入水量は0.125μl以下となる。ただし、上述した検出限界については、分析機器の検出感度に依存するため、高感度な装置を用いた場合の検出限界は上述の限りではなく、更に低い濃度を検出限界としても良い。
After the above high-pressure treatment, the bottle is removed from the pouch, washed with tap water so that no citric acid solution remains on the bottle surface, dried, then a hole is made in the barrel with a soldering iron, and pure water in the bottle is removed with a pipette. 2 ml was collected in a PS screw tube bottle so that there was no contamination.
The collected pure water was analyzed using a liquid chromatograph / mass spectrometer, and the citric acid concentration was quantified from the calibration curve obtained by the above-described pre-analysis, and the amount of intrusion water was determined from the citric acid concentration. The citric acid concentration at the limit of quantification was 0.1 ppm or less, and the amount of intrusion water was 0.125 μl or less.
The S / N (signal / noise) ratio was calculated from the measurement data of the 1 ppm citric acid standard solution, and the result was calculated with the detection limit being three times as the detection limit. As a result, detection by the test method using the analytical instrument and analysis method described above was performed. The limit was 0.1 ppm or less. That is, when the amount of filling water is 250 ml and an aqueous citric acid solution having a concentration of 20 w / v is used, the amount of intruding water is 0.125 μl or less by calculation. However, since the detection limit described above depends on the detection sensitivity of the analytical instrument, the detection limit when a highly sensitive apparatus is used is not limited to the above, and a lower concentration may be used as the detection limit.

一方、上記キャップの所定角度を180度まで10度ずつ緩めて巻締めたサンプルを作成し、同様にクエン酸濃度を定量し、このクエン酸濃度から侵入水量を求めた結果、所定角度が250度でクエン酸濃度56ppm、侵入水量0.07ml、所定角度が200度でクエン酸濃度240ppm、侵入水量0.3mlとなることが判明した。   On the other hand, a sample in which the predetermined angle of the cap was loosened and tightened by 10 degrees up to 180 degrees was prepared, and the citric acid concentration was similarly quantified. As a result of obtaining the intrusion water amount from this citric acid concentration, the predetermined angle was 250 degrees. It was found that the citric acid concentration was 56 ppm, the intrusion water amount was 0.07 ml, the predetermined angle was 200 degrees, the citric acid concentration was 240 ppm, and the intrusion water amount was 0.3 ml.

<実験2>
それぞれγ線で殺菌した満注容積268mlのPETボトルと38φポリエチレン樹脂製キャップとを用意した。
上記のPETボトルに、殺菌済み加糖ブイヨン培地250mlを無菌的に充填し、前記実験1の液体クロマトグラフ・質量分析計で求めた侵入水量の0.07mlとなるように、上記のキャップを、所定角度250度で巻締めて無菌的に密封したサンプルボトルを100本作成した。
これらのサンプルボトルを、Bacillus subtillis芽胞10cell/ml液が充填されたナイロン/ポリエチレンの多層フィルムから成るパウチに挿入して、ヘッドスペースを形成せずにヒートシールし、水温3.3℃、600Mpa、2分の高圧加工処理を行った。
この結果、サンプルボトル100本全て変敗が生じなかった。
<Experiment 2>
A PET bottle having a full injection volume of 268 ml and a cap made of 38φ polyethylene resin each sterilized with γ rays were prepared.
Aseptically fill the PET bottle with 250 ml of sterilized sweetened bouillon medium, and fix the cap so that the amount of intrusion water determined by the liquid chromatograph / mass spectrometer in Experiment 1 is 0.07 ml. One hundred sample bottles were wound and sealed aseptically at an angle of 250 degrees.
These sample bottles were inserted into a pouch made of a nylon / polyethylene multilayer film filled with 10 5 cell / ml solution of Bacillus subtilis spores, heat-sealed without forming a head space, a water temperature of 3.3 ° C., The high pressure processing of 600 Mpa and 2 minutes was performed.
As a result, all 100 sample bottles were not deteriorated.

<実験3>
実験2において、前記実験1の液体クロマトグラフ・質量分析計で求めた侵入水量の0.3mlになるように、キャップを所定角度200度で巻締めた以外は、同様にサンプルボトルを100本作成して高圧加工処理を行った。
この結果、サンプルボトル100本中、11本の変敗が観察された。
<Experiment 3>
In Experiment 2, 100 sample bottles were prepared in the same manner except that the cap was tightened at a predetermined angle of 200 degrees so that the amount of intrusion water obtained by the liquid chromatograph / mass spectrometer in Experiment 1 was 0.3 ml. Then, high-pressure processing was performed.
As a result, 11 deteriorations were observed in 100 sample bottles.

<実験4>
それぞれ、γ線で殺菌した満注容積268mlの耐熱PETボトルと38φポリエチレン樹脂製キャップとを用意した。
次いで、120℃で殺菌済みの加糖ブイヨン培地250mlを88℃で、上記の耐熱PETボトルに充填し、前記実験1の液体クロマトグラフ・質量分析計で求めた侵入水量の0.07mlになるように、上記のキャップを、所定角度250度で巻締めて密封したサンプルボトルを100本作成した。
これらのサンプルボトルを、Lactobacillus brevis 10cell/ml液を注入したバケツにそれぞれ入れて3.3℃に冷却した。
この結果、サンプルボトル100本全て変敗が生じなかった。
<Experiment 4>
A heat resistant PET bottle having a full injection volume of 268 ml sterilized with γ rays and a cap made of 38φ polyethylene resin were prepared.
Next, 250 ml of sweetened bouillon medium sterilized at 120 ° C. is filled at 88 ° C. into the above heat-resistant PET bottle so that the amount of intrusion water obtained by the liquid chromatograph / mass spectrometer in Experiment 1 is 0.07 ml. 100 sample bottles were prepared by sealing the above cap with a predetermined angle of 250 degrees.
Each of these sample bottles was cooled to 3.3 ° C. in a bucket filled with Lactobacillus brevis 10 5 cell / ml solution.
As a result, all 100 sample bottles were not deteriorated.

<実験5>
実験4において、前記実験1の液体クロマトグラフ・質量分析計で求めた侵入水量の0.3mlになるように、キャップを所定角度200度で巻締めた以外は、同様にサンプルボトルを100本作成して冷却を行った。
この結果、サンプルボトル100本中、20本の変敗が観察された。
<Experiment 5>
In Experiment 4, 100 sample bottles were prepared in the same manner except that the cap was tightened at a predetermined angle of 200 degrees so that the amount of intrusion water obtained by the liquid chromatograph / mass spectrometer in Experiment 1 was 0.3 ml. And cooled.
As a result, 20 deteriorations were observed in 100 sample bottles.

尚、上記の実験において、侵入水量と変敗の関係については、J.Gilchurstらの金属缶内への水侵入量と変敗の関係を求める研究(Lactbacillusを用いたバイオテスト)での水侵入量が0.069mlで変敗がなく、0.265mlで膨張変敗が発生したとの報告を基準とした。   In the above experiment, regarding the relationship between the amount of intrusion water and deterioration, J.A. The amount of water intrusion was 0.069 ml in the research (biotest using Lactbacillus) for the relationship between the amount of water intrusion into the metal can and deterioration of Gilchurst et al. Based on the report that it occurred.

<考察>
上記実験1乃至5によれば、水溶性有機化合物を用いた液体クロマトグラフ・質量分析計によって水溶性有機化合物を定量し、この水溶性有機化合物濃度から侵入水量を求めることにより、ボトルとキャップの巻締めの所定角度と、水溶性有機化合物濃度、侵入水量の関連付けが極めて容易に行われる。その結果、ボトル詰め飲料の製造等のボトルとキャップの密封性の確認に適用することにより、その密封性の確認を高精度、迅速に行えることが判る。
<Discussion>
According to the above experiments 1 to 5, the water-soluble organic compound is quantified by a liquid chromatograph / mass spectrometer using the water-soluble organic compound, and the amount of invading water is determined from the concentration of the water-soluble organic compound. The predetermined angle of the tightening, the water-soluble organic compound concentration, and the intrusion water amount can be associated with each other very easily. As a result, it can be seen that the sealability can be confirmed with high accuracy and speed by applying to the confirmation of the sealability of bottles and caps in the manufacture of bottled beverages.

また、上記実験2、3によれば、例えば、10℃以下の低温条件下で調製された非炭酸系飲料をボトルに充填・密封し、前記飲料が充填されたボトルを高圧加工処理するボトル詰め飲料の製造において、上述した実験1の関連付けを適用することにより、高圧加工処理時のマイクロリークと処理水の汚染等による飲料の変敗を防止するボトルとキャップの密封性の確認方法として、高精度、迅速に行えることが判る。
さらに、上記実験4、5によれば、例えば、熱間充填される飲料をボトルに充填するボトル詰め飲料の製造において、上述した実験1の関連付けを適用することにより、冷却後の負圧吸い込みによる飲料の変敗を防止するボトルとキャップの密封性の確認方法として、高精度、迅速に行えることが判る。
Further, according to Experiments 2 and 3, for example, a non-carbonated beverage prepared under a low temperature condition of 10 ° C. or less is filled and sealed in a bottle, and the bottle filled with the beverage is subjected to high pressure processing. In the production of beverages, by applying the association in Experiment 1 described above, as a method for confirming the sealing properties of bottles and caps that prevent the beverage from being damaged due to micro leaks during high-pressure processing and contamination of treated water, It can be seen that it can be done quickly and accurately.
Further, according to Experiments 4 and 5, for example, in the manufacture of a bottled beverage in which a hot-filled beverage is filled in a bottle, by applying the association of Experiment 1 described above, by sucking negative pressure after cooling It can be seen that this method can be performed with high accuracy and speed as a method for confirming the sealability of the bottle and the cap to prevent the beverage from being damaged.

Claims (8)

液体を充填・密封する容器の密封性検査方法において、
前記容器内に純水を密封・充填し、
前記純水が充填・密封された容器を、水溶性有機化合物の水溶液中に保持することにより該容器内への水溶性有機化合物の侵入処理を行い、
この後、該容器内に充填された純水を取り出し、液体クロマトグラフ・質量分析計により、該純水中に混入した前記水溶性有機化合物の量を定量する、容器の密封性検査方法。
In the method for inspecting the sealability of containers filled and sealed with liquid,
Sealing and filling pure water in the container,
By holding the container filled and sealed with pure water in an aqueous solution of a water-soluble organic compound, the water-soluble organic compound is infiltrated into the container,
Thereafter, the container is checked for hermeticity by taking out pure water filled in the container and quantifying the amount of the water-soluble organic compound mixed in the pure water with a liquid chromatograph / mass spectrometer.
前記容器がボトルであり、該ボトルに前記純水を充填した後、該ボトルの口部にキャップを螺子装着することにより密封性を確保するものである請求項1に記載の容器の密封性検査方法。   2. The container sealing test according to claim 1, wherein the container is a bottle, and after the bottle is filled with the pure water, a sealing cap is secured by screwing a cap on the mouth of the bottle. Method. 前記容器は、前記純水を充填・密封した後、高圧処理が行われるものである請求項1または2に記載の容器の密封性検査方法。   The container sealing method according to claim 1 or 2, wherein the container is subjected to high-pressure treatment after being filled and sealed with the pure water. 前記純水が充填・密封された容器をパウチに挿入し、次いで、該パウチ内に前記水溶性有機化合物の水溶液を充填し、この後、該パウチの開口部をヒートシールし、この状態で高圧処理を行うことにより、前記水溶性有機化合物の侵入処理を行う請求項3に記載の容器の密封性検査方法。   A container filled and sealed with pure water is inserted into a pouch, and then the aqueous solution of the water-soluble organic compound is filled into the pouch. Thereafter, the opening of the pouch is heat-sealed. The container sealing test method according to claim 3, wherein an intrusion process of the water-soluble organic compound is performed by performing a process. 前記水溶性有機化合物が、20℃での水に対する溶解度(w/v%)が1g/100ml以上である請求項1〜4の何れかに記載の容器の密封性検査方法。   The container water-tightness inspection method according to claim 1, wherein the water-soluble organic compound has a water solubility (w / v%) at 20 ° C. of 1 g / 100 ml or more. 前記水溶性有機化合物が、有機カルボン酸、アミノ酸またはポリフェノールである請求項5に記載の容器の密封性検査方法。   The container water-tightness inspection method according to claim 5, wherein the water-soluble organic compound is an organic carboxylic acid, an amino acid, or polyphenol. 前記水溶性有機化合物がクエン酸である請求項6に記載の容器の密封性検査方法。   The container water-tightness inspection method according to claim 6, wherein the water-soluble organic compound is citric acid. 定量された純水中の前記水溶性有機化合物の量から、該純水中に侵入した水の量を算出する請求項1〜7の何れかに記載の容器の密封性検査方法。   The container sealability inspection method according to any one of claims 1 to 7, wherein the amount of water that has entered the pure water is calculated from the determined amount of the water-soluble organic compound in the pure water.
JP2016065003A 2016-03-29 2016-03-29 Container sealability inspection method Expired - Fee Related JP6197906B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016065003A JP6197906B1 (en) 2016-03-29 2016-03-29 Container sealability inspection method
PCT/JP2017/009878 WO2017169680A1 (en) 2016-03-29 2017-03-13 Method for detecting sealing properties of container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016065003A JP6197906B1 (en) 2016-03-29 2016-03-29 Container sealability inspection method

Publications (2)

Publication Number Publication Date
JP6197906B1 JP6197906B1 (en) 2017-09-20
JP2017181134A true JP2017181134A (en) 2017-10-05

Family

ID=59895697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016065003A Expired - Fee Related JP6197906B1 (en) 2016-03-29 2016-03-29 Container sealability inspection method

Country Status (2)

Country Link
JP (1) JP6197906B1 (en)
WO (1) WO2017169680A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4382679A (en) * 1980-10-06 1983-05-10 Cutter Laboratories, Inc. Dye leak detection method
JPH02138845A (en) * 1987-09-08 1990-05-28 Erumetsukusu:Kk Inspection of leak through sealed container or the like
JPH06307970A (en) * 1993-04-20 1994-11-04 Nalco Chem Co Detection of leakage from boiler apparatus
JPH10288613A (en) * 1997-04-14 1998-10-27 Kinousui Kenkyusho:Kk Contamination detecting method and leakage detecting method
JP2000097799A (en) * 1998-09-24 2000-04-07 Ishida Co Ltd Hermetic seal inspection system for hermetically sealed container
JP2006329656A (en) * 2005-05-23 2006-12-07 Hitachi High-Technologies Corp Apparatus for detecting internal liquid leakage of flow channel switching valve
JP2007121012A (en) * 2005-10-26 2007-05-17 Shimadzu System Solutions Co Ltd Pinhole inspection device of sealed package
JP2013533494A (en) * 2010-08-10 2013-08-22 ヴィルコ・アーゲー Method and apparatus for leak testing containers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4382679A (en) * 1980-10-06 1983-05-10 Cutter Laboratories, Inc. Dye leak detection method
JPH02138845A (en) * 1987-09-08 1990-05-28 Erumetsukusu:Kk Inspection of leak through sealed container or the like
JPH06307970A (en) * 1993-04-20 1994-11-04 Nalco Chem Co Detection of leakage from boiler apparatus
JPH10288613A (en) * 1997-04-14 1998-10-27 Kinousui Kenkyusho:Kk Contamination detecting method and leakage detecting method
JP2000097799A (en) * 1998-09-24 2000-04-07 Ishida Co Ltd Hermetic seal inspection system for hermetically sealed container
JP2006329656A (en) * 2005-05-23 2006-12-07 Hitachi High-Technologies Corp Apparatus for detecting internal liquid leakage of flow channel switching valve
JP2007121012A (en) * 2005-10-26 2007-05-17 Shimadzu System Solutions Co Ltd Pinhole inspection device of sealed package
JP2013533494A (en) * 2010-08-10 2013-08-22 ヴィルコ・アーゲー Method and apparatus for leak testing containers

Also Published As

Publication number Publication date
JP6197906B1 (en) 2017-09-20
WO2017169680A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US7971470B2 (en) Method for detecting chemical substances in whole, closed and/or sealed containers
JP3699474B2 (en) Gas barrier property measurement method for plastic moldings
EP2372344B1 (en) Method for analysing a gaseous component present in a hermetically sealed container
JP6197906B1 (en) Container sealability inspection method
Fu et al. Changes on enological parameters of white wine packaged in bag‐in‐box during secondary shelf life
EP3762699A1 (en) System and method for determining the integrity of containers
CN113484446A (en) Method for testing micro-pollution on surface of packaging bag for clean room
Kiyomichi et al. Investigation into mousy off-flavor in wine using gas chromatography-mass spectrometry with stir bar sorptive extraction
US10365179B2 (en) Method and device for testing the tightness of large-volume containers
Dimkou et al. Impact of dissolved oxygen at bottling on sulfur dioxide and sensory properties of a Riesling wine
Kossinna et al. Helium leak testing of packages for oral drug products
Kontoudakis et al. Impact of stopper type on oxygen ingress during wine bottling when using an inert gas cover
CN103464382A (en) Online vacuum detector for penicillin bottle
WO2011013456A1 (en) Process for production of canned product
WO2011064740A3 (en) Product and preparation process of a substrate for a rapid detection of helicobacter pylori
JP2005315670A (en) Bag making seal inspection device
Aston et al. Detection of carbonyl sulphide in Cheddar cheese headspace
JP3018090B2 (en) Container seal retention determination method
GB2409724A (en) NMR Leak Test
Dhuey Investigation of corrosion in canned tomatoes processed by retorting
JP4379323B2 (en) Container sealability inspection method
JP2011017663A (en) Measuring container, measuring kit and measuring device
JP5018331B2 (en) Sealing inspection method for pouch with spout
JP6691657B2 (en) Thermal history detection agent, thermal history evaluation method, device performance evaluation method
JP2007121012A (en) Pinhole inspection device of sealed package

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6197906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees