JP2017180646A - Friction engagement device - Google Patents

Friction engagement device Download PDF

Info

Publication number
JP2017180646A
JP2017180646A JP2016068189A JP2016068189A JP2017180646A JP 2017180646 A JP2017180646 A JP 2017180646A JP 2016068189 A JP2016068189 A JP 2016068189A JP 2016068189 A JP2016068189 A JP 2016068189A JP 2017180646 A JP2017180646 A JP 2017180646A
Authority
JP
Japan
Prior art keywords
oil
axial
axial direction
cylindrical portion
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016068189A
Other languages
Japanese (ja)
Inventor
祐一 関
Yuichi Seki
祐一 関
洋平 多田
Yohei Tada
洋平 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2016068189A priority Critical patent/JP2017180646A/en
Publication of JP2017180646A publication Critical patent/JP2017180646A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a friction engagement device which can homogenize the cooling of a plurality of pieces of friction plates.SOLUTION: An overlapping region overlapped on a second cylindrical part 61 when viewed in a radial direction R, and a non-overlapping region not overlapped on the second cylindrical part 61 when viewed in the radial direction are arranged at a first cylindrical part 52, oil is supplied to the non-overlapping region from the inside R1 of the radial direction by a supply part A3, a plurality of oil holes 56 penetrating the first cylindrical part 52 in the radial direction R are formed at the first cylindrical part 52 in the overlapping region, a plurality of the oil holes 56 are arranged in a plurality of points in an axial direction L, and dispersed in a plurality of points in a peripheral direction, a groove 57 in the axial direction which is formed into a groove shape extending along the axial direction L is formed at an internal peripheral face of the first cylindrical part 52, and the groove 57 in the axial direction is formed in a position corresponding to the oil holes 56 in the peripheral direction.SELECTED DRAWING: Figure 3

Description

本発明は、複数枚の摩擦板に対して油を供給する供給部を備えた摩擦係合装置に関する。   The present invention relates to a friction engagement device including a supply unit that supplies oil to a plurality of friction plates.

このような摩擦係合装置として、例えば、特開2004−053023号公報(特許文献1)に記載されたものが知られている。以下、背景技術の欄の説明では、〔〕内に特許文献1における符号や部材名称を引用して説明する。特許文献1の摩擦係合装置では、第一部材〔クラッチハブ:2〕の第一筒状部により、複数枚の摩擦板〔圧力板:4及び端部板6〕を内側から支持している。この第一筒状部には、径方向に貫通する油孔〔油供給通路:9.1,9.2,9.3,9.4〕が形成されている。第一部材〔クラッチハブ:2〕は、第一筒状部から径方向内側に延びる第一円環状部を備えており、第二部材〔釣合いピストン:14〕は、径方向に延びる第二円環状部〔ばね支持体:14.1〕を備えている。そして、第一部材〔クラッチハブ:2〕の第一環状部と第二部材〔釣合いピストン:14〕の第二環状部〔ばね支持体:14.1〕との間に、径方向に延びる油空間〔11〕が形成されている。この油空間〔11〕を流れた油が、油孔〔油供給通路:9.1,9.2,9.3,9.4〕を通って複数枚の摩擦板〔圧力板:4及び端部板6〕の間に供給されて、複数枚の摩擦板〔圧力板:4及び端部板6〕の冷却が行われる。   As such a friction engagement device, for example, a device described in JP 2004-053023 A (Patent Document 1) is known. Hereinafter, in the description of the background art column, reference numerals and member names in Patent Document 1 are quoted in []. In the friction engagement device of Patent Document 1, a plurality of friction plates [pressure plate: 4 and end plate 6] are supported from the inside by the first cylindrical portion of the first member [clutch hub: 2]. . An oil hole [oil supply passage: 9.1, 9.2, 9.3, 9.4] penetrating in the radial direction is formed in the first cylindrical portion. The first member [clutch hub: 2] includes a first annular portion extending radially inward from the first tubular portion, and the second member [balance piston: 14] is a second circle extending in the radial direction. An annular portion [spring support: 14.1] is provided. And, the oil extending in the radial direction between the first annular portion of the first member [clutch hub: 2] and the second annular portion [spring support: 14.1] of the second member [balance piston: 14]. A space [11] is formed. The oil flowing through the oil space [11] passes through the oil holes [oil supply passages: 9.1, 9.2, 9.3, 9.4] and a plurality of friction plates [pressure plates: 4 and ends] The plurality of friction plates [pressure plate: 4 and end plate 6] are cooled.

特開2004−053023号公報JP 2004-053023 A

特許文献1の摩擦係合装置では、第二部材〔釣合いピストン:14〕の第二筒状部〔円筒体形状壁:14.3〕は、第一部材〔内側支持部:32〕の第一筒状部に対して径方向内側に設置されており、これら第一筒状部と第二筒状部〔円筒体形状壁:14.3〕との間には、軸方向に延びる油路が周方向の全周に亘って形成されている。油空間〔11〕を流れた油は油路を流れた後に、油孔〔油供給通路:9.1,9.2,9.3,9.4〕を通って複数枚の摩擦板〔内側摩擦板:31A〕の間に供給されることになる。しかし、油路を流れる油は、軸方向において油の流動の上流側となる軸方向第二側に存在する油孔〔油供給通路:9.1〕に流れ易く、下流側となる軸方向第一側に存在する油孔〔油供給通路:9.4〕ほど油が流れ難くなる。そのため、油孔〔油供給通路:9.1,9.2,9.3,9.4〕は軸方向の位置により流れる油の量が異なるため、軸方向に沿って配列されている複数枚の摩擦板〔圧力板:4及び端部板6〕を均一に冷却することが困難であった。   In the friction engagement device of Patent Document 1, the second cylindrical portion [cylindrical body wall: 14.3] of the second member [balance piston: 14] is the first of the first member [inner support portion: 32]. An oil passage extending in the axial direction is provided between the first cylindrical portion and the second cylindrical portion (cylindrical wall: 14.3). It is formed over the entire circumference in the circumferential direction. The oil that has flowed through the oil space [11] flows through the oil passage, and then passes through the oil hole [oil supply passage: 9.1, 9.2, 9.3, 9.4], and a plurality of friction plates [inside Friction plate: 31A]. However, the oil flowing in the oil passage is easy to flow in the oil hole [oil supply passage: 9.1] existing on the second axial side that is upstream of the oil flow in the axial direction, and the axial direction first on the downstream side. The oil hole [oil supply passage: 9.4] existing on one side becomes difficult to flow. Therefore, the oil holes [oil supply passages: 9.1, 9.2, 9.3, 9.4] differ in the amount of oil flowing depending on the position in the axial direction, so a plurality of sheets arranged along the axial direction. It was difficult to uniformly cool the friction plates [pressure plate: 4 and end plate 6].

そこで、複数枚の摩擦板に対する冷却の均一化を図ることができる摩擦係合装置の実現が望まれる。   Therefore, it is desired to realize a friction engagement device capable of achieving uniform cooling for a plurality of friction plates.

上記に鑑みた、摩擦係合装置の特徴構成は、筒状の第一筒状部を備えた第一部材と、前記第一筒状部の軸方向に沿って複数枚配列されると共に前記第一筒状部により径方向内側から支持される円環板状の摩擦板と、前記第一筒状部の径方向内側に配置され、前記第一筒状部の内周面に沿って配置される筒状の第二筒状部を備えた第二部材と、前記複数枚の摩擦板に対して油を供給する供給部と、を備え、前記第一筒状部は、径方向に見て前記第二筒状部と重複する重複領域と、前記径方向に見て前記第二筒状部と重複しない非重複領域とを有し、前記供給部は、前記非重複領域に対して径方向内側から油を供給し、前記第一筒状部は、当該第一筒状部を前記径方向に貫通する油孔を前記重複領域内に複数備え、前記複数の油孔は、記複数枚の摩擦の前記軸方向の配置間隔に応じて前記軸方向の複数箇所に配置されると共に、周方向の複数箇所に配置され、前記第一筒状部の内周面及び前記第二筒状部の外周面の少なくとも一方に、前記軸方向に沿って延びる溝状に形成された軸方向溝を備え、前記軸方向溝は、前記周方向における前記油孔に対応する位置に形成されている点にある。   In view of the above, the characteristic configuration of the friction engagement device includes a first member having a cylindrical first cylindrical portion, a plurality of the members arranged along the axial direction of the first cylindrical portion, and the first member. An annular plate-like friction plate supported from the inside in the radial direction by one cylindrical portion, and arranged on the inside in the radial direction of the first cylindrical portion, and arranged along the inner peripheral surface of the first cylindrical portion. A second member having a cylindrical second cylindrical portion, and a supply portion for supplying oil to the plurality of friction plates, the first cylindrical portion being viewed in a radial direction. An overlapping region that overlaps with the second cylindrical portion, and a non-overlapping region that does not overlap with the second cylindrical portion when viewed in the radial direction, and the supply unit is in a radial direction with respect to the non-overlapping region Oil is supplied from the inside, and the first cylindrical portion includes a plurality of oil holes in the overlapping region that penetrate the first cylindrical portion in the radial direction. According to the axial arrangement interval of rubbing, it is arranged at a plurality of locations in the axial direction and is arranged at a plurality of locations in the circumferential direction, and the inner circumferential surface of the first cylindrical portion and the second cylindrical portion An axial groove formed in a groove shape extending along the axial direction is provided on at least one of the outer peripheral surfaces, and the axial groove is formed at a position corresponding to the oil hole in the circumferential direction. is there.

この特徴構成によれば、第一筒状部の重複領域(T1)内に形成されている複数の油孔(56)は、周方向(C)の複数箇所に分散して配置されており、これら複数の油孔(56)に対応する位置に形成されている軸方向溝(57)も、周方向(C)の複数箇所に分散して配置される。そして、供給部(A3)から非重複領域(T2)に対して径方向内側(R1)から供給された油は、複数の軸方向溝(57)に分かれて流入した後、軸方向溝(57)に案内されて軸方向第一側(L1)に流れ、当該軸方向溝(57)に対応する油孔(56)に供給され、当該油孔を通って複数枚の摩擦板(31B)の間に供給される。つまり、周方向における油孔に対応する位置に形成された軸方向溝により、供給部から供給された油を分岐させて各油孔まで案内することで、油孔(56)の軸方向(L)の位置に関わらず均等な量の油を各油孔に供給することができる。従って、複数枚の摩擦板(31B)に対する冷却の均一化を図ることができる。   According to this characteristic configuration, the plurality of oil holes (56) formed in the overlapping region (T1) of the first cylindrical portion are distributed and arranged at a plurality of locations in the circumferential direction (C). The axial grooves (57) formed at positions corresponding to the plurality of oil holes (56) are also distributed and arranged at a plurality of locations in the circumferential direction (C). Then, the oil supplied from the radial inner side (R1) to the non-overlapping region (T2) from the supply unit (A3) is divided into a plurality of axial grooves (57) and flows into the axial grooves (57). ) And flows to the first axial side (L1), is supplied to the oil hole (56) corresponding to the axial groove (57), passes through the oil hole, and the plurality of friction plates (31B) Supplied in between. That is, the axial direction groove (56) of the oil hole (56) is branched by guiding the oil supplied from the supply section to each oil hole by an axial groove formed at a position corresponding to the oil hole in the circumferential direction. ) Regardless of the position, an equal amount of oil can be supplied to each oil hole. Therefore, it is possible to make the cooling of the plurality of friction plates (31B) uniform.

車両用駆動装置の概略構成を示す模式図Schematic diagram showing the schematic configuration of a vehicle drive device 車両用駆動装置の一部の断面図Sectional view of a part of a vehicle drive device 図2の部分拡大図Partial enlarged view of FIG. 第二環状部を径方向内側から見た展開図Development view of the second annular part viewed from the inside in the radial direction 図4のV−V断面図VV sectional view of FIG. 別実施形態の第二環状部を径方向内側から見た展開図The development which looked at the 2nd annular part of another embodiment from the diameter direction inside

1.実施形態
本発明に係る摩擦係合装置の実施形態について、図面を参照して説明する。本実施形態に係る摩擦係合装置CLは、車両用駆動装置1に備えられている。車両用駆動装置1は、車両の車輪Wの駆動力源として内燃機関E及び回転電機MGの双方を備えた車両(ハイブリッド車両)を駆動するための車両用駆動装置(ハイブリッド車両用駆動装置)である。具体的には、車両用駆動装置1は、1モータパラレル方式のハイブリッド車両用の駆動装置として構成されている。
1. Embodiment An embodiment of a friction engagement device according to the present invention will be described with reference to the drawings. The friction engagement device CL according to the present embodiment is provided in the vehicle drive device 1. The vehicle drive device 1 is a vehicle drive device (hybrid vehicle drive device) for driving a vehicle (hybrid vehicle) including both the internal combustion engine E and the rotating electrical machine MG as a drive force source for the wheels W of the vehicle. is there. Specifically, the vehicle drive device 1 is configured as a drive device for a 1-motor parallel type hybrid vehicle.

以下の説明では、特に明記している場合を除き、「軸方向L」、「径方向R」、「周方向C」は、摩擦係合装置CLの回転軸心X(以下、軸心Xと略称する)を基準として定義している。なお、摩擦係合装置CLの軸心Xは、摩擦係合装置CLが備える回転部材(後述する第一摩擦板31A、第二摩擦板31B、第一支持部材32、第二支持部材33等)の回転軸心である。「軸方向第一側L1」は、軸方向Lにおける一方側へ向かう方向(図2における右側)を表す。「軸方向第二側L2」は、軸方向Lの他方側であり、軸方向第一側L1とは反対方向(図2における左側)を表す。また、「径方向内側R1」は、径方向Rの内側へ向かう方向を表し、「径方向外側R2」は、径方向Rの外側へ向かう方向を表す。なお、各部材についての方向は、当該部材が車両用駆動装置1に組み付けられた状態での方向を表す。また、各部材についての方向や位置等に関する用語は、製造上許容され得る誤差による差異を有する状態も含む概念として用いている。   In the following description, unless otherwise specified, the “axial direction L”, “radial direction R”, and “circumferential direction C” are the rotational axis X of the friction engagement device CL (hereinafter referred to as the axial center X). (Abbreviated). The axis X of the friction engagement device CL is a rotating member provided in the friction engagement device CL (a first friction plate 31A, a second friction plate 31B, a first support member 32, a second support member 33, etc., which will be described later). Is the axis of rotation. “Axial direction first side L1” represents a direction toward the one side in the axial direction L (right side in FIG. 2). “Axial second side L2” is the other side of axial direction L, and represents the direction opposite to axial first side L1 (left side in FIG. 2). The “radial inner side R1” represents a direction toward the inner side of the radial direction R, and the “radial outer side R2” represents a direction toward the outer side of the radial direction R. In addition, the direction about each member represents the direction in the state in which the said member was assembled | attached to the vehicle drive device 1. FIG. Further, terms relating to the direction, position, etc. of each member are used as a concept including a state having a difference due to an allowable error in manufacturing.

1−1.車両用駆動装置の全体構成
図1に示すように、車両用駆動装置1は、内燃機関Eに駆動連結される入力軸10と、摩擦係合装置CLと、回転電機MGと、変速入力軸11と、変速装置TMと、車輪Wに駆動連結される出力軸Oとを備えている。摩擦係合装置CL、回転電機MG、及び変速装置TMは、入力軸10と出力軸Oとを結ぶ動力伝達経路に、入力軸10の側から記載の順に設けられている。また、車両用駆動装置1は、オイルポンプOPと、ポンプ駆動機構60とをさらに備えている。これらは、ケース2(図2参照)内に収容されている。
1-1. Overall Configuration of Vehicle Drive Device As shown in FIG. 1, a vehicle drive device 1 includes an input shaft 10 that is drivingly connected to an internal combustion engine E, a friction engagement device CL, a rotating electrical machine MG, and a transmission input shaft 11. And a transmission device TM and an output shaft O that is drivingly connected to the wheels W. The friction engagement device CL, the rotating electrical machine MG, and the transmission device TM are provided in the power transmission path connecting the input shaft 10 and the output shaft O in the order described from the input shaft 10 side. The vehicle drive device 1 further includes an oil pump OP and a pump drive mechanism 60. These are housed in the case 2 (see FIG. 2).

摩擦係合装置CLは、入力軸10と回転電機MGとの間の動力伝達経路に設けられる。摩擦係合装置CLは、内燃機関E及び入力軸10と回転電機MGとを選択的に連結する。すなわち、摩擦係合装置CLは、入力軸10と回転電機MGとを連結又は解放する。本実施形態では、摩擦係合装置CLは、油圧駆動式に構成されている。摩擦係合装置CLは、係合を解除した状態で車輪Wから内燃機関Eを切り離す、内燃機関切離装置として機能する。   The friction engagement device CL is provided in a power transmission path between the input shaft 10 and the rotating electrical machine MG. The friction engagement device CL selectively connects the internal combustion engine E and the input shaft 10 to the rotating electrical machine MG. That is, the friction engagement device CL connects or releases the input shaft 10 and the rotating electrical machine MG. In the present embodiment, the friction engagement device CL is configured to be hydraulically driven. The friction engagement device CL functions as an internal combustion engine disconnecting device that disconnects the internal combustion engine E from the wheel W in a state where the engagement is released.

図2に示すように、入力軸10は、ケース2に対して回転可能に支持されている。本実施形態では、ケース2における支持壁25の径方向内側R1の端部には、軸方向第二側L2に延びるボス部25Aが形成されており、入力軸10の外周面とボス部25Aの内周面との間に入力軸受26が配置されている。これにより、入力軸10が、入力軸受26を介して支持壁25に回転可能に支持されている。また、入力軸10の外周面と支持壁25の内周面との間には、これら双方に接するようにシール部材27が配置されている。シール部材27は、入力軸受26に対して、軸方向第一側L1に間隔を隔てて配置されている。   As shown in FIG. 2, the input shaft 10 is supported to be rotatable with respect to the case 2. In this embodiment, a boss portion 25A extending to the second axial side L2 is formed at the end of the support wall 25 in the radial direction R1 in the case 2, and the outer peripheral surface of the input shaft 10 and the boss portion 25A are An input bearing 26 is arranged between the inner peripheral surface. Thereby, the input shaft 10 is rotatably supported by the support wall 25 via the input bearing 26. Further, a seal member 27 is disposed between the outer peripheral surface of the input shaft 10 and the inner peripheral surface of the support wall 25 so as to contact both of them. The seal member 27 is disposed at a distance from the input bearing 26 on the first axial side L1.

回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを果たすことが可能である。回転電機MGは、蓄電装置(バッテリやキャパシタ等)と電気的に接続されている。回転電機MGは、蓄電装置から電力の供給を受けて力行し、或いは、内燃機関Eのトルクや車両の慣性力により発電した電力を蓄電装置に供給して蓄電させる。回転電機MGは、変速入力軸11と一体回転するように駆動連結されている。   The rotating electrical machine MG can perform a function as a motor (electric motor) that generates power upon receiving power supply and a function as a generator (generator) that generates power upon receiving power supply. . The rotating electrical machine MG is electrically connected to a power storage device (battery, capacitor, etc.). The rotating electrical machine MG is powered by receiving power from the power storage device, or supplies the power storage device with power generated by the torque of the internal combustion engine E or the inertial force of the vehicle. The rotary electric machine MG is drivingly connected so as to rotate integrally with the transmission input shaft 11.

回転電機MGは、ケース2に固定されたステータSt(図1参照)と、図2に示すように、このステータStの径方向内側R1に設置されてケース2に回転自在に支持されたロータRoと、ロータRoを支持するロータ支持部材20と、を備えている。ロータ支持部材20は、ロータ支持部21と、径方向延在部22とを備えている。ロータ支持部21は、軸方向Lに延びる円筒状に形成され、ロータRoを径方向内側R1から保持する。ロータ支持部21は、摩擦係合装置CLの第一支持部材32と一体回転するように連結されている。本実施形態では、ロータ支持部21と第一支持部材32とは、スプライン係合部Aにより、周方向Cの相対回転が規制された状態で連結されている。径方向延在部22は、ロータ支持部21の軸方向第一側L1の端部領域から径方向内側R1に延びる、円環板状に形成されている。径方向延在部22の内周面と、ボス部25Aの外周面との間に軸受28が配置されており、ロータ支持部材20が支持壁25に回転自在に支持されている。   The rotating electrical machine MG includes a stator St (see FIG. 1) fixed to the case 2, and a rotor Ro that is installed on the radially inner side R1 of the stator St and rotatably supported by the case 2 as shown in FIG. And a rotor support member 20 that supports the rotor Ro. The rotor support member 20 includes a rotor support portion 21 and a radially extending portion 22. The rotor support portion 21 is formed in a cylindrical shape extending in the axial direction L, and holds the rotor Ro from the radially inner side R1. The rotor support portion 21 is coupled to rotate integrally with the first support member 32 of the friction engagement device CL. In the present embodiment, the rotor support portion 21 and the first support member 32 are connected by the spline engagement portion A in a state where relative rotation in the circumferential direction C is restricted. The radially extending portion 22 is formed in an annular plate shape extending from the end region on the first axial side L1 of the rotor support portion 21 to the radially inner side R1. A bearing 28 is disposed between the inner peripheral surface of the radially extending portion 22 and the outer peripheral surface of the boss portion 25 </ b> A, and the rotor support member 20 is rotatably supported by the support wall 25.

1−2.摩擦係合装置の概要構成
図2及び図3に示すように、摩擦係合装置CLは、湿式の摩擦係合装置である。本実施形態では、摩擦係合装置CLは、回転電機MGのロータRoに対して径方向Rの内側であって、径方向Rに見てロータRoと重複する部分を有するように配置されている。図3に示すように、摩擦係合装置CLは、少なくとも1枚の第一摩擦板31Aと、第一摩擦板31Aを軸方向Lの両側から挟むように配置される複数枚の第二摩擦板31Bと、第一摩擦板31Aと一体回転する第一支持部材32と、第二摩擦板31Bと一体回転する第二支持部材33と、油路形成部材35と、を備えている。第一摩擦板31Aは、第一支持部材32に対して周方向Cの相対回転が規制された状態で軸方向Lに摺動自在に支持されている。また、第二摩擦板31Bは、第二支持部材33に対して周方向Cの相対回転が規制された状態で軸方向Lに摺動自在に支持されている。第一支持部材32は、変速入力軸11と一体回転するように駆動連結されており、第二支持部材33は、入力軸10と一体回転するように駆動連結されている。本実施形態では、第二摩擦板31Bが軸方向Lに沿って複数枚配列されている。また、これら複数枚の第一摩擦板31Aのそれぞれを軸方向Lの両側から挟むように、第二摩擦板31Bが軸方向Lに沿って複数枚配列されている。本実施形態では、第二支持部材33が、「第一部材」に相当し、第二摩擦板31Bが、円環板状の「摩擦板」に相当し、油路形成部材35が、「第二部材」に相当する。
1-2. General Configuration of Friction Engaging Device As shown in FIGS. 2 and 3, the friction engaging device CL is a wet friction engaging device. In the present embodiment, the friction engagement device CL is disposed so as to have a portion that is inside the radial direction R with respect to the rotor Ro of the rotating electrical machine MG and overlaps the rotor Ro when viewed in the radial direction R. . As shown in FIG. 3, the friction engagement device CL includes at least one first friction plate 31A and a plurality of second friction plates arranged so as to sandwich the first friction plate 31A from both sides in the axial direction L. 31B, a first support member 32 that rotates integrally with the first friction plate 31A, a second support member 33 that rotates integrally with the second friction plate 31B, and an oil passage forming member 35 are provided. The first friction plate 31 </ b> A is slidably supported in the axial direction L in a state where relative rotation in the circumferential direction C is restricted with respect to the first support member 32. The second friction plate 31 </ b> B is slidably supported in the axial direction L in a state where relative rotation in the circumferential direction C is restricted with respect to the second support member 33. The first support member 32 is drivingly connected to rotate integrally with the transmission input shaft 11, and the second support member 33 is drive connected to rotate integrally with the input shaft 10. In the present embodiment, a plurality of second friction plates 31B are arranged along the axial direction L. A plurality of second friction plates 31B are arranged along the axial direction L so as to sandwich each of the plurality of first friction plates 31A from both sides in the axial direction L. In the present embodiment, the second support member 33 corresponds to a “first member”, the second friction plate 31B corresponds to an annular plate-like “friction plate”, and the oil passage forming member 35 corresponds to a “first member”. It corresponds to “two members”.

摩擦係合装置CLは、ピストン34と、スプリング36とをさらに備えている。ピストン34は、第一摩擦板31A及び第二摩擦板31Bを軸方向第二側L2から押圧する。スプリング36は、ピストン34を油圧による押圧方向とは反対方向となる軸方向第二側L2に付勢する。本実施形態では、ピストン34が、複数枚の第二摩擦板31Bを軸方向第一側L1から押圧する「押圧部材」に相当し、スプリング36が、ピストン34を軸方向第一側L1に付勢する「付勢部材」に相当する。ピストン34に対して軸方向第一側L1には、供給される油による油圧によりピストン34を軸方向第二側L2に移動させるための作動油圧室H1を備えている。また、ピストン34に対して軸方向第二側L2には、作動油圧室H1に作用する遠心油圧を打ち消すためのキャンセル油圧室H2が形成されている。このキャンセル油圧室H2は、ピストン34と油路形成部材35との軸方向Lの間に形成されている。   The friction engagement device CL further includes a piston 34 and a spring 36. The piston 34 presses the first friction plate 31A and the second friction plate 31B from the second axial side L2. The spring 36 urges the piston 34 to the second axial side L2 that is opposite to the hydraulic pressure. In the present embodiment, the piston 34 corresponds to a “pressing member” that presses the plurality of second friction plates 31B from the first axial side L1, and the spring 36 attaches the piston 34 to the first axial side L1. It corresponds to a “biasing member”. On the first axial side L1 with respect to the piston 34, there is provided a working hydraulic chamber H1 for moving the piston 34 to the second axial side L2 by the hydraulic pressure by the supplied oil. Further, a cancel hydraulic chamber H2 is formed on the second axial side L2 with respect to the piston 34 to cancel out the centrifugal hydraulic pressure acting on the working hydraulic chamber H1. The cancel hydraulic chamber H2 is formed between the piston 34 and the oil passage forming member 35 in the axial direction L.

摩擦係合装置CLが係合した係合状態では、第一支持部材32に駆動連結された回転電機MGと、第二支持部材33に駆動連結された入力軸10との間の連結が、維持される。この際、第一摩擦板31Aと第二摩擦板31Bとの間に発生する摩擦力により、第一支持部材32と第二支持部材33との間でトルクが伝達される。係合状態には、滑り係合状態と直結係合状態とが含まれる。滑り係合状態は、第一摩擦板31Aと第二摩擦板31Bとの間に回転速度差がある係合状態であり、直結係合状態は、第一摩擦板31Aと第二摩擦板31Bとの間に回転速度差がない係合状態である。また、摩擦係合装置CLが解放した解放状態では、第一支持部材32に駆動連結された回転電機MGと、第二支持部材33に駆動連結された入力軸10との間の連結が、解除される。この際、第一摩擦板31Aと第二摩擦板31Bとの間での引き摺りによって、指令とは異なり伝達トルクが生じる場合もあるが、解放状態では基本的に、第一支持部材32と第二支持部材33との間でトルクは伝達されない。例えば、回転電機MGのトルクのみによって車両を走行させる電動走行モードの実行中は、摩擦係合装置CLは基本的に解放状態に制御される。内燃機関E及び回転電機MGの双方のトルクによって車両を走行させるハイブリッド走行モードの実行中は、摩擦係合装置CLは基本的に直結係合状態に制御される。また、例えば、停止状態の内燃機関Eを回転電機MGのトルクによって始動させる場合、坂道等において内燃機関Eのトルクを車輪Wに伝達させた状態で車両を停止させておく場合、内燃機関Eのトルクによって車両を発進させる場合等に、摩擦係合装置CLは滑り係合状態に制御される。   In the engaged state in which the frictional engagement device CL is engaged, the connection between the rotating electrical machine MG that is drivingly connected to the first support member 32 and the input shaft 10 that is drivingly connected to the second support member 33 is maintained. Is done. At this time, torque is transmitted between the first support member 32 and the second support member 33 by the frictional force generated between the first friction plate 31A and the second friction plate 31B. The engagement state includes a slip engagement state and a direct engagement state. The sliding engagement state is an engagement state in which there is a difference in rotational speed between the first friction plate 31A and the second friction plate 31B, and the direct engagement state is the first friction plate 31A and the second friction plate 31B. In this engagement state, there is no rotational speed difference. Further, in the released state in which the frictional engagement device CL is released, the connection between the rotating electrical machine MG drivingly connected to the first support member 32 and the input shaft 10 drivingly connected to the second support member 33 is released. Is done. At this time, transmission torque may be generated unlike the command by dragging between the first friction plate 31A and the second friction plate 31B. However, basically, in the released state, the first support member 32 and the second friction plate 31B. Torque is not transmitted to and from the support member 33. For example, during the execution of the electric travel mode in which the vehicle travels only by the torque of the rotating electrical machine MG, the friction engagement device CL is basically controlled to the released state. During execution of the hybrid travel mode in which the vehicle travels with the torque of both the internal combustion engine E and the rotating electrical machine MG, the friction engagement device CL is basically controlled to be in the direct engagement state. Further, for example, when the internal combustion engine E in a stopped state is started by the torque of the rotating electrical machine MG, when the vehicle is stopped in a state where the torque of the internal combustion engine E is transmitted to the wheels W on a slope or the like, For example, when the vehicle is started by torque, the friction engagement device CL is controlled to be in a sliding engagement state.

1−3.摩擦係合装置の具体的構成
第一摩擦板31Aと第二摩擦板31Bとは、軸方向Lに沿って1枚ずつ交互に配置されている。第一摩擦板31A及び第二摩擦板31Bのそれぞれは、円環板状の部材(板状で円環形状の部材)である。
図3に示すように、第一摩擦板31Aは、摩擦材が設けられた摩擦当接面を軸方向Lの両側に有する。第二摩擦板31Bは、摩擦材が設けられていない摩擦当接面を軸方向Lの両側に有する。ここで、第一摩擦板31Aの摩擦当接面は、第一摩擦板31Aの軸方向Lを向く面における、軸方向Lに見て第二摩擦板31Bと重なる領域であり、第二摩擦板31Bの摩擦当接面は、第二摩擦板31Bの軸方向Lを向く面における、軸方向Lに見て第一摩擦板31Aと重なる領域である。摩擦材は、紙や合成樹脂等を基材として構成される。
1-3. Specific Configuration of Friction Engaging Device The first friction plates 31A and the second friction plates 31B are alternately arranged along the axial direction L one by one. Each of the first friction plate 31A and the second friction plate 31B is an annular plate-like member (a plate-like and annular member).
As shown in FIG. 3, the first friction plate 31 </ b> A has friction contact surfaces on which friction materials are provided on both sides in the axial direction L. The second friction plate 31B has friction contact surfaces on which the friction material is not provided on both sides in the axial direction L. Here, the friction contact surface of the first friction plate 31A is a region overlapping the second friction plate 31B when viewed in the axial direction L on the surface facing the axial direction L of the first friction plate 31A. The friction contact surface of 31B is a region overlapping the first friction plate 31A when viewed in the axial direction L on the surface facing the axial direction L of the second friction plate 31B. The friction material is made of paper, synthetic resin, or the like as a base material.

第一支持部材32は、円環状に形成された第一環状部41と、第一環状部41の径方向外側R2の端部から軸方向第一側L1に向かって延びる円筒状に形成された外側支持部42と、第一環状部41の径方向内側R1の端部から軸方向第一側L1に向かって延びる円筒状に形成された第一円筒状部43と、を備えている。
外側支持部42の内周面には、第一係合部44が設けられている。第一係合部44には、第一摩擦板31Aの径方向外側R2の端部が係合(本例ではスプライン係合)しており、これにより、第一支持部材32と第一摩擦板31Aとが一体回転するように構成されている。
The first support member 32 is formed in a cylindrical shape that extends from the end of the radially outer side R2 of the first annular portion 41 toward the first axial side L1. The outer side support part 42 and the 1st cylindrical part 43 formed in the cylindrical shape extended toward the axial direction 1st side L1 from the edge part of radial direction inner side R1 of the 1st annular part 41 are provided.
A first engagement portion 44 is provided on the inner peripheral surface of the outer support portion 42. An end of the first friction plate 31A on the radially outer side R2 is engaged with the first engagement portion 44 (in this example, spline engagement), whereby the first support member 32 and the first friction plate are engaged. 31A is configured to rotate integrally.

また、外側支持部42の外周面とロータ支持部21の内周面とがスプライン係合部Aにより係合(本例ではスプライン係合)しており、これにより、第一支持部材32とロータ支持部材20とが一体回転するように構成されている。
外側支持部42には、第一摩擦板31A及び第二摩擦板31Bに対して径方向内側R1から供給された油を排出する排出油路45が設けられている。
第一円筒状部43の内周面と変速入力軸11の外周面とが係合(本例ではスプライン係合)しており、これにより、第一支持部材32は、変速入力軸11と一体回転するように構成されている。
Further, the outer peripheral surface of the outer support portion 42 and the inner peripheral surface of the rotor support portion 21 are engaged by the spline engaging portion A (in this example, spline engagement), whereby the first support member 32 and the rotor are engaged. The support member 20 is configured to rotate integrally.
The outer support portion 42 is provided with a discharge oil passage 45 for discharging the oil supplied from the radial inner side R1 to the first friction plate 31A and the second friction plate 31B.
The inner peripheral surface of the first cylindrical portion 43 and the outer peripheral surface of the transmission input shaft 11 are engaged (in this example, spline engagement), whereby the first support member 32 is integrated with the transmission input shaft 11. It is configured to rotate.

第二支持部材33は、円環状に形成された第二環状部51と、第二環状部51の径方向外側R2の端部から軸方向第一側L1に向けって延びる円筒状に形成された内側支持部52と、第二環状部51の径方向内側R1の端部から軸方向第一側L1に向かって延びる円筒状に形成された第二円筒状部53と、を備えている。このように、第二支持部材33は、筒状の内側支持部52と、内側支持部52から径方向内側R1に延びる第二環状部51とを備えている。本実施形態では、内側支持部52が、「第一筒状部」に相当し、第二環状部51が、「第一径方向延在部」に相当する。   The second support member 33 is formed in a cylindrical shape that extends from the end of the radially outer side R2 of the second annular portion 51 toward the first side L1 in the axial direction. And a second cylindrical portion 53 formed in a cylindrical shape extending from the end of the radial inner side R1 of the second annular portion 51 toward the first axial side L1. As described above, the second support member 33 includes the cylindrical inner support portion 52 and the second annular portion 51 extending from the inner support portion 52 to the radially inner side R1. In the present embodiment, the inner support portion 52 corresponds to a “first cylindrical portion”, and the second annular portion 51 corresponds to a “first radially extending portion”.

内側支持部52の外周面には、第二係合部54が設けられている。第二係合部54には、第二摩擦板31Bの径方向内側R1の端部が係合(本例ではスプライン係合)しており、これにより、第二支持部材33と第二摩擦板31Bとが一体回転するように構成されている。第二円筒状部53の内周面と入力軸10の外周面とが係合(本例ではスプライン係合)しており、これにより、第二支持部材33は、入力軸10と一体回転するように構成されている。第二円筒状部53には、第一摩擦板31A及び第二摩擦板31Bに対して径方向内側R1から供給するための供給油路55が設けられている。   A second engagement portion 54 is provided on the outer peripheral surface of the inner support portion 52. An end of the radially inner side R1 of the second friction plate 31B is engaged with the second engagement portion 54 (in this example, spline engagement), whereby the second support member 33 and the second friction plate are engaged. 31B is configured to rotate integrally. The inner peripheral surface of the second cylindrical portion 53 and the outer peripheral surface of the input shaft 10 are engaged (in this example, spline engagement), whereby the second support member 33 rotates integrally with the input shaft 10. It is configured as follows. The second cylindrical portion 53 is provided with a supply oil passage 55 for supplying the first friction plate 31A and the second friction plate 31B from the radially inner side R1.

油路形成部材35は、筒状に形成された第三筒状部61と、第三筒状部61の軸方向第一側L1の端部から径方向外側R2に向かって延びる円環状に形成された外側第三環状部62と、第三筒状部61の軸方向第二側L2の端部から径方向外側R2に向かって延びる円環状に形成された内側第三環状部63と、を備えている。   The oil passage forming member 35 is formed in a cylindrical shape, and an annular shape extending from the end portion on the first axial side L1 of the third cylindrical portion 61 toward the radially outer side R2. The outer third annular portion 62 and the inner third annular portion 63 formed in an annular shape extending from the end of the second axial side L2 of the third cylindrical portion 61 toward the radially outer side R2. I have.

油路形成部材35は、軸方向Lに見て第二環状部51と重複する部分を有すると共に、径方向Rに見て内側支持部52と重複する部分を有している。また、油路形成部材35は、軸方向Lに見てピストン34と重複する部分を有している。本実施形態では、内側第三環状部63が、軸方向Lに見て第二環状部51及びピストン34と重複しており、内側第三環状部63は、軸方向Lにおいて第二環状部51とピストン34との間に位置している。第三筒状部61は、径方向Rに見て内側支持部52と重複している。このように、油路形成部材35は、筒状の第三筒状部61と、第二環状部51とピストン34との軸方向Lの間において第三筒状部61から径方向Rに延びる内側第三環状部63と、を備えている。本実施形態では、第三筒状部61が、「第二筒状部」に相当し、内側第三環状部63が、「第二径方向延在部」に相当する。   The oil passage forming member 35 has a portion that overlaps with the second annular portion 51 when viewed in the axial direction L, and a portion that overlaps with the inner support portion 52 when viewed in the radial direction R. The oil passage forming member 35 has a portion overlapping the piston 34 when viewed in the axial direction L. In the present embodiment, the inner third annular portion 63 overlaps the second annular portion 51 and the piston 34 when viewed in the axial direction L, and the inner third annular portion 63 is the second annular portion 51 in the axial direction L. And the piston 34. The third cylindrical portion 61 overlaps with the inner support portion 52 when viewed in the radial direction R. Thus, the oil passage forming member 35 extends in the radial direction R from the third cylindrical portion 61 between the cylindrical third cylindrical portion 61 and the axial direction L between the second annular portion 51 and the piston 34. An inner third annular portion 63. In the present embodiment, the third cylindrical portion 61 corresponds to a “second cylindrical portion”, and the inner third annular portion 63 corresponds to a “second radially extending portion”.

内側第三環状部63は、第二環状部51に対して軸方向第一側L1側に、第二環状部51との間に軸方向Lの隙間を空けて配置されており、内側第三環状部63と第二環状部51との間には第三油路A3が形成されている。この第三油路A3は、内側第三環状部63と第二環状部51との間において周方向Cの全周に亘って形成されている。本実施形態では、第三油路A3が、複数枚の摩擦板に対して油を供給する「供給部」に相当する。   The inner third annular part 63 is arranged on the first axial side L1 side with respect to the second annular part 51 with a gap in the axial direction L between the second annular part 51 and the inner third part. A third oil passage A3 is formed between the annular portion 63 and the second annular portion 51. The third oil passage A <b> 3 is formed over the entire circumference in the circumferential direction C between the inner third annular portion 63 and the second annular portion 51. In the present embodiment, the third oil passage A3 corresponds to a “supply section” that supplies oil to a plurality of friction plates.

内側第三環状部63の径方向内側R1の端部と第二円筒状部53の外周面とが係合(本例ではスプライン係合)している。これにより、油路形成部材35は、第二支持部材33と一体回転するように構成されている。このように第二支持部材33と油路形成部材35とは、同速で回転するように連結されている。   An end of the inner third annular portion 63 on the radially inner side R1 is engaged with the outer peripheral surface of the second cylindrical portion 53 (in this example, spline engagement). Accordingly, the oil passage forming member 35 is configured to rotate integrally with the second support member 33. As described above, the second support member 33 and the oil passage forming member 35 are coupled so as to rotate at the same speed.

第三筒状部61は、内側支持部52の径方向内側R1に配置され、内側支持部52の内周面に沿って配置されている。本実施形態では、第三筒状部61は、第三筒状部61の外周面と内側支持部52の内周面との間に僅かな隙間が形成されるように設置されている。なお、第三筒状部61の外周面と内側支持部52の内周面とが接触するように、第三筒状部61を設置してもよい。   The third tubular portion 61 is disposed on the radially inner side R <b> 1 of the inner support portion 52, and is disposed along the inner peripheral surface of the inner support portion 52. In the present embodiment, the third cylindrical portion 61 is installed such that a slight gap is formed between the outer peripheral surface of the third cylindrical portion 61 and the inner peripheral surface of the inner support portion 52. In addition, you may install the 3rd cylindrical part 61 so that the outer peripheral surface of the 3rd cylindrical part 61 and the inner peripheral surface of the inner side support part 52 may contact.

油路形成部材35には、ピストン34を軸方向第一側L1に付勢するスプリング36を支持する第二側支持部64が設けられている。本実施形態では、内側第三環状部63の軸方向第一側L1を向く面に第二側支持部64が設けられ、ピストン34の軸方向第二側L2を向く面に第一側支持部38が設けられている。そして、スプリング36は、軸方向Lにおいて内側第三環状部63の第二側支持部64とピストン34の第一側支持部38との間に圧縮した状態で配置されており、ピストン34を軸方向第一側L1に付勢している。本実施形態では、第二側支持部64が、スプリング36を支持する「支持部」に相当する。   The oil passage forming member 35 is provided with a second side support portion 64 that supports a spring 36 that biases the piston 34 toward the first axial direction L1. In the present embodiment, the second side support portion 64 is provided on the surface of the inner third annular portion 63 facing the axial first side L1, and the first side support portion is disposed on the surface of the piston 34 facing the axial second side L2. 38 is provided. The spring 36 is disposed in a compressed state between the second side support portion 64 of the inner third annular portion 63 and the first side support portion 38 of the piston 34 in the axial direction L. It is biased toward the first direction L1. In the present embodiment, the second side support portion 64 corresponds to a “support portion” that supports the spring 36.

1−4.油孔56及び軸方向溝57
図3及び図4に示すように、内側支持部52は、径方向Rに見て第三筒状部61と重複する重複領域T1と、径方向Rに見て第三筒状部61と重複しない非重複領域T2とを有している。本実施形態では、油路形成部材35における第三筒状部61と内側第三環状部63との境界部35Aも第三筒状部61である。
1-4. Oil hole 56 and axial groove 57
As shown in FIGS. 3 and 4, the inner support portion 52 overlaps with the third cylindrical portion 61 when viewed in the radial direction R, and overlaps with the third cylindrical portion 61 when viewed in the radial direction R. And a non-overlapping region T2 that is not to be used. In the present embodiment, the boundary portion 35 </ b> A between the third cylindrical portion 61 and the inner third annular portion 63 in the oil passage forming member 35 is also the third cylindrical portion 61.

内側支持部52は、内側支持部52を径方向Rに貫通する油孔56を重複領域T1内に複数備えている。なお、図示の例では、非重複領域T2内には油孔56は備えられていない。ここで、「油孔56を重複領域T1内に備える」とは、油孔56の少なくとも一部が重複領域T1内に位置することを表わしている。本実施形態では、油孔56における軸方向Lの中心が重複領域T1内に位置している場合は、その油孔56は重複領域T1内に備えているとしている。一方、「油孔56を非重複領域T2内に備えられていない」とは、油孔56の全体が非重複領域T2内に位置している油孔56がないことを表わしている。   The inner support portion 52 includes a plurality of oil holes 56 penetrating the inner support portion 52 in the radial direction R in the overlapping region T1. In the illustrated example, the oil hole 56 is not provided in the non-overlapping region T2. Here, “equipped with the oil hole 56 in the overlapping region T1” means that at least a part of the oil hole 56 is located in the overlapping region T1. In the present embodiment, when the center of the oil hole 56 in the axial direction L is located in the overlap region T1, the oil hole 56 is provided in the overlap region T1. On the other hand, “the oil hole 56 is not provided in the non-overlapping region T2” means that the oil hole 56 is not located in the non-overlapping region T2 as a whole.

複数の油孔56は、複数枚の第二摩擦板31Bの軸方向Lの配置間隔に応じて軸方向Lの複数箇所に配置されると共に、周方向Cの複数箇所に分散して配置されている。本実施形態では、複数の油孔56は、隣り合う一対の第二摩擦板31Bの間の隙間のそれぞれに対応する軸方向Lの位置に、油孔56が配置されている。また、周方向Cの一定間隔で区分された周方向区間Sの夫々に含まれる複数の油孔56により油孔群Gが形成され、油孔群Gのそれぞれが、複数枚の第二摩擦板31Bにより形成される第二摩擦板31B同士の隙間のそれぞれに対応する軸方向Lの位置に配置された油孔56を備えている。本実施形態では、6枚の第二摩擦板31Bにより5つの隙間が形成されている。   The plurality of oil holes 56 are arranged at a plurality of locations in the axial direction L according to the arrangement interval in the axial direction L of the plurality of second friction plates 31B, and are distributed and arranged at a plurality of locations in the circumferential direction C. Yes. In the present embodiment, the plurality of oil holes 56 are arranged at positions in the axial direction L corresponding to the gaps between the pair of adjacent second friction plates 31B. In addition, an oil hole group G is formed by a plurality of oil holes 56 included in each of the circumferential sections S divided at regular intervals in the circumferential direction C, and each of the oil hole groups G includes a plurality of second friction plates. Oil holes 56 are provided at positions in the axial direction L corresponding to the gaps between the second friction plates 31B formed by 31B. In the present embodiment, five gaps are formed by the six second friction plates 31B.

また、内側支持部52は、周方向Cに8つの周方向区間Sに区分される。そして、5つの隙間を軸方向第二側L2の隙間から、第一の隙間、第二の隙間、第三の隙間、第四の隙間、第五の隙間とすると、一つの周方向区間Sに、第一の隙間に対応する油孔56(第一の油孔56A)と、第二の隙間に対応する油孔56(第二の油孔56B)と、第三の隙間に対応する油孔56(第三の油孔56C)と、第四の隙間に対応する油孔56(第四の油孔56D)と、第五の隙間に対応する油孔56(第五の油孔56E)と、が形成されている。すなわち、油孔群Gのそれぞれが、第一の油孔56A、第二の油孔56B、第三の油孔56C、第四の油孔56D、第五の油孔56Eを一つずつ備えている。図4に示す例では、周方向Cに沿って第一の油孔56A、第二の油孔56B、第三の油孔56C、第四の油孔56D、第五の油孔56Eの順に配置されている。   The inner support portion 52 is divided into eight circumferential sections S in the circumferential direction C. When the five gaps are defined as the first gap, the second gap, the third gap, the fourth gap, and the fifth gap from the gap on the second axial side L2, one circumferential section S The oil hole 56 (first oil hole 56A) corresponding to the first gap, the oil hole 56 (second oil hole 56B) corresponding to the second gap, and the oil hole corresponding to the third gap 56 (third oil hole 56C), an oil hole 56 (fourth oil hole 56D) corresponding to the fourth gap, and an oil hole 56 (fifth oil hole 56E) corresponding to the fifth gap , Is formed. That is, each of the oil hole groups G includes a first oil hole 56A, a second oil hole 56B, a third oil hole 56C, a fourth oil hole 56D, and a fifth oil hole 56E. Yes. In the example shown in FIG. 4, the first oil hole 56A, the second oil hole 56B, the third oil hole 56C, the fourth oil hole 56D, and the fifth oil hole 56E are arranged in this order along the circumferential direction C. Has been.

各油孔56は、径方向Rに見て円形に形成されており、油孔56における軸方向Lの中心が、対応する隙間における軸方向Lの中心に位置するように形成されている。また、本実施形態では、油孔56の直径は、対応する隙間における軸方向Lの幅より大きく形成され、対応する隙間における軸方向Lの幅に第二摩擦板31Bの軸方向Lの厚みを加えた長さより小さく形成されている。   Each oil hole 56 is formed in a circular shape when viewed in the radial direction R, and is formed such that the center in the axial direction L of the oil hole 56 is positioned at the center in the axial direction L in the corresponding gap. Further, in the present embodiment, the diameter of the oil hole 56 is formed larger than the width in the axial direction L in the corresponding gap, and the thickness in the axial direction L of the second friction plate 31B is set to the width in the axial direction L in the corresponding gap. It is formed smaller than the added length.

第二支持部材33における内側支持部52の内周面と、油路形成部材35における第三筒状部61の外周面との間には、軸方向Lに延びる第四油路A4が形成されている。第四油路A4は、複数の油孔56のそれぞれに対して1つ形成されており、径方向Rに見て対応する油孔56と重複する位置に形成されるように、周方向Cに分散して複数形成されている。
本実施形態では、内側支持部52の内周面に、径方向外側R2に窪んだ形状であって軸方向Lに沿って延びる溝状に形成された軸方向溝57が設けられている。そして、軸方向溝57の径方向内側R1を第三筒状部61により覆うことで、第四油路A4が形成されている。軸方向溝57は、周方向Cにおける油孔56に対応する位置に形成されている。そして、軸方向溝57の底面に、油孔56が形成されている。
A fourth oil passage A4 extending in the axial direction L is formed between the inner peripheral surface of the inner support portion 52 in the second support member 33 and the outer peripheral surface of the third cylindrical portion 61 in the oil passage forming member 35. ing. One fourth oil passage A4 is formed for each of the plurality of oil holes 56, and is formed in the circumferential direction C so as to be formed at a position overlapping the corresponding oil hole 56 when viewed in the radial direction R. A plurality are formed in a distributed manner.
In the present embodiment, the inner circumferential surface of the inner support portion 52 is provided with an axial groove 57 formed in a groove shape that extends in the axial direction L and that is recessed in the radially outer side R2. The fourth oil passage A4 is formed by covering the radially inner side R1 of the axial groove 57 with the third cylindrical portion 61. The axial groove 57 is formed at a position corresponding to the oil hole 56 in the circumferential direction C. An oil hole 56 is formed on the bottom surface of the axial groove 57.

軸方向溝57は、複数の油孔56が配置される軸方向Lの領域の全体に亘って軸方向Lに沿って延びるように形成されている。本実施形態では、複数の油孔56が配置される軸方向Lの領域は、軸方向Lにおける、最も軸方向第二側L2の油孔56(ここでは第一の油孔56A)における軸方向第二側L2端から、最も軸方向第一側L1の油孔56(ここでは第五の油孔56E)における軸方向第一側L1端までの領域である。そして、本例では、複数の軸方向溝57のそれぞれは、このような複数の油孔56が配置される軸方向Lの領域よりも広い軸方向Lの領域に亘って軸方向Lに沿って延びるように形成されている。なお、複数の軸方向溝57のそれぞれが、少なくとも、重複領域T1の全体の全体に亘って形成されていると好適である。   The axial groove 57 is formed so as to extend along the axial direction L over the entire region in the axial direction L where the plurality of oil holes 56 are arranged. In the present embodiment, the region in the axial direction L where the plurality of oil holes 56 are arranged is the axial direction in the oil hole 56 (here, the first oil hole 56A) on the second axial side L2 in the axial direction L. This is a region from the second side L2 end to the axial first side L1 end in the oil hole 56 (here, the fifth oil hole 56E) on the most axial first side L1. In this example, each of the plurality of axial grooves 57 extends along the axial direction L over a region in the axial direction L wider than the region in the axial direction L in which the plurality of oil holes 56 are disposed. It is formed to extend. It is preferable that each of the plurality of axial grooves 57 is formed at least over the entire overlap region T1.

内側支持部52の内周面と第三筒状部61の外周面との間には、複数枚の第二摩擦板31Bにより形成される隙間の数の自然数倍の第四油路A4が形成されている。本実施形態では、8つの周方向区間Sのそれぞれに5つの油孔56が配置されていることに対応して、第二摩擦板31Bにより形成される5つの隙間の8倍、すなわち40本の第四油路A4が形成されている。図3に示されているように、軸方向溝57は、軸方向第一側L1に向かうに従って径方向外側R2に向かう傾斜した底面を有するように形成されている。これにより、第四油路A4に導かれた油は、第二支持部材33の回転による遠心力によって軸方向第一側L1に向かって流れる。また、図4に示されているように、軸方向溝57は、軸方向第一側L1に向かうに従って周方向Cの幅が広くなる形状に形成されている。すなわち、軸方向第一側L1に向かうに従って第四油路A4の径方向断面積が広がるように形成されている。これにより、軸方向溝57に沿って軸方向第一側L1に向かう油の流れが促進される構成となっている。   Between the inner peripheral surface of the inner support portion 52 and the outer peripheral surface of the third cylindrical portion 61, there is a fourth oil passage A4 that is a natural number times the number of gaps formed by the plurality of second friction plates 31B. Is formed. In this embodiment, corresponding to the five oil holes 56 being arranged in each of the eight circumferential sections S, eight times the five gaps formed by the second friction plate 31B, that is, 40 pieces. A fourth oil passage A4 is formed. As shown in FIG. 3, the axial groove 57 is formed to have an inclined bottom surface that faces the radially outer side R2 toward the first axial side L1. Thereby, the oil led to the fourth oil passage A4 flows toward the first axial side L1 by the centrifugal force generated by the rotation of the second support member 33. As shown in FIG. 4, the axial groove 57 is formed in a shape in which the width in the circumferential direction C increases toward the first axial side L <b> 1. That is, the radial cross-sectional area of the fourth oil passage A4 is formed so as to extend toward the first axial side L1. Thereby, the flow of the oil which goes to the axial direction 1st side L1 along the axial direction groove | channel 57 is comprised.

1−5.摩擦係合装置CLに対する油の供給構造
変速入力軸11には、軸方向Lに沿って延びる複数の軸内油路が、互いに異なる周方向Cの位置に平行に形成されている。このような軸内油路には、入力軸10に形成された第一油孔13を介して作動油圧室H1に連通する第一油路A1や、入力軸10に形成された第二油孔15を介して供給油路55に連通する第二油路A2も含まれる。第二支持部材33の第二環状部51と油路形成部材35の内側第三環状部63との間には、径方向Rに延びる第三油路A3が形成され、第二支持部材33の内側支持部52と油路形成部材35の第三筒状部61との間に第四油路A4が形成されている。第一油路A1から供給される油は、第一油孔13を通って作動油圧室H1に供給される。
1-5. Oil Supply Structure for Friction Engagement Device CL The transmission input shaft 11 is formed with a plurality of in-shaft oil passages extending in the axial direction L in parallel with each other in the circumferential direction C. In such an in-shaft oil passage, a first oil passage A1 communicating with the working hydraulic chamber H1 through a first oil hole 13 formed in the input shaft 10 and a second oil hole formed in the input shaft 10 are provided. A second oil passage A2 communicating with the supply oil passage 55 through 15 is also included. A third oil passage A3 extending in the radial direction R is formed between the second annular portion 51 of the second support member 33 and the inner third annular portion 63 of the oil passage forming member 35. A fourth oil passage A <b> 4 is formed between the inner support portion 52 and the third cylindrical portion 61 of the oil passage forming member 35. The oil supplied from the first oil passage A1 is supplied to the working hydraulic chamber H1 through the first oil hole 13.

第二油路A2から供給される油は、第二油孔15及び供給油路55を通った後、第三油路A3を径方向内側R1から径方向外側R2に向けて流れる。これにより、非重複領域T2に対して径方向内側R1から油が供給される。非重複領域T2に供給された油は、複数の軸方向溝57に分かれて流入する。そして、軸方向溝57に沿って軸方向Lに流れた油が、当該軸方向溝57に対応する油孔56を通り、複数枚の第二摩擦板31Bにより形成される第二摩擦板31B同士の隙間に供給される。これにより、摩擦係合装置CLの第一摩擦板31Aと第二摩擦板31Bとの摩擦面に油を供給し、摩擦板同士の摩擦により発生する熱を適切に冷却することができる。   The oil supplied from the second oil passage A2 flows through the second oil hole 15 and the supply oil passage 55 and then flows through the third oil passage A3 from the radially inner side R1 toward the radially outer side R2. As a result, oil is supplied from the radially inner side R1 to the non-overlapping region T2. The oil supplied to the non-overlapping region T2 flows into the plurality of axial grooves 57. The oil flowing in the axial direction L along the axial groove 57 passes through the oil holes 56 corresponding to the axial groove 57, and the second friction plates 31B formed by the plurality of second friction plates 31B. Supplied to the gap. Thereby, oil can be supplied to the friction surfaces of the first friction plate 31A and the second friction plate 31B of the friction engagement device CL, and heat generated by friction between the friction plates can be appropriately cooled.

2.その他の実施形態
次に、摩擦係合装置のその他の実施形態について説明する。
2. Other Embodiments Next, other embodiments of the friction engagement device will be described.

(1)上記実施形態では、1つの油孔56に対して1つの軸方向溝57を形成したが、複数の油孔56に対して1つの軸方向溝57を形成してもよい。例えば、図6に示すように、周方向Cに並ぶ2つの油孔56に対して1つの軸方向溝57を形成してもよい。
また、1つの油孔群Gにおける、複数の油孔56の周方向Cの並び順は上記実施形態の配置に限定されるものではない。軸方向Lの位置が異なる複数の油孔56の周方向Cの並び順は、適宜変更してもよい。例えば、図6に示すように、一つの油孔群Gの5つの油孔56が、周方向Cに沿って第一の油孔56A、第五の油孔56E、第二の油孔56B、第四の油孔56D、第三の油孔56Cの順に配置されていてもよい。
(1) In the above embodiment, one axial groove 57 is formed for one oil hole 56, but one axial groove 57 may be formed for a plurality of oil holes 56. For example, as shown in FIG. 6, one axial groove 57 may be formed for two oil holes 56 arranged in the circumferential direction C.
Further, the arrangement order of the plurality of oil holes 56 in the circumferential direction C in one oil hole group G is not limited to the arrangement of the above embodiment. The arrangement order of the circumferential direction C of the plurality of oil holes 56 having different positions in the axial direction L may be appropriately changed. For example, as shown in FIG. 6, five oil holes 56 of one oil hole group G are arranged along the circumferential direction C with a first oil hole 56A, a fifth oil hole 56E, a second oil hole 56B, The fourth oil hole 56D and the third oil hole 56C may be arranged in this order.

(2)上記実施形態では、油孔56の軸方向Lの中心が、複数枚の第二摩擦板31Bにより形成される第二摩擦板31B同士の隙間の中心に位置するように油孔56を形成する場合を例として説明したが、摩擦板に対する油孔56の軸方向Lの配置はこれに限定されるものではない。例えば、油孔56の軸方向Lの中心が、径方向Rに見て摩擦板と重複する位置に油孔56を形成してもよい。ちなみに、この場合において、油孔56の直径を、軸方向Lの両側に隣接する摩擦板同士の隙間と油孔56の一部とが径方向Rに見て重複する大きさに形成してもよい。 (2) In the above embodiment, the oil hole 56 is positioned so that the center in the axial direction L of the oil hole 56 is positioned at the center of the gap between the second friction plates 31B formed by the plurality of second friction plates 31B. Although the case where it forms is demonstrated as an example, arrangement | positioning of the axial direction L of the oil hole 56 with respect to a friction board is not limited to this. For example, the oil hole 56 may be formed at a position where the center of the oil hole 56 in the axial direction L overlaps with the friction plate when viewed in the radial direction R. Incidentally, in this case, the diameter of the oil hole 56 may be formed such that the gap between the friction plates adjacent to both sides in the axial direction L and a part of the oil hole 56 overlap each other when viewed in the radial direction R. Good.

(3)上記実施形態では、第一筒状部52の内周面に軸方向溝57を形成したが、第二筒状部61の外周面に軸方向溝57を形成してもよい。この場合、第一筒状部52の内周面は平坦な円筒面とすることができる。また、第一筒状部52の内周面と第二筒状部61の外周面との双方に軸方向溝57を形成してもよい。 (3) In the above embodiment, the axial groove 57 is formed on the inner peripheral surface of the first cylindrical portion 52, but the axial groove 57 may be formed on the outer peripheral surface of the second cylindrical portion 61. In this case, the inner peripheral surface of the first cylindrical portion 52 can be a flat cylindrical surface. Further, the axial grooves 57 may be formed on both the inner peripheral surface of the first cylindrical portion 52 and the outer peripheral surface of the second cylindrical portion 61.

(4)上記実施形態では、第二部材を、キャンセル油圧室H2を形成するために設置された油路形成部材35により構成したが、第二部材は、油路形成部材35以外の部材により形成してもよい。例えば、油路形成部材35とは別に、第三油路A3及び第四油路A4を形成する部材を備え、この部材を第二部材としてもよい。 (4) In the above embodiment, the second member is constituted by the oil passage forming member 35 installed to form the cancel hydraulic chamber H2, but the second member is formed by a member other than the oil passage forming member 35. May be. For example, a member that forms the third oil passage A3 and the fourth oil passage A4 may be provided separately from the oil passage forming member 35, and this member may be used as the second member.

(5)上記実施形態では、軸方向溝57を、複数の油孔56が配置される軸方向Lの領域の全体に亘って軸方向Lに延びるように形成して、複数の軸方向溝57を同じ長さとする場合を例としてした。しかしこれに限定されず、軸方向溝57を、軸方向Lに異なる位置に配置される複数の油孔56のそれぞれに対応する長さに形成してしてもよい。この場合、複数の軸方向溝57の長さが、対応する油孔56の軸方向Lの位置に応じて異なることになる。 (5) In the above-described embodiment, the axial groove 57 is formed so as to extend in the axial direction L over the entire region in the axial direction L where the plurality of oil holes 56 are arranged. Was taken as an example. However, the present invention is not limited to this, and the axial groove 57 may be formed to a length corresponding to each of the plurality of oil holes 56 arranged at different positions in the axial direction L. In this case, the lengths of the plurality of axial grooves 57 differ depending on the positions of the corresponding oil holes 56 in the axial direction L.

(6)上記実施形態では、第一部材としての第二支持部材33と第二部材としての油路形成部材35とが同速で回転するように連結されている構成を例として説明したが、これに限定されるものではない。すなわち、第一部材と第二部材とが相対回転する構成であってもよい。 (6) In the above-described embodiment, the second support member 33 as the first member and the oil passage forming member 35 as the second member have been described as an example, and are connected so as to rotate at the same speed. It is not limited to this. That is, the structure which a 1st member and a 2nd member rotate relatively may be sufficient.

(7)上記実施形態では、第二部材としての油路形成部材35が、付勢部材としてのスプリング36を支持する第二側支持部64を備える構成を例として説明した。しかしこれに限定されるものではなく、第二部材としての油路形成部材35とは別に、付勢部材としてのスプリング36を支持する支持部材が設けられた構成としてもよい。 (7) In the above embodiment, the oil path forming member 35 as the second member has been described as an example of the configuration including the second side support portion 64 that supports the spring 36 as the biasing member. However, the present invention is not limited to this, and a configuration in which a support member that supports the spring 36 as an urging member may be provided separately from the oil passage forming member 35 as the second member.

(8)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。 (8) It should be noted that the configurations disclosed in the above-described embodiments can be applied in combination with the configurations disclosed in other embodiments as long as no contradiction arises. Regarding other configurations, the embodiments disclosed herein are merely examples in all respects. Accordingly, various modifications can be made as appropriate without departing from the spirit of the present disclosure.

3.上記実施形態の概要
以下、上記において説明した摩擦係合装置の概要について説明する。
3. Outline of the Embodiment The outline of the friction engagement device described above will be described below.

摩擦係合装置は、筒状の第一筒状部(52)を備えた第一部材(33)と、前記第一筒状部(52)の軸方向(L)に沿って複数枚配列されると共に前記第一筒状部(52)により径方向内側(R1)から支持される円環板状の摩擦板(31B)と、前記第一筒状部(52)の径方向内側(R1)に配置され、前記第一筒状部(52)の内周面に沿って配置される筒状の第二筒状部(61)を備えた第二部材(35)と、前記複数枚の摩擦板(31B)に対して油を供給する供給部(37)と、を備え、前記第一筒状部(52)は、径方向(R)に見て前記第二筒状部(61)と重複する重複領域(T1)と、前記径方向(R)に見て前記第二筒状部(61)と重複しない非重複領域(T2)とを有し、前記供給部(37)は、前記非重複領域(T2)に対して径方向内側(R1)から油を供給し、前記第一筒状部(52)は、当該第一筒状部(52)を前記径方向(R)に貫通する油孔(56)を前記重複領域(T1)内に複数備え、前記複数の油孔(56)は、前記複数枚の摩擦板(31B)の前記軸方向(L)の配置間隔に応じて前記軸方向(L)の複数箇所に配置されると共に、周方向(C)の複数箇所に配置され、前記第一筒状部(52)の内周面及び前記第二筒状部(61)の外周面の少なくとも一方に、前記軸方向(L)に沿って延びる溝状に形成された軸方向溝(57)を備え、前記軸方向溝(57)は、前記周方向(C)における前記油孔(56)に対応する位置に形成されている。   A plurality of friction engagement devices are arranged along the first member (33) having a cylindrical first cylindrical portion (52) and the axial direction (L) of the first cylindrical portion (52). And an annular plate-like friction plate (31B) supported from the radially inner side (R1) by the first tubular portion (52), and a radially inner side (R1) of the first tubular portion (52). A second member (35) having a cylindrical second cylindrical part (61) arranged along the inner peripheral surface of the first cylindrical part (52), and the plurality of frictions A supply portion (37) for supplying oil to the plate (31B), and the first tubular portion (52) includes the second tubular portion (61) as viewed in the radial direction (R). An overlapping region (T1) that overlaps and a non-overlapping region (T2) that does not overlap with the second cylindrical portion (61) when viewed in the radial direction (R), and the supply unit (37) Non-overlapping territory Oil is supplied from the radially inner side (R1) to (T2), and the first cylindrical portion (52) is an oil hole that penetrates the first cylindrical portion (52) in the radial direction (R). (56) is provided in the overlap region (T1), and the plurality of oil holes (56) are arranged in the axial direction according to the arrangement interval in the axial direction (L) of the plurality of friction plates (31B). (L) are arranged at a plurality of locations, and are arranged at a plurality of locations in the circumferential direction (C), and the inner circumferential surface of the first cylindrical portion (52) and the outer circumferential surface of the second cylindrical portion (61). Is provided with an axial groove (57) formed in a groove shape extending along the axial direction (L), and the axial groove (57) is the oil hole (C) in the circumferential direction (C). 56).

この特徴構成によれば、第一筒状部(52)の重複領域(T1)内に形成されている複数の油孔(56)は、周方向(C)の複数箇所に分散して配置されており、これら複数の油孔(56)に対応する位置に形成されている軸方向溝(57)も、周方向(C)の複数箇所に分散して配置される。そして、供給部(37)から非重複領域(T2)に対して径方向内側(R1)から供給された油は、複数の軸方向溝(57)に分かれて流入した後、軸方向溝(57)に案内されて軸方向第一側(L1)に流れ、当該軸方向溝(57)に対応する油孔(56)に供給され、当該油孔(56)を通って複数枚の摩擦板(31B)の間に供給される。つまり、周方向(C)における油孔(56)に対応する位置に形成された軸方向溝(57)により、供給部(37)から供給された油を分岐させて各油孔(56)まで案内することで、油孔(56)の軸方向(L)の位置に関わらず均等な量の油を各油孔(56)に供給することができる。従って、複数枚の摩擦板(31B)に対する冷却の均一化を図ることができる。   According to this characteristic configuration, the plurality of oil holes (56) formed in the overlapping region (T1) of the first cylindrical portion (52) are distributed and arranged at a plurality of locations in the circumferential direction (C). The axial grooves (57) formed at positions corresponding to the plurality of oil holes (56) are also distributed and arranged at a plurality of locations in the circumferential direction (C). The oil supplied from the radially inner side (R1) to the non-overlapping region (T2) from the supply unit (37) flows into the plurality of axial grooves (57) and then flows into the axial grooves (57). ) And flows to the first axial side (L1), is supplied to the oil hole (56) corresponding to the axial groove (57), passes through the oil hole (56), and a plurality of friction plates ( 31B). That is, the oil supplied from the supply unit (37) is branched by the axial groove (57) formed at a position corresponding to the oil hole (56) in the circumferential direction (C) to each oil hole (56). By guiding, an equal amount of oil can be supplied to each oil hole (56) regardless of the position of the oil hole (56) in the axial direction (L). Therefore, it is possible to make the cooling of the plurality of friction plates (31B) uniform.

ここで、前記第一部材(33)と前記第二部材(35)とが、同速で回転するように連結されていると好適である。   Here, it is preferable that the first member (33) and the second member (35) are connected so as to rotate at the same speed.

この構成によれば、第一筒状部(52)の内周面に軸方向溝(57)を形成した場合でも、第二筒状部(61)の外周面に軸方向溝(57)を形成した場合でも、油孔(56)と軸方向溝(57)との周方向(C)での位置関係を維持することができる。また、第一筒状部(52)の内周面と第二筒状部(61)の外周面とを接触させることも、これらの間に隙間を設けることもできる。すなわち、この構成によれば、軸方向溝(57)及びその周辺の構造の設計の自由度を高めることができる。   According to this configuration, even when the axial groove (57) is formed on the inner peripheral surface of the first cylindrical portion (52), the axial groove (57) is formed on the outer peripheral surface of the second cylindrical portion (61). Even when formed, the positional relationship in the circumferential direction (C) between the oil hole (56) and the axial groove (57) can be maintained. Moreover, the internal peripheral surface of a 1st cylindrical part (52) and the outer peripheral surface of a 2nd cylindrical part (61) can be made to contact, and a clearance gap can also be provided among these. That is, according to this structure, the freedom degree of design of an axial direction groove | channel (57) and its surrounding structure can be raised.

また、前記複数枚の摩擦板(31B)を前記軸方向(L)の一方側である軸方向第一側(L1)から押圧する押圧部材(34)を更に備え、前記押圧部材(34)に対して前記軸方向第一側(L1)に作動油圧室(H1)が形成され、前記第一部材(33)は、前記第一筒状部(52)から前記径方向内側(R1)に延びる第一径方向延在部(51)を更に備え、前記第二部材(35)は、前記第一径方向延在部(51)と前記押圧部材(34)との前記軸方向(L)の間において前記第二筒状部(61)から前記径方向(R)に延びる第二径方向延在部(63)を更に備え、前記押圧部材(34)に対して前記軸方向第一側(L1)とは反対側であって前記押圧部材(34)と前記第二部材(35)との前記軸方向(L)の間に、前記作動油圧室(H1)に作用する遠心油圧を打ち消すためのキャンセル油圧室(H2)が形成されていると好適である。   The pressing member (34) further includes a pressing member (34) that presses the plurality of friction plates (31B) from an axial first side (L1) that is one side of the axial direction (L). On the other hand, a working hydraulic pressure chamber (H1) is formed on the first axial side (L1), and the first member (33) extends from the first cylindrical portion (52) to the radially inner side (R1). The second member (35) further includes a first radially extending portion (51), and the second member (35) extends in the axial direction (L) between the first radially extending portion (51) and the pressing member (34). A second radially extending portion (63) extending in the radial direction (R) from the second tubular portion (61) is further provided, and the axial first side (with respect to the pressing member (34)) L1) is the opposite side of the pressing member (34) and the second member (35) between the axial direction (L) and the operation Pressure chamber (H1) cancel oil chamber for canceling the centrifugal hydraulic pressure applied to the (H2) it is preferable that is formed.

この構成によれば、作動油圧室(H1)に発生する遠心油圧を打ち消すためのキャンセル油圧室(H2)を形成する部材である第二部材(35)を利用して、軸方向溝(57)を形成する、又は、軸方向溝(57)の径方向内側(R1)を覆うことができる。従って、これらのための部材を別途備える必要がないため、摩擦係合装置(1)の構成の簡素化を図ることができる。   According to this configuration, the axial groove (57) is utilized by utilizing the second member (35) which is a member forming the cancel hydraulic chamber (H2) for canceling the centrifugal hydraulic pressure generated in the working hydraulic chamber (H1). Or the radial inner side (R1) of the axial groove (57) can be covered. Therefore, since it is not necessary to separately provide members for these, the configuration of the friction engagement device (1) can be simplified.

また、前記第二部材(35)は、前記押圧部材(34)を前記軸方向第一側(L1)に付勢する付勢部材(36)を支持する支持部(64)を備えると好適である。   The second member (35) preferably includes a support portion (64) that supports a biasing member (36) that biases the pressing member (34) toward the first axial direction (L1). is there.

この構成によれば、第二部材(35)により付勢部材(36)を支持することができる。従って、付勢手段(36)を支持する為の部材を別途備える必要がないため、摩擦係合装置(1)の構成の簡素化を図ることができる。   According to this configuration, the urging member (36) can be supported by the second member (35). Therefore, since it is not necessary to separately provide a member for supporting the biasing means (36), the configuration of the friction engagement device (1) can be simplified.

また、前記複数の油孔(56)のそれぞれに対して1つの前記軸方向溝(57)が形成されていると好適である。   Further, it is preferable that one axial groove (57) is formed for each of the plurality of oil holes (56).

この構成によれば、一旦一つの軸方向溝(57)に流入した油は、その軸方向溝(57)に対応する1つの油孔(56)を通してしか流れ出ないため、当該油孔(56)に対して確実に油を供給することができる。従って、油孔(56)の軸方向(L)の位置に関わらず均等な量の油を各油孔に供給することができる。   According to this configuration, oil once flowing into one axial groove (57) flows out only through one oil hole (56) corresponding to the axial groove (57), and therefore the oil hole (56). The oil can be supplied reliably. Therefore, an equal amount of oil can be supplied to each oil hole regardless of the position of the oil hole (56) in the axial direction (L).

また、前記周方向(C)に一定間隔で区分された周方向区間(S)のそれぞれに含まれる複数の前記油孔(56)により油孔群(G)が形成され、前記油孔群(G)のそれぞれが、前記複数枚の摩擦板(31B)により形成される前記摩擦板(31B)同士の隙間のそれぞれに対応する前記軸方向(L)の位置に配置された油孔(56)を備えていると好適である。   An oil hole group (G) is formed by the plurality of oil holes (56) included in each of the circumferential sections (S) divided at regular intervals in the circumferential direction (C), and the oil hole group ( Each of G) is an oil hole (56) disposed at a position in the axial direction (L) corresponding to each gap between the friction plates (31B) formed by the plurality of friction plates (31B). It is preferable to have

この構成によれば、周方向区間(S)の夫々に、複数枚の摩擦板(31B)により形成される摩擦板(31B)同士の隙間のそれぞれに対応する油孔(56)が配置されることになる。すなわち、この構成によれば、軸方向(L)の位置が同じ又は近い油孔(56)が周方向(C)の一部の領域に偏って配置されることがなく、複数の油孔(56)が軸方向(L)及び周方向(C)にほぼ均等に分散して配置されることになる。従って、例えば、第一筒状部(52)の周方向(C)のが油面の下に浸かる構成である等、第一筒状部(52)の周方向(C)の一部の領域に偏って油が供給される場合であっても、複数枚の摩擦板(31B)により形成される摩擦板(31B)同士の隙間の全てに均等に油を供給することができる。   According to this configuration, the oil holes (56) corresponding to the gaps between the friction plates (31B) formed by the plurality of friction plates (31B) are arranged in each of the circumferential sections (S). It will be. That is, according to this configuration, the oil holes (56) having the same or close position in the axial direction (L) are not arranged in a partial region in the circumferential direction (C), and a plurality of oil holes ( 56) are distributed almost uniformly in the axial direction (L) and the circumferential direction (C). Accordingly, for example, a partial region in the circumferential direction (C) of the first cylindrical portion (52), such as a configuration in which the circumferential direction (C) of the first cylindrical portion (52) is immersed below the oil surface. Even when the oil is supplied in a biased manner, the oil can be uniformly supplied to all the gaps between the friction plates (31B) formed by the plurality of friction plates (31B).

また、前記軸方向溝(57)は、前記複数の油孔(56)が配置される前記軸方向(L)の領域の全体に亘って前記軸方向(L)に沿って延びるように形成されていると好適である。   The axial groove (57) is formed so as to extend along the axial direction (L) over the entire region in the axial direction (L) where the plurality of oil holes (56) are disposed. It is preferable that

この構成によれば、油孔(56)の軸方向(L)の位置に関わらず、軸方向溝(57)と当該軸方向溝(57)に対応する油孔(56)とを径方向(R)に見て重複させることができる。そのため、対応する油孔(56)の軸方向(L)の位置に関わらず、軸方向溝(57)を同じ形状に形成でき、複数の軸方向溝(57)を形成する工程を簡略化できる。   According to this configuration, regardless of the position of the oil hole (56) in the axial direction (L), the axial groove (57) and the oil hole (56) corresponding to the axial groove (57) are arranged in the radial direction ( R) can be duplicated. Therefore, regardless of the position of the corresponding oil hole (56) in the axial direction (L), the axial groove (57) can be formed in the same shape, and the process of forming a plurality of axial grooves (57) can be simplified. .

本開示に係る技術は、複数枚の摩擦板に対して油を供給する供給部を備えた摩擦係合装置に利用することができる。   The technology according to the present disclosure can be used in a friction engagement device including a supply unit that supplies oil to a plurality of friction plates.

31B:第二摩擦板(摩擦板)
33:第二支持部材(第一部材)
34:ピストン(押圧部材)
35:油路形成部材(第二部材)
36:スプリング(付勢部材)
37:第三油路(供給部)
51:第二環状部(第一径方向延在部)
52:内側支持部(第一筒状部)
56:油孔
57:軸方向溝
61:第三筒状部(第二筒状部)
63:内側第三環状部(第二径方向延在部)
64:第二側支持部(支持部)
C:周方向
CL:摩擦係合装置
H1:作動油圧室
H2:キャンセル油圧室
L:軸方向
L1:軸方向第一側
R:径方向
R1:径方向内側
S:周方向区画
T1:重複領域
T2:非重複領域
31B: Second friction plate (friction plate)
33: Second support member (first member)
34: Piston (pressing member)
35: Oil passage forming member (second member)
36: Spring (biasing member)
37: Third oil passage (supply section)
51: Second annular portion (first radially extending portion)
52: Inner support part (first cylindrical part)
56: Oil hole 57: Axial groove 61: Third cylindrical part (second cylindrical part)
63: Inner third annular portion (second radially extending portion)
64: Second side support part (support part)
C: circumferential direction CL: friction engagement device H1: working hydraulic chamber H2: cancel hydraulic chamber L: axial direction L1: axial first side R: radial direction R1: radial inner side S: circumferential section T1: overlapping region T2 : Non-overlapping area

Claims (7)

筒状の第一筒状部を備えた第一部材と、
前記第一筒状部の軸方向に沿って複数枚配列されると共に前記第一筒状部により径方向内側から支持される円環板状の摩擦板と、
前記第一筒状部の径方向内側に配置され、前記第一筒状部の内周面に沿って配置される筒状の第二筒状部を備えた第二部材と、
前記複数枚の摩擦板に対して油を供給する供給部と、を備え、
前記第一筒状部は、径方向に見て前記第二筒状部と重複する重複領域と、前記径方向に見て前記第二筒状部と重複しない非重複領域とを有し、
前記供給部は、前記非重複領域に対して径方向内側から油を供給し、
前記第一筒状部は、当該第一筒状部を前記径方向に貫通する油孔を前記重複領域内に複数備え、
前記複数の油孔は、前記複数枚の摩擦板の前記軸方向の配置間隔に応じて前記軸方向の複数箇所に配置されると共に、周方向の複数箇所に配置され、
前記第一筒状部の内周面及び前記第二筒状部の外周面の少なくとも一方に、前記軸方向に沿って延びる溝状に形成された軸方向溝を備え、
前記軸方向溝は、前記周方向における前記油孔に対応する位置に形成されている摩擦係合装置。
A first member provided with a cylindrical first cylindrical portion;
A plurality of annular plates arranged along the axial direction of the first cylindrical portion and supported by the first cylindrical portion from the inside in the radial direction; and
A second member provided with a cylindrical second cylindrical portion that is arranged on the radially inner side of the first cylindrical portion and is arranged along the inner peripheral surface of the first cylindrical portion;
A supply section for supplying oil to the plurality of friction plates,
The first cylindrical portion has an overlapping region that overlaps with the second cylindrical portion when viewed in the radial direction, and a non-overlapping region that does not overlap with the second cylindrical portion when viewed in the radial direction,
The supply unit supplies oil from the radially inner side to the non-overlapping region,
The first tubular portion includes a plurality of oil holes in the overlapping region that penetrate the first tubular portion in the radial direction,
The plurality of oil holes are arranged at a plurality of locations in the axial direction according to the arrangement interval in the axial direction of the plurality of friction plates, and are arranged at a plurality of locations in the circumferential direction,
At least one of the inner peripheral surface of the first cylindrical portion and the outer peripheral surface of the second cylindrical portion is provided with an axial groove formed in a groove shape extending along the axial direction,
The axial groove is a friction engagement device formed at a position corresponding to the oil hole in the circumferential direction.
前記第一部材と前記第二部材とが、同速で回転するように連結されている請求項1記載の摩擦係合装置。   The friction engagement device according to claim 1, wherein the first member and the second member are coupled so as to rotate at the same speed. 前記複数枚の摩擦板を前記軸方向の一方側である軸方向第一側から押圧する押圧部材を更に備え、
前記押圧部材に対して前記軸方向第一側に作動油圧室が形成され、
前記第一部材は、前記第一筒状部から前記径方向内側に延びる第一径方向延在部を更に備え、
前記第二部材は、前記第一径方向延在部と前記押圧部材との前記軸方向の間において前記第二筒状部から前記径方向に延びる第二径方向延在部を更に備え、
前記押圧部材に対して前記軸方向第一側とは反対側であって前記押圧部材と前記第二部材との前記軸方向の間に、前記作動油圧室に作用する遠心油圧を打ち消すためのキャンセル油圧室が形成されている請求項1又は2に記載の摩擦係合装置。
A pressing member that presses the plurality of friction plates from an axial first side that is one side of the axial direction;
A working hydraulic chamber is formed on the first axial side with respect to the pressing member,
The first member further includes a first radially extending portion extending radially inward from the first tubular portion,
The second member further includes a second radial extension portion extending in the radial direction from the second cylindrical portion between the axial directions of the first radial extension portion and the pressing member,
Cancellation for canceling centrifugal hydraulic pressure acting on the working hydraulic chamber between the pressing member and the second member on the side opposite to the first axial direction and between the pressing member and the second member The friction engagement device according to claim 1 or 2, wherein a hydraulic chamber is formed.
前記第二部材は、前記押圧部材を前記軸方向第一側に付勢する付勢部材を支持する支持部を備える請求項3記載の摩擦係合装置。   The friction engagement device according to claim 3, wherein the second member includes a support portion that supports a biasing member that biases the pressing member toward the first axial side. 前記複数の油孔のそれぞれに対して1つの前記軸方向溝が形成されている請求項1から4のいずれか一項に記載の摩擦係合装置。   The frictional engagement device according to any one of claims 1 to 4, wherein one axial groove is formed for each of the plurality of oil holes. 前記周方向に一定間隔で区分された周方向区間のそれぞれに含まれる複数の前記油孔により油孔群が形成され、
前記油孔群のそれぞれが、前記複数枚の摩擦板により形成される前記摩擦板同士の隙間のそれぞれに対応する前記軸方向の位置に配置された油孔を備えている請求項5記載の摩擦係合装置。
An oil hole group is formed by the plurality of oil holes included in each of the circumferential sections divided at regular intervals in the circumferential direction,
6. The friction according to claim 5, wherein each of the oil hole groups includes oil holes arranged at positions in the axial direction corresponding to gaps between the friction plates formed by the plurality of friction plates. Engagement device.
前記軸方向溝は、前記複数の油孔が配置される前記軸方向の領域の全体に亘って前記軸方向に沿って延びるように形成されている請求項1から6のいずれか一項に記載の摩擦係合装置。   The said axial direction groove | channel is formed so that it may extend along the said axial direction over the whole area | region of the said axial direction by which these oil holes are arrange | positioned. Friction engagement device.
JP2016068189A 2016-03-30 2016-03-30 Friction engagement device Pending JP2017180646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016068189A JP2017180646A (en) 2016-03-30 2016-03-30 Friction engagement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016068189A JP2017180646A (en) 2016-03-30 2016-03-30 Friction engagement device

Publications (1)

Publication Number Publication Date
JP2017180646A true JP2017180646A (en) 2017-10-05

Family

ID=60004291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016068189A Pending JP2017180646A (en) 2016-03-30 2016-03-30 Friction engagement device

Country Status (1)

Country Link
JP (1) JP2017180646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085538A1 (en) * 2019-10-30 2021-05-06 アイシン・エィ・ダブリュ工業株式会社 Vehicle drive transmission device and vehicle drive device provided with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085538A1 (en) * 2019-10-30 2021-05-06 アイシン・エィ・ダブリュ工業株式会社 Vehicle drive transmission device and vehicle drive device provided with same

Similar Documents

Publication Publication Date Title
JP6303770B2 (en) Drive device
JP5610226B2 (en) Vehicle drive device
JP6531132B2 (en) Drive device for hybrid vehicle
JP5246466B2 (en) Hybrid drive device
JP6844690B2 (en) Vehicle drive
JPWO2009128288A1 (en) Hybrid vehicle drive device
KR20100015063A (en) Hybrid transmission of vehicle
WO2014102949A1 (en) Wheel oil supply device and wheel driving device
JP5565093B2 (en) Driving force transmission device
JP2017180646A (en) Friction engagement device
EP3885598B1 (en) Frictional engagement device
WO2013018201A1 (en) Hybrid drive device
WO2017170396A1 (en) Drive transmission device for vehicle
JP5838707B2 (en) Power transmission device
JP5682352B2 (en) Power transmission device
JP5210655B2 (en) Motor cooling structure
JP2015155292A (en) vehicle drive device
JP2016070432A (en) Friction engagement device and drive transmission device
JP2020173017A (en) Hydraulic clutch
JP2016185759A (en) Drive device of vehicle
JP5553172B2 (en) Power transmission device
JP7140740B2 (en) oil supply unit
JP2013163462A (en) Hybrid drive device
JP2021129355A (en) Apparatus
JP2022152823A (en) Frictional engagement device and vehicular drive device