JP2017179470A - Aluminum alloy material excellent in durability of thermosetting coated film and manufacturing method therefor - Google Patents
Aluminum alloy material excellent in durability of thermosetting coated film and manufacturing method therefor Download PDFInfo
- Publication number
- JP2017179470A JP2017179470A JP2016068119A JP2016068119A JP2017179470A JP 2017179470 A JP2017179470 A JP 2017179470A JP 2016068119 A JP2016068119 A JP 2016068119A JP 2016068119 A JP2016068119 A JP 2016068119A JP 2017179470 A JP2017179470 A JP 2017179470A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- alloy material
- thermosetting
- coating film
- durability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/05—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/60—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
- C23C22/66—Treatment of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Laminated Bodies (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
本発明は、熱硬化型塗膜の耐糸錆性や耐塗膜ふくれなどの耐久性に優れた、Al−Mg−Si系アルミニウム合金材と、その製造方法に関するものである。本発明で言うアルミニウム合金材とは、熱間圧延や冷間圧延などの圧延板、押出材、鍛造材、鋳造材などのアルミニウム合金塑性加工材を素材として、これを自動車部材などの最終用途に成形加工し、熱硬化型塗料の塗装と熱硬化処理とを施して表面に熱硬化型塗膜を形成した部材を言う。以下の記載ではアルミニウムをアルミやAlとも言う。 The present invention relates to an Al—Mg—Si based aluminum alloy material excellent in durability such as yarn rust resistance and resistance to blistering of a thermosetting coating film, and a method for producing the same. The aluminum alloy material referred to in the present invention is a rolled plate such as hot rolling or cold rolling, an aluminum alloy plastic working material such as extruded material, forging material, casting material, etc., which is used as a final application such as an automobile member. It refers to a member that has been molded and applied with a thermosetting paint and a thermosetting treatment to form a thermosetting coating film on the surface. In the following description, aluminum is also referred to as aluminum or Al.
近年、地球環境などへの配慮から、自動車等の車両の軽量化の社会的要求はますます高まってきている。かかる要求に答えるべく、自動車の、大型ボディパネル構造体(アウタパネル、インナパネル)、サイドメンバー等のメンバ、フレーム類や、ピラーなどの構造部材、ドアビームやバンパーなどの補強材、あるいはアーム類などの足回り部品などの自動車部材の素材(材料)として、鋼板等の鉄鋼材料にかえて、軽量なアルミニウム合金材の適用が増加しつつある。 In recent years, due to consideration for the global environment and the like, social demands for weight reduction of vehicles such as automobiles are increasing. In order to respond to such demands, automobiles such as large body panel structures (outer panels, inner panels), members such as side members, frames, structural members such as pillars, reinforcing materials such as door beams and bumpers, arms, etc. As materials (materials) for automobile parts such as undercarriage parts, the use of lightweight aluminum alloy materials is increasing in place of steel materials such as steel plates.
これらの自動車部材には、成形性や焼付け塗装硬化性、耐食性にも優れた高強度アルミニウム合金として、Al−Mg−Si系のAA乃至JIS 6000系 (以下、単に6000系とも言う) アルミニウム合金が使用されている。 These automobile members include Al-Mg-Si-based AA to JIS 6000 series (hereinafter also simply referred to as 6000 series) aluminum alloys as high-strength aluminum alloys having excellent formability, bake coating curability, and corrosion resistance. It is used.
前記自動車部材などのアルミニウム合金材は、多くはその表面に、耐食性向上や美観向上のための塗装が施される。この塗装方法としては、熱硬化型塗料の電着塗装が代表的であり、塗装焼き付け硬化処理による熱硬化処理が代表的で汎用されている。 In many cases, the surface of an aluminum alloy material such as an automobile member is coated to improve corrosion resistance and aesthetics. As this coating method, electro-deposition coating of a thermosetting paint is representative, and a thermosetting treatment by a paint baking hardening process is typical and widely used.
このように熱硬化型塗膜を形成した6000系アルミニウム合金部材では、長期間の使用に対する塗膜の耐久性が重要な課題の一つとなる。例えば、前記自動車アウタパネルなどの所謂外使い用のパネルでは、自動車の走行環境として、海水や塩水などの腐食環境(塗膜下腐食環境)にも曝される。このため、塗膜下のアルミニウム合金板表面に、糸錆(糸さび)と呼ばれる、析出物や介在物を起点とする、糸状の錆が発生、成長し、また、塗膜ふくれや塗膜のはがれなどの塗膜密着性の低下が生じる可能性がある。これらは、いずれも塗膜の耐久性に重大に関わる欠陥、不良であり、部材の強度の低下や外観不良などの致命的な問題につながるので、耐糸錆性や塗膜密着性などの塗膜耐久性を向上させることが重要な課題となる。 Thus, in the 6000 series aluminum alloy member which formed the thermosetting type coating film, durability of the coating film for a long-term use becomes one of the important subjects. For example, a so-called panel for external use such as the automobile outer panel is also exposed to a corrosive environment (under-coating corrosive environment) such as seawater or salt water as a driving environment of the automobile. For this reason, thread-like rust, starting from precipitates and inclusions, called thread rust (thread rust) is generated and grows on the surface of the aluminum alloy plate under the coating film. There is a possibility that the adhesion of the coating film may be deteriorated such as peeling. These are all defects and defects that are seriously related to the durability of the coating film, and lead to fatal problems such as a decrease in the strength of the member and poor appearance. Improving film durability is an important issue.
前記アルミニウム合金材の用途に対して、前記圧延板などの6000系(Al−Mg−Si系)アルミニウム合金素材の段階において、耐糸錆性や塗膜密着性などの塗膜耐久性を向上させる技術が、周知の通り、従来から種々提案されている。その多くは、前記素材表面あるいはマトリックスのMg、Si、Cuなどの、塗膜耐久性を阻害させる元素を低減するものである。例えば、特許文献1などによって、母材表面側のMgを低減することが提案されている。そして、特許文献2、3では、6000系アルミニウム合金材の表面や、酸化皮膜中のCu含有量を規制すること、あるいは低減する方法が提案されている。 For the use of the aluminum alloy material, at the stage of the 6000 series (Al-Mg-Si series) aluminum alloy material such as the rolled plate, the coating film durability such as yarn rust resistance and coating film adhesion is improved. Various techniques have been conventionally proposed as is well known. Many of them reduce elements that impair coating film durability, such as Mg, Si, Cu, etc., on the surface of the material or the matrix. For example, Patent Document 1 proposes reducing Mg on the base material surface side. Patent Documents 2 and 3 propose methods for regulating or reducing the surface of the 6000 series aluminum alloy material and the Cu content in the oxide film.
更に、特許文献4では、リン酸塩処理された後に塗装される自動車パネル用6000系アルミニウム合金素材のCu含有量を0.2%以下に規制することや、アルミニウム合金素材表面の酸化皮膜の厚みを35Å未満とし、X 線光電子分光法(ESCA)により測定された酸化皮膜中のMg含有量を0%として、リン酸塩処理時のリン酸塩被覆率を高めることが提案されている。 Furthermore, in Patent Document 4, the Cu content of a 6000 series aluminum alloy material for automobile panels that is coated after being subjected to phosphate treatment is regulated to 0.2% or less, and the thickness of the oxide film on the surface of the aluminum alloy material. It has been proposed to increase the phosphate coverage at the time of phosphate treatment by setting the Mg content in the oxide film measured by X-ray photoelectron spectroscopy (ESCA) to 0%.
前記した従来の6000系アルミニウム合金素材の段階における、Mg、Si、Cuなどの塗膜耐久性を阻害させる元素の低減は、確かに塗膜耐久性を向上させることができる。 The reduction of elements that hinder the durability of the coating film, such as Mg, Si, and Cu, at the stage of the conventional 6000 series aluminum alloy material described above can certainly improve the coating film durability.
ただ、本発明者らの知見によれば、前記素材を成形して6000系アルミニウム合金材とした後で、熱硬化型塗料の塗装および熱硬化処理によって、6000系アルミニウム合金材の母材から表面に新たにMgが拡散生成し、この表面のMgの量が、耐糸錆性や塗膜密着性などの塗膜耐久性に大きく影響する。 However, according to the knowledge of the present inventors, after forming the material into a 6000 series aluminum alloy material, the surface of the base material of the 6000 series aluminum alloy material is applied by applying a thermosetting paint and a thermosetting treatment. Mg is newly diffused and produced, and the amount of Mg on the surface greatly affects the durability of the coating film such as yarn rust resistance and coating film adhesion.
このため、前記素材の段階において、例えMg、Si、Cuなどの塗膜耐久性を阻害させる元素を低減したとしても、自動車部材などの最終用途とした段階で、前記熱硬化処理によって、高温下で母材から表面に新たに拡散生成してくるMgの量が適切でなければ、塗膜耐久性が大きく低下する。 For this reason, even in the stage of the material, even if the elements such as Mg, Si, Cu, etc., which inhibit the durability of the coating film are reduced, the thermosetting treatment is performed at a high temperature in the stage of final use such as an automobile member. If the amount of Mg newly diffused and generated from the base material to the surface is not appropriate, the durability of the coating film is greatly reduced.
これまで、前記熱硬化処理によって母材から表面に新たに拡散生成するMgなどの元素の、塗膜耐久性への影響は、それほど詳細には検討されておらず、前記した通り、素材段階での元素低減対策が主流となっていた。このため、自動車部材などの最終用途での、長期に亘る使用時の塗膜耐久性を完全には保証できなかったのが実情である。 Until now, the influence on the coating film durability of elements such as Mg newly diffused and generated from the base material by the thermosetting treatment has not been studied in detail, and as described above, at the material stage. The element reduction measures have become mainstream. For this reason, the actual situation is that it was not possible to completely guarantee the durability of the coating film when used for a long time in an end use such as an automobile member.
また、従来技術のように、6000系アルミニウム合金素材のMg、Si、Cuなどの主要な合金元素を、塗膜耐久性のために低減すると、自動車部材などの最終用途で必要な基本要求特性である、BH性(ベークハード性)や強度を確保できなくなり、これらを犠牲にしていたという側面もあった。 Moreover, if the main alloying elements such as Mg, Si, Cu, etc. of the 6000 series aluminum alloy material are reduced for the durability of the coating film as in the prior art, the basic required characteristics required for the end use such as automobile parts There was also an aspect that BH property (bake hard property) and strength could not be secured, and these were sacrificed.
本発明は、このような課題を解決するためになされたものであって、主要な合金元素量を確保でき、BH性や強度を低下させることなく、熱硬化型塗膜の耐久性に優れた自動車部材などのアルミニウム合金材およびその製造方法を提供することを目的とする。 The present invention has been made to solve such problems, and can ensure the amount of main alloying elements, and has excellent durability of a thermosetting coating film without deteriorating BH properties and strength. It aims at providing aluminum alloy materials, such as a motor vehicle member, and its manufacturing method.
この目的を達成するための、本発明の熱硬化型塗膜の耐久性に優れたアルミニウム合金材の要旨は、質量%で、Mg:0.2〜2.0%、Si:0.3〜2.0%、Cu:0.01〜3.0%を各々含み、残部がAlおよび不可避的不純物であるAl−Mg−Si系アルミニウム合金からなり、その表面に熱硬化型塗膜を有するアルミニウム合金材であって、前記熱硬化型塗膜下のアルミニウム合金材表面を電子線マイクロアナライザにより面分析した際の、MgとOの元素の分布状態を示すカラーマップから判別される、円相当径が1μm以上のMg酸化物の平均数密度を、10〜1000個/mm2の範囲とすることである。 In order to achieve this object, the gist of the aluminum alloy material excellent in durability of the thermosetting coating film of the present invention is mass%, Mg: 0.2-2.0%, Si: 0.3- Aluminum containing 2.0% and Cu: 0.01 to 3.0%, respectively, the balance being Al and an inevitable impurity Al—Mg—Si based aluminum alloy having a thermosetting coating on its surface An equivalent circle diameter determined from a color map indicating the distribution state of elements of Mg and O when the surface of the aluminum alloy material under the thermosetting coating film is analyzed by an electron beam microanalyzer. Is the average number density of Mg oxide of 1 μm or more in the range of 10 to 1000 pieces / mm 2 .
また、前記目的を達成するための、本発明の熱硬化型塗膜の耐久性に優れたアルミニウム合金材の製造方法の要旨は、質量%で、Mg:0.2〜2.0%、Si:0.3〜2.0%、Cu:0.01〜3.0%を各々含み、残部がAlおよび不可避的不純物からなるアルミニウム合金材に、熱硬化型塗料の塗装と熱硬化処理とを施して、前記アルミニウム合金材表面に熱硬化型塗膜を形成するに際して、この熱硬化型塗膜が形成されたアルミニウム合金材表面を電子線マイクロアナライザにより面分析した際の、MgとOの元素の分布状態を示すカラーマップから判別される、円相当径が1μm以上のMg酸化物の平均数密度が、10〜1000個/mm2の範囲となるように、前記熱硬化処理を行うことである。 Moreover, the summary of the manufacturing method of the aluminum alloy material excellent in durability of the thermosetting coating film of this invention for achieving the said objective is mass%, Mg: 0.2-2.0%, Si : 0.3-2.0%, Cu: 0.01-3.0% respectively, and the rest of the aluminum alloy material consisting of Al and unavoidable impurities, the application of a thermosetting paint and a thermosetting treatment When the thermosetting coating film is formed on the surface of the aluminum alloy material, the elements of Mg and O when the surface of the aluminum alloy material on which the thermosetting coating film is formed are analyzed by an electron beam microanalyzer. By performing the thermosetting treatment so that the average number density of Mg oxides having an equivalent circle diameter of 1 μm or more, determined from a color map indicating the distribution state of, is in the range of 10 to 1000 pieces / mm 2. is there.
本発明者らは、熱硬化型塗料の熱硬化処理によって、母材から表面に新たに拡散生成するMgの量に着目し、このMgが耐糸錆性や塗膜密着性などの塗膜耐久性に大きく影響することを知見した。 The present inventors paid attention to the amount of Mg newly diffused and formed from the base material to the surface by the thermosetting treatment of the thermosetting paint, and this Mg is a coating durability such as yarn rust resistance and coating adhesion. It was found that it greatly affects sex.
前記した通り、アルミニウム合金材の素材の段階において、例えMg、Si、Cuなどの塗膜耐久性を阻害させる元素を低減したとしても、自動車部材などのアルミニウム合金材(最終用途)における熱硬化処理によって、高温下で母材から表面にMgが新たに拡散生成してくる。 As described above, at the stage of the aluminum alloy material, even if elements such as Mg, Si, and Cu that impair the durability of the coating film are reduced, the thermosetting treatment in the aluminum alloy material (the final use) such as an automobile member Thus, Mg is newly diffused and generated from the base material to the surface at a high temperature.
これら新たに拡散生成した表面のMgの量は、本発明者らの知見によれば、Mg量が少なすぎても、逆に多すぎても、塗膜耐久性が大きく低下する。すなわち、前記熱硬化型塗膜下の表面でのMgの挙動は、アルミニウム合金材の素材表面の段階で認識されているような挙動とは全く異なり、適切な量を積極的に存在させれば、塗膜耐久性が向上するという、驚くべき結果となった。 According to the knowledge of the present inventors, the amount of Mg newly diffused and formed on the surface, if the amount of Mg is too small or too large, the durability of the coating film is greatly reduced. That is, the behavior of Mg on the surface under the thermosetting coating film is completely different from the behavior recognized at the surface of the aluminum alloy material, and if an appropriate amount is actively present, As a result, the coating durability was improved.
更に、前記熱硬化型塗膜下のアルミニウム合金材表面のMg量を適切な量に制御すれば、Mgよりも拡散速度が著しく遅い、他のSi、Cuなどの塗膜耐久性を阻害させる元素の前記熱硬化型塗膜下のアルミニウム合金材表面への拡散生成を同時に抑制でき、これも塗膜耐久性の向上につながっていることも知見した。 Furthermore, if the amount of Mg on the surface of the aluminum alloy material under the thermosetting coating film is controlled to an appropriate amount, the diffusion rate is significantly slower than Mg, and other elements such as Si, Cu and the like that impair coating film durability. It was also found that diffusion generation on the surface of the aluminum alloy material under the thermosetting coating film can be simultaneously suppressed, which also leads to improvement in coating film durability.
これらの機構によって、本発明では、SiやCuなどの強化元素を、耐食性の観点から低減する必要が無いので、強化に必要な合金元素量を確保でき、BH性や強度、あるいは成形性を低下させることなく、アルミニウム合金材の熱硬化型塗膜の耐久性を向上させることができる。
また、本発明によれば、アルミニウム合金素材や、この素材の成形加工、前記熱硬化型塗料の塗装や熱硬化処理などの、自動車部材等のアルミニウム合金材の製造工程を大きく変えることが不要である。
By these mechanisms, in the present invention, it is not necessary to reduce strengthening elements such as Si and Cu from the viewpoint of corrosion resistance, so the amount of alloying elements necessary for strengthening can be secured, and the BH property, strength, or formability is reduced. It is possible to improve the durability of the thermosetting coating film of the aluminum alloy material without causing it.
Further, according to the present invention, it is not necessary to greatly change the manufacturing process of aluminum alloy materials such as automobile members, such as aluminum alloy materials, molding processing of the materials, painting of the thermosetting paint, and thermosetting treatment. is there.
このため、本発明によれば、Al−Mg−Si系アルミニウム合金素材の、塗膜耐久性も含めた強度、成形性など種々の特性の兼備が要求される、自動車部材などのアルミニウム合金材への適用を可能あるいは促進することができる。 For this reason, according to the present invention, to an aluminum alloy material such as an automobile member, in which the Al-Mg-Si based aluminum alloy material is required to have various properties such as strength and formability including coating film durability. Can be applied or promoted.
以下に、本発明の実施の形態につき、要件ごとに具体的に説明する。
先ず、本発明のAl−Mg−Si系アルミニウム合金材(以下、単にアルミニウム合金材とも言う)は、熱間圧延や冷間圧延などの圧延板、熱間押出加工による押出材、熱間鍛造加工による鍛造材、鋳造やダイキャストなどの鋳造材などのアルミニウム合金塑性加工材をその素材とする。そして、これら素材を自動車部材などの最終用途形状に成形加工し、熱硬化型塗料の塗装と熱硬化処理とを施して表面に熱硬化型塗膜を形成した部材を言う。
Hereinafter, embodiments of the present invention will be specifically described for each requirement.
First, the Al—Mg—Si-based aluminum alloy material of the present invention (hereinafter also simply referred to as “aluminum alloy material”) is a rolled plate such as hot rolling or cold rolling, an extruded material by hot extrusion, or hot forging. Aluminum alloy plastic working material such as forging material by casting, casting material such as casting or die casting is used as the material. And it refers to a member in which these materials are molded into an end use shape such as an automobile member, and a thermosetting coating film is formed on the surface by applying a thermosetting paint and a thermosetting treatment.
(化学成分組成)
本発明のアルミニウム合金材の化学成分組成は、前記自動車部材などのアルミニウム合金材の各種用途に応じた、各々の要求特性を満たせるように、規定する6000系アルミニウム合金の組成範囲から選択することが好ましい。
例えば、自動車部材の車体アウタパネルを例にとると、この自動車パネルの要求特性としては、溶体化および焼入れ処理などのT4調質後の素材板の特性として、自動車パネルへの成形時には、その0.2%耐力が例えば110MPa以下と低くして成形性を確保でき、成形後の自動車パネルとしての焼付け塗装硬化処理などの熱硬化処理後の0.2%耐力が例えば200MPa以上の高強度化するBH性(ベークハード性)を有することが必要である。したがって、素材アルミニウム合金板として、これを組成の面から可能とすることが好ましい。また、自動車パネルとしては、優れた成形性やBH性の他に、剛性、溶接性、耐食性などの諸特性も要求されるので、組成の面からもこれらの要求を満たすようにすることが好ましい。
(Chemical composition)
The chemical composition of the aluminum alloy material of the present invention may be selected from the composition range of the 6000 series aluminum alloy specified so as to satisfy each required characteristic according to various uses of the aluminum alloy material such as the automobile member. preferable.
For example, taking a car body outer panel of an automobile member as an example, the required characteristics of the automobile panel are the characteristics of a material plate after T4 tempering such as solution treatment and quenching treatment, and it is 0. BH with a 2% proof stress as low as 110 MPa or less to ensure moldability and a 0.2% proof stress after thermosetting treatment such as baking coating curing treatment as an automobile panel after molding is increased to 200 MPa or higher, for example. It is necessary to have the property (bake hard property). Therefore, it is preferable to enable this as a raw material aluminum alloy plate from the viewpoint of composition. In addition to excellent moldability and BH properties, various characteristics such as rigidity, weldability, and corrosion resistance are also required for automobile panels, so it is preferable to satisfy these requirements from the viewpoint of composition. .
また、サイドメンバー等のメンバ、フレーム類や、ピラーなどの自動車構造部材では、前記自動車パネル材に比べて、更なる高強度化や、車体衝突時の衝撃吸収性や乗員の保護にもつながる、圧壊性(耐圧壊性、圧壊特性)を新たな特性として付与することが必要である。 Also, members such as side members, frames, and automobile structural members such as pillars can be further strengthened compared to the automobile panel material, leading to shock absorption and occupant protection in the event of a vehicle collision. It is necessary to impart crushability (crush resistance, crush characteristics) as new characteristics.
これらの要求特性を合金組成の面から満足するために、本発明では、6000系アルミニウム合金組成を、質量%で、Mg:0.2〜2.0%、Si:0.3〜2.0%、Cu:0.01〜3.0%の主要元素を各々含み、残部がAlおよび不可避的不純物とする。
また、この基本組成に加えて、選択的添加元素として、更に、Mn:0.01〜1.0%、Cr:0.001〜0.3%、Zr:0.001〜0.3%、Ag:0.001〜0.2%、Sn:0.001〜0.2%の1種または2種以上を含むことができる。
これら以外の他の元素は、不可避的不純物であり、AA乃至JIS規格などに沿った各元素レベルの含有量 (許容量) とする。なお、各元素の含有量の%表示は全て質量%の意味である。
In order to satisfy these required characteristics from the viewpoint of the alloy composition, in the present invention, the composition of 6000 series aluminum alloy is Mg: 0.2-2.0%, Si: 0.3-2.0 by mass%. %, Cu: 0.01 to 3.0% of main elements are included, and the balance is Al and inevitable impurities.
Further, in addition to this basic composition, as a selective additive element, Mn: 0.01 to 1.0%, Cr: 0.001 to 0.3%, Zr: 0.001 to 0.3%, One type or two or more types of Ag: 0.001 to 0.2% and Sn: 0.001 to 0.2% can be included.
Other elements other than these are unavoidable impurities, and the content (allowable amount) at each element level in accordance with AA to JIS standards. In addition,% display of content of each element means the mass% altogether.
自動車部材の車体アウタパネルでは、前記合金組成範囲から、主要元素や選択的添加元素の含有量を低めに選択する。一方、自動車構造部材では、前記合金組成範囲から、主要元素や選択的添加元素の含有量を高めに選択する。
この際、本発明では、前記熱硬化型塗膜下のアルミニウム合金材表面のMg量を適切な量に制御すれば、Mgよりも拡散速度が遅い、他のSi、Cuなどの塗膜耐久性を阻害させる元素の前記熱硬化型塗膜下のアルミニウム合金材表面への拡散生成を抑制できる。このため、従来のように、SiやCuなどの強化元素を耐食性の観点から低減して、BH性や強度を犠牲にする必要がなく、強化に必要な合金元素量を含有させることができる。
In the vehicle body outer panel of an automobile member, the content of the main element and the selective additive element is selected to be low from the alloy composition range. On the other hand, in the automobile structural member, the content of the main element and the selective additive element is selected to be higher from the alloy composition range.
At this time, in the present invention, if the amount of Mg on the surface of the aluminum alloy material under the thermosetting coating is controlled to an appropriate amount, the diffusion rate is slower than Mg, and the durability of other coatings such as Si and Cu It is possible to suppress the diffusion of elements that inhibit the diffusion to the surface of the aluminum alloy material under the thermosetting coating film. For this reason, it is not necessary to reduce strengthening elements, such as Si and Cu, from the viewpoint of corrosion resistance, and sacrifice the BH property and strength as in the prior art, and the amount of alloying elements necessary for strengthening can be included.
上記6000系アルミニウム合金組成における、各元素の含有範囲と意義、あるいは許容量についても以下に説明しておく。 The content range and significance of each element in the 6000 series aluminum alloy composition, and the allowable amount will also be described below.
Si:0.3〜2.0%
Siは、Mgとともに、固溶強化と、塗装焼き付け処理(熱硬化処理)などの人工時効処理時に、強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、自動車部材などのアルミニウム合金材として必要な強度を得るための必須の元素である。Si含有量が少なすぎると、固溶強化量と人工時効後の析出量が少なくなりすぎ、焼付け塗装時の強度増加量が低くなりすぎてしまう。一方Si含有量が多すぎると、粗大な晶出物および析出物が形成されてしまい、糸錆発生起点となり、耐糸錆性が著しく低下する。また、成形性を著しく低下させてしまう。更に、Si含有量が多すぎると、素材板の製造直後の強度だけでなく、製造後の室温時効量も高くなり、成形前の強度が高くなりすぎて、成形性が低下してしまう。したがって、Siの含有量は0.3〜2.0%の範囲とする。但し、前記した通り、本発明では、前記熱硬化型塗膜下のアルミニウム合金材表面のMg量を適切な量に制御すれば、他のSi、Cuなどの塗膜耐久性を阻害させる元素の表面への拡散生成を抑制できるので、Siを通常よりも多く含有させることが可能である。
Si: 0.3 to 2.0%
Si, together with Mg, forms an aging precipitate that contributes to strength improvement during solid tempering and artificial aging treatment such as paint baking treatment (thermosetting treatment), and exhibits age hardening ability, such as automotive parts It is an essential element for obtaining the strength required for an aluminum alloy material. If the Si content is too small, the amount of solid solution strengthening and the amount of precipitation after artificial aging are too small, and the amount of increase in strength during baking is too low. On the other hand, if the Si content is too large, coarse crystallized substances and precipitates are formed, which becomes a starting point of yarn rust generation, and the yarn rust resistance is remarkably lowered. In addition, the moldability is significantly reduced. Furthermore, when there is too much Si content, not only the intensity | strength immediately after manufacture of a raw material board but the room temperature aging amount after manufacture will also become high, the intensity | strength before shaping | molding will become high too much, and a moldability will fall. Therefore, the Si content is in the range of 0.3 to 2.0%. However, as described above, in the present invention, if the amount of Mg on the surface of the aluminum alloy material under the thermosetting coating film is controlled to an appropriate amount, other elements such as Si, Cu and the like that impair the coating durability. Since diffusion generation to the surface can be suppressed, it is possible to contain more Si than usual.
Mg:0.2〜2.0%
Mgも、固溶強化と、塗装焼き付け処理などの前記人工時効処理時に、Siとともに強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、アルミニウム合金材としての必要強度を得るための必須の元素である。Mg含有量が少なすぎると、人工時効後の析出量が少なくなりすぎ焼付け塗装後の強度が低くなりすぎてしまう。一方、Mg含有量が極端に多くなりすぎると、Mgの溶出反応が促進され、やはり耐糸錆性が著しく低下する。また、粗大な晶出物および析出物が形成されてしまい、糸錆発生起点となり、これも耐糸錆性が低下する原因ともなる。また、粗大な晶出物の形成は成形性を著しく低下させてしまい、更に、素材板の製造直後の強度だけでなく、製造後の室温時効量も高くなり、成形前の強度が高くなりすぎて、自動車部材などへの成形性が低下してしまう。したがって、Mgの含有量は0.2〜2.0%の範囲とする。
Mg: 0.2-2.0%
Mg also forms aging precipitates that contribute to strength improvement together with Si during the above-mentioned artificial aging treatment such as solid solution strengthening and paint baking treatment, exhibits age hardening ability, and obtains the required strength as an aluminum alloy material Is an essential element for. If the Mg content is too small, the amount of precipitation after artificial aging will be too small, and the strength after baking will be too low. On the other hand, when the Mg content is excessively increased, the elution reaction of Mg is promoted, and the rust resistance is significantly lowered. Moreover, coarse crystallized substances and precipitates are formed, which becomes a starting point of yarn rust generation, which also causes a decrease in yarn rust resistance. In addition, the formation of coarse crystals significantly reduces moldability, and further increases not only the strength immediately after the production of the material plate but also the room temperature aging amount after the production, and the strength before molding becomes too high. As a result, the moldability to automobile members and the like is reduced. Therefore, the Mg content is in the range of 0.2 to 2.0%.
Cu:0.01〜3.0%
Cuは、固溶強化により強度を向上させ、成形性も向上させるので、アルミニウム合金材に必要な強度や成形性を得るのに必須である。Cuの含有量が少なすぎると、その効果が小さく、極端に多すぎても、その効果は飽和し、却って耐食性などを劣化させる。但し、前記した通り、本発明では、前記熱硬化型塗膜下のアルミニウム合金材表面のMg量を適切な量に制御すれば、他のSi、Cuなどの塗膜耐久性を阻害させる元素の表面への拡散生成を抑制できるので、Cuを通常よりも多く含有させることが可能である。
Cu: 0.01 to 3.0%
Cu improves strength by solid solution strengthening and improves formability, so it is essential to obtain strength and formability necessary for an aluminum alloy material. If the Cu content is too small, the effect is small, and if it is too much, the effect is saturated, and the corrosion resistance is deteriorated. However, as described above, in the present invention, if the amount of Mg on the surface of the aluminum alloy material under the thermosetting coating film is controlled to an appropriate amount, other elements such as Si, Cu and the like that impair the coating durability. Since diffusion generation to the surface can be suppressed, it is possible to contain more Cu than usual.
選択的添加元素
Mn、Cr、Zr、Ag、Snは、共通して強度を向上させる同効元素(強化元素)として、選択的に含有させることができる。
Mn、Cr、Zrは、鋳塊及び最終板製品の結晶粒を微細化して強度向上に寄与し、分散粒子として存在して、結晶粒微細化に寄与し、成形性も向上させる。これらの元素が多すぎると、粗大な化合物を形成し、延性を劣化させる。
Agは人工時効処理によって強度向上に寄与する時効析出物を緊密微細に析出させ、高強度化を促進する効果がある。
Snは、室温でのクラスタ形成を抑制して、素材の室温時効を抑制し、成形性を長時間保持する効果を有し、更にその後に焼付け塗装処理などの人工時効熱処理した場合の強度を向上させる。また、耐糸錆性向上にも効果がある。
これらを含有させる場合には、Mn:0.01〜1.0%、Cr:0.001〜0.3%、Zr:0.001〜0.3%、Ag:0.001〜0.2%、Sn:0.001〜0.2%の各範囲とする。
Selective additive elements Mn, Cr, Zr, Ag, and Sn can be selectively contained as synergistic elements (strengthening elements) that improve the strength in common.
Mn, Cr, and Zr contribute to improving the strength by refining the crystal grains of the ingot and the final plate product, and exist as dispersed particles to contribute to refinement of the crystal grains and improve the moldability. When there are too many of these elements, a coarse compound will be formed and ductility will deteriorate.
Ag has the effect of accelerating the increase in strength by closely and finely precipitating aging precipitates that contribute to strength improvement by artificial aging treatment.
Sn suppresses cluster formation at room temperature, suppresses room temperature aging of the material, has an effect of maintaining formability for a long time, and further improves strength when subjected to artificial aging heat treatment such as baking coating treatment. Let It is also effective in improving yarn rust resistance.
When these are contained, Mn: 0.01 to 1.0%, Cr: 0.001 to 0.3%, Zr: 0.001 to 0.3%, Ag: 0.001 to 0.2% %, Sn: 0.001 to 0.2%.
その他の元素:
これら記載した以外の、Ti、B、Fe、Zn、Vなどのその他の元素は不可避的な不純物であり、資源リサイクルの観点から、合金の溶解原料として、高純度Al地金だけではなく、6000系合金やその他のアルミニウム合金スクラップ材、低純度Al地金などを多量に使用した場合には、これらの元素が必然的に実質量混入される。これらの元素を敢えて積極的に低減すると、精錬自体がコストアップとなるので、ある程度の含有を許容することが必要となる。したがって、本発明では、このような下記元素を各々以下に規定するAA乃至JIS 規格などに沿った上限量以下の範囲での含有を許容する。この許容量として好ましくは、Tiは0.1%以下、Bは0.03%以下、Feは1.0%以下、Znは1.0%以下、Vは0.3%以下とする。
Other elements:
Other than these elements, other elements such as Ti, B, Fe, Zn, and V are inevitable impurities. From the viewpoint of resource recycling, not only high-purity Al ingots but also 6000 as a raw material for melting alloys. When a large amount of alloy, other aluminum alloy scrap material, low-purity Al metal, etc. are used, these elements are inevitably mixed in substantially. If these elements are intentionally reduced, refining itself will increase the cost, so it is necessary to allow a certain amount of inclusion. Accordingly, in the present invention, the following elements are allowed to be contained in the range of the upper limit amount or less in accordance with AA to JIS standards defined below. Preferably, the allowable amount is 0.1% or less for Ti, 0.03% or less for B, 1.0% or less for Fe, 1.0% or less for Zn, and 0.3% or less for V.
(熱硬化型塗膜下のアルミニウム合金材表面のMg量)
以上の合金組成を前提として、本発明では、熱硬化型塗膜下の6000系アルミニウム合金材表面のMg量を、Mg酸化物の数密度として、制御する。
すなわち、前記熱硬化型塗膜下のアルミニウム合金材表面を電子線マイクロアナライザにより面分析した際の、MgとO(酸素)の元素の分布状態を示すカラーマップから判別される、円相当径が1μm以上のMg酸化物の平均数密度を、10〜1000個/mm2の範囲とする。
(Mg amount of aluminum alloy material surface under thermosetting coating)
Based on the above alloy composition, in the present invention, the amount of Mg on the surface of the 6000 series aluminum alloy material under the thermosetting coating film is controlled as the number density of Mg oxide.
That is, when the surface of the aluminum alloy material under the thermosetting coating film is surface-analyzed by an electron beam microanalyzer, the equivalent circle diameter is determined from a color map showing the distribution state of Mg and O (oxygen) elements. The average number density of Mg oxide of 1 μm or more is set to a range of 10 to 1000 pieces / mm 2 .
前記した通り、アルミニウム合金材の素材の段階において、例えMg、Si、Cuなどの塗膜耐久性を阻害させる元素を低減したとしても、自動車部材などのアルミニウム合金材(最終用途部材)とした段階で、前記熱硬化型塗料の熱硬化処理をすると、高温下で母材から表面に、Mgが新たに拡散生成してくる。
そして、このように拡散生成したMgは、熱硬化型塗膜を浸透してきた、あるいは塗膜中に元々存在する水分と反応して、主に、本発明で規定するMg酸化物として、アルミニウム合金材表面に存在する。
As described above, at the stage of the material of the aluminum alloy material, even if the elements such as Mg, Si, Cu, etc. that impair the coating durability are reduced, the aluminum alloy material (the end use member) such as an automobile member is used. Then, when the thermosetting treatment of the thermosetting paint is performed, Mg is newly diffused and generated from the base material to the surface at a high temperature.
Then, the diffusion-generated Mg reacts with the moisture that has penetrated the thermosetting coating film or originally exists in the coating film, and is mainly used as the Mg oxide defined in the present invention as an aluminum alloy. Present on the material surface.
このように、熱硬化型塗料の熱硬化処理によって、母材から表面に新たに存在してくるMg酸化物の量は、耐糸錆性や塗膜密着性などの塗膜耐久性に大きく影響し、これらアルミニウム合金材表面のMg酸化物量が少なすぎても、逆に多すぎても、塗膜耐久性が大きく低下する。
前記熱硬化型塗膜下の表面でのMg酸化物の挙動は、前記した通り、アルミニウム合金材の素材表面の段階で認識されているような挙動とは全く異なり、適切な量だけ、Mg酸化物を積極的に存在させれば、塗膜耐久性が向上する。
In this way, the amount of Mg oxide newly present on the surface from the base material due to the thermosetting treatment of the thermosetting paint greatly affects the durability of the coating film such as yarn rust resistance and coating film adhesion. However, if the amount of Mg oxide on the surface of these aluminum alloy materials is too small or too large, the durability of the coating film is greatly reduced.
As described above, the behavior of Mg oxide on the surface under the thermosetting coating film is completely different from the behavior recognized at the stage of the surface of the aluminum alloy material. If an object is actively present, the durability of the coating film is improved.
このような塗膜耐久性向上機構は、アルミニウム合金材の表面に、本発明で規定するMg酸化物が一定量存在することで、糸錆成長の原因である、熱硬化型塗膜とアルミニウム合金材表面におけるpH低下を抑制するものと推考される。
すなわち、アルミニウム合金材の使用中に、熱硬化型塗膜を浸透してきた、あるいは塗膜中に元々存在する水分が反応して、MgO+H2O=Mg2++2OH−の反応式により、OH基(水酸基)が生成する。このOH基はアルカリ性であり、糸錆成長の原因である前記熱硬化型塗膜とアルミニウム合金材表面におけるpH低下を抑制して、中性に保持する。
ちなみに、この作用は、MgOHなどの水酸化物でも同じであり、Mg(OH)2=Mg2++2OH−の反応式により、OH基(水酸基)が生成する。このOH基も、当然ながらアルカリ性であり、糸錆成長の原因である前記熱硬化型塗膜とアルミニウム合金材表面におけるpH低下を抑制して、中性に保持する。但し、この水酸化物は、後述する通り、電子線マイクロアナライザによる面分析では、Mg酸化物と識別することができない。したがって、電子線マイクロアナライザによる面分析では、このMgの水酸化物も、Mg酸化物と見なして、平均数密度を定量化する。
Such a coating durability improvement mechanism is based on the fact that a certain amount of Mg oxide defined in the present invention is present on the surface of an aluminum alloy material, which causes thread rust growth. It is thought that it suppresses the pH fall on the material surface.
That is, during use of the aluminum alloy material, moisture that has penetrated the thermosetting coating film or originally exists in the coating film reacts, and the reaction formula of MgO + H 2 O = Mg 2+ + 2OH − represents an OH group ( Hydroxyl group). This OH group is alkaline and suppresses a decrease in pH on the surface of the thermosetting coating film and the aluminum alloy material, which is the cause of yarn rust growth, and maintains neutrality.
Incidentally, this action is the same for hydroxides such as MgOH, and an OH group (hydroxyl group) is generated by the reaction formula of Mg (OH) 2 = Mg 2+ + 2OH − . Naturally, this OH group is also alkaline and suppresses a decrease in pH on the surface of the thermosetting coating film and the aluminum alloy material, which causes yarn rust growth, and is kept neutral. However, as will be described later, this hydroxide cannot be distinguished from Mg oxide by surface analysis using an electron beam microanalyzer. Therefore, in surface analysis using an electron beam microanalyzer, the Mg hydroxide is also regarded as Mg oxide, and the average number density is quantified.
したがって、前記熱硬化型塗膜下のアルミニウム合金材表面の、前記円相当径が1μm以上のMg酸化物の平均数密度が10個/mm2未満となっては、本発明で規定するMg酸化物の平均数密度が少なすぎ、前記Mg酸化物による塗膜耐久性向上の作用や機構が発現しない。このため、糸錆成長の原因である前記熱硬化型塗膜とアルミニウム合金材表面におけるpH低下による酸性化を抑制できなくなる。 Therefore, when the average number density of the Mg oxide having an equivalent circle diameter of 1 μm or more on the surface of the aluminum alloy material under the thermosetting coating film is less than 10 / mm 2 , the Mg oxidation defined in the present invention The average number density of the product is too small, and the effect and mechanism for improving the durability of the coating film due to the Mg oxide does not appear. For this reason, it becomes impossible to suppress the acidification by the pH fall in the said thermosetting type coating film and aluminum alloy material surface which is the cause of thread rust growth.
一方、前記熱硬化型塗膜下のアルミニウム合金材表面の、前記円相当径が1μm以上のMg酸化物の平均数密度が1000個/mm2を超えて、本発明で規定するMg酸化物の平均数密度が過剰に存在すると、却って前記OH基が過剰となる。このため、逆に、前記熱硬化型塗膜とアルミニウム合金材表面におけるアルカリ化が進行して(pHが高くなって)塗膜密着性を低下させ、塗膜ふくれ、塗膜はがれなどが生じる。 On the other hand, the average number density of the Mg oxide having an equivalent circle diameter of 1 μm or more on the surface of the aluminum alloy material under the thermosetting coating film exceeds 1000 / mm 2 , If the average number density is excessive, the OH groups are excessive. For this reason, conversely, alkalinization of the thermosetting coating film and the surface of the aluminum alloy material proceeds (the pH increases), and the adhesion of the coating film is lowered, resulting in coating film swelling and coating film peeling.
また、前記熱硬化型塗膜下のアルミニウム合金材表面に、本発明で規定するMg酸化物の形態ではなく、Mg単体の形態で存在した場合には、Mg+2H2O=Mg(OH)2+2H++2e -の反応式により、OH基ではなく、酸性のH基(水素基)が生成する。このH基は酸性であり、糸錆成長の原因である前記熱硬化型塗膜とアルミニウム合金材表面におけるpH低下を促進して、糸錆成長の原因となる。
しかし、前記熱硬化型塗膜下のアルミニウム合金材表面の本発明で規定するMg酸化物の量を、熱硬化処理を制御して、前記した適切な範囲にしてやれば、この表面のMg単体やMg(OH)2などの水酸化物の形態では、ほとんど存在しなくなり、例え存在しても糸錆など塗膜の耐久性には影響しない許容範囲となる。
Further, when the surface of the aluminum alloy material under the thermosetting coating film is not in the form of Mg oxide defined in the present invention but in the form of Mg alone, Mg + 2H 2 O = Mg (OH) 2 + 2H According to the reaction formula of ++ 2e − , an acidic H group (hydrogen group) is generated instead of an OH group. This H group is acidic and promotes a decrease in pH on the thermosetting coating film and the aluminum alloy material surface, which is the cause of yarn rust growth, and causes yarn rust growth.
However, if the amount of the Mg oxide defined in the present invention on the surface of the aluminum alloy material under the thermosetting coating film is controlled within the above-described appropriate range by controlling the thermosetting treatment, the Mg alone or In the form of hydroxide such as Mg (OH) 2 , it hardly exists, and even if it exists, it becomes an allowable range that does not affect the durability of the coating film such as yarn rust.
更に、前記熱硬化型塗膜下のアルミニウム合金材表面の本発明で規定するMg酸化物の量を、熱硬化処理を制御して、前記した適切な範囲にしてやれば、Mgよりも拡散速度が1/100ほども遅い、他のSi、Cuなどの塗膜耐久性を阻害させる元素の前記熱硬化型塗膜下のアルミニウム合金材表面への拡散生成も抑制でき、これも塗膜耐久性の向上につながってくる。 Furthermore, if the amount of Mg oxide defined in the present invention on the surface of the aluminum alloy material under the thermosetting coating film is controlled within the above-mentioned range by controlling the thermosetting treatment, the diffusion rate is higher than that of Mg. Diffusion generation on the surface of the aluminum alloy material under the thermosetting coating film, which is slower than 1/100, which inhibits coating film durability such as other Si and Cu, can also be suppressed. It leads to improvement.
以上の前記熱硬化型塗膜下のアルミニウム合金材表面における、本発明で規定するMg酸化物の制御によって、熱硬化型塗膜の長期間の使用に耐える耐久性に優れされることができる。このため、本発明によれば、6000系アルミニウム合金素材の、前記した自動車部材などのアルミニウム合金材への適用を可能あるいは促進することができる。 By controlling the Mg oxide defined in the present invention on the surface of the aluminum alloy material under the thermosetting coating film, the durability of the thermosetting coating film withstanding long-term use can be improved. Therefore, according to the present invention, the application of the 6000 series aluminum alloy material to the aluminum alloy material such as the automobile member described above can be enabled or promoted.
(アルミニウム合金材表面のMg酸化物数密度制御)
本発明で規定するアルミニウム合金材表面のMg酸化物平均数密度の制御は、アルミニウム合金素材のMg含有量などの合金組成や素材の製造条件での制御は難しく、前記熱硬化型塗料の熱硬化処理条件によって、主として制御することが合理的である。
(Controlling the number density of Mg oxide on the surface of aluminum alloy material)
The control of the average number density of Mg oxide on the surface of the aluminum alloy material defined in the present invention is difficult to control in the alloy composition such as Mg content of the aluminum alloy material and the production conditions of the material, and the thermosetting of the thermosetting paint It is reasonable to control mainly depending on the processing conditions.
本発明は、先に述べたように、SiやCuなどの強化元素を、塗膜耐久性の観点から低減する必要が無いので、強化に必要な合金元素量を確保でき、通常のアルミニウム合金素材を使用できる利点が大きい。また、アルミニウム合金素材や、この素材の成形加工、前記熱硬化型塗料の塗装や熱硬化処理などの、自動車部材等のアルミニウム合金材の製造工程を大きく変えることも不要である。 As described above, the present invention eliminates the need to reduce reinforcing elements such as Si and Cu from the viewpoint of coating film durability, so that the amount of alloying elements necessary for strengthening can be secured, and a normal aluminum alloy material The advantage that you can use is great. In addition, it is not necessary to greatly change the production process of aluminum alloy materials such as automobile members, such as aluminum alloy material, molding of this material, coating of the thermosetting paint, and thermosetting treatment.
ただ、このような熱硬化処理での制御のためには、塗装前の前記アルミニウム合金材表面の前記Mg酸化物の平均数密度を、予め低減しておくことが好ましい。
すなわち、前記熱硬化型塗膜下のアルミニウム合金材表面における前記Mg酸化物の平均数密度を最適範囲とするためには、前記熱硬化型塗料の塗装前のアルミニウム合金材表面の、本発明で規定するMg酸化物の平均数密度を、予め、0個/mm2を含む、10個/mm2未満と少なくした上で、前記熱硬化型塗料の塗装と熱硬化処理とを施すことが好ましい。
この塗装前のアルミニウム合金材表面とは、塑性加工により製造されたアルミニウム合金素材や、その後の成形される前のアルミニウム合金素材や、成形された後で塗装前のアルミニウム合金材、などにおける表面を含んでいる。
However, for the control in such a thermosetting treatment, it is preferable to reduce in advance the average number density of the Mg oxide on the surface of the aluminum alloy material before coating.
That is, in order to make the average number density of the Mg oxide on the surface of the aluminum alloy material under the thermosetting coating film the optimum range, in the present invention, the surface of the aluminum alloy material before coating with the thermosetting paint is used. It is preferable that the average number density of the Mg oxide to be defined is previously reduced to less than 10 pieces / mm 2 including 0 pieces / mm 2, and then the thermosetting paint is applied and heat-cured. .
The surface of the aluminum alloy material before painting refers to the surface of the aluminum alloy material manufactured by plastic working, the aluminum alloy material before molding, the aluminum alloy material after molding and before painting, etc. Contains.
これらの表面の円相当径が1μm以上のMg酸化物の平均数密度が、調質(熱処理)や室温放置などによってMgが表面に拡散生成あるいは濃化するなど、予め10個/mm2を超えて多くなっている場合には、熱硬化処理の温度、時間条件によっては、本発明で規定するMg酸化物の平均数密度が前記した最適範囲と超える可能性が生じる。
熱硬化処理の温度、時間条件は、通常は、前記熱硬化型塗料の硬化(架橋反応)や、アルミニウム合金材の強度確保のためのBH性から決められ、このように選択される熱硬化処理の温度、時間条件では、必然的に前記円相当径が1μm以上のMg酸化物の平均数密度が増すからである。
前記熱硬化型塗料の塗装前の前記アルミニウム合金材表面の、前記円相当径が1μm以上のMg酸化物の平均数密度を、予め0個/mm2を含む、10個/mm2未満と少なくした上で、前記熱硬化型塗料の塗装と熱硬化処理とを施すことが好ましい。
The average number density of Mg oxides with an equivalent circle diameter of 1 μm or more on these surfaces exceeds 10 / mm 2 in advance, such as Mg being diffused or concentrated on the surface by tempering (heat treatment) or standing at room temperature. In the case of increasing the number, the average number density of Mg oxide defined in the present invention may exceed the optimum range described above depending on the temperature and time conditions of the thermosetting treatment.
The temperature and time conditions of the thermosetting treatment are usually determined from the curing (crosslinking reaction) of the thermosetting paint and the BH property for ensuring the strength of the aluminum alloy material, and the thermosetting treatment thus selected. This is because the average number density of the Mg oxide having an equivalent circle diameter of 1 μm or more inevitably increases under the above temperature and time conditions.
The average number density of the Mg oxide having an equivalent circle diameter of 1 μm or more on the surface of the aluminum alloy material before the thermosetting coating is applied is less than 10 / mm 2 including 0 / mm 2 in advance. In addition, it is preferable to apply the thermosetting paint and a thermosetting treatment.
前記塗装前のアルミニウム合金材表面の、本発明で規定するMg酸化物の平均数密度を、予め0個/mm2を含む、10個/mm2未満と少なくするためには、前記塗装前のアルミニウム合金材にエッチングを伴う洗浄を行うことが好ましい。
この洗浄作業は、塑性加工により製造されたアルミニウム合金素材の調質後や、その後の成形される前のアルミニウム合金素材や、成形された後で塗装前のアルミニウム合金材など、既存の洗浄工程を用いることができる。そして、洗浄(液)のエッチングレベルあるいは洗浄強度(液濃度、液温度、処理時間など)を調整して、前記塗装前の前記アルミニウム合金材表面の、前記Mg酸化物の平均数密度を10個/mm2未満に制御する。
In order to reduce the average number density of Mg oxides defined in the present invention on the surface of the aluminum alloy material before coating to less than 10 / mm 2 including 0 / mm 2 in advance, It is preferable to perform cleaning with etching on the aluminum alloy material.
This cleaning operation is performed after the existing cleaning process, such as after the aluminum alloy material manufactured by plastic working, after the aluminum alloy material before being formed, and after being formed and before painting. Can be used. Then, the average number density of the Mg oxide on the surface of the aluminum alloy material before coating is adjusted to 10 by adjusting the etching level or cleaning strength (liquid concentration, liquid temperature, processing time, etc.) of the cleaning (liquid). Control to less than / mm 2 .
(熱硬化処理によるMg酸化物数密度制御)
本発明で規定するMg酸化物は、先に述べたように、熱硬化処理の温度、時間条件によって支配され、制御できる。
この点で、前記熱硬化型塗膜(熱硬化型塗料)の硬化(架橋反応)や、強度確保のためのBH性を満足し、更に、本発明で規定するMg酸化物の平均数密度を、前記した最適範囲とするために、熱硬化処理の加熱温度、加熱温度に保持する時間は、アルミニウム合金材のMg、Si、Cuの各含有量との関係も考慮しつつ、加熱温度160〜180℃、加熱保持時間10〜30分の範囲から選択することが好ましい。
このような範囲の中で、例えば、主要な合金元素量が比較的少なければ、加熱温度は低め、加熱保持時間は短めから選択し、主要な合金元素量が比較的多ければ、加熱温度は高め、加熱保持時間は長めから選択する。
(Mg oxide number density control by thermosetting)
As described above, the Mg oxide defined in the present invention is governed by and controlled by the temperature and time conditions of the thermosetting treatment.
In this respect, the thermosetting coating film (thermosetting paint) is cured (crosslinking reaction), satisfies the BH property for ensuring strength, and further has an average number density of Mg oxides defined in the present invention. In order to make the above-described optimum range, the heating temperature of the thermosetting treatment, the time for holding at the heating temperature, the heating temperature 160 ~ while considering the relationship with each content of Mg, Si, Cu of the aluminum alloy material It is preferable to select from a range of 180 ° C. and a heating and holding time of 10 to 30 minutes.
Within such a range, for example, if the main alloy element amount is relatively small, the heating temperature is selected to be low and the heating holding time is selected to be short. If the main alloy element amount is relatively large, the heating temperature is increased. The heating and holding time is selected from a longer one.
ただ、これはあくまで最適条件の目安にすぎず、部材としての最終用途の要求特性に応じて選択したアルミニウム合金組成や、熱硬化型塗料の最適硬化特性も考慮しつつ、前記熱硬化型塗膜下のアルミニウム合金材表面のMgの存在量を本発明の規定範囲と確実にするためには、熱硬化処理の最適な温度、時間条件を、実際に試験してみて、試行錯誤的に(トライアンドエラーで)決定することが好ましい。 However, this is merely a guideline for optimum conditions, and the thermosetting coating film is considered while considering the aluminum alloy composition selected according to the required characteristics of the end use as a member and the optimum curing characteristics of the thermosetting paint. In order to ensure that the amount of Mg present on the surface of the lower aluminum alloy material is within the specified range of the present invention, the optimum temperature and time conditions for the thermosetting treatment are actually tested, and trial and error (Trial It is preferable to determine (by and error).
(アルミニウム合金材表面のMg酸化物数密度の測定)
前記塗装前や前記熱硬化処理後のアルミニウム合金材表面の、本発明で規定するMg酸化物の平均数密度は、電子線マイクロアナライザ(別称:電子プローブマイクロアナライザザ、EPMA:Electron Probe Micro Analyzer)を用いる。
このEPMAは、電子を照射したときに、試料から放出される特性X線の波長を分光して、照射領域に存在する元素の同定および濃度の分析を行うことに適した装置である。
そして、電子プローブの走査機能から、カラーマップと呼ばれる、多数の元素の面分析を行うことができ、この機能を利用して、カラーマップの互いに同じ位置に、MgとOの元素のみが存在するか、あるいは、大部分がMgとOとして存在する場合に、Mg酸化物と同定することができる。
但し、このEPMAではHの同定はできないので、Mg酸化物と同定した中に、同じくMgとOの元素からなる、Mgの水酸化物:Mg(OH)2が含まれている可能性は否定できない。ただ、前記熱硬化処理によって、前記熱硬化型塗膜下のアルミニウム合金材表面において、母材から拡散生成するMgと酸素とが反応する場合には、大部分がMg酸化物となり、Mg水酸化物の生成は希少である。また、例え含まれていても、前記した通り、塗膜耐久性には良い影響を与えるので、例え正確に測定できなくても無視することができる。
したがって、本発明では、このEPMAの前記カラーマップで、MgとOの元素のみが存在すると同定される場合には、これを全てMg酸化物と見なす。
(Measurement of Mg oxide number density on the surface of aluminum alloy material)
The average number density of Mg oxide defined in the present invention on the surface of the aluminum alloy material before coating or after the thermosetting treatment is an electron beam microanalyzer (also known as an electron probe microanalyzer, EPMA: Electron Probe MicroAnalyzer). Is used.
This EPMA is an apparatus suitable for analyzing the wavelength of characteristic X-rays emitted from a sample when irradiated with electrons and identifying the elements present in the irradiated region and analyzing the concentration.
The scanning function of the electron probe can perform surface analysis of a large number of elements called a color map. Using this function, only Mg and O elements exist at the same position in the color map. Alternatively, when most of them exist as Mg and O, they can be identified as Mg oxide.
However, since this EPMA cannot identify H, the possibility of including Mg hydroxide: Mg (OH) 2, which is also composed of elements of Mg and O, is denied while being identified as Mg oxide. Can not. However, when Mg and oxygen diffused and generated from the base material react on the surface of the aluminum alloy material under the thermosetting coating film by the thermosetting treatment, most of them become Mg oxide, and Mg hydroxide The production of things is rare. Even if it is included, as described above, it has a good effect on the durability of the coating film, so it can be ignored even if it cannot be measured accurately.
Therefore, in the present invention, when it is identified by the color map of this EPMA that only elements of Mg and O are present, they are all regarded as Mg oxide.
前記塗装前や前記熱硬化処理後のアルミニウム合金材の、任意の10箇所から、その表面を含む供試材を各々採取して、アルミニウム合金材最表面から0.25mm深さまでを、酸化皮膜とみなして機械研磨により削り落とす。
なお、前記熱硬化処理後のアルミニウム合金材の表面には、アルミマトリックスの上に、順に化成処理皮膜と塗料皮膜とが存在するので、前記酸化皮膜の除去の前に、上層の塗料皮膜は機械研磨もしくは化学研磨により除去し、下層の化成処理皮膜は酸洗により除去する。そして、この研磨面をアルミニウム合金材の表面として、EPMA(例えば日本電子製JXA−8000シリーズ、測定条件は加速電圧20kV)により測定する。測定エリアは面分析として約0.1〜0.2mm2程度、測定時の倍率は600倍とする。
検出する元素は、最低、主要合金元素であるMg、Si、CuおよびOの4元素とし、これに他に含まれる元素の分析も必要により加える。
Samples including the surface of the aluminum alloy material before the coating and after the thermosetting treatment are sampled from any 10 locations, and the oxide film is formed from the outermost surface of the aluminum alloy material to a depth of 0.25 mm. Consider and scrape off by mechanical polishing.
The surface of the aluminum alloy material after the thermosetting treatment has a chemical conversion treatment film and a paint film in this order on an aluminum matrix. Therefore, before removing the oxide film, the upper paint film is a mechanical film. It is removed by polishing or chemical polishing, and the underlying chemical conversion film is removed by pickling. And this polished surface is made into the surface of an aluminum alloy material, and it measures by EPMA (For example, JXA-8000 series made from JEOL, measurement conditions are acceleration voltage 20 kV). The measurement area is about 0.1 to 0.2 mm 2 for surface analysis, and the magnification during measurement is 600 times.
The elements to be detected are at least four elements of Mg, Si, Cu and O which are main alloy elements, and analysis of other elements contained therein is also added if necessary.
そして、各元素の特性X線から、コンピュータが同定した元素を、半定量分析し、供試材の同一面内での元素の面分布位置と、面分布状況を示すカラーマップを作成する。そして、カラーマップの互いに同じ位置に、MgとOの元素のみが存在するか、あるいは、大部分がMgとOとして存在する場合に、これら元素の集合体をMg酸化物と同定して、この元素の集合体における最大長を、この最大長さを直径とする円の円相当径、すなわちMg酸化物の円相当径として測定する。
そして、供試材10個のアルミニウム合金材表面の、これらEPMAの面分析結果から、円相当径が1μm以上のMg酸化物の数密度(個/mm2)を算出し、これら各試料の数密度を平均化して、本発明で規定するMg酸化物の平均数密度(個/mm2)とする。
Then, the element identified by the computer is semi-quantitatively analyzed from the characteristic X-rays of each element, and a color map indicating the surface distribution position and the surface distribution state of the element in the same plane of the test material is created. When only Mg and O elements are present at the same position in the color map or most of them are present as Mg and O, the aggregate of these elements is identified as Mg oxide, The maximum length of the element aggregate is measured as the equivalent circle diameter of a circle having the maximum length as the diameter, that is, the equivalent circle diameter of the Mg oxide.
Then, from the surface analysis results of these EPMA on the surface of 10 aluminum alloy materials, the number density (pieces / mm 2 ) of Mg oxide having an equivalent circle diameter of 1 μm or more is calculated, and the number density of each of these samples is calculated. It averages and it is set as the average number density (pieces / mm < 2 >) of Mg oxide prescribed | regulated by this invention.
(アルミニウム合金素材の製造方法)
本発明アルミニウム合金材の素材は、前記した洗浄工程以外は、あるいはこの洗浄工程も含めて、常法により製造された、熱間圧延板、冷間圧延板、熱間押出形材(中空、ソリッド)、ニアネットシェイプの、熱間鍛造材、鋳造やダイキャストなどの鋳造材などである。これらアルミニウム合金塑性加工材を、塑性加工のままか、塑性加工後に調質(熱処理)、表面処理して、本発明アルミニウム合金材の素材(成形素材)とする。
(Aluminum alloy material manufacturing method)
The material of the aluminum alloy material of the present invention is a hot rolled plate, a cold rolled plate, a hot extruded profile (hollow, solid) manufactured by a conventional method other than the cleaning step described above or including this cleaning step. ), Near-net shape hot forging, castings such as casting and die casting. These aluminum alloy plastically processed materials are subjected to plastic processing or are subjected to tempering (heat treatment) and surface treatment after plastic processing to obtain a material (molding material) of the aluminum alloy material of the present invention.
素材板の製造方法
前記アルミニウム合金板素材のうち、代表的な熱間圧延板や冷間圧延板の製法の概略を以下に例示する。
先ず、溶解、鋳造工程で、上記6000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、連続鋳造法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。
次いで、前記鋳造されたアルミニウム合金鋳塊に、熱間圧延に先立って、常法による均質化熱処理を施す。この均熱処理の条件は、500℃以上、融点未満の温度範囲で、2時間以上の保持時間の範囲から適宜選択される。
熱間圧延は、熱延開始温度を350℃〜固相線温度の範囲、終了温度を300〜360℃の範囲から選択して熱間圧延し、2〜10mm程度の板厚の熱延板とする。この熱延板を、更に冷間圧延する場合には、冷間圧延前の焼鈍 (荒鈍) は必要により実施しても良い。
冷間圧延では、上記熱延板を圧延して、所望の最終板厚の冷延板 (コイルも含む) に製作する。但し、結晶粒をより微細化させるためには、冷間圧延率は30%以上であることが望ましく、また前記荒鈍と同様の目的で、冷間圧延パス間で中間焼鈍を行っても良い。
Manufacturing method of raw material board The outline of the manufacturing method of a typical hot-rolled board and a cold-rolled board among the said aluminum alloy plate raw materials is illustrated below.
First, in the melting and casting process, an aluminum alloy melt adjusted to be dissolved within the above-mentioned 6000-based component composition range is appropriately selected by a normal melting casting method such as a continuous casting method or a semi-continuous casting method (DC casting method). Cast.
Next, prior to hot rolling, the cast aluminum alloy ingot is subjected to a homogenizing heat treatment by a conventional method. The conditions for the soaking are appropriately selected from a range of holding time of 2 hours or more in a temperature range of 500 ° C. or higher and lower than the melting point.
In hot rolling, a hot rolling start temperature is selected from a range of 350 ° C. to a solidus temperature, an end temperature is selected from a range of 300 to 360 ° C., and hot rolling is performed. To do. When this hot-rolled sheet is further cold-rolled, annealing (roughening) before cold rolling may be performed as necessary.
In cold rolling, the hot-rolled sheet is rolled to produce a cold-rolled sheet (including a coil) having a desired final thickness. However, in order to further refine the crystal grains, the cold rolling rate is desirably 30% or more, and intermediate annealing may be performed between the cold rolling passes for the same purpose as the above roughening. .
冷間圧延後に、前記自動車材用などの素材としての諸特性を満足するために、板を調質してT4材とすることが好ましい。このT4の調質は、通常は、溶体化処理と、これに続く、室温までの焼入れ処理を行う。この溶体化焼入れ処理については、通常の連続熱処理ラインを用いてよい。この際、550℃以上、溶融温度以下の温度で溶体化処理した後、室温までの平均冷却速度を20℃/秒以上とすることが好ましい。
このような溶体化処理後に焼入れ処理して室温まで冷却した後、1時間以内に冷延板を予備時効処理(再加熱処理)することが好ましい。この予備時効処理は、60〜120℃での保持時間を2時間以上、40時間以下保持することが好ましい。これによって、MgとSiのバランスが良いMg−Siクラスタが形成される。
After cold rolling, in order to satisfy the various properties as materials for the automobile material, it is preferable to temper the plate to make a T4 material. The tempering of T4 is usually performed by solution treatment and subsequent quenching to room temperature. For this solution hardening treatment, a normal continuous heat treatment line may be used. At this time, it is preferable to set the average cooling rate to room temperature to 20 ° C./second or higher after solution treatment at a temperature of 550 ° C. or higher and below the melting temperature.
After such a solution treatment, it is preferable to quench the steel sheet and cool it to room temperature, and then subject the cold-rolled sheet to a pre-aging treatment (reheating treatment) within one hour. In this preliminary aging treatment, the holding time at 60 to 120 ° C. is preferably held for 2 hours or more and 40 hours or less. As a result, Mg—Si clusters having a good balance between Mg and Si are formed.
この調質後の素材板の段階で、塗装前のアルミニウム合金材表面のMg酸化物の平均数密度を、0個/mm2を含む、10個/mm2未満予め低減しておくためには、この調質後の素材板をエッチングを伴う洗浄を行うことが好ましい。このための洗浄条件は素材板の組成、特にMg量に応じて、Mg含有量が多いほど、強エッチングや強洗浄条件が選択される。エッチングを伴う洗浄には、一般的には、電解脱脂、水酸化ナトリウム、炭酸ナトリウムなどのアルカリ水溶液、硫酸、硝酸などの酸水溶液、市販の洗浄液あるいはこれらを組み合わせた洗浄工程等が例示される。本発明でも、特異な洗浄方法や条件を選択するのではなく、これら公知の洗浄条件の中から、前記本発明酸化皮膜条件を満たす条件を適宜選択する。また、この洗浄、乾燥後は、板に表面の酸化防止のための塗油などの表面処理を施しても良い。 In order to reduce the average number density of Mg oxide on the surface of the aluminum alloy material before painting in advance to less than 10 / mm 2 including 0 / mm 2 The tempered material plate is preferably washed with etching. As the cleaning condition for this, the stronger etching or the stronger cleaning condition is selected as the Mg content is higher according to the composition of the material plate, particularly the Mg content. The cleaning with etching generally includes electrolytic degreasing, an aqueous alkali solution such as sodium hydroxide and sodium carbonate, an aqueous acid solution such as sulfuric acid and nitric acid, a commercially available cleaning solution, or a cleaning step combining these. Also in the present invention, the specific cleaning method and conditions are not selected, but the conditions satisfying the oxide film conditions of the present invention are appropriately selected from these known cleaning conditions. Further, after the washing and drying, the plate may be subjected to a surface treatment such as oil coating for preventing the surface from being oxidized.
(アルミニウム合金材の製造)
前記アルミニウム合金素材は、自動車部材などの最終用途の形状に、プレス成形、曲げ加工、穴あけ、などの成形加工が施される。そして、自動車車体などの最終用途製品に取り付けられ、組み付けられた後の段階か、あるいは取り付け、組み付け前の部材や部品段階で、リン酸塩処理と静電塗装が汎用されている熱硬化型塗料の塗装と、人工時効処理を兼ねた、熱硬化処理(焼き付け硬化処理)とを施して、表面に熱硬化型塗膜が形成されて、使用される。
(Manufacture of aluminum alloy materials)
The aluminum alloy material is subjected to molding such as press molding, bending, and drilling in the shape of an end use such as an automobile member. And thermosetting paints that are widely used for phosphate treatment and electrostatic coating at the stage after they are attached and assembled to end-use products such as automobile bodies, or at the parts and parts stage before attachment and assembly. A thermosetting coating film is formed on the surface of the coating and a thermosetting treatment (baking curing treatment) that also serves as an artificial aging treatment.
これらの工程のうち、塗装前のアルミニウム合金材表面のMg酸化物の平均数密度を、0個/mm2を含む、10個/mm2未満予め低減しておくためのエッチングを伴う洗浄を、前記したアルミニウム合金素材の段階では無く、あるいは、前記アルミニウム合金素材の段階での前記洗浄と組み合わせて、塗装前の適宜の段階でのアルミニウム合金材に行っても良い。
洗浄のための化成処理液は、母材表面や酸化皮膜を除去できるエッチングを伴う、工業的に一般的な、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、アルカリ金属塩などのアルカリ洗浄を用いることができる。
但し、前記調質後の素材板のエッチングを伴う洗浄を含めて、装前のアルミニウム合金材表面のエッチングを伴う洗浄条件は、前記アルミニウム合金材の合金組成や素材製造履歴によって異なるので、トライアンドエラーで、各アルミニウム合金材に応じた最適洗浄条件を見つけることが好ましい。
Among these steps, cleaning with etching for reducing the average number density of Mg oxide on the surface of the aluminum alloy material before coating, including 0 / mm 2 and less than 10 / mm 2 in advance, You may perform to the aluminum alloy material in the suitable stage before a painting instead of the stage of the above-mentioned aluminum alloy material, or combining with the said washing | cleaning in the stage of the said aluminum alloy material.
The chemical conversion treatment liquid for cleaning uses industrially common alkaline cleaning such as potassium hydroxide, sodium hydroxide, calcium hydroxide, alkali metal salts, and the like, which involves etching that can remove the base material surface and oxide film. be able to.
However, the cleaning conditions involving the etching of the surface of the aluminum alloy material before charging, including the cleaning accompanied by the etching of the tempered material plate, differ depending on the alloy composition of the aluminum alloy material and the material manufacturing history. It is preferable to find an optimum cleaning condition according to each aluminum alloy material by error.
熱硬化型塗膜(熱硬化性塗料)の塗装は、公知の塗料や方法を採用することできる。例えば、電着塗装は、汎用されている、アミン付加エポキシ樹脂とブロック化ポリイソシアネート硬化剤とを含有するカチオン電着塗料を用いて行うことができる。 For the application of the thermosetting coating film (thermosetting paint), a known paint or method can be employed. For example, the electrodeposition coating can be performed using a cationic electrodeposition paint containing an amine-added epoxy resin and a blocked polyisocyanate curing agent, which are widely used.
前記熱硬化処理では、その条件を、前記アルミニウム合金材のMg、Si、Cuの各含有量との関係で、加熱温度160〜200℃、加熱保持時間10〜30分の範囲から選択して、前記熱硬化型塗膜下のアルミニウム合金材表面のMgの存在量を、前記円相当径が1μm以上のMg酸化物として、10〜1000個/mm2の範囲とすることが好ましい。
但し、上記好ましい熱硬化処理条件範囲内であっても、前記アルミニウム合金材の合金組成や素材製造履歴によっては、前記熱硬化型塗膜下のアルミニウム合金材表面のMgの存在量を範囲内とすることができない場合も起こりうるので、トライアンドエラーで、各アルミニウム合金材に応じた最適条件を見つけることが好ましい。
In the thermosetting treatment, the conditions are selected from the range of the heating temperature of 160 to 200 ° C. and the heating and holding time of 10 to 30 minutes in relation to the contents of Mg, Si and Cu of the aluminum alloy material, The amount of Mg present on the surface of the aluminum alloy material under the thermosetting coating film is preferably in the range of 10 to 1000 / mm 2 as the Mg oxide having an equivalent circle diameter of 1 μm or more.
However, even within the preferable thermosetting treatment condition range, depending on the alloy composition and material production history of the aluminum alloy material, the amount of Mg present on the surface of the aluminum alloy material under the thermosetting coating film is within the range. In some cases, it may be impossible to do so, and it is preferable to find an optimum condition according to each aluminum alloy material by trial and error.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
また、本発明は、熱硬化型塗膜の耐久性に優れたアルミニウム合金材の発明だけでなく、熱硬化型塗膜の耐久性に優れたアルミニウム合金材の製造方法の発明でもあり、アルミニウム合金材の熱硬化型塗膜の耐久性向上方法の発明でもある。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
The present invention is not only an invention of an aluminum alloy material excellent in the durability of a thermosetting coating film, but also an invention of a method for producing an aluminum alloy material excellent in the durability of a thermosetting coating film. It is also an invention of a method for improving the durability of a thermosetting coating film.
次に本発明の実施例を説明する。6000系アルミニウム合金材表面の前記Mg酸化物の量を作り分けて、機械的性質や、耐糸錆性や塗膜密着性などの塗膜耐久性を評価した。これらの結果を、表1、2に示す。 Next, examples of the present invention will be described. The amount of the Mg oxide on the surface of the 6000 series aluminum alloy material was made to evaluate the coating properties such as mechanical properties, yarn rust resistance and coating adhesion. These results are shown in Tables 1 and 2.
(素材板の製造条件)
アルミニウム合金素材としては圧延板を選択した。先ず、表1に示す各組成の6000系アルミニウム合金鋳塊をDC鋳造法により溶製した。なお、表1中の各元素の含有量の表示において、各元素における数値をブランクとしている表示は、その含有量が検出限界以下で、これらの元素を含まない0%であることを示す。
(Manufacturing conditions of material plate)
A rolled plate was selected as the aluminum alloy material. First, a 6000 series aluminum alloy ingot having each composition shown in Table 1 was melted by a DC casting method. In addition, in the display of the content of each element in Table 1, the display in which the numerical value in each element is blank indicates that the content is not more than the detection limit and is 0% not including these elements.
そして、各例とも共通して、これらの鋳塊を540℃×6時間の均熱処理をした後、その温度で熱間粗圧延を開始した。そして、続く仕上げ圧延にて厚さ2.5mmまで熱延して熱間圧延板とした。この熱間圧延板を500℃×1分の荒焼鈍を施した後、冷延パス途中の中間焼鈍無しで、加工率60%の冷間圧延を行い、厚さ1.0mmの冷延板とした。
更に、この各冷延板を、各例とも共通した条件にて、熱処理設備で調質処理(T4)した。具体的には、溶体化処理を550℃×30秒保持で行い、この際、前記溶体化処理温度までの平均加熱速度を50℃/秒とし、溶体化処理後は平均冷却速度を30℃/秒とした水冷を行うことで室温まで冷却した。また、この冷却直後に、各例とも共通して、直ちに予備時効処理を100℃で5時間保持する条件で行い、予備時効処理後は徐冷(放冷)し、T4素材板とした。
In common with each example, these ingots were subjected to soaking treatment at 540 ° C. for 6 hours, and then hot rough rolling was started at that temperature. And it hot-rolled to thickness 2.5mm by the subsequent finish rolling, and was set as the hot rolled sheet. After subjecting this hot-rolled sheet to rough annealing at 500 ° C. for 1 minute, cold rolling at a processing rate of 60% is performed without intermediate annealing in the middle of the cold-rolling pass, did.
Furthermore, each cold-rolled sheet was subjected to a tempering treatment (T4) with a heat treatment facility under the same conditions as each example. Specifically, the solution treatment is performed by holding at 550 ° C. for 30 seconds. At this time, the average heating rate up to the solution treatment temperature is 50 ° C./second, and after the solution treatment, the average cooling rate is 30 ° C./second. It cooled to room temperature by performing water cooling for 2 seconds. Immediately after this cooling, in common with each example, the preliminary aging treatment was immediately performed at 100 ° C. for 5 hours, and after the preliminary aging treatment, it was gradually cooled (cooled) to obtain a T4 material plate.
このように製造された素材板が、本発明のアルミニウム合金材例として、自動車のアウタパネルに成形されるまでに室温時効することを模擬して、前記素材板製造後(焼入れ処理後)60日間室温放置(室温時効)した後の各供試板から、長さ100mm×幅25mmの試験片を採取した。そして、この室温時効した各試験片を、自動車のアウタパネルにプレス成形されることを模擬して、引張試験により圧延方向に2%の予歪を与えた。 As an example of the aluminum alloy material of the present invention, the material plate thus manufactured simulates that it is aged at room temperature until it is formed into an outer panel of an automobile. A test piece having a length of 100 mm and a width of 25 mm was collected from each test plate after being allowed to stand (room temperature aging). Then, each test piece aged at room temperature was simulated to be press-molded on an outer panel of an automobile, and a pre-strain of 2% was given in the rolling direction by a tensile test.
この予歪を与えた試験片を、表2に示す、液温度(℃)と浸漬時間(分)の種々異なる条件にて化成処理して、素材板(素材板の製造)に起因する、試験片表面のMg量を種々調整した。
この化成処理は、前記液温度(℃)と浸漬時間(分)とが種々異なる炭酸ソーダ系脱脂浴で、前記試験片を浸漬洗浄(スターラーによる攪拌あり)して、供試材表面を、テッチングを伴う洗浄処理した。
Tests caused by the raw material plate (manufacture of raw material plate) by subjecting this pre-strained test piece to chemical conversion treatment under various conditions of liquid temperature (° C.) and immersion time (minute) shown in Table 2. Various amounts of Mg on one surface were adjusted.
In this chemical conversion treatment, the test piece is immersed and washed (with stirring by a stirrer) in a sodium carbonate-based degreasing bath in which the liquid temperature (° C.) and the immersion time (minutes) are different, and the surface of the test material is tetched. Washing process with.
この洗浄処理後に、各例とも共通して、前記自動車のアウタパネルが塗装処理されることを模擬して、室温の亜鉛系表面調整浴に1分間浸漬(スターラーによる攪拌あり)した後、35℃リン酸亜鉛浴に2分間浸漬してリン酸亜鉛処理を施した。
さらに、その後、通常の自動車用部材の塗装工程を模擬して、各例とも共通して、前記したカチオン電着塗装(厚さ20μm)を行い、表2に示す、加熱温度(℃)と加熱保持時間(分)の種々異なる条件にて、塗膜硬化処理(焼き付け硬化処理)を行った。
After this cleaning treatment, in common with each of the examples, the outer panel of the automobile was simulated to be coated, immersed in a zinc-based surface conditioning bath at room temperature for 1 minute (with stirring by a stirrer), and then rinsed at 35 ° C. It was immersed in a zinc acid bath for 2 minutes to give a zinc phosphate treatment.
Furthermore, after that, the above-mentioned cationic electrodeposition coating (thickness 20 μm) was performed in common with each example, simulating a normal automobile member coating process, and the heating temperature (° C.) and heating shown in Table 2 were performed. The coating film curing process (baking curing process) was performed under various conditions of holding time (minutes).
(Mg酸化物の平均数密度)
これら塗装後の試験片を、その表面に熱硬化型塗膜を有するアルミニウム合金材として、熱硬化型塗膜下のアルミニウム合金材表面を、前記した具体的な要領にてEPMAにより面分析した。そして、得られた、MgとOの元素の分布状態を示すカラーマップから判別される、円相当径が1μm以上のMg酸化物の平均数密度(個/mm2)を測定、算出した。
(Average number density of Mg oxide)
The test specimens after coating were subjected to surface analysis by EPMA in the specific manner described above, with the surface of the aluminum alloy material under the thermosetting coating film as an aluminum alloy material having a thermosetting coating film on the surface. Then, the average number density (pieces / mm 2 ) of Mg oxide having an equivalent circle diameter of 1 μm or more, determined from the obtained color map showing the distribution state of Mg and O elements, was measured and calculated.
(塗膜耐久性試験)
耐糸錆性試験は、前記塗装後の試験片を、各例とも共通して、塗膜に長さ50mmのクロスカット疵を入れ、塩水噴霧24時間→湿潤(湿度85%、40℃)120時間→自然乾燥(室温)24時間のサイクルを8サイクル行い、クロスカット部の片側の錆幅を測定した。
耐糸錆性の評価は、最大糸錆長さで評価し、最大糸錆長さが1mm未満のものを◎、1mm以上2mm未満のものを○、 2mm以上3mm未満のものを△、3mm以上の長さのものを×と評価して、◎および○のものを耐糸錆性に優れた材料(合格)と判断した。
(Film durability test)
In the yarn rust resistance test, the test piece after coating is common to each example, and a 50 mm long crosscut wrinkle is put in the coating film, and then sprayed with salt water for 24 hours → wet (humidity 85%, 40 ° C.) 120 Eight cycles of time → natural drying (room temperature) 24 hours were performed, and the rust width on one side of the crosscut portion was measured.
Evaluation of yarn rust resistance is based on the maximum yarn rust length. The maximum yarn rust length is less than 1 mm. ◎ 1 mm or more and less than 2 mm ○, 2 mm or more and less than 3 mm △, 3 mm or more Those with a length of 評 価 were evaluated as x, and those with ◎ and ○ were judged as materials (accepted) having excellent yarn rust resistance.
(塗膜密着性)
塗膜密着性は、JIS K5600−5−6 G 330に準拠した碁盤目試験を実施した。具体的には、前記塗装後の試験片の表面に、1mm間隔で100個のマス目ができるように、基盤目状の切り込みを入れ、当該部分にテープを貼り付け、このテープを剥離後の塗膜の残存率を観察した。
塗膜の剥離面積が10%未満のものを「〇」と評価し、剥離面積が10%超かつ20%以内であったものを「△」と評価し、剥離面積が20%を超えたものを「×」として評価し、〇と△までの評価を合格とした。
そして、以上の結果から、糸錆性が○以上、塗膜密着性が△以上で、アルミニウム合金材としての長期間使用に対して塗膜耐久性が合格と総合評価して○に、その他の場合は不合格と総合評価して×にした。
(Coating film adhesion)
The coating film adhesion was subjected to a cross-cut test based on JIS K5600-5-6G330. Specifically, in order to make 100 squares at 1 mm intervals on the surface of the test piece after painting, a base-like cut is applied, and a tape is applied to the part, and the tape is peeled off after peeling. The remaining rate of the coating film was observed.
When the peeling area of the coating film is less than 10%, it is evaluated as “◯”, and when the peeling area is more than 10% and within 20%, it is evaluated as “△”, and the peeling area exceeds 20%. Was evaluated as “×”, and the evaluations up to ◯ and △ were regarded as acceptable.
And from the above results, the yarn rust property is ◯ or more, the coating film adhesion is △ or more, and the coating film durability is comprehensively evaluated as being acceptable for long-term use as an aluminum alloy material. In the case, it was evaluated as a failure and was evaluated as x.
(引張特性)
前記室温時効後のアルミニウム合金素材と、BH後のアルミニウム合金材との機械的特性を各々調査するため、前記室温時効後に予歪を与えた試験片と、前記BH後の試験片とを、各々JISZ2201の5号試験片(25mm×50mmGL×板厚)に加工して、室温にて各々引張り試験を行った。
このときの試験片の引張り方向を圧延方向の直角方向とした。引張り速度は、0.2%耐力までは5mm/分、耐力以降は20mm/分とした。機械的特性測定のN数は5とし、各々平均値で算出した。
(Tensile properties)
In order to investigate the mechanical properties of the aluminum alloy material after aging at room temperature and the aluminum alloy material after BH, respectively, a test piece pre-strained after aging at room temperature and a test piece after BH, The specimens were processed into JISZ2201 No. 5 test pieces (25 mm × 50 mmGL × plate thickness) and subjected to tensile tests at room temperature.
The tensile direction of the test piece at this time was the direction perpendicular to the rolling direction. The tensile speed was 5 mm / min up to 0.2% proof stress and 20 mm / min after proof stress. The N number for the measurement of mechanical properties was 5, and each was calculated as an average value.
各発明例は、表1の通り、規定した範囲内の合金組成を有し、表2の通り、塗装前のアルミニウム合金材表面の化成処理液によるエッチングを伴う洗浄条件が適切であり、熱硬化処理の加熱温度や加熱時間(加熱保持時間)も適切である。
このため、表2の通り、本発明で規定するMg酸化物の平均数密度が、塗装前のアルミニウム合金材表面では予め10個/mm2未満とされた上で、熱硬化型塗膜下のアルミニウム合金材表面では、10〜1000個/mm2の範囲とされている。
この結果、各発明例は、合金元素量が高くても、表2の通り、塗膜耐久性に優れている。また、各発明例は、自動車のアウタパネルとして必要な成形性やBH後の強度を有しており、これら塗膜耐久性の向上効果を、強度を低下させること無しに達成している。
Each invention example has an alloy composition within the specified range as shown in Table 1, and as shown in Table 2, the cleaning conditions involving etching with the chemical conversion solution on the surface of the aluminum alloy material before coating are appropriate, and thermosetting The heating temperature and heating time (heating holding time) of the treatment are also appropriate.
For this reason, as shown in Table 2, the average number density of Mg oxide defined in the present invention is less than 10 pieces / mm 2 in advance on the surface of the aluminum alloy material before coating, and is below the thermosetting coating film. On the surface of the aluminum alloy material, the range is 10 to 1000 pieces / mm 2 .
As a result, each invention example is excellent in coating film durability as shown in Table 2 even when the amount of alloying elements is high. Moreover, each invention example has the moldability required as an outer panel of an automobile and the strength after BH, and achieves these coating film durability improving effects without reducing the strength.
これに対して、比較例17〜19は、表2の通り、塗装前のアルミニウム合金材表面の化成処理液によるエッチングを伴う洗浄が無いか、軽すぎるなど、洗浄条件が不適切である。このため、熱硬化処理前のアルミニウム合金材表面のMg酸化物の平均数密度が多くなり、180℃での通常の条件で熱硬化処理を施しても、熱硬化型塗膜下のアルミニウム合金材表面のMg酸化物の平均数密度が上限の1000個/mm2を超えて多すぎる。
したがって、これら比較例は、表2の通り、必要なBH後の強度を有していたとしても、塗膜耐久性に劣っており、自動車のアウタパネルとして使用できない。
On the other hand, as shown in Table 2, Comparative Examples 17 to 19 have unsuitable cleaning conditions such as no cleaning with etching with the chemical conversion solution on the surface of the aluminum alloy material before coating, or too light. For this reason, the average number density of Mg oxide on the surface of the aluminum alloy material before the thermosetting treatment is increased, and the aluminum alloy material under the thermosetting coating film even if the thermosetting treatment is performed under normal conditions at 180 ° C. The average number density of Mg oxide on the surface exceeds the upper limit of 1000 / mm 2 and is too large.
Therefore, as shown in Table 2, these comparative examples are inferior in coating film durability even if they have the necessary strength after BH, and cannot be used as an outer panel of an automobile.
比較例20、21、25は、比較のために、通常の熱硬化処理条件を敢えて外した例であり、表2の通り、熱硬化処理の加熱温度が低すぎるか、加熱時間が短すぎる。このため、これら比較例は、表2の通り、熱硬化型塗膜下のアルミニウム合金材表面のMg酸化物の平均数密度が下限の10個/mm2を下回って少なすぎる。したがって、これら比較例は、表2の通り、必要なBH後の強度を有していたとしても、塗膜耐久性に劣っており、自動車のアウタパネルとして使用できない。 Comparative examples 20, 21, and 25 are examples in which normal thermosetting treatment conditions were intentionally removed for comparison. As shown in Table 2, the heating temperature of the thermosetting treatment is too low or the heating time is too short. For this reason, as shown in Table 2, in these comparative examples, the average number density of Mg oxides on the surface of the aluminum alloy material under the thermosetting coating film is too small below the lower limit of 10 pieces / mm 2 . Therefore, as shown in Table 2, these comparative examples are inferior in coating film durability even if they have the necessary strength after BH, and cannot be used as an outer panel of an automobile.
比較例22、23、24も、比較のために、通常の熱硬化処理条件を敢えて外した例であり、表2の通り、熱硬化処理の加熱温度が高すぎる。このため、表2の通り、熱硬化型塗膜下のアルミニウム合金材表面のMg酸化物の平均数密度が上限の1000個/mm2を超えて多すぎる。したがって、これら比較例は、表2の通り、必要なBH後の強度を有していたとしても、塗膜耐久性に劣っており、自動車のアウタパネルとして使用できない。 For comparison, Comparative Examples 22, 23, and 24 are also examples in which normal thermosetting treatment conditions are intentionally removed. As shown in Table 2, the heating temperature of the thermosetting treatment is too high. For this reason, as shown in Table 2, the average number density of Mg oxides on the surface of the aluminum alloy material under the thermosetting coating film exceeds the upper limit of 1000 / mm 2 and is too much. Therefore, as shown in Table 2, these comparative examples are inferior in coating film durability even if they have the necessary strength after BH, and cannot be used as an outer panel of an automobile.
比較例26〜29は、表1の合金番号10〜13を用いており、合金組成が規定した範囲から外れる。
比較例26は、Mg含有量が低すぎる(表1の合金番号10)。このため、表2の通り、塗装前のアルミニウム合金材表面の化成処理液によるエッチングを伴う洗浄条件が適切であり、熱硬化処理の加熱温度や加熱時間が適切であっても、本発明で規定する熱硬化型塗膜下のアルミニウム合金材表面のMg酸化物の平均数密度が下限の10個/mm2を下回って少なすぎる。したがって、比較例26は、表2の通り、BH後の強度が低すぎ、塗膜耐久性にも劣っており、自動車のアウタパネルとして使用できない。
In Comparative Examples 26 to 29, alloy numbers 10 to 13 in Table 1 are used, and the alloy composition deviates from the specified range.
In Comparative Example 26, the Mg content is too low (alloy number 10 in Table 1). For this reason, as shown in Table 2, the cleaning conditions involving the etching with the chemical conversion solution on the surface of the aluminum alloy material before coating are appropriate, and even if the heating temperature and heating time of the thermosetting treatment are appropriate, the present invention defines The average number density of Mg oxides on the surface of the aluminum alloy material under the thermosetting coating film is less than the lower limit of 10 pieces / mm 2 and is too small. Therefore, as shown in Table 2, Comparative Example 26 is too low in strength after BH, is inferior in coating film durability, and cannot be used as an outer panel of an automobile.
比較例27は、表1の合金番号11の通り、Mgの含有量が多すぎる。このため、表2の通り、塗装前のアルミニウム合金材表面の化成処理液によるエッチングを伴う洗浄条件が適切であり、熱硬化処理の加熱温度や加熱時間が適切であっても、本発明で規定する熱硬化型塗膜下のアルミニウム合金材表面のMg酸化物の平均数密度が上限の1000個/mm2を超えて多すぎる。したがって、比較例27は、表2の通り、BH後の強度が高くても、塗膜耐久性に劣っており、自動車のアウタパネルとして使用できない。 In Comparative Example 27, as shown in Alloy No. 11 in Table 1, the Mg content is too large. For this reason, as shown in Table 2, the cleaning conditions involving the etching with the chemical conversion solution on the surface of the aluminum alloy material before coating are appropriate, and even if the heating temperature and heating time of the thermosetting treatment are appropriate, the present invention defines The average number density of Mg oxides on the surface of the aluminum alloy material under the thermosetting coating film is too high , exceeding the upper limit of 1000 / mm 2 . Therefore, as shown in Table 2, Comparative Example 27 is inferior in coating film durability even when the strength after BH is high, and cannot be used as an outer panel of an automobile.
比較例28、29は、表1の合金番号12、13の通り、Si、Cuの含有量が多すぎる。
このため、これら比較例は、表2の通り、塗装前のアルミニウム合金材表面の化成処理液によるエッチングを伴う洗浄条件が適切であり、熱硬化処理の加熱温度や加熱時間が適切であり、本発明で規定する熱硬化型塗膜下のMg酸化物の平均数密度を満足したとしても、塗膜耐久性に劣っている。
In Comparative Examples 28 and 29, as shown in Alloy Nos. 12 and 13 in Table 1, the contents of Si and Cu are too large.
Therefore, in these comparative examples, as shown in Table 2, the cleaning conditions involving etching with the chemical conversion solution on the surface of the aluminum alloy material before coating are appropriate, the heating temperature and heating time of the thermosetting treatment are appropriate, Even when the average number density of Mg oxide under the thermosetting coating film defined in the invention is satisfied, the coating film durability is poor.
以上の実施例の結果から、本発明で規定する要件の、室温時効後のBH性を阻害せずに、塗膜耐久性を向上できる意義が裏付けられる。 From the results of the above examples, the significance of improving the coating film durability without impairing the BH property after aging at room temperature, which is a requirement defined in the present invention, is supported.
本発明によれば、室温時効後のBH性、あるいは成形性を阻害せずに、塗膜耐久性を向上できる6000系アルミニウム合金材およびその製造方法を提供できる。この結果、自動車のアウタパネルなど、特に塗膜耐久性や外観が問題となる6000系アルミニウム合金材用途に好適である。 ADVANTAGE OF THE INVENTION According to this invention, the 6000 series aluminum alloy material which can improve coating-film durability, and its manufacturing method can be provided, without inhibiting BH property after room temperature aging, or a moldability. As a result, it is suitable for 6000 series aluminum alloy materials where the durability and appearance of the coating film are particularly problematic, such as an outer panel of an automobile.
Claims (7)
The durability of the thermosetting coating film according to any one of claims 4 to 6, wherein the Al-Mg-Si aluminum alloy material is an automobile member, and the coating of the thermosetting paint is electrodeposition coating. A method for producing an aluminum alloy material excellent in quality.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016068119A JP2017179470A (en) | 2016-03-30 | 2016-03-30 | Aluminum alloy material excellent in durability of thermosetting coated film and manufacturing method therefor |
PCT/JP2017/011880 WO2017170181A1 (en) | 2016-03-30 | 2017-03-23 | Aluminum alloy material with heat-cured coating having excellent durability and production method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016068119A JP2017179470A (en) | 2016-03-30 | 2016-03-30 | Aluminum alloy material excellent in durability of thermosetting coated film and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017179470A true JP2017179470A (en) | 2017-10-05 |
Family
ID=59965564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016068119A Pending JP2017179470A (en) | 2016-03-30 | 2016-03-30 | Aluminum alloy material excellent in durability of thermosetting coated film and manufacturing method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017179470A (en) |
WO (1) | WO2017170181A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022036826A (en) * | 2020-08-24 | 2022-03-08 | 株式会社神戸製鋼所 | Al-Mg-Si BASED ALUMINUM ALLOY PLATE HAVING EXCELLENT FORMABILITY |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114790520A (en) * | 2022-02-18 | 2022-07-26 | 深圳市达铖铝业有限公司 | Energy-saving high-light-reflection composite aluminum material and manufacturing method thereof |
CN118308619B (en) * | 2024-04-09 | 2024-10-22 | 常州工学院 | Corrosion-resistant aluminum alloy material and preparation process thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0759755B2 (en) * | 1988-05-02 | 1995-06-28 | スカイアルミニウム株式会社 | Method for manufacturing A-l alloy coated plate for automobiles having excellent system rust resistance |
JP3490021B2 (en) * | 1998-09-08 | 2004-01-26 | 日本パーカライジング株式会社 | Alkaline degreasing solution for metal material and method of using the same |
-
2016
- 2016-03-30 JP JP2016068119A patent/JP2017179470A/en active Pending
-
2017
- 2017-03-23 WO PCT/JP2017/011880 patent/WO2017170181A1/en active Application Filing
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022036826A (en) * | 2020-08-24 | 2022-03-08 | 株式会社神戸製鋼所 | Al-Mg-Si BASED ALUMINUM ALLOY PLATE HAVING EXCELLENT FORMABILITY |
JP7473423B2 (en) | 2020-08-24 | 2024-04-23 | 株式会社神戸製鋼所 | Al-Mg-Si aluminum alloy plate with excellent formability |
US12054810B2 (en) | 2020-08-24 | 2024-08-06 | Kobe Steel, Ltd. | Al—Mg—Si-based aluminum alloy sheet excellent in formability |
Also Published As
Publication number | Publication date |
---|---|
WO2017170181A1 (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7321828B2 (en) | High-strength 6xxx aluminum alloy and method for making same | |
JP5728580B2 (en) | Aluminum alloy plate and method for producing aluminum alloy plate | |
WO2016140335A1 (en) | Aluminum alloy plate | |
JP5406745B2 (en) | Aluminum alloy sheet with excellent ridging marks during molding | |
JP6224549B2 (en) | Aluminum alloy plate with excellent rust resistance | |
JP6457193B2 (en) | Aluminum alloy material and bonded body with excellent adhesion durability, or automobile parts | |
WO2017170181A1 (en) | Aluminum alloy material with heat-cured coating having excellent durability and production method therefor | |
JP3802695B2 (en) | Aluminum alloy plate with excellent press formability and hemmability | |
JP2019026897A (en) | Aluminum alloy sheet for structural member, and manufacturing method of aluminum alloy structural member | |
JP2000129382A (en) | Aluminum alloy clad plate for forming, excellent in filiform corrosion resistance | |
JP3833574B2 (en) | Aluminum alloy sheet with excellent bending workability and press formability | |
JP4171141B2 (en) | Aluminum alloy material with excellent yarn rust resistance | |
JP3740086B2 (en) | A method for producing an aluminum alloy plate that is excellent in hemmability after aging at room temperature and is hemmed after stretch forming | |
WO2016031941A1 (en) | Aluminum alloy sheet | |
JP6585436B2 (en) | Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof | |
JP6306123B2 (en) | Aluminum alloy plate and method for producing aluminum alloy plate | |
WO2017170835A1 (en) | Aluminum alloy sheet and aluminum alloy sheet manufacturing method | |
JP6290042B2 (en) | Aluminum alloy material and bonded body with excellent adhesion durability, or automobile parts | |
JP4386393B2 (en) | Aluminum alloy sheet for transport aircraft with excellent corrosion resistance | |
JP2000239778A (en) | Aluminum alloy material excellent in chemical convertibility | |
JP3766334B2 (en) | Aluminum alloy plate with excellent bending workability | |
JP3781097B2 (en) | Aluminum alloy plate for automobile and manufacturing method thereof | |
JPH1060567A (en) | Aluminum alloy sheet excellent in formability, baking hardening and corrosion resistance and its production | |
JP2000355724A (en) | Aluminum alloy sheet for press forming | |
JP2000313932A (en) | Aluminum alloy sheet for coating excellent in filiform corrosion resistance |