JP2017177152A - Laser light shielding material - Google Patents

Laser light shielding material Download PDF

Info

Publication number
JP2017177152A
JP2017177152A JP2016067046A JP2016067046A JP2017177152A JP 2017177152 A JP2017177152 A JP 2017177152A JP 2016067046 A JP2016067046 A JP 2016067046A JP 2016067046 A JP2016067046 A JP 2016067046A JP 2017177152 A JP2017177152 A JP 2017177152A
Authority
JP
Japan
Prior art keywords
laser light
laser
shielding material
light shielding
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016067046A
Other languages
Japanese (ja)
Other versions
JP6961326B2 (en
Inventor
崇 茅原
Takashi Kayahara
崇 茅原
晃 藤崎
Akira Fujisaki
晃 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2016067046A priority Critical patent/JP6961326B2/en
Publication of JP2017177152A publication Critical patent/JP2017177152A/en
Application granted granted Critical
Publication of JP6961326B2 publication Critical patent/JP6961326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser light shielding material that shows high shieldability to laser light with a short wavelength and high output, and yet has excellent portability, moldability and processability.SOLUTION: A shielding cover 6 as a laser light shielding material is constituted to include a carbon fiber-reinforced plastic having pitch-based carbon fibers oriented in at least one direction. Preferably a thickness of the shielding cover 6 is 0.5 mm or more and 10 mm or less.SELECTED DRAWING: Figure 1

Description

本発明は、レーザ光を遮蔽するレーザ光遮蔽材に関する。   The present invention relates to a laser light shielding material that shields laser light.

従来から、産業用レーザ分野において、レーザ機器の管理・作業区域外にレーザ光が漏洩するのを防止可能なレーザ光遮蔽材が開発されている。レーザ光遮蔽材を用いた製品形態として、例えば、フィルム、カーテン、パネル、パーティション、キャビン(小部屋)が挙げられる。   Conventionally, in the industrial laser field, a laser light shielding material capable of preventing laser light from leaking outside the management / working area of a laser device has been developed. Examples of the product form using the laser light shielding material include a film, a curtain, a panel, a partition, and a cabin (small room).

特許文献1では、複数枚の遮蔽パネルを隙間が生じることなく連結したパーティションが提案されている。そして、遮蔽パネルは、例えば、厚さ2mm程度のアルミニウム、又は黒アルマイトから形成される旨の記載がある。   In Patent Document 1, a partition in which a plurality of shielding panels are connected without causing a gap is proposed. There is a description that the shielding panel is formed of, for example, aluminum having a thickness of about 2 mm or black alumite.

特開2009−233726号公報([0008]、[0022]、図2等)JP 2009-233726 A ([0008], [0022], FIG. 2 etc.)

近時、レーザ技術の進展に伴い、短波長かつ高出力のレーザ光を照射可能になりつつある。具体的には、ファイバレーザにおけるレーザ波長は約1μmであり、炭酸ガスレーザの場合(約10μm)と比べてかなり短い。つまり、この種のレーザ光を用いることで、ワークに対する加工性が向上する一方、その分だけ高い遮蔽性を有するレーザ光遮蔽材を導入する必要が生じる。   Recently, with the progress of laser technology, it is becoming possible to irradiate laser light with a short wavelength and high output. Specifically, the laser wavelength of the fiber laser is about 1 μm, which is considerably shorter than that of the carbon dioxide laser (about 10 μm). That is, by using this type of laser light, the workability on the workpiece is improved, but it is necessary to introduce a laser light shielding material having a higher shielding property.

ところが、特許文献1に記載されたパーティション、具体的には厚さ2mmのアルミニウムに対して波長が約1μmの高出力レーザ光を照射する場合、ごく僅かな時間(例えば数秒)で貫通してしまう。つまり、現在のレーザ技術の水準を考慮すると、レーザ機器の使用状況によっては、遮蔽性に関する要求仕様を満たさない可能性もある。   However, when a high-power laser beam having a wavelength of about 1 μm is irradiated on the partition described in Patent Document 1, specifically, aluminum having a thickness of 2 mm, it penetrates in a very short time (for example, several seconds). . In other words, taking into account the current level of laser technology, there is a possibility that the required specifications related to shielding are not satisfied, depending on the usage status of the laser equipment.

この対応策の1つとして、アルミニウムと比べてレーザ光の遮蔽性が高い材料(具体的には、鉄又はコンクリート)を採用することが考えられる。しかし、一般的に知られている遮蔽性の材料は比重が大きいため、面積及び厚みの増加に応じて重量が急激に増し、その分だけ可搬性が低下するという問題がある。   As one of countermeasures, it is conceivable to employ a material (specifically, iron or concrete) that has a higher shielding property against laser light than aluminum. However, since the generally known shielding material has a large specific gravity, there is a problem that the weight rapidly increases as the area and thickness increase, and the portability decreases accordingly.

本発明は、上述した課題に鑑みてなされたものであり、短波長かつ高出力のレーザ光に対して高い遮蔽性を有し、しかも可搬性、成形性及び加工性に優れたレーザ光遮蔽材を提供することを目的とする。   The present invention has been made in view of the above-described problems, and has a high shielding property against laser light having a short wavelength and a high output, and is excellent in portability, moldability, and workability. The purpose is to provide.

本発明に係る「レーザ光遮蔽材」は、ピッチ系炭素繊維が少なくとも一方向に配向された炭素繊維強化プラスチックを含んで構成される。ピッチ系炭素繊維が少なくとも一方向に配向された炭素繊維強化プラスチックは、一般的に知られている遮蔽性の材料と比べて、熱伝導率が高く、しかも耐熱性が高い材料である。つまり、短波長かつ高出力のレーザ光が照射された場合であっても、照射部位の溶融・流出が顕著に抑制される。更に、この炭素繊維強化プラスチックは、一般的な遮蔽性の材料と比べて比重が小さいため軽量であり、しかも任意の形状に成形又は加工し易いという利点もある。これにより、短波長かつ高出力のレーザ光に対して高い遮蔽性を有し、しかも可搬性、成形性及び加工性に優れたレーザ光遮蔽材を提供できる。   The “laser light shielding material” according to the present invention includes a carbon fiber reinforced plastic in which pitch-based carbon fibers are oriented in at least one direction. A carbon fiber reinforced plastic in which pitch-based carbon fibers are oriented in at least one direction is a material having a higher thermal conductivity and a higher heat resistance than a generally known shielding material. That is, even when laser light having a short wavelength and high output is irradiated, melting / outflow of the irradiated portion is remarkably suppressed. Furthermore, this carbon fiber reinforced plastic is light in weight because it has a smaller specific gravity than a general shielding material, and has the advantage of being easily molded or processed into an arbitrary shape. Thereby, it is possible to provide a laser light shielding material having a high shielding property against laser light having a short wavelength and a high output, and having excellent portability, moldability and workability.

また、厚さが0.5mm以上であることが好ましく、厚さが3mm以上であることが更に好ましい。これにより、短波長かつ高出力のレーザ光に対して十分に高い遮蔽性を確保できる。   The thickness is preferably 0.5 mm or more, and more preferably 3 mm or more. As a result, a sufficiently high shielding property against a short wavelength and high output laser beam can be secured.

また、厚さが10mm以下であることが好ましい。一般的には炭素繊維強化プラスチックは高価な材料であるため、この使用量を減らすことでレーザ光遮蔽材の製造コストの高騰を抑制できる。   Moreover, it is preferable that thickness is 10 mm or less. In general, since carbon fiber reinforced plastic is an expensive material, an increase in the manufacturing cost of the laser light shielding material can be suppressed by reducing this amount of use.

また、前記ピッチ系炭素繊維は、等角度間隔にて複数の方向に配向されることが好ましい。炭素繊維の長さ方向(すなわち、放射方向)に沿って熱伝導が生じるので、その分だけ放熱性が高まる。照射部位及びその近傍の排熱効果によって遮蔽材の溶融・流出が抑制されるため、レーザ光の遮蔽性を維持できる。   The pitch-based carbon fibers are preferably oriented in a plurality of directions at equal angular intervals. Since heat conduction occurs along the length direction (that is, the radial direction) of the carbon fiber, the heat dissipation performance is increased accordingly. Since the shielding material is prevented from melting and flowing out by the exhaust heat effect at and near the irradiated portion, the shielding property of the laser beam can be maintained.

また、レーザ光を遮蔽する遮蔽面は、1次元的又は2次元的に周期性のある凹凸が形成された表面形状を有することが好ましい。遮蔽面の上に周期性のある凹凸を設けることで表面積が略均等に増加し、その分だけレーザ光のエネルギー密度(単位面積当たりのエネルギー量)が低下する。これにより、照射位置にかかわらずレーザ光に対する遮蔽性が更に高まる。   Moreover, it is preferable that the shielding surface which shields a laser beam has the surface shape in which the unevenness | corrugation which has a one-dimensional or two-dimensional periodicity was formed. By providing periodic irregularities on the shielding surface, the surface area increases substantially uniformly, and the energy density of the laser beam (the amount of energy per unit area) decreases accordingly. Thereby, the shielding property against the laser light is further enhanced regardless of the irradiation position.

また、前記凹凸の高低差は、前記凹凸の幅よりも小さいことが好ましい。高低差を相対的に小さくすることで、凹凸での発熱をその近傍部位に逃がし易くなるので、凹凸の表面近傍での溶融・変形が生じ難くなる。その結果、上記したエネルギー密度の低下効果がそのまま維持され易くなる。   Moreover, it is preferable that the height difference of the unevenness is smaller than the width of the unevenness. By making the height difference relatively small, it becomes easy for heat generated by the unevenness to escape to the vicinity thereof, so that melting / deformation near the surface of the unevenness is difficult to occur. As a result, the energy density reduction effect described above is easily maintained as it is.

また、ファイバレーザによるレーザ光を遮蔽することが好ましい。ファイバレーザを用いることで短波長かつ高出力のレーザ光を照射可能であるため、上記した遮蔽性の効果が顕著に現われる。   Moreover, it is preferable to shield the laser beam by a fiber laser. By using a fiber laser, it is possible to irradiate a laser beam having a short wavelength and a high output, and thus the above-described shielding effect appears remarkably.

本発明によれば、短波長かつ高出力のレーザ光に対して高い遮蔽性を有し、しかも可搬性、成形性及び加工性に優れたレーザ光遮蔽材を提供できる。   According to the present invention, it is possible to provide a laser light shielding material that has high shielding properties against laser light having a short wavelength and high output, and that is excellent in portability, moldability, and workability.

この実施形態に係るレーザ光遮蔽材を組み込んだレーザ加工システムの全体構成図である。It is a whole block diagram of the laser processing system incorporating the laser beam shielding material according to this embodiment. 図2(A)〜(D)は、図1に示す遮蔽カバーの部分拡大断面図である。2A to 2D are partial enlarged cross-sectional views of the shielding cover shown in FIG.

[レーザ光遮蔽材の特徴]
この実施形態に係るレーザ光遮蔽材は、レーザ機器の管理・作業区域外にレーザ光が漏洩するのを防止する部材である。レーザ光遮蔽材を用いた製品形態として、例えば、フィルム、カーテン、ケース、パネル、パーティション、キャビン、セルの他、後述する遮蔽カバー6(図1)が挙げられる。また、このレーザ光遮蔽材は、単なる遮蔽機能からなる受動的システムに組み込まれてもよいし、レーザ照射への対処動作(例えば、検知、停止、報知)を実行する能動的システムに組み込まれてもよい。
[Characteristics of laser light shielding material]
The laser light shielding material according to this embodiment is a member that prevents the laser light from leaking outside the management / work area of the laser device. Examples of the product form using the laser light shielding material include a film, curtain, case, panel, partition, cabin, cell, and shielding cover 6 (FIG. 1) described later. Further, the laser light shielding material may be incorporated in a passive system having a simple shielding function, or incorporated in an active system that performs an operation to cope with laser irradiation (for example, detection, stop, and notification). Also good.

レーザの種類として、媒体の観点から、固体レーザ、ファイバレーザ、自由電子レーザ、化学レーザ、ガスレーザ、半導体レーザ、液体レーザ等が挙げられる。また、波長の観点から、赤外線レーザ、可視光線レーザ、紫外線レーザ等が挙げられる。   Examples of laser types include solid-state lasers, fiber lasers, free electron lasers, chemical lasers, gas lasers, semiconductor lasers, and liquid lasers from the viewpoint of the medium. Further, from the viewpoint of wavelength, an infrared laser, a visible light laser, an ultraviolet laser, and the like can be given.

この実施形態に係るレーザ光遮蔽材は、ピッチ系炭素繊維が少なくとも一方向に配向された炭素繊維強化プラスチック(以下、「ピッチ系CFRP」ともいう)を含んで構成される。このピッチ系CFRPは、一般的に知られている遮蔽性の材料と比べて、熱伝導率が高く、しかも耐熱性が高い材料である。つまり、短波長かつ高出力のレーザ光が照射された場合であっても、照射部位の溶融・流出が顕著に抑制される。更に、この炭素繊維強化プラスチックは、一般的な遮蔽性の材料と比べて比重が小さいため軽量であり、しかも任意の形状に成形又は加工し易いという利点もある。これにより、短波長かつ高出力のレーザ光に対して高い遮蔽性を有し、しかも可搬性、成形性及び加工性に優れたレーザ光遮蔽材を提供できる。   The laser light shielding material according to this embodiment includes a carbon fiber reinforced plastic (hereinafter also referred to as “pitch CFRP”) in which pitch carbon fibers are oriented in at least one direction. This pitch-based CFRP is a material having high thermal conductivity and high heat resistance as compared with a generally known shielding material. That is, even when laser light having a short wavelength and high output is irradiated, melting / outflow of the irradiated portion is remarkably suppressed. Furthermore, this carbon fiber reinforced plastic is light in weight because it has a smaller specific gravity than a general shielding material, and has the advantage of being easily molded or processed into an arbitrary shape. Thereby, it is possible to provide a laser light shielding material having a high shielding property against laser light having a short wavelength and a high output, and having excellent portability, moldability and workability.

特に、このレーザ光遮蔽材は、ファイバレーザによるレーザ光を遮蔽する目的で使用される。なぜならば、ファイバレーザを用いることで短波長かつ高出力のレーザ光を照射可能であるため、上記した遮蔽性の効果が顕著に現われるからである。   In particular, this laser light shielding material is used for the purpose of shielding laser light from a fiber laser. This is because, by using a fiber laser, it is possible to irradiate laser light having a short wavelength and high output, and thus the above-described shielding effect appears remarkably.

レーザ光遮蔽材の面積又は厚さは、任意に設計可能であるが、より好ましい厚さの下限値は0.5mm、1.5mm、3mm、或いは4mmであり、厚さの上限値は10mm、8mm、或いは6mmである。0.5mm以上の厚さを設けることで、短波長かつ高出力のレーザ光に対して十分に高い遮蔽性を確保できる。また、一般的には炭素繊維強化プラスチックは高価な材料であるため、10mm以下の厚さに設けて使用量を減らすことでレーザ光遮蔽材の製造コストの高騰を抑制できる。   The area or thickness of the laser light shielding material can be arbitrarily designed, but the more preferable lower limit of the thickness is 0.5 mm, 1.5 mm, 3 mm, or 4 mm, and the upper limit of the thickness is 10 mm. It is 8 mm or 6 mm. By providing a thickness of 0.5 mm or more, it is possible to ensure a sufficiently high shielding property against laser light having a short wavelength and high output. In general, since carbon fiber reinforced plastic is an expensive material, it is possible to suppress an increase in the manufacturing cost of the laser light shielding material by reducing the amount of use by providing a thickness of 10 mm or less.

ピッチ系炭素繊維が二方向に配向される場合、配向角度は0度及び90度(公差は、概ね±5度)であることが好ましい。或いは、ピッチ系炭素繊維が四方向に配向される場合、配向角度は0度、45度、90度、及び135度(公差は、概ね±5度)であることが好ましい。このように、ピッチ系炭素繊維を等角度間隔にて複数の方向に配向することで、炭素繊維の長さ方向(すなわち、放射方向)に沿って熱伝導が生じ、その分だけ放熱性が高まる。照射部位及びその近傍の排熱効果によって遮蔽材の溶融・流出が抑制されるため、レーザ光の遮蔽性を維持できる。   When pitch-based carbon fibers are oriented in two directions, the orientation angles are preferably 0 degrees and 90 degrees (tolerance is approximately ± 5 degrees). Alternatively, when the pitch-based carbon fibers are oriented in four directions, the orientation angles are preferably 0 degrees, 45 degrees, 90 degrees, and 135 degrees (tolerance is approximately ± 5 degrees). As described above, by orienting the pitch-based carbon fibers in a plurality of directions at equal angular intervals, heat conduction occurs along the length direction (that is, the radial direction) of the carbon fibers, and the heat dissipation increases accordingly. . Since the shielding material is prevented from melting and flowing out by the exhaust heat effect at and near the irradiated portion, the shielding property of the laser beam can be maintained.

このレーザ光遮蔽材は上記した特徴を有するので、次に示す仮想的な要求仕様、具体的には現在のレーザ技術の水準を考慮した要求仕様を満たすことができる。
・レーザ出力:5kW
・レーザ波長:1μm前後
・スポット径:30mmφ
・照射時間 :50s以上(より好ましくは、100s以上)
Since this laser light shielding material has the above-described characteristics, it can satisfy the following virtual requirement specifications, specifically, the requirement specification considering the current level of laser technology.
・ Laser output: 5kW
・ Laser wavelength: around 1 μm ・ Spot diameter: 30 mmφ
・ Irradiation time: 50 s or more (more preferably, 100 s or more)

[レーザ光遮蔽材の適用例]
図1は、この実施形態に係るレーザ光遮蔽材を組み込んだレーザ加工システム1の全体構成図である。レーザ加工システム1は、作業台Sの上にある金属(例えば、銅、アルミニウム)等のワークWを加工するシステムである。レーザ加工システム1は、基本的には、レーザ光Lを生成するファイバレーザ装置2、レーザ光Lを出力するレーザ加工ヘッド3、及び、ファイバレーザ装置2とレーザ加工ヘッド3を光学的に接続する光ファイバケーブル4を備える。
[Application example of laser light shielding material]
FIG. 1 is an overall configuration diagram of a laser processing system 1 incorporating a laser light shielding material according to this embodiment. The laser processing system 1 is a system for processing a workpiece W such as metal (for example, copper, aluminum) on the work table S. The laser processing system 1 basically includes a fiber laser device 2 that generates laser light L, a laser processing head 3 that outputs laser light L, and an optical connection between the fiber laser device 2 and the laser processing head 3. An optical fiber cable 4 is provided.

レーザ加工ヘッド3の先端部5は、ワークWの主面に臨む位置・姿勢下に配置されている。また、レーザ加工ヘッド3には、ラッパ形状の遮蔽カバー6(レーザ光遮蔽材)が先端部5の全体を覆う位置に取り付けられている。つまり、遮蔽カバー6は、ワークW又は作業台Sから反射されたレーザ光Lの戻り成分を遮蔽面7にて遮蔽し、レーザ光Lが管理・作業区域外に漏洩するのを防止する機能を果たす。   The tip portion 5 of the laser processing head 3 is disposed under a position / attitude facing the main surface of the workpiece W. Further, a trumpet-shaped shielding cover 6 (laser light shielding material) is attached to the laser processing head 3 at a position covering the entire front end portion 5. That is, the shielding cover 6 functions to shield the return component of the laser light L reflected from the workpiece W or the work table S with the shielding surface 7 and prevent the laser light L from leaking outside the management / working area. Fulfill.

例えば、図示しない可動アームにレーザ加工ヘッド3を把持させて作業を行う際、レーザ光Lの照射方向が変更可能であるため、想定されない状況下にてレーザ光Lが漏洩する可能性が高まる。この場合、レーザ光Lの遮蔽性が高く、小サイズでかつ軽量の遮蔽カバー6を、レーザ加工ヘッド3の先端部5に取り付けることができる。これと併せて又はこれとは別に、ワークWの周辺に同様の遮蔽カバーを設けてもよい。   For example, when the work is performed with the laser processing head 3 held by a movable arm (not shown), the irradiation direction of the laser light L can be changed, so that the possibility of the laser light L leaking under an unforeseen situation increases. In this case, a shielding cover 6 having a high shielding property for the laser light L, a small size and a light weight can be attached to the tip portion 5 of the laser processing head 3. In addition to or separately from this, a similar shielding cover may be provided around the workpiece W.

遮蔽カバー6の遮蔽面7は、平坦な表面形状を有してもよいし、1次元的又は2次元的に周期性のある凹凸が形成された表面形状を有してもよい。特に、遮蔽面7の上に周期性のある凹凸を設けることで表面積が略均等に増加し、その分だけレーザ光Lのエネルギー密度(単位面積当たりのエネルギー量)が低下する。これにより、照射位置にかかわらずレーザ光Lに対する遮蔽性が更に高まる。   The shielding surface 7 of the shielding cover 6 may have a flat surface shape, or may have a surface shape on which irregularities having periodicity in one or two dimensions are formed. In particular, by providing irregularities with periodicity on the shielding surface 7, the surface area increases substantially uniformly, and the energy density (energy amount per unit area) of the laser light L decreases accordingly. Thereby, the shielding property with respect to the laser beam L is further enhanced regardless of the irradiation position.

図2は、図1に示す遮蔽カバー6の部分拡大断面図である。より詳しくは、図2(A)〜(D)は、遮蔽面7a〜7dにおける表面形状の形態例をそれぞれ示す。図2(A)〜(C)では、平板状基体の一方の主面に対して凹凸処理を施しており、図2(D)では、平板状基体の全体に対して凹凸処理を施している。なお、表面形状は、本図に示す例に限られることなく、任意の凹凸形状を採用してもよい。   FIG. 2 is a partially enlarged cross-sectional view of the shielding cover 6 shown in FIG. More specifically, FIGS. 2A to 2D show examples of surface shapes on the shielding surfaces 7a to 7d, respectively. In FIGS. 2A to 2C, an uneven surface treatment is applied to one main surface of the flat substrate, and in FIG. 2D, an uneven surface treatment is applied to the entire flat substrate. . The surface shape is not limited to the example shown in the figure, and any irregular shape may be adopted.

図2(A)に示す遮蔽面7aには、幅がWでありかつ高低差がHである、矩形状の凹部(又は凸部)が形成されている。図2(B)に示す遮蔽面7bには、幅がWでありかつ高低差がHである、三角形状の凸部(又は凹部)が形成されている。図2(C)に示す遮蔽面7cには、幅がWでありかつ高低差がHである、半球状の凹部が形成されている。図2(D)に示す遮蔽面7dには、幅がWでありかつ高低差がHである、正弦波状の凹部が形成されている。   A rectangular concave portion (or convex portion) having a width of W and a height difference of H is formed on the shielding surface 7a illustrated in FIG. On the shielding surface 7b shown in FIG. 2B, triangular convex portions (or concave portions) having a width W and a height difference H are formed. On the shielding surface 7c shown in FIG. 2C, a hemispherical recess having a width W and a height difference H is formed. On the shielding surface 7d shown in FIG. 2D, a sinusoidal recess having a width W and a height difference H is formed.

なお、遮蔽面7a〜7dは、照射部位の溶融・流出を抑制する効果が得られる表面形状を有している。具体的には、幅W及び高低差Hはいずれも、レーザ光Lの波長(ファイバレーザでは約1μm、炭酸ガスレーザでは約10μm)よりも大きく、かつ10mm(レーザ光Lのスポット径と同じ程度)より小さいことが好ましい。   In addition, the shielding surfaces 7a to 7d have a surface shape capable of obtaining an effect of suppressing melting / outflow of the irradiated portion. Specifically, the width W and the height difference H are both larger than the wavelength of the laser beam L (about 1 μm for the fiber laser and about 10 μm for the carbon dioxide laser) and 10 mm (approximately the same as the spot diameter of the laser beam L). Preferably it is smaller.

また、凹凸の高低差Hは、凹凸の幅Wよりも小さく設けられてもよい。高低差Hを相対的に小さくすることで、凹凸での発熱をその近傍部位に逃がし易くなるので、凹凸の表面近傍での溶融・変形が生じ難くなる。その結果、上記したエネルギー密度の低下効果がそのまま維持され易くなる。   Further, the height difference H of the unevenness may be provided smaller than the width W of the unevenness. By making the height difference H relatively small, heat generated by the unevenness can be easily released to the vicinity thereof, so that melting and deformation near the surface of the unevenness are hardly caused. As a result, the energy density reduction effect described above is easily maintained as it is.

[レーザ光遮蔽材の製造方法]
この実施形態に係るレーザ光遮蔽材は、上記した構造的特徴又は物理的特徴を有する。続いて、この実施形態に係るレーザ光遮蔽材の製造方法について説明する。
[Laser light shielding material manufacturing method]
The laser light shielding material according to this embodiment has the above-described structural characteristics or physical characteristics. Then, the manufacturing method of the laser beam shielding material which concerns on this embodiment is demonstrated.

<ピッチ系炭素繊維>
ピッチ系炭素繊維の原料としては、例えば、ナフタレン又はフェナントレンを含む縮合多環炭化水素化合物、石油系ピッチ又は石炭系ピッチを含む縮合複素環化合物が挙げられる。これらは、1種を単独で用いても、2種以上を適宜組み合わせて用いてもよい。特に異方性ピッチ系に関し、炭素繊維の密度は1.7〜2.2g/cmであり、繊維形状は等方性ピッチ系と比べて長くなっている。
<Pitch-based carbon fiber>
Examples of the raw material for the pitch-based carbon fiber include a condensed polycyclic hydrocarbon compound containing naphthalene or phenanthrene, a condensed heterocyclic compound containing petroleum-based pitch or coal-based pitch. These may be used individually by 1 type, or may be used in combination of 2 or more types as appropriate. Particularly regarding the anisotropic pitch system, the density of the carbon fiber is 1.7 to 2.2 g / cm 3 , and the fiber shape is longer than that of the isotropic pitch system.

<プリプレグ>
プリプレグは、ピッチ系炭素繊維にマトリクス樹脂を含浸させ、シート状にした成形用中間材料である。プリプレグの種類は、一方向プリプレグ、クロスプリプレグ、又は織物プリプレグのいずれでもよい。「一方向プリプレグ」とは、ピッチ系炭素繊維が一方向に配向されるプリプレグである。「クロスプリプレグ」とは、ピッチ系炭素繊維が複数の方向に配向されるプリプレグである。「織物プリプレグ」とは、ピッチ系炭素繊維が平織り、綾織り、或いは朱子織りされたプリプレグである。
<Prepreg>
A prepreg is an intermediate material for molding formed by impregnating pitch-based carbon fibers with a matrix resin to form a sheet. The type of prepreg may be any of a unidirectional prepreg, a cross prepreg, and a woven prepreg. “One-way prepreg” is a prepreg in which pitch-based carbon fibers are oriented in one direction. The “cross prepreg” is a prepreg in which pitch-based carbon fibers are oriented in a plurality of directions. The “woven fabric prepreg” is a prepreg in which pitch-based carbon fibers are plain-woven, twill-woven, or satin-woven.

プリプレグに用いられるマトリクス樹脂として、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂等が挙げられる。例えば、マトリクス樹脂がエポキシ樹脂組成物である場合、エポキシ樹脂成分と硬化剤成分、その他の成分から構成される。   Examples of the matrix resin used for the prepreg include an epoxy resin, an unsaturated polyester resin, a phenol resin, and a polyimide resin. For example, when the matrix resin is an epoxy resin composition, it is composed of an epoxy resin component, a curing agent component, and other components.

エポキシ樹脂成分の具体例としては、ポリオールから得られるグリシジルエーテル、活性水素を複数個有するアミンより得られるグリシジルアミン、ポリカルボン酸より得られるグリシジルエステル、分子内に複数の2重結合を有する化合物を酸化して得られるポリエポキシド等が挙げられる。例えば、[1]ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂等のビスフェノール型エポキシ樹脂、[2]フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、[3]テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、テトラグリシジルキシレンジアミンのようなグリシジルアミン型エポキシ樹脂、或いは[4]これらの組み合わせが好適に用いられる。   Specific examples of the epoxy resin component include a glycidyl ether obtained from a polyol, a glycidyl amine obtained from an amine having a plurality of active hydrogens, a glycidyl ester obtained from a polycarboxylic acid, and a compound having a plurality of double bonds in the molecule. Examples include polyepoxide obtained by oxidation. For example, [1] bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A type epoxy resin, [2] phenol novolac type epoxy resin, cresol novolac type epoxy A novolak-type epoxy resin such as a resin, [3] glycidylamine-type epoxy resin such as tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, tetraglycidylxylenediamine, or [4] a combination thereof is preferably used.

硬化剤成分として、エポキシ基と反応し得る活性基を有する化合物が用いられる。例えば、アミン系硬化剤として、[1]エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ヘキサメチレンジアミン、m−キシリレンジアミンのような脂肪族アミン類、[2]メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジエチルジフェニルメタン、ジアミノジエチルジフェニルスルホン等の芳香族アミン類、[3]ベンジルジメチルアミン、テトラメチルグアニジン、2,4,6−トリス(ジメチルアミノメチル)フェノール等の第3アミン類、[4]ジシアンジアミドのような塩基性活性水素化合物、[5]アジピン酸ジヒドラジド等の有機酸ジヒドラジド、[6]2−メチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類、が挙げられる。   As the curing agent component, a compound having an active group capable of reacting with an epoxy group is used. For example, as an amine-based curing agent, [1] aliphatic amines such as ethylenediamine, diethylenetriamine, triethylenetetramine, hexamethylenediamine, m-xylylenediamine, [2] metaphenylenediamine, diaminodiphenylmethane, diaminodiethyldiphenylmethane, Aromatic amines such as diaminodiethyldiphenylsulfone, tertiary amines such as [3] benzyldimethylamine, tetramethylguanidine, 2,4,6-tris (dimethylaminomethyl) phenol, bases such as [4] dicyandiamide Active hydrogen compounds, [5] organic acid dihydrazides such as adipic acid dihydrazide, and [6] imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole.

なお、各種成分を選択し又は添加することで、完成品のレーザ光遮蔽材に対して、難燃性、低吸光性、発煙性(低発煙性或いは高発煙性)の機能を付与してもよい。   In addition, by selecting or adding various components, the finished laser light shielding material can be provided with functions of flame retardancy, low light absorption, and smoke generation (low smoke generation or high smoke generation). Good.

<成形加工>
得られたプリプレグを積層した後、種々の成形加工を施すことでピッチ系CFRPが完成する。成形方法としては、[1]内圧成形法、オートクレーブ成形法、オーブン成形法、シートラッピング成形法等の間接成形法、[2]フィラメント・ワインディング法、引抜き成形法、RTM(Resin Transfer Molding)法等の直接成形法、が挙げられる。
<Molding process>
After laminating the obtained prepreg, the pitch-based CFRP is completed by performing various molding processes. As molding methods, [1] Indirect molding methods such as internal pressure molding method, autoclave molding method, oven molding method, sheet wrapping molding method, etc. [2] Filament winding method, pultrusion molding method, RTM (Resin Transfer Molding) method, etc. Direct molding method.

続いて、本発明の具体的な実施例について説明する。なお、本発明は、これらの実施例に限定されない点に留意する。   Next, specific examples of the present invention will be described. It should be noted that the present invention is not limited to these examples.

<1.試料片の準備>
先ず、レーザ光の遮蔽性評価に供される合計9種類の試料片を準備した。以下に示す実施例1、2、比較例1〜7の試料片はいずれも、平面視にて正方形状のパネル材である。
<1. Preparation of sample piece>
First, a total of nine types of sample pieces were prepared for evaluation of the shielding property of laser light. The sample pieces of Examples 1 and 2 and Comparative Examples 1 to 7 shown below are all square-shaped panel members in plan view.

(実施例1、2)
三菱レイヨン社製のピッチ系炭素繊維基材「ダイアリード」にエポキシ樹脂(三菱レイヨン社製)を含浸させた四方向(0度/45度/90度/135度)クロスプリプレグを作製した。そして、この四方向クロスプリプレグを積層した後、オートクレーブ法を用いて平板状に成形することで、厚さが4mm(18層;実施例1)、6mm(26層;実施例2)のピッチ系CFRPをそれぞれ作製した。このCFRPの一部を切断し、一辺の長さが300mmの試料片を得た。
(Examples 1 and 2)
A four-direction (0 degree / 45 degree / 90 degree / 135 degree) cross prepreg in which an epoxy resin (manufactured by Mitsubishi Rayon Co.) was impregnated into a pitch-based carbon fiber base material “DIALEAD” manufactured by Mitsubishi Rayon Co., Ltd. was produced. And after laminating this four-way cross prepreg, the pitch system is 4 mm (18 layers; Example 1), 6 mm (26 layers; Example 2) by forming into a flat plate shape using an autoclave method. Each CFRP was produced. A part of this CFRP was cut to obtain a sample piece having a side length of 300 mm.

(比較例1)
米国KENTEK社製の「Ever−Guard」(登録商標)の一部を切断し、一辺の長さが75mmの試料片を得た。この試料片はアルミニウムを主材とし、厚さは1mmである。
(Comparative Example 1)
A part of “Ever-Guard” (registered trademark) manufactured by KENTEK, USA was cut to obtain a sample piece having a side length of 75 mm. This sample piece is mainly made of aluminum and has a thickness of 1 mm.

(比較例2)
独国laservision社製の「BM2.M5P06.5003(Extendable Laser Safety panel 3-panel system)」の一部を切断し、一辺の長さが150mmの試料片を得た。この試料片はアルミニウムを主材とし、厚さは3mmである。
(Comparative Example 2)
A part of “BM2.M5P06.5003 (Extendable Laser Safety panel 3-panel system)” manufactured by Laserservation, Germany was cut to obtain a sample piece having a side length of 150 mm. This sample piece is mainly made of aluminum and has a thickness of 3 mm.

(比較例3)
広く市販されている配向性ストランドボード(Oriented Strand Board;OSB)の一部を切断し、一辺の長さが300mmの試料片を得た。この試料片は木片(ストランド)を主材とし、厚さは11mmである。
(Comparative Example 3)
A part of an oriented strand board (OSB) that is widely commercially available was cut to obtain a sample piece having a side length of 300 mm. This sample piece is mainly made of a piece of wood (strand) and has a thickness of 11 mm.

(比較例4、5)
三菱樹脂社製の「マフテック」(登録商標)の一部を切断し、一辺の長さが300mmの試料片を得た。比較例4(1600ボード)の試料片は、ムライトを主な鉱物組成とし、厚さは50mmである。比較例5(1700ボード)の試料片は、αアルミナを主な鉱物組成とし、厚さは50mmである。
(Comparative Examples 4 and 5)
A part of “Maftec” (registered trademark) manufactured by Mitsubishi Plastics Co., Ltd. was cut to obtain a sample piece having a side length of 300 mm. The sample piece of Comparative Example 4 (1600 board) has mullite as the main mineral composition and a thickness of 50 mm. The sample piece of Comparative Example 5 (1700 board) has α-alumina as the main mineral composition and a thickness of 50 mm.

(比較例6、7)
三菱化学社製のピッチ系CFRP「ME15」(比較例6)及び「ME30」(比較例7)の一部を切断し、一辺の長さが300mmの試料片を得た。このピッチ系CFRPはいずれも、ポリカーボネートに短繊維ペレット(比較例6では含有率15%、比較例7では含有率30%)を分散させた後、射出成型法を用いて作製された複合材料である。これらの試料片の厚さはいずれも3mmである。
(Comparative Examples 6 and 7)
Part of pitch CFRP “ME15” (Comparative Example 6) and “ME30” (Comparative Example 7) manufactured by Mitsubishi Chemical Corporation was cut to obtain a sample piece having a side length of 300 mm. Each of these pitch-based CFRPs is a composite material produced by using an injection molding method after dispersing short fiber pellets (15% content in Comparative Example 6 and 30% content in Comparative Example 7) in polycarbonate. is there. Each of these sample pieces has a thickness of 3 mm.

<2.実験手順>
国際規格であるIEC(International Electrotechnical Commission)にて定義される試験方法を参考にして、9種類の試料片に対する評価実験を行った。この方法は、IEC 60825−4(レーザ製品の安全性−第4部:レーザガード)の「Annex D」に示される。
<2. Experimental procedure>
With reference to a test method defined by IEC (International Electrotechnical Commission), which is an international standard, an evaluation experiment was performed on nine types of sample pieces. This method is shown in “Annex D” of IEC 60825-4 (Laser Product Safety—Part 4: Laser Guard).

各々の試料片は、出力5kWのファイバレーザ装置(米国IPGフォトニクス社製)に対向して配置される。ファイバレーザ装置の照射先に集光レンズを設けることで、レーザ光の照射スポット径を(1)20mmφ、(2)40mmφに調整した。なお、試料片の背後にバーンペーパを配置し、レーザ光が試料片を貫通したか否かを判定可能に構成されている。   Each sample piece is disposed to face a fiber laser device (manufactured by IPG Photonics, USA) having an output of 5 kW. By providing a condensing lens at the irradiation destination of the fiber laser device, the irradiation spot diameter of the laser light was adjusted to (1) 20 mmφ and (2) 40 mmφ. A burn paper is arranged behind the sample piece so that it can be determined whether or not the laser beam has penetrated the sample piece.

<3.評価方法>
各々の試料片に対して、レーザ光の照射を開始した時点から試料片を貫通するまでの所要時間である「貫通時間」(単位:s)を測定した。この貫通時間が短いほどレーザ光の遮蔽性が低いと共に、長いほどレーザ光の遮蔽性が高いと言える。実用上の観点から、照射時間の上限値を150sとした。この上限値は、上記の要求仕様100sを十分に上回る。
<3. Evaluation method>
With respect to each sample piece, a “penetration time” (unit: s), which is a required time from the start of laser beam irradiation to the penetration through the sample piece, was measured. It can be said that the shorter the penetration time, the lower the shielding property of the laser beam, and the longer the penetration time, the higher the shielding property of the laser beam. From the practical viewpoint, the upper limit of the irradiation time was set to 150 s. This upper limit value sufficiently exceeds the required specification 100s.

また、貫通時間(B)を厚さ(A)で除することで、単位厚さ当たりの貫通時間(B/A、単位:s/mm)を求めた。この値(B/A)が小さいほどレーザ光の遮蔽性が低いと共に、大きいほどレーザ光の遮蔽性が高いと言える。   Moreover, the penetration time per unit thickness (B / A, unit: s / mm) was determined by dividing the penetration time (B) by the thickness (A). It can be said that the smaller this value (B / A), the lower the shielding property of the laser beam, and the larger the value (B / A), the higher the shielding property of the laser beam.

<4.結果>
レーザ光の出力を5kW、スポット径を20mmφとした場合における実験結果を表1に示す。本表から理解されるように、比較例1〜7での貫通時間はいずれも10s未満であり、十分な遮蔽性が得られなかった。一方、実施例1での貫通時間は33s、実施例2での貫通時間は78sであり、いずれも十分な遮蔽性を有することが確認された。同様に、B/Aの値に関しても、実施例1、2の方が、比較例1〜7と比べて有意に優れていることが確認された。
<4. Result>
Table 1 shows the experimental results when the laser beam output is 5 kW and the spot diameter is 20 mmφ. As understood from this table, the penetration times in Comparative Examples 1 to 7 were all less than 10 s, and sufficient shielding properties were not obtained. On the other hand, the penetration time in Example 1 was 33 s, and the penetration time in Example 2 was 78 s. It was confirmed that both had sufficient shielding properties. Similarly, regarding the value of B / A, it was confirmed that Examples 1 and 2 were significantly superior to Comparative Examples 1 to 7.

Figure 2017177152
Figure 2017177152

実施例1におけるB/A=8.3の値は、比較例1におけるB/A=1.0の値と比べて、約8倍だけ大きくなっている。つまり、この実施例1に関して言えば、厚さA=4mmの1/8倍、すなわちA=0.5mmであれば既製品(比較例1)と同等の遮蔽性があり、A>0.5mmであれば既製品よりも高い遮蔽性が得られる。   The value of B / A = 8.3 in Example 1 is about 8 times larger than the value of B / A = 1.0 in Comparative Example 1. In other words, as far as Example 1 is concerned, if the thickness A = 4 mm, ie, A = 0.5 mm, there is a shielding property equivalent to the ready-made product (Comparative Example 1), and A> 0.5 mm If so, a higher shielding property than the ready-made product can be obtained.

また、実施例1の実験結果を基に、更に好ましい厚さ(A)の範囲を試算する。例えば、上記した要求仕様(スポット径:30mmφ、照射時間:50s以上)を満たせば十分な遮光性が得られることを確認した。次の式を満たすAの値を下限とする範囲、
(30/20)^2・(33/4)=50/A
つまり、A≧3mmであれば十分な遮光性が得られるため更に好ましい。なお、乗数(30/20)^2は、エネルギー密度の変化を考慮した補正乗数である。
Further, based on the experimental results of Example 1, a more preferable thickness (A) range is estimated. For example, it was confirmed that sufficient light shielding properties can be obtained if the above-mentioned required specifications (spot diameter: 30 mmφ, irradiation time: 50 s or more) are satisfied. A range where the value of A satisfying the following formula is the lower limit,
(30/20) ^ 2 · (33/4) = 50 / A
That is, it is more preferable that A ≧ 3 mm because sufficient light shielding properties can be obtained. Note that the multiplier (30/20) ^ 2 is a correction multiplier that takes into account changes in energy density.

次に、レーザ光の出力を5kW、スポット径を40mmφとした場合における実験結果を表2に示す。ここでは、スポット径を2倍に拡大すると共に、7つの比較例の中で遮蔽性が相対的に優れていた3つの例(比較例3〜5)のみについて実験を行った。   Next, Table 2 shows the experimental results when the laser beam output is 5 kW and the spot diameter is 40 mmφ. Here, the experiment was performed only on three examples (Comparative Examples 3 to 5) in which the spot diameter was doubled and the shielding performance was relatively excellent among the seven comparative examples.

Figure 2017177152
Figure 2017177152

本表から理解されるように、スポット径が20mmφの場合と比べてエネルギー密度が約0.25倍に減少している分、比較例3〜5での貫通時間が長くなったものの、十分な遮蔽性が得られなかった。一方、実施例1、2ではいずれも上限値(150s)を経過してもレーザ光を貫通させず、十分な遮蔽性を有することが確認された。同様に、0.25・B/Aの値に関しても、実施例1、2の方が、比較例3〜5と比べて有意に優れていることが確認された。なお、この乗数0.25は、エネルギー密度の変化を考慮した補正乗数である。   As can be understood from this table, the energy density is reduced by about 0.25 times compared to the case where the spot diameter is 20 mmφ. Shielding property was not obtained. On the other hand, in both Examples 1 and 2, it was confirmed that the laser beam was not penetrated even when the upper limit value (150 s) passed and sufficient shielding properties were obtained. Similarly, regarding the value of 0.25 · B / A, it was confirmed that Examples 1 and 2 were significantly superior to Comparative Examples 3 to 5. The multiplier 0.25 is a correction multiplier that takes into account changes in energy density.

以上のように、短波長かつ高出力のレーザ光に対して高い遮蔽性を有し、しかも可搬性に優れたレーザ光遮蔽材(実施例1、2)が得られた。   As described above, laser light shielding materials (Examples 1 and 2) having high shielding properties against laser light having a short wavelength and high output and excellent portability were obtained.

[備考]
なお、この発明は、上述した実施形態及び実施例に限定されるものではなく、この発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。
[Remarks]
Note that the present invention is not limited to the above-described embodiments and examples, and it is needless to say that the present invention can be freely changed without departing from the gist of the present invention.

1‥レーザ加工システム 2‥ファイバレーザ装置
3‥レーザ加工ヘッド 4‥光ファイバケーブル
5‥先端部 6‥遮蔽カバー(レーザ光遮蔽材)
7(a/b/c/d)‥遮蔽面 L‥レーザ光
DESCRIPTION OF SYMBOLS 1 ... Laser processing system 2 ... Fiber laser apparatus 3 ... Laser processing head 4 ... Optical fiber cable 5 ... Tip part 6 ... Shielding cover (laser beam shielding material)
7 (a / b / c / d) ... shielding surface L ... laser light

Claims (8)

ピッチ系炭素繊維が少なくとも一方向に配向された炭素繊維強化プラスチックを含んで構成されることを特徴とするレーザ光遮蔽材。   A laser light shielding material comprising a pitch-based carbon fiber including a carbon fiber reinforced plastic oriented in at least one direction. 厚さが0.5mm以上であることを特徴とする請求項1に記載のレーザ光遮蔽材。   The laser light shielding material according to claim 1, wherein the thickness is 0.5 mm or more. 更に、厚さが3mm以上であることを特徴とする請求項2に記載のレーザ光遮蔽材。   The laser light shielding material according to claim 2, wherein the thickness is 3 mm or more. 厚さが10mm以下であることを特徴とする請求項1〜3のいずれか1項に記載のレーザ光遮蔽材。   The laser light shielding material according to claim 1, wherein the thickness is 10 mm or less. 前記ピッチ系炭素繊維は、等角度間隔にて複数の方向に配向されることを特徴とする請求項1〜4のいずれか1項に記載のレーザ光遮蔽材。   The laser light shielding material according to any one of claims 1 to 4, wherein the pitch-based carbon fibers are oriented in a plurality of directions at equal angular intervals. レーザ光を遮蔽する遮蔽面は、1次元的又は2次元的に周期性のある凹凸が形成された表面形状を有することを特徴とする請求項1〜5のいずれか1項に記載のレーザ光遮蔽材。   The laser beam according to claim 1, wherein the shielding surface that shields the laser beam has a surface shape in which irregularities having periodicity in one or two dimensions are formed. Shielding material. 前記凹凸の高低差は、前記凹凸の幅よりも小さいことを特徴とする請求項6に記載のレーザ光遮蔽材。   The laser light shielding material according to claim 6, wherein a height difference of the unevenness is smaller than a width of the unevenness. ファイバレーザによるレーザ光を遮蔽することを特徴とする請求項1〜7のいずれか1項に記載のレーザ光遮蔽材。   The laser light shielding material according to claim 1, wherein laser light from a fiber laser is shielded.
JP2016067046A 2016-03-30 2016-03-30 Laser light shielding material Active JP6961326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016067046A JP6961326B2 (en) 2016-03-30 2016-03-30 Laser light shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016067046A JP6961326B2 (en) 2016-03-30 2016-03-30 Laser light shielding material

Publications (2)

Publication Number Publication Date
JP2017177152A true JP2017177152A (en) 2017-10-05
JP6961326B2 JP6961326B2 (en) 2021-11-05

Family

ID=60003076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016067046A Active JP6961326B2 (en) 2016-03-30 2016-03-30 Laser light shielding material

Country Status (1)

Country Link
JP (1) JP6961326B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010923A (en) * 2019-07-05 2021-02-04 株式会社デンソー Laser processing apparatus
WO2022009535A1 (en) * 2020-07-10 2022-01-13 コマツ産機株式会社 Laser processing device, laser processing method, and transmission inhibition liquid
CN114641367A (en) * 2019-10-31 2022-06-17 株式会社天田集团 Workpiece support body for a workpiece support table and hot-working machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127590U (en) * 1984-07-23 1986-02-19 昭和電工株式会社 Laser beam shielding plate
JPH04113183U (en) * 1991-03-19 1992-10-02 ヤマザキマザツク株式会社 laser processing machine
JPH04345148A (en) * 1991-05-23 1992-12-01 Seikosha Co Ltd Production of light shielding vane for camera
JP2008176095A (en) * 2007-01-19 2008-07-31 Semiconductor Energy Lab Co Ltd Method for forming pattern and method for manufacturing thin film transistor
JP2014162858A (en) * 2013-02-26 2014-09-08 Toray Ind Inc Prepreg and production method of the same, and fiber reinforced composite material
WO2014174616A1 (en) * 2013-04-24 2014-10-30 トヨタ自動車株式会社 Sealed battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127590U (en) * 1984-07-23 1986-02-19 昭和電工株式会社 Laser beam shielding plate
JPH04113183U (en) * 1991-03-19 1992-10-02 ヤマザキマザツク株式会社 laser processing machine
JPH04345148A (en) * 1991-05-23 1992-12-01 Seikosha Co Ltd Production of light shielding vane for camera
JP2008176095A (en) * 2007-01-19 2008-07-31 Semiconductor Energy Lab Co Ltd Method for forming pattern and method for manufacturing thin film transistor
JP2014162858A (en) * 2013-02-26 2014-09-08 Toray Ind Inc Prepreg and production method of the same, and fiber reinforced composite material
WO2014174616A1 (en) * 2013-04-24 2014-10-30 トヨタ自動車株式会社 Sealed battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010923A (en) * 2019-07-05 2021-02-04 株式会社デンソー Laser processing apparatus
JP7147700B2 (en) 2019-07-05 2022-10-05 株式会社デンソー Laser processing equipment
CN114641367A (en) * 2019-10-31 2022-06-17 株式会社天田集团 Workpiece support body for a workpiece support table and hot-working machine
CN114641367B (en) * 2019-10-31 2024-04-12 株式会社天田集团 Workpiece support for workpiece support table and thermal processing machine
WO2022009535A1 (en) * 2020-07-10 2022-01-13 コマツ産機株式会社 Laser processing device, laser processing method, and transmission inhibition liquid
JPWO2022009535A1 (en) * 2020-07-10 2022-01-13
JP7312328B2 (en) 2020-07-10 2023-07-20 コマツ産機株式会社 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD

Also Published As

Publication number Publication date
JP6961326B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
KR101642616B1 (en) Fiber-reinforced resin composite material and process for producing same
JP6961326B2 (en) Laser light shielding material
KR20080078848A (en) A curable epoxy resin composition having a mixed catalyst system and laminates made therefrom
US20050136761A1 (en) Fire-Retardant Composite Material
KR20110120314A (en) Benzoxazine resin composition
JP6094234B2 (en) Epoxy resin composition, molding material and fiber reinforced composite material
KR20140127868A (en) Fiber-reinforced composite material
KR20140127869A (en) Fiber-reinforced composite material
JP6481494B2 (en) Inorganic filler-containing cured epoxy resin and laminate using the same
EP2980135B1 (en) Prepreg, fiber-reinforced composite material, and resin composition containing particles
EP3072917A1 (en) Prepreg, fibre-reinforced composite material, and particle-containing resin composition
JPWO2018181513A1 (en) Method for producing FRP precursor and method for producing FRP
JP7006594B2 (en) Prepreg and fiber reinforced composites
JP6175781B2 (en) Molding materials and fiber reinforced composite materials
JP2008088277A (en) Resin composition for heat or radiation curing and prepreg
KR20150033691A (en) Fiber-reinforced composite material
JP5904521B2 (en) Fiber reinforced resin composite and method for producing the same
JP2016023294A (en) Resin film-provided prepreg and metal-clad laminate and printed wiring board using the same
JP2008265160A (en) Frp molding
JP6645496B2 (en) Method and apparatus for producing FRP precursor
JP2006324307A (en) Prepreg for printed wiring board and metal-clad laminated plate
JP5119608B2 (en) Metal-clad laminate
JP6003223B2 (en) Composite reinforcing fiber bundle, method for producing the same, and molding material
EP2980137A1 (en) Prepreg, fiber-reinforced composite material, and resin composition containing particles
KR20160096101A (en) Prepreg, fibre-reinforced composite material, and particle-containing resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201119

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201130

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210108

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210118

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210419

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210713

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210906

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211011

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211013

R151 Written notification of patent or utility model registration

Ref document number: 6961326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151