JP2017180743A - Transmission device - Google Patents

Transmission device Download PDF

Info

Publication number
JP2017180743A
JP2017180743A JP2016071229A JP2016071229A JP2017180743A JP 2017180743 A JP2017180743 A JP 2017180743A JP 2016071229 A JP2016071229 A JP 2016071229A JP 2016071229 A JP2016071229 A JP 2016071229A JP 2017180743 A JP2017180743 A JP 2017180743A
Authority
JP
Japan
Prior art keywords
transmission
grooves
axis
groove
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016071229A
Other languages
Japanese (ja)
Inventor
隆憲 野口
Takanori Noguchi
隆憲 野口
慎弥 松岡
Shinya Matsuoka
慎弥 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musashi Seimitsu Industry Co Ltd
Original Assignee
Musashi Seimitsu Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musashi Seimitsu Industry Co Ltd filed Critical Musashi Seimitsu Industry Co Ltd
Priority to JP2016071229A priority Critical patent/JP2017180743A/en
Priority to PCT/JP2017/012723 priority patent/WO2017170589A1/en
Publication of JP2017180743A publication Critical patent/JP2017180743A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/04Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying rotary motion
    • F16H25/06Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying rotary motion with intermediate members guided along tracks on both rotary members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/12Differential gearings without gears having orbital motion

Abstract

PROBLEM TO BE SOLVED: To secure an installation space of a retainer between both transmission members while making thrust load between transmission grooves and rolling elements during transmission zero or sufficiently reducing the same, in a transmission device in which one of the transmission members applies a first axis as a central axis, the other transmission member is revolvable around the first axis while rotating around a second axis eccentric from the first axis, and a transmission mechanism between both transmission members has one of transmission grooves formed on one of the transmission members and formed into the corrugated annular shape on the first axis, the other transmission groove formed on the other transmission member and formed into the corrugated annular shape on the second axis, and the plurality of rolling elements disposed on a plurality of intersecting portions of both transmission grooves.SOLUTION: Both transmission grooves 21, 22 are composed of angular grooves having an U-shaped cross section, and rolling elements rolling in the angular grooves are composed of rollers extended over both transmission grooves, and having the curved shape in which a roller outer peripheral face is gradually reduced in outer diameter from contact portion outer end toward both end faces in a region from a contact portion t opposed to a transmission groove inner face to both end faces f of the roller 23.SELECTED DRAWING: Figure 1

Description

本発明は、伝動装置、特に互いに対向する一対の伝動部材と、その両伝動部材の相互間に設けられて、その相互間で変速しつつトルク伝達可能な変速機構とを備えていて、一方の伝動部材が第1軸線を中心軸線とし、且つ他方の伝動部材が、第1軸線から偏心した第2軸線回りを自転しながら第1軸線回りに公転可能である伝動装置に関する。   The present invention includes a transmission device, particularly a pair of transmission members facing each other, and a transmission mechanism provided between the transmission members and capable of transmitting torque while shifting between the transmission members. The present invention relates to a transmission device in which a transmission member has a first axis as a central axis, and the other transmission member can revolve around a first axis while rotating around a second axis that is eccentric from the first axis.

上記伝動装置は、例えば特許文献1の図7に示されるように従来公知であり、このものでは、変速機構が、一方の伝動部材の、他方の伝動部材との対向面に在り且つ第1軸線を中心とする波形環状の一方の伝動溝と、他方の伝動部材の、一方の伝動部材との対向面に在り且つ第2軸線を中心とする波形環状で波数が一方の伝動溝とは異なる他方の伝動溝と、両伝動溝の複数の交差部に介装される複数の転動体と、それら転動体を周方向に間隔をおいて保持する保持孔を有して両伝動部材間に介装される保持部材(リテーナ)とを有している。そして、この構造の伝動装置では、例えば各伝動部材を板状に形成することで装置の軸方向小型化を図り得る利点がある。   For example, as shown in FIG. 7 of Patent Document 1, the above transmission device is conventionally known. In this device, the speed change mechanism is located on the surface of one transmission member facing the other transmission member and has a first axis. A wave-shaped transmission groove centered on the other side of the other transmission member and the other transmission member on the surface facing the one transmission member and a wave-shaped ring centered on the second axis and having a different wave number from the one transmission groove And a plurality of rolling elements interposed at a plurality of intersections of the two transmission grooves, and a holding hole for holding the rolling elements at intervals in the circumferential direction. Holding member (retainer). And in the transmission device of this structure, there exists an advantage which can attain axial size reduction of an apparatus by forming each transmission member in plate shape, for example.

特開2010−14214号公報JP 2010-14214 A

ところで此の種の伝動装置では、特許文献1の図7にも示されるように、両伝動溝を横断面V字状又はゴシックアーチ状に形成する一方、転動体をボールで構成している。そのため、伝動中、各伝動溝とボール間に大なるスラスト荷重が発生し、これが、伝動溝とボール間の摩擦力を増大させたり、或いは回転する伝動部材とそれの背面に摺接するスラスト受け部(例えば、伝動装置が差動装置の場合はデフケース、変速機の場合は変速機ケース)との間の摩擦力を増大させたりして伝動効率を低下させる等の不都合の発生要因となる。   By the way, in this type of transmission device, as shown in FIG. 7 of Patent Document 1, both transmission grooves are formed in a V-shaped cross section or a Gothic arch shape, while the rolling elements are formed of balls. Therefore, during transmission, a large thrust load is generated between each transmission groove and the ball, which increases the frictional force between the transmission groove and the ball, or a thrust receiving portion that is in sliding contact with the rotating transmission member and its back surface. (For example, when the transmission device is a differential device, a differential case, and when the transmission device is a transmission case) the frictional force between the transmission device and the transmission efficiency may be reduced.

そこで上記不都合を抑えるために、例えば、ボールの伝動溝に対する接触角(即ちボールが伝動溝に及ぼす荷重の作用方向(換言すればボール中心からボールと伝動溝との接点に向かう直線(法線)の方向)と、上記荷重のスラスト分力の方向とのなす角度)を大きく設定することが考えられるが、その場合には、次のような別の不都合が生じる虞れがある。   Therefore, in order to suppress the above inconvenience, for example, a contact angle of the ball with respect to the transmission groove (that is, a direction in which the ball acts on the transmission groove (in other words, a straight line (normal line) from the ball center to the contact point of the ball and the transmission groove) It is conceivable to set a large angle between the direction of the thrust and the direction of the thrust component of the load). In this case, however, another inconvenience may occur as follows.

即ち、上記接触角を大きく設定すれば、上記スラスト荷重を減少可能であるものの、接触角を大きく設定するほどに、ボールの伝動溝内への進入深さが深くなって、両伝動部材の対向間隔が狭くなることから、複数のボールを保持する保持部材の設置スペースの確保が困難になる。   That is, if the contact angle is set large, the thrust load can be reduced. However, as the contact angle is set larger, the depth of penetration of the ball into the transmission groove becomes deeper, and the two transmission members face each other. Since the interval is narrow, it is difficult to secure an installation space for the holding member that holds the plurality of balls.

本発明は、かかる事情に鑑みてなされたもので、伝動中における伝動溝と転動体間のスラスト荷重をゼロにし又は十分に低減させながら、両伝動部材間に転動体保持用の保持部材の設置スペースを十分に確保可能とした伝動装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and while the thrust load between the transmission groove and the rolling element during transmission is zero or sufficiently reduced, the holding member for holding the rolling element is installed between the two transmission members. An object of the present invention is to provide a transmission that can secure a sufficient space.

上記目的を達成するために、本発明は、互いに対向する一対の伝動部材と、その両伝動部材の相互間に設けられて、その相互間で変速しつつトルク伝達可能な変速機構とを備えていて、一方の伝動部材が第1軸線を中心軸線とし、且つ他方の伝動部材が、第1軸線から偏心した第2軸線回りを自転しながら第1軸線回りに公転可能であり、前記一対の伝動部材が、その両者の相対向面に伝動溝を各々有しており、前記変速機構が、前記一方の伝動部材に設けられて第1軸線を中心とした波形環状をなす一方の前記伝動溝と、前記他方の伝動部材に設けられて第2軸線を中心とする波形環状をなし且つ波数が前記一方の伝動溝とは異なる他方の前記伝動溝と、前記一方の伝動溝及び前記他方の伝動溝相互の複数の交差部に介装され、その両伝動溝を転動しながら前記両伝動部材間の変速伝動を行う複数の転動体と、それら転動体を周方向に間隔をおいて保持する複数の保持孔を有して前記両伝動部材間に介装される保持部材とを備える伝動装置であって、前記両伝動溝が横断面コ字状の角溝で構成される一方、前記転動体が、前記両伝動溝間に跨がって延びていて両端部が両伝動溝の内側面を転動し得るコロで構成され、その各コロの、前記両伝動溝の内側面に対する各接触部から軸方向両端面に至る領域で、各コロの外周面が、外径を前記接触部から前記両端面に向かって滑らかに減少させた曲面形状をなし、前記各コロの軸方向中間部の外周面は、前記保持部材の前記保持孔に回転摺動可能に嵌合、支持される円筒面で構成されることを第1の特徴とする。   In order to achieve the above object, the present invention includes a pair of transmission members facing each other, and a transmission mechanism that is provided between the transmission members and capable of transmitting torque while shifting between the transmission members. And the other transmission member can revolve around the first axis while rotating around the second axis eccentric from the first axis, and the pair of transmissions Each of the members has a transmission groove on both opposing surfaces, and the transmission mechanism is provided on the one transmission member and has one of the transmission grooves forming a corrugated ring centered on the first axis. The other transmission member, which is provided in the other transmission member and has a corrugated annular shape centering on the second axis and has a wave number different from that of the one transmission groove, the one transmission groove, and the other transmission groove Interspersed at multiple intersections, both transmissions A plurality of rolling elements that perform transmission transmission between the two transmission members while rolling, and a plurality of holding holes that hold the rolling elements at intervals in the circumferential direction, and are interposed between the two transmission members. The transmission member is a square groove having a U-shaped cross section, and the rolling element extends between the transmission grooves. Both ends are composed of rollers that can roll on the inner surfaces of both transmission grooves, and each roller has an outer peripheral surface in the region from each contact portion to the inner surfaces of both transmission grooves to both axial end surfaces. However, it has a curved surface shape in which the outer diameter is smoothly reduced from the contact portion toward the both end surfaces, and the outer peripheral surface of the axially intermediate portion of each roller can be slid into the holding hole of the holding member. The first feature is that it is formed of a cylindrical surface that is fitted and supported by the cylinder.

また本発明は、第1の特徴に加えて、前記保持孔の、前記各コロの軸方向中間部を嵌合、支持する内周面は、その保持孔の中心線を含む断面の形状が中心線側に凸の円弧状であることを第2の特徴とする。   According to the present invention, in addition to the first feature, the inner peripheral surface of the holding hole that fits and supports the intermediate portion in the axial direction of each roller is centered on a cross-sectional shape including the center line of the holding hole. The second feature is that the line has a convex arc shape.

また本発明は、第1又は第2の特徴に加えて、各々の前記伝動溝の相対向する内側面は、所定の微小なテーパ角を以て溝の開放面側に先拡がり状に拡開していることを第3の特徴とする。   Further, according to the present invention, in addition to the first or second feature, the opposing inner surface of each of the transmission grooves is expanded in a pre-expanded manner toward the open surface side of the groove with a predetermined minute taper angle. The third feature is that

本発明の第3の特徴において、「所定の微小なテーパ角」とは、伝動溝が設けられる伝動部材を、成形型を用いた成形(例えば鍛造、鋳造、焼結等)手法で成形する場合において、伝動溝即ち角溝を型成形する際に設定される抜き勾配に相当する微小角度として定義される。   In the third feature of the present invention, the “predetermined minute taper angle” refers to a case where a transmission member provided with a transmission groove is formed by a method using a forming die (for example, forging, casting, sintering). Is defined as a minute angle corresponding to a draft angle set when a transmission groove, that is, a square groove is molded.

本発明の第1の特徴によれば、変速機構を相互間に設けて相対向する一対の伝動部材の波形環状の伝動溝が、横断面コ字状の角溝で構成され、一方、両伝動溝の交差部に介装されて両伝動部材間を変速伝動する複数の転動体が、両伝動溝間に跨がって延びて両伝動溝の内側面を転動し得るコロで構成され、各コロの軸方向中間部の外周面が、保持部材の保持孔に回転摺動可能に嵌合、支持される円筒面で構成されるので、各伝動溝に対するコロ(転動体)の接触角を90°又はそれに近くに十分大きく設定可能となり、これにより、伝動溝及びコロ間に発生するスラスト荷重をゼロにし、又は大幅に減少できるため、変速機構の伝動効率を効果的に高めることができる。更にコロの軸方向長さの選定により、両伝動部材相互の対向間隔を自由に設定可能となるため、両伝動部材間に保持部材の設置スペースを十分に確保可能となる。   According to the first feature of the present invention, the wave-shaped annular transmission grooves of the pair of transmission members that are opposed to each other by providing the speed change mechanism are constituted by square grooves having a U-shaped cross section, while both transmissions A plurality of rolling elements, which are interposed at the intersections of the grooves and change transmission between the two transmission members, are composed of rollers that can extend over both transmission grooves and roll on the inner side surfaces of both transmission grooves, Since the outer peripheral surface of the axially intermediate portion of each roller is constituted by a cylindrical surface that is fitted and supported in the holding hole of the holding member so as to be able to rotate and slide, the contact angle of the roller (rolling element) with respect to each transmission groove is Since it can be set sufficiently large at or near 90 °, the thrust load generated between the transmission groove and the roller can be reduced to zero or greatly reduced, so that the transmission efficiency of the transmission mechanism can be effectively increased. Furthermore, since the distance between the two transmission members can be freely set by selecting the axial length of the roller, a sufficient installation space for the holding member can be secured between the two transmission members.

その上、各コロの、両伝動溝の内側面に対する各接触部から軸方向両端面に至る領域で、各コロの外周面が、外径を上記接触部から上記両端面に向かって滑らかに減少させた曲面形状をなすので、伝動中、コロに多少の傾きが生じても、コロ及び伝動溝間でのエッジ接触に因る局部的な負荷増大を回避可能となり、これにより、コロのスムーズな転動を確保して、伝動効率の更なる向上と、コロ及び伝動溝の更なる耐久性向上に寄与することができる。   In addition, the outer peripheral surface of each roller smoothly decreases from the contact portion toward the both end surfaces in the region from each contact portion to the inner end surfaces of both transmission grooves in the axial direction. Because of the curved shape, it is possible to avoid a local load increase due to edge contact between the roller and the transmission groove even if the roller is slightly inclined during transmission. Rolling can be ensured to contribute to further improvement of transmission efficiency and further improvement of durability of rollers and transmission grooves.

また第2の特徴によれば、保持部材の保持孔の、各コロの軸方向中間部を嵌合、支持する内周面は、保持孔の中心線を含む断面の形状が中心線側に凸の円弧状であるので、伝動中、コロに多少の傾きが生じても、コロ及び保持孔間でのエッジ接触に因る局部的な負荷増大を回避可能となり、これにより、コロの一層スムーズな転動を確保して、伝動効率の更なる向上と、コロ及び保持部材の耐久性向上に寄与することができる。   According to the second feature, the inner peripheral surface of the holding hole of the holding member that fits and supports the intermediate portion in the axial direction of each roller has a cross-sectional shape including the center line of the holding hole protruding toward the center line side. Therefore, even if the roller is slightly inclined during transmission, it is possible to avoid an increase in local load due to edge contact between the roller and the holding hole. Rolling can be ensured, and it can contribute to the further improvement of transmission efficiency and the durability improvement of a roller and a holding member.

また第3の特徴によれば、各々の伝動溝の相対向する内側面は、所定の微小なテーパ角を以て溝の開放面側に先拡がり状に拡開しているので、各コロと伝動溝間に発生するスラスト荷重を大幅に減少させながら、コロの伝動溝に対するスラスト方向位置決めを的確に行うことができ、コロの軸方向ガタつきや振動の防止に寄与することができる。しかも各伝動溝の断面形状を略コ字状に形成できるため、各伝動溝の成形加工精度(延いては伝動溝とコロとの接触角の精度)を容易に高めることができるから、上記スラスト荷重の安定化が図られる。   Further, according to the third feature, the opposing inner side surfaces of the respective transmission grooves are expanded so as to expand toward the open surface side of the groove with a predetermined minute taper angle. While significantly reducing the thrust load generated in the meantime, positioning in the thrust direction with respect to the transmission groove of the roller can be performed accurately, which can contribute to prevention of axial backlash and vibration of the roller. In addition, since the cross-sectional shape of each transmission groove can be formed in a substantially U-shape, the forming accuracy of each transmission groove (and hence the accuracy of the contact angle between the transmission groove and the roller) can be easily increased. The load can be stabilized.

本発明の第1実施形態に係る伝動装置(差動装置)の縦断正面図1 is a longitudinal front view of a transmission device (differential device) according to a first embodiment of the present invention. 前記差動装置における差動機構の分解斜視図An exploded perspective view of a differential mechanism in the differential device 図1の3−3線断面図3-3 sectional view of FIG. 図1の4−4線断面図Sectional view taken along line 4-4 in FIG. 図1の5−5線断面図Sectional view along line 5-5 in FIG. 図1の6矢視部の拡大断面図1 is an enlarged cross-sectional view taken along the arrow 6 in FIG. 本発明の第2実施形態を示す図6対応断面図FIG. 6 is a sectional view corresponding to FIG. 6 showing a second embodiment of the present invention.

本発明の実施形態を添付図面に基づいて以下に説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

先ず、図1〜図5に示す本発明の第1実施形態を説明する。図1において、自動車のミッションケース1内には、伝動装置としての差動装置Dが変速装置と共に収容される。   First, a first embodiment of the present invention shown in FIGS. 1 to 5 will be described. In FIG. 1, a differential device D as a transmission device is housed in a transmission case 1 of an automobile together with a transmission.

この差動装置Dは、前記変速装置の出力側に連動回転するリングギヤCgの回転を、差動装置Dの中心軸線即ち第1軸線X1上に相対回転可能に並ぶ左右の駆動車軸S1,S2(即ち第1,第2ドライブ軸)に対して、両駆動車軸S1,S2相互の差動回転を許容しつつ分配する。尚、各々の駆動車軸S1,S2とミッションケース1との間は、シール部材4,4′でシールされる。   In the differential device D, the left and right drive axles S1, S2 (in which the rotation of the ring gear Cg that rotates in conjunction with the output side of the transmission device is arranged on the central axis of the differential device D, that is, the first axis X1, are relatively rotatable. That is, the first and second drive shafts) are distributed while allowing differential rotation between the drive axles S1 and S2. The drive axles S1, S2 and the transmission case 1 are sealed with seal members 4, 4 '.

ミッションケース1の底部は、潤滑油を所定量貯溜し得るオイルパン(図示せず)に構成される。そのオイルパン内の貯溜潤滑油は、ミッションケース1内の回転部分、例えば後述するデフケースCが回転することで勢いよく掻き回されてケース1内空間に広範囲に飛散し、この飛散潤滑油によりケース1内の各部、即ち被潤滑部を潤滑可能である。尚、上記した潤滑構造に加えて(或いは代えて)、オイルポンプ等のポンプ手段で圧送された潤滑油をミッションケース1内の各部に強制的に圧送供給するようにしてもよい。   The bottom of the mission case 1 is configured as an oil pan (not shown) that can store a predetermined amount of lubricating oil. The stored lubricating oil in the oil pan is vigorously stirred by rotating a rotating portion in the mission case 1, for example, a differential case C described later, and scattered widely in the internal space of the case 1, and the scattered lubricating oil makes the case Each part in 1, that is, a lubricated part can be lubricated. In addition to (or instead of) the above-described lubrication structure, the lubricating oil pumped by pump means such as an oil pump may be forcibly fed to each part in the mission case 1.

差動装置Dは、ミッションケース1に第1軸線X1回りに回転可能に支持される伝動ケースとしてのデフケースCと、そのデフケースC内に収容される後述の差動機構3とで構成される。デフケースCは、短円筒状のギヤ本体の外周に斜歯Cgaを設けたヘリカルギヤよりなるリングギヤCgと、そのリングギヤCgの軸方向両端部に外周端部がそれぞれ接合される左右一対の第1,第2側壁部Ca,Cbとを備える。少なくとも一方の側壁部Ca,Cbには、その外周端近傍において、デフケースC内の余剰の潤滑油を遠心力等で適度に排出可能なドレン孔(図示せず)が設けられる。   The differential device D includes a differential case C as a transmission case that is rotatably supported by the transmission case 1 around the first axis X1, and a differential mechanism 3 described later that is housed in the differential case C. The differential case C includes a ring gear Cg made of a helical gear having oblique teeth Cga provided on the outer periphery of a short cylindrical gear body, and a pair of left and right first and first pairs whose outer peripheral ends are joined to both axial ends of the ring gear Cg. 2 side wall parts Ca and Cb. At least one of the side wall portions Ca and Cb is provided with a drain hole (not shown) capable of appropriately discharging excess lubricating oil in the differential case C by centrifugal force or the like in the vicinity of the outer peripheral end thereof.

また第1,第2側壁部Ca,Cbは、各々の内周端部において第1軸線X1上に並ぶ円筒状の第1,第2ハブHB1,HB2をそれぞれ一体に有しており、それらハブHB1,HB2の外周部は、ミッションケース1に軸受2,2′を介して回転自在に支持される。また第1,第2ハブHB1,HB2の内周部には第1,第2駆動車軸S1,S2が第1軸線X1回りにそれぞれ回転自在に嵌合、支持される。その嵌合面の少なくとも一方(図示例ではハブHB1,HB2の内周面)には、自動車の少なくとも前進時(即ち駆動車軸S1,S2の正転時)にハブHB1,HB2と駆動車軸S1,S2との相対回転に伴いミッションケース1内の飛散潤滑油をデフケースC内に引き込むための第1,第2螺旋溝18,19が形成される。その各螺旋溝18,19の外端はミッションケース1内に、またその内端はデフケースC内にそれぞれ開口する。   The first and second side wall portions Ca and Cb integrally have cylindrical first and second hubs HB1 and HB2 arranged on the first axis X1 at their inner peripheral end portions, respectively. The outer peripheral portions of HB1 and HB2 are rotatably supported by the mission case 1 via bearings 2 and 2 '. The first and second drive axles S1 and S2 are fitted and supported on the inner peripheral portions of the first and second hubs HB1 and HB2 so as to be rotatable about the first axis X1, respectively. At least one of the fitting surfaces (in the illustrated example, the inner peripheral surfaces of the hubs HB1 and HB2) includes at least the hubs HB1 and HB2 and the drive axle S1, when the automobile is moving forward (ie, when the drive axles S1 and S2 are rotating forward). Along with the relative rotation with S2, first and second spiral grooves 18 and 19 for drawing the scattered lubricating oil in the mission case 1 into the differential case C are formed. The outer ends of the spiral grooves 18 and 19 are opened in the mission case 1 and the inner ends thereof are opened in the differential case C, respectively.

尚、本実施形態では、ミッションケース1内の潤滑油をデフケースC内に供給するための潤滑油供給手段として上記螺旋溝18,19が例示されたが、このような螺旋溝18,19に加えて(又は代えて)、別の潤滑油供給手段として、例えばオイルポンプ等のポンプ手段で圧送された潤滑油を、駆動車軸S1,S2及び/又はデフケースCに設けた油路(図示せず)を介してデフケースC内に供給するようにしてもよい。或いはまた、さらに別の潤滑油供給手段として、デフケースCの少なくとも一方の側壁部Ca,Cbに、その内外を直接連通させる貫通孔を形成してもよい。尚また、螺旋溝18,19は、駆動車軸S1,S2の外周面に形成してもよい。   In the present embodiment, the spiral grooves 18 and 19 are exemplified as the lubricating oil supply means for supplying the lubricating oil in the mission case 1 into the differential case C. In addition to the spiral grooves 18 and 19, (Or instead), as another lubricating oil supply means, for example, an oil passage (not shown) provided with lubricating oil pumped by pump means such as an oil pump in the drive axles S1, S2 and / or the differential case C It may be supplied into the differential case C via Alternatively, as yet another lubricating oil supply means, a through hole that directly communicates the inside and the outside may be formed in at least one of the side wall portions Ca and Cb of the differential case C. The spiral grooves 18 and 19 may be formed on the outer peripheral surfaces of the drive axles S1 and S2.

次にデフケースC内の差動機構3の構造を説明する。差動機構3は、第1側壁部Caに一体的に設けられて第1軸線X1回りに回転可能な第1伝動部材5と、第1駆動車軸S1にスプライン嵌合16されて第1軸線X1回りに回転可能な円筒状の第1スプラインボスSB1(即ち第1出力ボス)を一体に含む中空の主軸部6j、および第1軸線X1から所定の偏心量eだけ偏心した第2軸線X2を中心軸線とする偏心軸部6eが結合一体化された偏心回転部材6と、第1伝動部材5に一側部が対向配置され且つ偏心軸部6eにボール軸受よりなる軸受7を介して回転自在に支持される円環状の第2伝動部材8と、第2伝動部材8の他側部に対向配置されると共に第2駆動車軸S2にスプライン嵌合17されて第1軸線X1回りに回転可能な円環状の第3伝動部材9と、第1及び第2伝動部材5,8間で変速しつつトルク伝達可能な第1変速機構T1と、第2及び第3伝動部材8,9間で変速しつつトルク伝達可能な第2変速機構T2とを備える。   Next, the structure of the differential mechanism 3 in the differential case C will be described. The differential mechanism 3 is provided integrally with the first side wall portion Ca and can be rotated around the first axis X1 and is spline-fitted 16 to the first drive axle S1 to be coupled to the first axis X1. A hollow main shaft portion 6j that integrally includes a cylindrical first spline boss SB1 (that is, a first output boss) that can rotate around, and a second axis X2 that is eccentric from the first axis X1 by a predetermined eccentricity e. An eccentric rotating member 6 in which an eccentric shaft portion 6e serving as an axis is coupled and integrated, and one side portion is disposed opposite to the first transmission member 5, and the eccentric shaft portion 6e is rotatable via a bearing 7 formed of a ball bearing. An annular second transmission member 8 to be supported and a circle that is disposed opposite to the other side of the second transmission member 8 and is spline-fitted 17 to the second drive axle S2 so as to be rotatable about the first axis X1. An annular third transmission member 9 and first and second transmission members 5, A first transmission mechanism T1 which transmit the torque while shifting between, and a second transmission mechanism T2 which transmit the torque while shifting between the second and third transmission members 8,9.

而して、第1軸線X1回りに回転する偏心回転部材6の偏心軸部6eに第2伝動部材8が第2軸線X2回りに回転自在に嵌合支持されることで、第2伝動部材8は、偏心回転部材6の第1軸線X1回りの回転に伴い、それの偏心軸部6eに対し第2軸線X2回りに自転しつつ、主軸部6jに対し第1軸線X1回りに公転可能である。   Thus, the second transmission member 8 is rotatably supported around the second axis X2 by the second transmission member 8 being rotatably supported on the eccentric shaft portion 6e of the eccentric rotation member 6 that rotates about the first axis X1. Can revolve around the first axis X1 relative to the main axis 6j while rotating around the second axis X2 relative to the eccentric axis 6e of the eccentric rotating member 6 around the first axis X1. .

また第2伝動部材8は、偏心回転部材6の偏心軸部6eに軸受7を介して回転自在に支持されるリング板状の第1半体8aと、その第1半体8aに間隔をおいて対向するリング板状の第2半体8bと、その両半体8a,8b間を一体的に連結する基本的に円筒状の連結部材8cとを備える。特に本実施形態では、連結部材8cの一端部及び他端部の内周面に、第1半体8a及び第2半体8bをそれぞれインロー嵌合されており、その嵌合部が溶接、カシメ等の適当な固着手段により固着される。そして、第1半体8aと第1伝動部材5との相対向面間に前記第1変速機構T1が、また第2半体8bと第3伝動部材9との相対向面間に前記第2変速機構T2がそれぞれ設けられる。   Further, the second transmission member 8 has a ring plate-like first half 8a that is rotatably supported by the eccentric shaft portion 6e of the eccentric rotating member 6 via a bearing 7, and an interval between the first half 8a. And a ring-plate-shaped second half body 8b facing each other and a basically cylindrical connecting member 8c for integrally connecting the two half bodies 8a and 8b. In particular, in the present embodiment, the first half 8a and the second half 8b are respectively fitted in the inner peripheral surfaces of the one end and the other end of the connecting member 8c, and the fitting portions are welded and caulked. It is fixed by suitable fixing means such as. The first transmission mechanism T1 is disposed between the opposing surfaces of the first half 8a and the first transmission member 5, and the second transmission mechanism T1 is disposed between the opposing surfaces of the second half 8b and the third transmission member 9. A transmission mechanism T2 is provided.

連結部材8cには、デフケースCの内部空間ICと第2伝動部材8の中空部SPとの間を連通させる複数の第1油流通孔11が周方向に等間隔おきに設けられ、デフケースCの内部空間ICに飛散する潤滑油を第1油流通孔11を通して上記中空部SPに導入可能となっている。また第2半体8bには、上記中空部SPを第2変速機構T2の内周側に連通させる第2油流通孔12が、第2軸線X2を中心とする円形状に形成される。   The connecting member 8c is provided with a plurality of first oil circulation holes 11 that communicate between the internal space IC of the differential case C and the hollow portion SP of the second transmission member 8 at equal intervals in the circumferential direction. Lubricating oil scattered in the internal space IC can be introduced into the hollow portion SP through the first oil circulation hole 11. Further, the second half body 8b is formed with a second oil circulation hole 12 that communicates the hollow portion SP with the inner peripheral side of the second transmission mechanism T2 in a circular shape with the second axis X2 as the center.

また、第3伝動部材9は、第2駆動車軸S2にスプライン嵌合17されて第1軸線X1回りに回転可能な円筒状の第2スプラインボスSB2(即ち第2出力ボス)を一体に含む主軸部9jと、その主軸部9jの内端部に同軸状に連設されて第2半体8bに対向する円形のリング板部9cとが結合一体化されて構成される。尚、上記スプライン嵌合17部位には、周方向の一部に欠歯部が設けられ、その欠歯部は、第2螺旋溝19の引き込み作用でミッションケース1内からデフケースC内に引き込まれた潤滑油を後述する第2リテーナH2の内周側や第2伝動部材8の中空部SPに効率よく誘導可能である。   The third transmission member 9 is a main shaft that integrally includes a cylindrical second spline boss SB2 (that is, a second output boss) that is spline-fitted 17 to the second drive axle S2 and is rotatable about the first axis X1. A portion 9j and a circular ring plate portion 9c concentrically connected to the inner end portion of the main shaft portion 9j and facing the second half 8b are coupled and integrated. The spline fitting 17 part is provided with a partial tooth portion in the circumferential direction, and the partial tooth portion is pulled from the transmission case 1 into the differential case C by the pulling action of the second spiral groove 19. The lubricating oil can be efficiently guided to the inner peripheral side of the second retainer H2, which will be described later, and to the hollow portion SP of the second transmission member 8.

デフケースCの第1側壁部Caの内側面と偏心回転部材6との相対向面間には、その相互間の相対回転を許容する第1スラストワッシャTH1が介装されると共に、第1螺旋溝18の内端開口(即ち出口)を第1スラストワッシャTH1の背面を経由して第1変速機構T1の内周側に連通させる油路41が形成される。この油路41には、第1螺旋溝18の引き込み作用でミッションケース1内からデフケースC内に引き込まれた潤滑油が流入し、その流入潤滑油が第1変速機構T1の内周側や軸受7に供給される。   A first thrust washer TH1 that allows relative rotation between the inner side surface of the first side wall portion Ca of the differential case C and the eccentric rotating member 6 is interposed between the inner surface and the first spiral groove. An oil passage 41 is formed to communicate the inner end opening (i.e., outlet) of 18 with the inner peripheral side of the first transmission mechanism T1 via the back surface of the first thrust washer TH1. Lubricating oil drawn into the differential case C from the transmission case 1 by the pulling action of the first spiral groove 18 flows into the oil passage 41, and the flowing lubricating oil flows into the inner peripheral side of the first transmission mechanism T1 and the bearing. 7 is supplied.

またデフケースCの第2側壁部Cbの内側面と第3伝動部材9の外側面との相対向面間には、その相互間の相対回転を許容する第2スラストワッシャTH2が介装される。この第2スラストワッシャTH2には、第2螺旋溝19の引き込み作用でミッションケース1内からデフケースC内に引き込まれた潤滑油が、第3伝動部材9と第2側壁部Cbとの間の油路45を通して供給される。   Further, a second thrust washer TH2 that allows relative rotation between the inner surface of the second side wall portion Cb of the differential case C and the outer surface of the third transmission member 9 is interposed. In the second thrust washer TH2, the lubricating oil drawn into the differential case C from the transmission case 1 by the drawing action of the second spiral groove 19 is oil between the third transmission member 9 and the second side wall Cb. Supplied through line 45.

更に差動機構3は、第1軸線X1を挟んで偏心回転部材6の偏心軸部6e及び第2伝動部材8の総合重心Gとは逆位相であり且つその総合重心Gの回転半径よりも大なる回転半径を有していて偏心回転部材6の主軸部6jに相対回転不能に取付けられるバランスウェイトWを備えている。このバランスウェイトWは、クリップ10で主軸部6jに固定される環状基部Wmと、その環状基部Wmの周方向特定領域に固設される重錘部Wwとから構成される。そして、第2伝動部材8の中空部SPがバランスウェイトWの収容空間として利用される。   Further, the differential mechanism 3 is opposite in phase to the eccentric shaft portion 6e of the eccentric rotating member 6 and the total center of gravity G of the second transmission member 8 across the first axis X1, and larger than the rotational radius of the total center of gravity G. And a balance weight W that is attached to the main shaft portion 6j of the eccentric rotating member 6 so as not to be relatively rotatable. This balance weight W is comprised from the cyclic | annular base part Wm fixed to the main axis | shaft part 6j with the clip 10, and the weight part Ww fixed to the circumferential direction specific area | region of the cyclic | annular base part Wm. The hollow portion SP of the second transmission member 8 is used as a storage space for the balance weight W.

図1〜図3に示すように、第1伝動部材5の、第2伝動部材8の一側部(第1半体8a)に対向する内側面には、第1軸線X1を中心とした波形環状の第1伝動溝21が形成され、この第1伝動溝21は、図示例では第1軸線X1を中心とする仮想円を基礎円としたハイポトロコイド曲線に沿って周方向に延びている。一方、第2伝動部材8の、第1伝動部材5に対向する一側部(第1半体8a)には、第2軸線X2を中心とした波形環状の第2伝動溝22が形成される。この第2伝動溝22は、図示例では第2軸線X2を中心とする仮想円を基礎円としたエピトロコイド曲線に沿って周方向に延びており、上記第1伝動溝21の波数よりも少ない波数を有して第1伝動溝21と複数箇所で交差する。   As shown in FIGS. 1 to 3, the first transmission member 5 has a waveform centered on the first axis X <b> 1 on the inner surface facing the one side portion (first half 8 a) of the second transmission member 8. An annular first transmission groove 21 is formed, and the first transmission groove 21 extends in the circumferential direction along a hypotrochoid curve having a virtual circle centered on the first axis X1 in the illustrated example. On the other hand, a corrugated annular second transmission groove 22 centering on the second axis X2 is formed on one side portion (first half 8a) of the second transmission member 8 facing the first transmission member 5. . In the illustrated example, the second transmission groove 22 extends in the circumferential direction along an epitrochoid curve having a virtual circle centered on the second axis X2 as a base circle, and is smaller than the wave number of the first transmission groove 21. It has a wave number and intersects the first transmission groove 21 at a plurality of locations.

これら第1伝動溝21及び第2伝動溝22は、図1、図6に示されるように横断面コ字状の角溝で構成される。しかも各々の伝動溝21,22の相対向する内側面は、所定の微小なテーパ角αを以て溝の開放面側に先拡がり状に拡開している。本実施形態の場合、第1伝動部材5(第1側壁部Ca)及び第2伝動部材8(第1,第2半体8a,8b)を鍛造成形しているため、上記所定の微小なテーパ角αは、その鍛造成形過程で角溝状の伝動溝21,22を型成形する際に設定される抜き勾配に相当する微小角度に相当するものであって、望ましくは、1°〜3°の範囲で任意に設定される。   The first transmission groove 21 and the second transmission groove 22 are constituted by square grooves having a U-shaped cross section as shown in FIGS. Moreover, the opposing inner side surfaces of the respective transmission grooves 21 and 22 are expanded in a pre-expanded manner toward the open surface side of the groove with a predetermined minute taper angle α. In the case of this embodiment, since the first transmission member 5 (first side wall portion Ca) and the second transmission member 8 (first and second half bodies 8a and 8b) are forged, the predetermined minute taper is used. The angle α corresponds to a minute angle corresponding to a draft angle set when the angular grooves 21 and 22 are molded during the forging process, and preferably 1 ° to 3 °. It is arbitrarily set within the range.

第1伝動溝21及び第2伝動溝22の交差部(即ち重なり部)には、第1転動体としての複数の第1コロ23が介装される。各々の第1コロ23は、第1及び第2伝動溝21,22間に跨がるように概ね円柱状に延びており、その軸方向両端部23a,23bが両伝動溝21,22内にそれぞれ受容され且つその両伝動溝21,22の内側面を転動自在である。   A plurality of first rollers 23 as first rolling elements are interposed at intersections (that is, overlapping portions) of the first transmission groove 21 and the second transmission groove 22. Each first roller 23 extends in a substantially cylindrical shape so as to straddle between the first and second transmission grooves 21, 22, and both axial end portions 23 a, 23 b thereof are in the transmission grooves 21, 22. Each is received and can roll on the inner surfaces of both transmission grooves 21 and 22.

第1伝動部材5及び第2伝動部材8(第1半体8a)の相対向面間には、第1保持部材としての円形のリング板状の第1リテーナH1が介装される。この第1リテーナH1は、第1、第2伝動溝21,22相互の交差部での複数の第1コロ23(即ち軸方向両端部23a,23b)の両伝動溝21,22への係合状態を維持し得るように、複数の第1コロ23の軸方向中間部23mを各々回転自在に保持する横断面円形の複数の第1保持孔31を、該リテーナH1の周方向で等間隔置きに有している。   Between the opposing surfaces of the first transmission member 5 and the second transmission member 8 (first half 8a), a circular ring plate-shaped first retainer H1 as a first holding member is interposed. This 1st retainer H1 is engaged with both the transmission grooves 21 and 22 of the some 1st roller 23 (namely, axial direction both ends 23a and 23b) in the cross | intersection part of the 1st, 2nd transmission grooves 21 and 22 mutually. In order to maintain the state, a plurality of first holding holes 31 having a circular cross section that hold each of the axially intermediate portions 23m of the plurality of first rollers 23 rotatably are arranged at equal intervals in the circumferential direction of the retainer H1. Have.

各々の第1コロ23の外周面は、特に各コロ23の、第1及び第2伝動溝21,22の内側面に対する各接触部tから軸方向両端面fに至る領域において、外径を上記接触部tから両端面fに向かって滑らかに減少させた曲面形状をなしている。この曲面形状として、本実施形態では、図6に例示したような縦断面円弧状の面取り面、即ちチャンファ面rが採用されており、そのチャンファ面rに囲繞された各コロ23の両端面f中央部は、各コロ23の軸線と直交する平坦面に形成される。尚、図示例のチャンファ面rは、曲率が端面fに近づくにつれて増大変化するような曲面で形成されている。   The outer peripheral surface of each of the first rollers 23 has the outer diameter particularly in the region extending from each contact portion t to the inner side surface of each of the first and second transmission grooves 21 and 22 to both axial end surfaces f. It has a curved surface shape that is smoothly reduced from the contact portion t toward both end faces f. As this curved surface shape, a chamfered surface having a longitudinal cross-sectional arc shape as illustrated in FIG. 6, that is, a chamfer surface r is employed in this embodiment, and both end surfaces f of each roller 23 surrounded by the chamfer surface r are used. The central portion is formed on a flat surface orthogonal to the axis of each roller 23. Note that the chamfer surface r in the illustrated example is formed as a curved surface whose curvature increases as the end surface f approaches.

また、各々の第1コロ23の軸方向中間部23mの外周面は、第1リテーナH1の保持孔31に回転摺動可能に嵌合、支持される円筒面で構成される。そして、この第1コロ23の軸方向中間部23mの外周面を嵌合支持する、第1リテーナH1の保持孔31の内周面は、その保持孔31の中心線を含む断面の形状が図6に示すように該中心線の側に凸の円弧状に形成される。   Moreover, the outer peripheral surface of the axial direction intermediate part 23m of each 1st roller 23 is comprised by the cylindrical surface fitted and supported by the holding hole 31 of the 1st retainer H1 so that rotation sliding is possible. The inner peripheral surface of the holding hole 31 of the first retainer H1 that fits and supports the outer peripheral surface of the axial intermediate portion 23m of the first roller 23 has a cross-sectional shape including the center line of the holding hole 31. As shown in FIG. 6, it is formed in a convex arc shape on the center line side.

また、図1,2,4に示すように、第2伝動部材8の他側部(第2半体8b)には、第2軸線X2を中心とした波形環状の第3伝動溝24が形成され、この第3伝動溝24は、図示例では第2軸線X2を中心とする仮想円を基礎円としたハイポトロコイド曲線に沿って周方向に延びている。一方、第3伝動部材9の、第2伝動部材8との対向面すなわちリング板部9cの内側面には、第1軸線X1を中心とした波形環状の第4伝動溝25が形成される。この第4伝動溝25は、図示例では第1軸線X1を中心とする仮想円を基礎円としたエピトロコイド曲線に沿って周方向に延びており、上記第3伝動溝24の波数よりも少ない波数を有して第3伝動溝24と複数箇所で交差する。これら第3及び第4伝動溝24,25も、上記した第1及び第2伝動溝21,22と同様の、横断面コ字状の角溝で構成され、その各々の伝動溝24,25の相対向する内側面も、上記したような所定の微小なテーパ角αを以て溝の開放面側に先拡がり状に拡開している。   As shown in FIGS. 1, 2, and 4, a corrugated annular third transmission groove 24 centering on the second axis X <b> 2 is formed on the other side (second half 8 b) of the second transmission member 8. In the illustrated example, the third transmission groove 24 extends in the circumferential direction along a hypotrochoidal curve having a virtual circle centered on the second axis X2 as a base circle. On the other hand, on the surface of the third transmission member 9 facing the second transmission member 8, that is, on the inner surface of the ring plate portion 9c, a corrugated fourth transmission groove 25 centered on the first axis X1 is formed. In the illustrated example, the fourth transmission groove 25 extends in the circumferential direction along an epitrochoidal curve having a virtual circle centered on the first axis X1 as a base circle, and is smaller than the wave number of the third transmission groove 24. It has a wave number and intersects with the third transmission groove 24 at a plurality of locations. The third and fourth transmission grooves 24 and 25 are also formed by square grooves having a U-shaped cross section similar to the first and second transmission grooves 21 and 22 described above. The inner surfaces facing each other are also expanded in a pre-expanded manner toward the open surface side of the groove with a predetermined small taper angle α as described above.

第3伝動溝24及び第4伝動溝25の交差部(即ち重なり部)には、第2転動体としての複数の第2コロ26が介装される。各々の第2コロ26は、第3及び第4伝動溝24,25間に跨がるように概ね円柱状に延びており、その軸方向両端部が両伝動溝24,25内にそれぞれ受容され且つその両伝動溝24,25の内側面を転動自在である。   A plurality of second rollers 26 as second rolling elements are interposed at intersections (that is, overlapping portions) of the third transmission groove 24 and the fourth transmission groove 25. Each second roller 26 extends in a substantially cylindrical shape so as to straddle between the third and fourth transmission grooves 24 and 25, and both axial ends thereof are received in the transmission grooves 24 and 25, respectively. And the inner side surfaces of both the transmission grooves 24 and 25 can roll freely.

第2伝動部材8(第2半体8b)及び第3伝動部材9の相対向面間には、第2保持部材としての円形のリング板状の第2リテーナH2が介装される。この第2リテーナH2は、第3、第4伝動溝24,25相互の交差部での複数の第2コロ26の両伝動溝24,25への係合状態を維持し得るように、複数の第2コロ26の軸方向中間部23mを各々回転自在に保持する横断面円形の複数の第2保持孔32を、該リテーナH2の周方向で等間隔置きに有している。各々の第2コロ26の形状・構造は、上記した第1コロ23のそれと同様であり、また第2保形孔32の内周面形状も第1保形孔31の内周面形状と同様である。   Between the opposing surfaces of the second transmission member 8 (second half 8b) and the third transmission member 9, a circular ring plate-like second retainer H2 as a second holding member is interposed. The second retainer H2 has a plurality of second rollers 26 so that the plurality of second rollers 26 can be engaged with the transmission grooves 24, 25 at the intersections of the third and fourth transmission grooves 24, 25. A plurality of second holding holes 32 having a circular cross section for rotatably holding the axial intermediate portion 23m of the second roller 26 are provided at equal intervals in the circumferential direction of the retainer H2. The shape and structure of each second roller 26 is the same as that of the first roller 23 described above, and the inner peripheral surface shape of the second shape retaining hole 32 is the same as the inner peripheral surface shape of the first shape retaining hole 31. It is.

尚、本実施形態では、波形環状の伝動溝21,22,24,25を有する第1伝動部材5(第1側壁部Ca)、第2伝動部材8(第1,第2半体8a,8b)並びに第3伝動部材9を鍛造成形するものを示したが、それらを、成形型を用いた他の成形手法(例えば鋳造、焼結等)で成形してもよい。   In the present embodiment, the first transmission member 5 (first side wall portion Ca) and the second transmission member 8 (first and second half bodies 8a and 8b) each having the wave-shaped annular transmission grooves 21, 22, 24, and 25. ) And the third transmission member 9 are forged. However, they may be formed by other forming methods using a forming die (for example, casting, sintering, etc.).

また本実施形態では、第1及び第2伝動溝21,22のトロコイド係数と、第3及び第4伝動溝24,25のトロコイド係数とは互いに異なる値に設定される。   In the present embodiment, the trochoidal coefficients of the first and second transmission grooves 21 and 22 and the trochoidal coefficients of the third and fourth transmission grooves 24 and 25 are set to different values.

以上説明した本実施形態において、第1伝動溝21の波数をZ1、第2伝動溝22の波数をZ2、第3伝動溝24の波数をZ3、第4伝動溝25の波数をZ4としたとき、下記式が成立するように、第1〜第4伝動溝21,22,24,25は形成される。
(Z1/Z2)×(Z3/Z4)=2
望ましくは、図示例のように、Z1=8、Z2=6、Z3=6、Z4=4とするか、又はZ1=6、Z2=4、Z3=8、Z4=6とするとよい。
In the present embodiment described above, the wave number of the first transmission groove 21 is Z1, the wave number of the second transmission groove 22 is Z2, the wave number of the third transmission groove 24 is Z3, and the wave number of the fourth transmission groove 25 is Z4. The first to fourth transmission grooves 21, 22, 24, and 25 are formed so that the following expression is established.
(Z1 / Z2) × (Z3 / Z4) = 2
Desirably, Z1 = 8, Z2 = 6, Z3 = 6, Z4 = 4, or Z1 = 6, Z2 = 4, Z3 = 8, and Z4 = 6 as shown in the illustrated example.

尚、図示例では、8波の第1伝動溝21と6波の第2伝動溝22とが7箇所で交差し、この7箇所の交差部(重なり部)に7個の第1コロ23が介装され、また6波の第3伝動溝24と4波の第4伝動溝25とが5箇所で交差し、この5箇所の交差部(重なり部)に5個の第2コロ26が介装される。   In the illustrated example, the eight-wave first transmission groove 21 and the six-wave second transmission groove 22 intersect at seven locations, and seven first rollers 23 are formed at the seven intersections (overlapping portions). The six-wave third transmission groove 24 and the four-wave fourth transmission groove 25 intersect at five locations, and five second rollers 26 are interposed at the five intersecting portions (overlapping portions). Be dressed.

而して、第1伝動溝21、第2伝動溝22及び第1コロ23は互いに協働して、第1伝動部材5及び第2伝動部材8間で変速しつつトルク伝達可能な第1変速機構T1を構成し、また第3伝動溝24、第4伝動溝25及び第2コロ26は互いに協働して、第2伝動部材8及び第3伝動部材9間で変速しつつトルク伝達可能な第2変速機構T2を構成している。   Thus, the first transmission groove 21, the second transmission groove 22, and the first roller 23 cooperate with each other so that torque can be transmitted while shifting between the first transmission member 5 and the second transmission member 8. The mechanism T1 is configured, and the third transmission groove 24, the fourth transmission groove 25, and the second roller 26 cooperate with each other to transmit torque while shifting between the second transmission member 8 and the third transmission member 9. A second transmission mechanism T2 is configured.

以上説明した本実施形態において、第1,第2変速機構T1,T2は何れも本発明の変速機構を構成している。そして、特に第1変速機構T1においては、第1伝動部材5が一方の伝動部材を構成すると共に第2伝動部材8が他方の伝動部材を構成し、また第1伝動溝21が一方の伝動溝を構成すると共に第2伝動溝22が他方の伝動溝を構成している。また特に第2変速機構T2においては、第3伝動部材9が一方の伝動部材を構成すると共に第2伝動部材8が他方の伝動部材を構成し、また第4伝動溝25が一方の伝動溝を構成すると共に第3伝動溝24が他方の伝動溝を構成している。   In the present embodiment described above, the first and second speed change mechanisms T1 and T2 constitute the speed change mechanism of the present invention. Particularly in the first speed change mechanism T1, the first transmission member 5 constitutes one transmission member, the second transmission member 8 constitutes the other transmission member, and the first transmission groove 21 constitutes one transmission groove. And the second transmission groove 22 constitutes the other transmission groove. Particularly in the second transmission mechanism T2, the third transmission member 9 constitutes one transmission member, the second transmission member 8 constitutes the other transmission member, and the fourth transmission groove 25 serves as one transmission groove. In addition, the third transmission groove 24 constitutes the other transmission groove.

次に、前記第1実施形態の作用について説明する。   Next, the operation of the first embodiment will be described.

いま、例えば右方の第1駆動車軸S1を固定することで偏心回転部材6(従って偏心軸部6e)を固定した状態において、エンジンからの動力でリングギヤCgが駆動され、デフケースC、従って第1伝動部材5を第1軸線X1回りに回転させると、第1伝動部材5の8波の第1伝動溝21が第2伝動部材8の6波の第2伝動溝22を第1コロ23を介して駆動するので、第1伝動部材5が8/6の増速比を以て第2伝動部材8を駆動することになる。そして、この第2伝動部材8の回転によれば、第2伝動部材8の6波の第3伝動溝24が第3伝動部材9のリング板部9cの4波の第4伝動溝25を第2コロ26を介して駆動するので、第2伝動部材8が6/4の増速比を以て第3伝動部材9を駆動することになる。   Now, for example, in a state where the eccentric rotary member 6 (and hence the eccentric shaft portion 6e) is fixed by fixing the right first drive axle S1, the ring gear Cg is driven by the power from the engine, and the differential case C and therefore the first When the transmission member 5 is rotated around the first axis X 1, the eight-wave first transmission groove 21 of the first transmission member 5 passes through the six-wave second transmission groove 22 of the second transmission member 8 via the first roller 23. Therefore, the first transmission member 5 drives the second transmission member 8 with a speed increasing ratio of 8/6. According to the rotation of the second transmission member 8, the six-wave third transmission groove 24 of the second transmission member 8 replaces the four-wave fourth transmission groove 25 of the ring plate portion 9 c of the third transmission member 9. Since the second roller 26 is driven, the second transmission member 8 drives the third transmission member 9 with a speed increasing ratio of 6/4.

結局、第1伝動部材5は、
(Z1/Z2)×(Z3/Z4)=(8/6)×(6/4)=2
の増速比を以て第3伝動部材9を駆動することになる。
After all, the first transmission member 5 is
(Z1 / Z2) × (Z3 / Z4) = (8/6) × (6/4) = 2
The third transmission member 9 is driven with the speed increasing ratio.

一方、左方の第2駆動車軸S2を固定することで第3伝動部材9を固定した状態において、デフケース(従って第1伝動部材5)を回転させると、第1伝動部材5の回転駆動力と、第2伝動部材8の、不動の第3伝動部材9に対する駆動反力とにより、第2伝動部材8は、偏心回転部材6の偏心軸部6e(第2軸線X2)に対し自転しながら第1軸線X1回りに公転して、偏心軸部6eを第1軸線X1回りに駆動する。その結果、第1伝動部材5は、2倍の増速比を以て偏心回転部材6を駆動することになる。   On the other hand, when the differential case (and hence the first transmission member 5) is rotated in the state where the third transmission member 9 is fixed by fixing the left second driving axle S2, the rotational driving force of the first transmission member 5 Due to the driving reaction force of the second transmission member 8 against the stationary third transmission member 9, the second transmission member 8 rotates while rotating about the eccentric shaft portion 6 e (second axis X 2) of the eccentric rotation member 6. Revolving around one axis line X1 drives the eccentric shaft portion 6e around the first axis line X1. As a result, the first transmission member 5 drives the eccentric rotating member 6 with a double speed increasing ratio.

而して、偏心回転部材6及び第3伝動部材9の負荷が相互にバランスしたり、相互に変化したりすると、第2伝動部材8の自転量及び公転量が無段階に変化し、偏心回転部材6及び第3伝動部材9の回転数の平均値が第1伝動部材5の回転数と等しくなる。こうして、第1伝動部材5の回転は、偏心回転部材6及び第3伝動部材9に分配され、したがってリングギヤCgからデフケースCに伝達された回転力を左右の駆動車軸S1,S2に分配することができる。   Thus, when the loads of the eccentric rotating member 6 and the third transmission member 9 are balanced with each other or change with each other, the amount of rotation and the amount of revolution of the second transmission member 8 change steplessly, and the eccentric rotation The average value of the rotational speeds of the member 6 and the third transmission member 9 is equal to the rotational speed of the first transmission member 5. Thus, the rotation of the first transmission member 5 is distributed to the eccentric rotation member 6 and the third transmission member 9, so that the rotational force transmitted from the ring gear Cg to the differential case C can be distributed to the left and right drive axles S1, S2. it can.

その際、Z1=8、Z2=6、Z3=6、Z4=4とするか、又はZ1=6、Z2=4、Z3=8、Z4=6とすることにより、差動機能を確保しつゝ構造の簡素化を図ることができる。   At that time, Z1 = 8, Z2 = 6, Z3 = 6, Z4 = 4, or Z1 = 6, Z2 = 4, Z3 = 8, Z4 = 6 to ensure the differential function. Simplification of the eaves structure can be achieved.

ところで、この差動装置Dにおいて、第1伝動部材5の回転トルクは、第1伝動溝21、複数の第1コロ23及び第2伝動溝22を介して第2伝動部材8に、また第2伝動部材8の回転トルクは、第3伝動溝24、複数の第2コロ26及び第4伝動溝25を介して第3伝動部材9にそれぞれ伝達されるので、第1伝動部材5と第2伝動部材8、第2伝動部材8と第3伝動部材9の各間では、トルク伝達が第1及び第2コロ23,26が存在する複数箇所に分散して行われることになり、第1〜第3伝動部材5,8,9及び第1、第2コロ23,26等の各伝動要素の強度増及び軽量化を図ることができる。   By the way, in this differential device D, the rotational torque of the first transmission member 5 is applied to the second transmission member 8 via the first transmission groove 21, the plurality of first rollers 23 and the second transmission groove 22, and to the second transmission member 2. Since the rotational torque of the transmission member 8 is transmitted to the third transmission member 9 through the third transmission groove 24, the plurality of second rollers 26, and the fourth transmission groove 25, respectively, the first transmission member 5 and the second transmission member are transmitted. Between each of the member 8, the second transmission member 8 and the third transmission member 9, torque transmission is performed in a distributed manner at a plurality of locations where the first and second rollers 23 and 26 are present. It is possible to increase the strength and weight of each transmission element such as the three transmission members 5, 8, 9 and the first and second rollers 23, 26.

また、この差動装置Dは、第1〜第3伝動部材5,8,9を各々、軸方向に極力扁平化することが可能であり、しかも第1、第2伝動部材5,8の相対向面間の第1変速機構T1と、第2、第3伝動部材8,9の相対向面間の第2変速機構T2とが、偏心回転部材6を固定したときに第1伝動部材5から第3伝動部材9を2倍の増速比を以て駆動するように構成されており、従って、軸方向に容易に扁平小型化し得る差動装置Dが得られる。   Further, the differential device D can flatten the first to third transmission members 5, 8, and 9 as much as possible in the axial direction, and the relative relationship between the first and second transmission members 5, 8 is also possible. The first transmission mechanism T1 between the facing surfaces and the second transmission mechanism T2 between the opposing surfaces of the second and third transmission members 8 and 9 are separated from the first transmission member 5 when the eccentric rotating member 6 is fixed. The third transmission member 9 is configured to be driven with a double speed increasing ratio, so that a differential device D that can be easily flattened in the axial direction can be obtained.

この差動装置Dの作動中は、前述のようにミッションケース1底部の貯溜潤滑油がデフケースC等に掻き回されてミッションケース1内に広範囲に飛散し、その飛散潤滑油の一部は、デフケースCのハブHB1,HB2と駆動車軸S1,S2との相対回転に伴う第1及び第2螺旋溝18,19の引き込み作用により、デフケースC内にその両側から積極的に供給される。そして、この供給潤滑油により、第1,第2変速機構T1,T2を含む差動機構3の各可動部分を潤滑する。   During the operation of the differential device D, the stored lubricating oil at the bottom of the transmission case 1 is stirred by the differential case C and the like and scattered in the transmission case 1 over a wide range as described above, and a part of the scattered lubricating oil is The differential case C is actively supplied from both sides by the pulling action of the first and second spiral grooves 18 and 19 accompanying the relative rotation between the hubs HB1 and HB2 of the differential case C and the drive axles S1 and S2. Then, each movable part of the differential mechanism 3 including the first and second transmission mechanisms T1 and T2 is lubricated by the supplied lubricating oil.

また特に本実施形態では、第1変速機構T1において、相対向する一対の伝動部材5,8のうち、一方の伝動部材(即ち第1伝動部材5)及び他方の伝動部材(即ち第2伝動部材8の第1半体8a)の波形環状をなす第1,第2伝動溝21,22が各々横断面コ字状の角溝で構成され、且つその両伝動溝21,22の交差部に介装されて両伝動部材5,8間を変速伝動する複数の第1転動体が、両伝動溝21,22間に跨がって延びて両伝動溝21,22の内側面を転動し得る第1コロ23で構成され、且つまたその各コロ23の軸方向中間部23mの外周面が、第1リテーナH1の保持孔31に回転摺動可能に嵌合、支持される円筒面で構成されている。そのため、各伝動溝21,22に対する第1コロ23の接触角βを90°又はそれに近くに十分大きく設定可能となる。上記接触角βは、図6で示せば、第1コロ23の外周面と各伝動溝21,22の内側面との接触部tを通る法線Lと、該接触部tでの伝達荷重のスラスト方向分力(即ちスラスト荷重)の作用方向とがなす角度となり、例えば、伝動溝21,22の内側面に、前述の如く型成形の際の抜き勾配に相当する所定の微小なテーパ角αを設定した場合には、略(90°−α)となり、また上記テーパ角αがゼロ、即ち機械加工で伝動溝21,22を加工するときのように抜き勾配無しの場合には90°となる。   Further, in particular, in the present embodiment, in the first transmission mechanism T1, of the pair of transmission members 5 and 8 facing each other, one transmission member (that is, the first transmission member 5) and the other transmission member (that is, the second transmission member). The first and second transmission grooves 21 and 22 forming the corrugated annular shape of the first half body 8a) of FIG. 8 are each constituted by a square groove having a U-shaped cross section, and are interposed at the intersection of the two transmission grooves 21 and 22. A plurality of first rolling elements that are mounted and transmit gears between the two transmission members 5 and 8 can extend across the two transmission grooves 21 and 22 and roll on the inner surfaces of the two transmission grooves 21 and 22. Further, the outer peripheral surface of the intermediate intermediate portion 23m of each roller 23 is formed by a cylindrical surface that is fitted and supported in the holding hole 31 of the first retainer H1 so as to be able to rotate and slide. ing. Therefore, the contact angle β of the first roller 23 with respect to each of the transmission grooves 21 and 22 can be set sufficiently large at or near 90 °. As shown in FIG. 6, the contact angle β is defined as a normal L passing through the contact portion t between the outer peripheral surface of the first roller 23 and the inner surfaces of the transmission grooves 21 and 22, and the transmission load at the contact portion t. The angle formed by the thrust direction component force (i.e., thrust load) acting direction, for example, on the inner surface of the transmission grooves 21 and 22, a predetermined small taper angle α corresponding to the draft at the time of molding as described above. Is approximately (90 ° −α), and the taper angle α is zero, that is, 90 ° when there is no draft as in machining the transmission grooves 21 and 22 by machining. Become.

かくして、各伝動溝21,22に対する第1コロ23の接触角βを十分大きく設定可能としたことにより、伝動溝21,22及びコロ23間に発生するスラスト荷重をゼロにし、又は大幅に減少できるため、第1変速機構T1の伝動効率が効果的に高められると共に、第1伝動部材5背面側のスラスト受け部(本実施形態では第1伝動部材5と一体のデフケースCの第1側壁部Ca)の荷重負担を軽減させることができ、それだけ差動装置Dの軽量化や耐久性向上が図られる。更に第1コロ23の軸方向長さの選定に応じて、第1,第2伝動部材5,8相互の対向間隔を自由に設定可能となるため、両伝動部材5,8間に第1リテーナH1の設置スペースが十分に確保可能となる。   Thus, by making the contact angle β of the first roller 23 with respect to the transmission grooves 21 and 22 sufficiently large, the thrust load generated between the transmission grooves 21 and 22 and the roller 23 can be reduced to zero or greatly reduced. Therefore, the transmission efficiency of the first transmission mechanism T1 is effectively increased, and the thrust receiving portion on the back side of the first transmission member 5 (in this embodiment, the first side wall portion Ca of the differential case C integrated with the first transmission member 5). ) Can be reduced, and the differential device D can be reduced in weight and durability. Further, since the opposing distance between the first and second transmission members 5 and 8 can be freely set according to the selection of the axial length of the first roller 23, the first retainer is provided between the transmission members 5 and 8. A sufficient installation space for H1 can be secured.

その上、本実施形態では、各々の第1コロ23の、両伝動溝21,22の内側面に対する各接触部tから軸方向両端面fに至る領域で、各コロ23の外周面が、外径を上記接触部tから上記両端面fに向かって滑らかに減少させた曲面形状(チャンファ面r)に形成されているため、伝動中、第1コロ23に多少の傾きが生じても、第1コロ23及び第1,第2伝動溝21,22間でのエッジ接触に因る局部的な負荷増大を回避可能となる。これにより、第1コロ23のスムーズな転動が確保されるから、第1変速機構T1の伝動効率の更なる向上と、第1コロ23及び伝動溝21,22の更なる耐久性向上が図られる。   In addition, in the present embodiment, the outer peripheral surface of each roller 23 is the outer surface of each first roller 23 in the region from each contact portion t to the inner surface of both transmission grooves 21 and 22 to both axial end surfaces f. Since it is formed in a curved surface shape (chamfer surface r) in which the diameter is smoothly reduced from the contact portion t toward the both end surfaces f, even if a slight inclination occurs in the first roller 23 during transmission, A local load increase due to edge contact between the one roller 23 and the first and second transmission grooves 21 and 22 can be avoided. As a result, smooth rolling of the first roller 23 is ensured, so that the transmission efficiency of the first transmission mechanism T1 is further improved and the durability of the first roller 23 and the transmission grooves 21 and 22 is further improved. It is done.

更に本実施形態では、第1リテーナH1における保持孔31の、第1コロ23の軸方向中間部23mを嵌合、支持する内周面は、保持孔31の中心線を含む断面(図6)の形状が中心線側に凸の円弧状に形成されている。このため、伝動中、第1コロ23に多少の傾きが生じても、第1コロ23及び保持孔31間でのエッジ接触に因る局部的な負荷増大を回避可能となるから、第1コロ23の一層スムーズな転動が確保されて、第1変速機構T1の伝動効率の更なる向上と、第1コロ23及び第1リテーナH1の耐久性向上が図られる。   Furthermore, in the present embodiment, the inner peripheral surface of the holding hole 31 in the first retainer H1 that fits and supports the intermediate portion 23m in the axial direction of the first roller 23 includes a center line of the holding hole 31 (FIG. 6). Is formed in a circular arc shape convex toward the center line side. For this reason, even if a slight inclination occurs in the first roller 23 during transmission, it is possible to avoid a local load increase due to edge contact between the first roller 23 and the holding hole 31. The smoother rolling of the first transmission mechanism T1 is further ensured, and the transmission efficiency of the first transmission mechanism T1 is further improved, and the durability of the first roller 23 and the first retainer H1 is improved.

更にまた本実施形態では、第1,第2伝動溝21,22の相対向する内側面は、所定の微小なテーパ角αを以て溝開放面側に先拡がり状に拡開しているため、各々の第1コロ23と伝動溝21,22間に発生するスラスト荷重を大幅に減少させながら、第1コロ23の伝動溝21,22に対するスラスト方向位置決めを的確に行うことができて、第1コロ23の軸方向ガタつきや振動の防止に効果的である。しかも各伝動溝21,22の断面形状を略コ字状に形成できることから、各伝動溝21,22の成形加工精度(延いては伝動溝21,22と第1コロ23との接触角βの精度)が容易に高められて、上記スラスト荷重の安定化が図られる。   Furthermore, in the present embodiment, the opposing inner surfaces of the first and second transmission grooves 21 and 22 are expanded in a pre-expanded manner toward the groove opening surface side with a predetermined minute taper angle α. While the thrust load generated between the first roller 23 and the transmission grooves 21 and 22 is greatly reduced, the first roller 23 can be accurately positioned in the thrust direction with respect to the transmission grooves 21 and 22. This is effective in preventing the axial play of the 23 and vibration. Moreover, since the cross-sectional shape of each transmission groove 21, 22 can be formed in a substantially U-shape, the forming accuracy of each transmission groove 21, 22 (and thus the contact angle β between the transmission groove 21, 22 and the first roller 23) Accuracy) is easily increased, and the thrust load is stabilized.

また、第2変速機構T2においても、相対向する一対の伝動部材9,8のうち、一方の伝動部材(即ち第3伝動部材9)及び他方の伝動部材(即ち第2伝動部材8の第2半体8b)の波形環状の第3,第4伝動溝24,25が横断面コ字状の角溝で構成され、且つ、両伝動溝24,25の交差部に介装されて両伝動部材9,8間を変速伝動する複数の第2転動体が、両伝動溝24,25間に跨がって延びて両伝動溝24,25の内側面を転動し得る円柱状の第2コロ26で構成され、且つまたその各コロ26の軸方向中間部26mの外周面が、第2リテーナH2の保持孔32に回転摺動可能に嵌合、支持される円筒面で構成されている。そして、第2コロ26、第3,第4伝動溝24,25及び第2リテーナH2の保持孔32の各形状・構造が、第1変速機構T1における第1コロ23、第1,第2伝動溝21,22及び第1リテーナH1の保持孔31のそれと同様であるため、その各形状・構造に関して、第2変速機構T2においても第1変速機構T1と同様の作用効果を発揮し得るものである。   Also, in the second transmission mechanism T2, of the pair of opposing transmission members 9, 8, one transmission member (that is, the third transmission member 9) and the other transmission member (that is, the second transmission member 8 is the second transmission member 8). The wavy annular third and fourth transmission grooves 24, 25 of the half body 8 b) are constituted by square grooves having a U-shaped cross section, and are interposed at the intersections of both transmission grooves 24, 25, so that both transmission members A plurality of second rolling elements that transmit gears between 9 and 8 extend across both transmission grooves 24 and 25 and can roll on the inner surfaces of both transmission grooves 24 and 25. 26, and the outer peripheral surface of the axial intermediate portion 26m of each roller 26 is formed of a cylindrical surface that is fitted and supported in the holding hole 32 of the second retainer H2 so as to be able to rotate and slide. The shapes and structures of the second roller 26, the third and fourth transmission grooves 24 and 25, and the holding hole 32 of the second retainer H2 are the same as the first roller 23, the first and second transmissions in the first transmission mechanism T1. Since it is the same as that of the holding holes 31 of the grooves 21 and 22 and the first retainer H1, the second transmission mechanism T2 can exhibit the same effects as the first transmission mechanism T1 with respect to its shape and structure. is there.

従って、第3,第4伝動溝24,25に対する第2コロ26の接触角βを十分大きく設定可能であるため、各伝動溝24,25及びコロ26間に発生するスラスト荷重をゼロにし、又は大幅に減少でき、第2変速機構T2の伝動効率が効果的に高められると共に、第3伝動部材9背面側のスラスト受け部(本実施形態ではデフケースCの第2側壁部Cb)の荷重負担を軽減できる。また第2コロ26の軸方向長さの選定に応じて、第2,第3伝動部材8,9相互の対向間隔を自由に設定可能となるため、両伝動部材8,9間に第2リテーナH2の設置スペースが十分に確保可能となる。その他の作用効果についても、第2変速機構T2は、第1変速機構T1の上記した作用効果と同様の作用効果を達成可能である。   Therefore, since the contact angle β of the second roller 26 with respect to the third and fourth transmission grooves 24 and 25 can be set sufficiently large, the thrust load generated between the transmission grooves 24 and 25 and the rollers 26 is made zero, or The transmission efficiency of the second transmission mechanism T2 can be effectively increased, and the load on the thrust receiving portion on the back side of the third transmission member 9 (in this embodiment, the second side wall portion Cb of the differential case C) can be reduced. Can be reduced. In addition, since the distance between the second and third transmission members 8 and 9 can be freely set according to the selection of the axial length of the second roller 26, the second retainer is provided between the two transmission members 8 and 9. A sufficient installation space for H2 can be secured. With respect to other functions and effects, the second transmission mechanism T2 can achieve the same functions and effects as the above-described functions and effects of the first transmission mechanism T1.

次に、図7により本発明の第2実施形態について説明する。この第2実施形態においても、第1,第2コロ23,26の外周面は、特に各コロ23,26の、両側の伝動溝21,22;24,25に対する各接触部tから軸方向両端面fに至る領域で、外径を上記接触部tから両端面fに向かって滑らかに減少させた曲面形状をなしている。但し、本第2実施形態では、上記曲面形状として、図7に例示したようにコロ23,26の端面f中央に向かってなだらかに中高となるクラウニング面r′が採用される。従って、その端面fは、その中央部を含む全体が凸の湾曲面に形成される。   Next, a second embodiment of the present invention will be described with reference to FIG. Also in the second embodiment, the outer peripheral surfaces of the first and second rollers 23, 26 are particularly axially opposite from the contact portions t of the rollers 23, 26 with respect to the transmission grooves 21, 22, 24, 25 on both sides. In a region reaching the surface f, a curved surface shape is formed in which the outer diameter is smoothly reduced from the contact portion t toward both end surfaces f. However, in the second embodiment, as the curved surface shape, as illustrated in FIG. 7, a crowning surface r ′ that gradually increases toward the center of the end surfaces f of the rollers 23 and 26 is employed. Therefore, the entire end surface f including the central portion is formed as a convex curved surface.

その他の構成は、第1実施形態と同様であるので、各構成要素には、第1実施形態と同様の参照符号を付すに留め、それ以上の具体的な説明は省略する。そして、本第2実施形態でも、上記した第1実施形態と基本的に同様の作用効果が達成可能である。   Since other configurations are the same as those in the first embodiment, the same reference numerals as those in the first embodiment are given to the respective components, and further specific description is omitted. In the second embodiment, basically the same effects as the first embodiment can be achieved.

以上、本発明の実施形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   As mentioned above, although embodiment of this invention was described, this invention can perform a various design change in the range which does not deviate from the summary.

例えば、前記実施形態では、伝動装置として差動装置Dを例示し、動力源からデフケースC(第1伝動部材5)に入力された動力を、第1,第2変速機構T1,T2を介して第1,第2駆動車軸S1,S2(ドライブ軸)に差動回転を許容しつつ分配するようにしたものを示したが、本発明は差動装置以外の種々の伝動装置にも実施可能である。例えば、前記実施形態のデフケースCに対応するケーシングを固定の伝動ケースとし、第1,第2駆動車軸S1,S2の何れか一方を入力軸、またその何れか他方を出力軸とすることで、前記実施形態の差動装置Dを、入力軸に入力される回転トルクを変速(減速又は増速)して出力軸に伝達し得る変速機(減速機又は増速機)として転用実施可能であり、その場合には、そのような変速機(減速機又は増速機)が本発明の伝動装置となる。尚、この場合、変速機は、車両用の変速機でも、或いは車両以外の種々の機械装置のための変速機であってもよい。   For example, in the above embodiment, the differential device D is exemplified as the transmission device, and the power input from the power source to the differential case C (first transmission member 5) is transmitted via the first and second transmission mechanisms T1 and T2. Although the first and second drive axles S1 and S2 (drive shafts) are distributed while allowing differential rotation, the present invention can be implemented in various transmission devices other than the differential gear. is there. For example, the casing corresponding to the differential case C of the above embodiment is a fixed transmission case, one of the first and second drive axles S1, S2 is an input shaft, and one of the other is an output shaft. The differential device D of the embodiment can be diverted as a transmission (decelerator or speed increaser) that can change (decelerate or increase speed) the rotational torque input to the input shaft and transmit it to the output shaft. In such a case, such a transmission (reduction gear or speed increaser) is the transmission device of the present invention. In this case, the transmission may be a transmission for a vehicle or a transmission for various mechanical devices other than the vehicle.

また、前記実施形態では、伝動装置としての差動装置Dを自動車用として車載のミッションケース1内に収容しているが、差動装置Dは自動車用の差動装置に限定されるものではなく、種々の機械装置のための差動装置としても実施可能である。   Moreover, in the said embodiment, although the differential device D as a transmission device is accommodated in the vehicle-mounted mission case 1 for motor vehicles, the differential device D is not limited to the differential device for motor vehicles. It can also be implemented as a differential for various mechanical devices.

また、前記実施形態では、伝動装置としての差動装置Dを、左・右輪伝動系に適用して、左右の駆動車軸S1,S2に対して差動回転を許容しつつ動力を分配するものを示したが、本発明では、伝動装置としての差動装置を、前・後輪駆動車両における前・後輪伝動系に適用して、前後の駆動車輪に対し差動回転を許容しつつ動力を分配できるようにしてもよい。   In the above embodiment, the differential device D as a transmission device is applied to the left and right wheel transmission systems to distribute power while allowing differential rotation to the left and right drive axles S1, S2. However, in the present invention, a differential device as a transmission device is applied to a front / rear wheel transmission system in a front / rear wheel drive vehicle to allow power to be driven while allowing differential rotation with respect to front and rear drive wheels. May be distributed.

また前記実施形態の第2伝動部材8は、第1,第2半体8a,8b及び連結部材8cから構成されていたが、第2伝動部材8は、1枚の板状部材の一方の面に第2伝動溝22が、また他方の面に第3伝動溝24がそれぞれ設けられたものであってもよい。   Moreover, although the 2nd transmission member 8 of the said embodiment was comprised from the 1st, 2nd half bodies 8a and 8b and the connection member 8c, the 2nd transmission member 8 is one surface of one plate-shaped member. Alternatively, the second transmission groove 22 may be provided, and the third transmission groove 24 may be provided on the other surface.

また、前記実施形態では、第1,第2変速機構T1,T2の各伝動溝21,22;24,25をトロコイド曲線に沿った波形環状の波溝としているが、これら伝動溝は、実施形態に限定されるものでなく、例えば、サイクロイド曲線に沿った波形環状の波溝としてもよく、或いはまた、第1伝動溝21(又は第3伝動溝24)をエピトロコイド曲線に沿う波溝とし、第2伝動溝22(又は第4伝動溝25)をハイポトロコイド曲線に沿う波溝としてもよい。   Moreover, in the said embodiment, although each transmission groove 21,22; 24,25 of 1st, 2nd transmission mechanism T1, T2 is made into the corrugated cyclic | annular wave groove along a trochoid curve, these transmission grooves are embodiment. For example, it may be a corrugated annular wave groove along a cycloid curve, or alternatively, the first transmission groove 21 (or the third transmission groove 24) is a wave groove along an epitrochoid curve, The second transmission groove 22 (or the fourth transmission groove 25) may be a wave groove along the hypotrochoid curve.

また前記実施形態では、偏心回転部材6及び第3伝動部材9を、デフケースCに支持される駆動車軸S1,S2に接続(スプライン嵌合16,17)して、これら駆動車軸S1,S2を介してデフケースCに支持させるようにしたものを示したが、本発明では、偏心回転部材6及び第3伝動部材9をデフケースCに直接支持させるようにしてもよい。   In the above-described embodiment, the eccentric rotating member 6 and the third transmission member 9 are connected to the drive axles S1 and S2 supported by the differential case C (spline fittings 16 and 17), and the drive axles S1 and S2 are interposed therebetween. In the present invention, the eccentric rotation member 6 and the third transmission member 9 may be directly supported by the differential case C.

また前記実施形態では、保持部材としての第1,第2リテーナH1,H2を、内・外周面が各々真円の円環状リングより構成したものを示したが、本発明の保持部材(第1,第2リテーナ)の形状は、前記実施形態に限定されず、少なくとも転動体としての各複数の第1,第2コロ23,26を各々一定間隔で保持し得る環状リング体であればよく、例えば楕円状の環状リング板、或いは波形に湾曲した環状リング板であってもよい。   In the above-described embodiment, the first and second retainers H1 and H2 as the holding members are each constituted by an annular ring having inner and outer peripheral surfaces each having a perfect circle. The shape of the second retainer) is not limited to the above-described embodiment, and may be any annular ring body that can hold each of the plurality of first and second rollers 23 and 26 as rolling elements at regular intervals. For example, an elliptical ring plate or an annular ring plate curved in a waveform may be used.

また前記実施形態では、伝動装置が2つの変速機構(即ち第1,第2変速機構T1,T2)を備えるものを示したが、本発明は、1又は3以上の変速機構を備える伝動装置にも適用可能である。また、伝動装置が備える複数の変速機構のうちの少なくとも1つの変速機構に本発明を適用可能であり、例えば、前記実施形態の第1,第2変速機構T1,T2のうちの何れか一方の変速機構のみに本発明を適用してもよい。   In the above-described embodiment, the transmission device includes two transmission mechanisms (that is, the first and second transmission mechanisms T1 and T2). However, the present invention provides a transmission device including one or more transmission mechanisms. Is also applicable. In addition, the present invention can be applied to at least one speed change mechanism among a plurality of speed change mechanisms included in the transmission, for example, one of the first speed change mechanism T1 and the second speed change mechanism T2 of the embodiment. The present invention may be applied only to the speed change mechanism.

C・・・・・・デフケース(伝動ケース)
D・・・・・・差動装置(伝動装置)
H1,H2・・第1,第2リテーナ(保持部材)
T1,T2・・第1,第2変速機構(変速機構)
X1,X2・・第1,第2軸線
f・・・・・・第1,第2コロの端面
t・・・・・・第1,第2コロの、伝動溝内側面との接触部
α・・・・・・伝動溝内側面のテーパ角
5・・・・・・第1伝動部材(一方の伝動部材)
6・・・・・・偏心回転部材
8・・・・・・第2伝動部材(他方の伝動部材)
9・・・・・・第3伝動部材(一方の伝動部材)
21,25・・第1,第4伝動溝(一方の伝動溝)
22,24・・第2,第3伝動溝(他方の伝動溝)
23,26・・第1,第2コロ(転動体)
23a,23b・・第1コロの両端部
23m,26m・・第1,第2コロの軸方向中間部
31,32・・第1,第2保持孔(保持孔)
C ・ ・ ・ ・ ・ ・ Differential case (Transmission case)
D ・ ・ ・ ・ ・ ・ Differential device (Transmission device)
H1, H2 ··· First and second retainers (holding members)
T1, T2, ... 1st and 2nd transmission mechanism (transmission mechanism)
X1, X2 ··· First and second axis f ··· End surface t of first and second rollers ··· Contact portion α of first and second rollers with inner surface of transmission groove α・ ・ ・ ・ ・ ・ Taper angle 5 on the inner surface of the transmission groove ・ ・ ・ ・ ・ ・ First transmission member (One transmission member)
6... Eccentric rotating member 8... 2nd transmission member (the other transmission member)
9 .... Third transmission member (One transmission member)
21, 25 .. 1st and 4th transmission groove (one transmission groove)
22, 24 ··· 2nd and 3rd transmission groove (the other transmission groove)
23, 26 .. First and second rollers (rolling elements)
23a, 23b,... Both end portions 23m, 26m of the first roller, axially intermediate portions 31, 32,.

Claims (3)

互いに対向する一対の伝動部材(5,9;8)と、その両伝動部材(5,9;8)の相互間に設けられて、その相互間で変速しつつトルク伝達可能な変速機構(T1,T2)とを備えていて、一方の伝動部材(5,9)が第1軸線(X1)を中心軸線とし、且つ他方の伝動部材(8)が、第1軸線(X1)から偏心した第2軸線(X2)回りを自転しながら第1軸線(X1)回りに公転可能であり、
前記一対の伝動部材(5,9;8)が、その両者の相対向面に伝動溝(21,22,25,24)を各々有しており、
前記変速機構(T1,T2)が、前記一方の伝動部材(5,9)に設けられて第1軸線(X1)を中心とした波形環状をなす一方の前記伝動溝(21,25)と、前記他方の伝動部材(8)に設けられて第2軸線(X2)を中心とする波形環状をなし且つ波数が前記一方の伝動溝(21,25)とは異なる他方の前記伝動溝(22,24)と、前記一方の伝動溝(21,25)及び前記他方の伝動溝(22,24)相互の複数の交差部に介装され、その両伝動溝(21,22,25,24)を転動しながら前記両伝動部材(5,9;8)間の変速伝動を行う複数の転動体(23,26)と、それら転動体(23,26)を周方向に間隔をおいて保持する保持孔(31,32)を有して前記両伝動部材(5,9,8)間に介装される保持部材(H1,H2)とを備える伝動装置であって、
前記両伝動溝(21,22,25,24)が横断面コ字状の角溝で構成される一方、前記転動体が、前記両伝動溝(21,22,25,24)間に跨がって延びていて両端部(23a,23b)が両伝動溝(21,22,25,24)の内側面をそれぞれ転動し得るコロ(23,26)で構成され、
その各コロ(23,26)の、前記両伝動溝(21,22,25,24)の内側面に対する各接触部(t)から軸方向両端面(f)に至る領域で、各コロ(23,26)の外周面が、外径を前記接触部(t)から前記両端面(f)に向かって滑らかに減少させた曲面形状をなし、
前記各コロ(23,26)の軸方向中間部(23m,26m)の外周面は、前記保持部材(H1,H2)の前記保持孔(31,32)に回転摺動可能に嵌合、支持される円筒面で構成されることを特徴とする伝動装置。
A transmission mechanism (T1) provided between a pair of transmission members (5, 9; 8) facing each other and both transmission members (5, 9; 8) and capable of transmitting torque while shifting between the transmission members (5, 9; 8). , T2), one transmission member (5, 9) having the first axis (X1) as the central axis, and the other transmission member (8) decentered from the first axis (X1). Revolving around the first axis (X1) while rotating around the two axes (X2),
The pair of transmission members (5, 9; 8) have transmission grooves (21, 22, 25, 24) on opposite surfaces of both of them,
The transmission mechanism (T1, T2) is provided on the one transmission member (5, 9) and has one of the transmission grooves (21, 25) having a corrugated ring centered on the first axis (X1); The other transmission groove (22, 22) provided on the other transmission member (8) has a corrugated annular shape around the second axis (X2) and has a wave number different from that of the one transmission groove (21, 25). 24), and the one transmission groove (21, 25) and the other transmission groove (22, 24) are interposed at a plurality of intersections, and both the transmission grooves (21, 22, 25, 24) A plurality of rolling elements (23, 26) that perform transmission transmission between the two transmission members (5, 9; 8) while rolling, and hold the rolling elements (23, 26) at intervals in the circumferential direction. A holding member having a holding hole (31, 32) and interposed between the two transmission members (5, 9, 8) A transmission device comprising a 1, H2) and,
While both the transmission grooves (21, 22, 25, 24) are formed by square grooves having a U-shaped cross section, the rolling element straddles between the transmission grooves (21, 22, 25, 24). And both ends (23a, 23b) are composed of rollers (23, 26) that can roll on the inner surfaces of both transmission grooves (21, 22, 25, 24), respectively.
Each roller (23, 26) is in a region from each contact portion (t) to the inner side surface of both the transmission grooves (21, 22, 25, 24) to both end surfaces (f) in the axial direction. , 26) has a curved shape in which the outer diameter is smoothly reduced from the contact portion (t) toward the both end faces (f),
The outer peripheral surfaces of the axially intermediate portions (23m, 26m) of the rollers (23, 26) are fitted and supported in the holding holes (31, 32) of the holding members (H1, H2) so as to be able to rotate and slide. A transmission device comprising a cylindrical surface.
前記保持孔(31,32)の、前記各コロ(23,26)の軸方向中間部(23m,26m)を嵌合、支持する内周面は、その保持孔(31,32)の中心線を含む断面の形状が中心線側に凸の円弧状であることを特徴とする、請求項1に記載の伝動装置。   The inner peripheral surface of the holding hole (31, 32) that fits and supports the axial intermediate part (23m, 26m) of each roller (23, 26) is the center line of the holding hole (31, 32). 2. The transmission device according to claim 1, wherein the cross-sectional shape including a circular arc is convex toward the center line. 各々の前記伝動溝(21,22,25,24)の相対向する内側面は、所定の微小なテーパ角(α)を以て溝の開放面側に先拡がり状に拡開していることを特徴とする請求項1又は2に記載の伝動装置。   The opposed inner surfaces of each of the transmission grooves (21, 22, 25, 24) are widened in a pre-expanded manner toward the open surface side of the groove with a predetermined minute taper angle (α). The transmission device according to claim 1 or 2.
JP2016071229A 2016-03-31 2016-03-31 Transmission device Pending JP2017180743A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016071229A JP2017180743A (en) 2016-03-31 2016-03-31 Transmission device
PCT/JP2017/012723 WO2017170589A1 (en) 2016-03-31 2017-03-28 Transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016071229A JP2017180743A (en) 2016-03-31 2016-03-31 Transmission device

Publications (1)

Publication Number Publication Date
JP2017180743A true JP2017180743A (en) 2017-10-05

Family

ID=59965728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016071229A Pending JP2017180743A (en) 2016-03-31 2016-03-31 Transmission device

Country Status (2)

Country Link
JP (1) JP2017180743A (en)
WO (1) WO2017170589A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027975A (en) * 1998-07-07 2000-01-25 Hitachi Metals Ltd Manufacturing device for ball holder of differential gear, and its manufacture using the device
WO2015198845A1 (en) * 2014-06-24 2015-12-30 武蔵精密工業株式会社 Differential device

Also Published As

Publication number Publication date
WO2017170589A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6513658B2 (en) Differential
EP3604858A1 (en) Pressing device for toroidal continuously variable transmission
WO2017094796A1 (en) Transmission device and differential device
US10378613B1 (en) Electric powertrain with cycloidal mechanism
WO2017170588A1 (en) Gearing
WO2017146059A1 (en) Differential gear
JP2018013168A (en) Support part lubrication structure of gear member, and differential gear
WO2017170589A1 (en) Transmission device
WO2017170587A1 (en) Gearing
JP2017141910A (en) Transmission device
WO2017094795A1 (en) Transmission device
WO2017104763A1 (en) Differential device
JP2017155864A (en) Transmission device
JP2017115993A (en) Differential device
WO2017131141A1 (en) Transmission device
WO2017104764A1 (en) Transmission device
WO2017170590A1 (en) Gearing
WO2017146003A1 (en) Differential gear
JP2017180698A (en) Transmission device
JP2017160943A (en) Differential gear
WO2017086344A1 (en) Differential device
WO2017154898A1 (en) Power transmitting device
JP2017155863A (en) Differential device
JP2018135976A (en) Differential gear
JP2007078053A (en) Differential gear and final reduction gear