JP2017172888A - Heat treatment device - Google Patents

Heat treatment device Download PDF

Info

Publication number
JP2017172888A
JP2017172888A JP2016060246A JP2016060246A JP2017172888A JP 2017172888 A JP2017172888 A JP 2017172888A JP 2016060246 A JP2016060246 A JP 2016060246A JP 2016060246 A JP2016060246 A JP 2016060246A JP 2017172888 A JP2017172888 A JP 2017172888A
Authority
JP
Japan
Prior art keywords
tube
circumferential direction
peripheral surface
heat treatment
cylinder pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016060246A
Other languages
Japanese (ja)
Inventor
道也 横田
Michiya Yokota
道也 横田
古屋 昌浩
Masahiro Furuya
昌浩 古屋
浩一朗 渡邊
Koichiro Watanabe
浩一朗 渡邊
広太 高橋
Kota Takahashi
広太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shin Etsu Engineering Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shin Etsu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Shin Etsu Engineering Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2016060246A priority Critical patent/JP2017172888A/en
Publication of JP2017172888A publication Critical patent/JP2017172888A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method to simultaneously improve heat transfer performance from an outer cylinder pipe to an inner cylinder pipe and torque transmission in a double cylinder structure in which the inner cylinder pipe and the outer cylinder pipe are partially kept into contact with each other in a circumferential direction, in a heat treatment device performing heat treatment on a powder or granular charged material while transferring the same by rotating motion.SOLUTION: A heat treatment device A for powder or granular material, includes a rotatable inner cylinder pipe 11 connected to a supply port of a charged material B, an external heat-type outer cylinder pipe 12 rotatably provided on a rotation center 12a not agreed with a rotation center 11a of the inner cylinder pipe 11, a spatial portion 13 disposed between the inner cylinder pipe 11 and the outer cylinder pipe 12 excluding a part of them in a circumferential direction, and a heat transfer portion 14 and a rotation transmitting portion 15 disposed on a contact region of a part in a circumferential direction of an outer peripheral face 11b of the inner cylinder pipe 11 and a part in a circumferential direction of an inner peripheral face 12b of the outer cylinder pipe 12.SELECTED DRAWING: Figure 1

Description

本発明は、粉状又は粉粒状などの装入物を移送しながら熱処理(加熱処理)するために用いられる熱処理装置に関する。   The present invention relates to a heat treatment apparatus used for heat treatment (heat treatment) while transferring a charged material such as powder or powder.

従来、この種の熱処理装置として、自らの回転動作に伴ってセラミック原料を移送する円筒状の炉心管を備えており、この炉心管は、高純度かつ高密度のセラミック素材からなる内筒を耐熱性金属からなる外筒に挿入した構造とされているセラミック仮焼炉がある(例えば、特許文献1参照)。
内筒と外筒の間において直径方向に生じた隙間には、セラミックファイバーブランケットなどのような不定形断熱材が詰め込まれ、内筒及び外筒を一体化して回転動作するように構成している。
炉心管の外側周囲を取り囲んで配設された炉体の内側には、ヒータが配設され、炉心管に投入したセラミック原料は、炉心管自らの回転動作により移送されながらヒータで加熱することによって仮焼される。これにより、セラミック原料の仮焼によって発生した重金属蒸気と内筒との反応が十分に抑制されるようにしている。
Conventionally, as this kind of heat treatment equipment, it has been equipped with a cylindrical core tube that transfers ceramic raw material along with its own rotating operation, and this core tube heat-resistant the inner cylinder made of high-purity and high-density ceramic material. There is a ceramic calciner having a structure inserted in an outer cylinder made of a conductive metal (see, for example, Patent Document 1).
A gap formed in the diametrical direction between the inner cylinder and the outer cylinder is filled with an amorphous heat insulating material such as a ceramic fiber blanket, and the inner cylinder and the outer cylinder are integrally rotated. .
A heater is disposed inside the furnace body that is disposed around the outer periphery of the core tube, and the ceramic raw material charged into the core tube is heated by the heater while being transferred by the rotation of the core tube itself. It is calcined. As a result, the reaction between the heavy metal vapor generated by calcination of the ceramic raw material and the inner cylinder is sufficiently suppressed.

特開平06−003054号公報JP-A-06-003054

しかし乍ら、このような従来の熱処理装置では、炉心管となる内筒と外筒の隙間に不定形断熱材を詰め込んで内筒及び外筒が一体化されるため、ヒータで外筒を加熱しても、内筒に伝わる熱は対流と輻射のみに限られてしまう。これにより、ヒータからの熱が内筒に伝わり難く、セラミック原料を仮焼するための熱効率に劣るという問題があった。
また、炉心管自らの回転動作を実現するために外筒の回転力を効率良く内筒に伝える場合には、内筒と外筒の隙間に不定形断熱材を高密度に詰め込んで完全な一体化構造にする必要がある。しかし、この場合には、不定形断熱材の密度が高くなるほど、ヒータの熱が外筒から内筒に伝わり難くなって、熱処理の効率が低下してしまう。
この課題を解決するために内筒と外筒の隙間に詰め込む不定形断熱材の密度を低下させると、内筒及び外筒の間の摩擦抵抗も低下するため、内筒に対して外筒が空回りしてしまい、外筒の回転力を効率良く内筒に伝えられないという問題があった。
つまり、外筒から内筒への熱伝達と回転力の伝達は、相反して両者を共に高効率で達成することはできなかった。
However, in such a conventional heat treatment apparatus, since the inner cylinder and the outer cylinder are integrated by filling the gap between the inner cylinder and the outer cylinder, which are the core tube, with the heater, the outer cylinder is heated by the heater. Even so, the heat transmitted to the inner cylinder is limited only to convection and radiation. As a result, there is a problem that heat from the heater is not easily transmitted to the inner cylinder and is inferior in thermal efficiency for calcining the ceramic raw material.
In addition, in order to efficiently transmit the rotational force of the outer cylinder to the inner cylinder in order to realize the rotation operation of the reactor core tube itself, a uniform heat insulating material is packed in the gap between the inner cylinder and the outer cylinder at a high density to achieve complete integration. It is necessary to create a structured structure. However, in this case, the higher the density of the amorphous heat insulating material, the more difficult the heat of the heater is transferred from the outer cylinder to the inner cylinder, and the efficiency of the heat treatment decreases.
In order to solve this problem, if the density of the amorphous heat insulating material packed in the gap between the inner cylinder and the outer cylinder is reduced, the frictional resistance between the inner cylinder and the outer cylinder is also reduced. There is a problem that the rotating force of the outer cylinder cannot be efficiently transmitted to the inner cylinder.
That is, the heat transfer from the outer cylinder to the inner cylinder and the transmission of the rotational force are contradictory and cannot be achieved with high efficiency.

このような課題を達成するために本発明に係る熱処理装置は、粉状又は粉粒状の装入物を回転動作により移送しながら熱処理する熱処理装置であって、前記装入物の供給口と連通して回転自在に設けられる内筒管と、前記内筒管の回転中心と不一致な回転中心で回転自在に設けられる外熱式の外筒管と、前記内筒管及び前記外筒管の間に両者の周方向一部を除いて設けられる空間部と、前記内筒管の前記外周面の周方向一部及び前記外筒管の前記内周面の周方向一部の接触部位に設けられる伝熱部及び回転伝動部と、を備えることを特徴とする。   In order to achieve such a problem, a heat treatment apparatus according to the present invention is a heat treatment apparatus for heat-treating a powdered or powdered charge while being transferred by a rotating operation, and is in communication with the charge supply port. Between the inner cylinder pipe and the outer cylinder pipe, and an outer heat-type outer cylinder pipe rotatably provided at a rotation center that does not coincide with the rotation center of the inner cylinder pipe, Are provided at a contact portion of a space portion provided excluding a part in the circumferential direction of the two, a part in the circumferential direction of the outer peripheral surface of the inner cylindrical tube, and a part of the circumferential direction of the inner peripheral surface of the outer cylindrical tube. A heat transfer section and a rotation transmission section are provided.

本発明の実施形態に係る熱処理装置の全体構成を示す説明図であり、(a)が縦断正面図、(b)が図1(a)の(1B)−(1B)線に沿える拡大縦断側面図である。It is explanatory drawing which shows the whole structure of the heat processing apparatus which concerns on embodiment of this invention, (a) is a longitudinal front view, (b) is an expansion longitudinal section along the (1B)-(1B) line | wire of Fig.1 (a). It is a side view. 本発明の実施形態に係る熱処理装置の変形例を示す説明図であり、(a)が縦断正面図、(b)が図1(a)の(2B)−(2B)線に沿える拡大縦断側面図である。It is explanatory drawing which shows the modification of the heat processing apparatus which concerns on embodiment of this invention, (a) is a longitudinal front view, (b) is an expansion longitudinal section along the (2B)-(2B) line | wire of Fig.1 (a). It is a side view. 本発明の実施形態に係る熱処理装置の変形例を示す説明図であり、(a)が縦断正面図、(b)が図1(a)の(3B)−(3B)線に沿える拡大縦断側面図である。It is explanatory drawing which shows the modification of the heat processing apparatus which concerns on embodiment of this invention, (a) is a longitudinal front view, (b) is an expansion longitudinal section along the (3B)-(3B) line | wire of Fig.1 (a). It is a side view.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
本発明の実施形態に係る熱処理装置Aは、図1〜図3に示すように、炉心管10の内部に供給される装入物Bを、炉心管10の回転動作により下流側へ移送しながら外側の加熱部20により熱処理(加熱処理)して排出するものである。装入物Bは、粉状体や粉粒体などからなり、チタン酸バリウム系の誘電体材料、チタン酸ジルコン酸鉛系の圧電体材料、リチウム電池材料、薄型ディスプレイパネル用蛍光体などの粉体材料が含まれる。
詳しく説明すると、本発明の実施形態に係る熱処理装置Aの炉心管10は、装入物Bの供給口31と連通して回転自在に設けられる内筒管11と、内筒管11の回転中心11aと不一致な回転中心12aで回転自在に設けられる外熱式の外筒管12と、内筒管11及び外筒管12の間に両者の周方向一部を除いて設けられる空間部13と、内筒管11の外周面11bの周方向一部及び外筒管12の内周面12bの周方向一部の接触部位に設けられる伝熱部14と、内筒管11の外周面11bの周方向一部及び外筒管12の内周面12bの周方向一部の接触部位に設けられる回転伝動部15と、を主要な構成要素として備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIGS. 1 to 3, the heat treatment apparatus A according to the embodiment of the present invention transfers the charge B supplied into the core tube 10 to the downstream side by the rotation operation of the core tube 10. A heat treatment (heat treatment) is performed by the outer heating unit 20 and discharged. The charge B is made of powder or granular material, such as barium titanate dielectric material, lead zirconate titanate piezoelectric material, lithium battery material, thin display panel phosphor, etc. Body material is included.
More specifically, the core tube 10 of the heat treatment apparatus A according to the embodiment of the present invention includes an inner tube 11 that is rotatably connected to the supply port 31 of the charge B, and a rotation center of the inner tube 11. An outer-heated outer tube 12 that is rotatably provided at a rotation center 12a that does not coincide with 11a, and a space 13 that is provided between the inner tube 11 and the outer tube 12 except for a part in the circumferential direction thereof. The heat transfer part 14 provided at the contact portion of the circumferential portion of the outer peripheral surface 11b of the inner cylindrical tube 11 and the circumferential portion of the inner peripheral surface 12b of the outer cylindrical tube 12, and the outer peripheral surface 11b of the inner cylindrical tube 11 The rotation transmission part 15 provided in the contact part of the circumferential direction part and the circumferential direction part of the internal peripheral surface 12b of the outer cylinder pipe 12 is provided as a main component.

内筒管11は、その少なくとも内周面11c又は全体が耐熱性に優れる例えばアルミナを主成分とするセラミック(セラミックス)やカーボンなどの耐熱性非金属を含む材料で円筒状に形成され、その軸線を中心として回転可能に配置している。このため、熱処理中の装入物Bが高温の金属面に触れて汚染しないようにしている。
内筒管11の軸方向一端側には、入口部11dが形成され、装入物Bの供給口31と連通している。内筒管11において装入物Bの移送方向下流側となる軸方向他端側には、出口部11eが形成され、装入物Bの排出口32と連通している。
このため、内筒管11は、その軸線を中心とした回転作用により、供給口31から入口部11dに供給された一定量の装入物Bを出口部11eへ向け流しながら、外筒管12からの伝導熱で加熱して、出口部11eから排出口32に排出させるように構成されている。
The inner cylindrical tube 11 is formed in a cylindrical shape with a material containing a heat-resistant non-metal such as ceramic (ceramics) mainly composed of alumina or carbon whose at least the inner peripheral surface 11c or the whole is excellent in heat resistance, for example. It is arranged to be rotatable around the center. For this reason, the charge B during the heat treatment is prevented from coming into contact with the hot metal surface.
An inlet portion 11 d is formed at one axial end of the inner tube 11 and communicates with the supply port 31 for the charge B. An outlet portion 11e is formed on the other end side in the axial direction which is the downstream side in the transfer direction of the charge B in the inner tube 11 and communicates with the discharge port 32 of the charge B.
For this reason, the inner tube 11 is rotated around the axis thereof, while a certain amount of the charge B supplied from the supply port 31 to the inlet 11d flows toward the outlet 11e, while the outer tube 12 It is configured to be heated by conduction heat from and discharged from the outlet portion 11e to the discharge port 32.

外筒管12は、その全体が耐熱性に優れ且つセラミックやカーボンなどの耐熱性非金属よりも強度に優れた、例えばインコネル(登録商標)などのニッケル基合金、コバルト基合金、クロム基合金などの耐熱性金属を含む材料で、内筒管11の外径よりも大径な内径を有する円筒状に形成される。
外筒管12は、内筒管11の外側を囲む二重筒状に、その軸線を中心として回転可能に支持され、外筒管12の回転中心12aが内筒管11の回転中心11aと一致せず別々に配置されている。
さらに、外筒管12は、その一部がモータなどの回転駆動部(図示しない)とチェーンなどの伝動部材(図示しない)を介して連係している。この回転駆動部の作動により、外筒管12は、その軸線を中心として連続的又は間欠的に回転移動させるように構成されている。
The outer tube 12 as a whole is excellent in heat resistance and superior in strength than heat-resistant nonmetals such as ceramic and carbon. For example, nickel-based alloys such as Inconel (registered trademark), cobalt-based alloys, chromium-based alloys, etc. It is formed in a cylindrical shape having an inner diameter that is larger than the outer diameter of the inner tube 11.
The outer cylinder tube 12 is supported in a double cylinder shape surrounding the outer side of the inner cylinder tube 11 so as to be rotatable about its axis, and the rotation center 12 a of the outer cylinder tube 12 coincides with the rotation center 11 a of the inner cylinder tube 11. Are arranged separately without.
Furthermore, a part of the outer tube 12 is linked to a rotation drive unit (not shown) such as a motor via a transmission member (not shown) such as a chain. By the operation of the rotation driving unit, the outer tube 12 is configured to rotate and move continuously or intermittently around the axis.

また、外筒管12は、その外側から加熱部20で加熱され、外筒管12を介して内筒管11内の装入物Bを加熱するように配置されている。
加熱部20は、外筒管12の外側を覆うように設けられる加熱雰囲気21と、加熱雰囲気21に設けられる熱源(図示しない)と、を有することが好ましい。
加熱雰囲気21は、外筒管12の外側に炉壁22で囲むように円筒状やそれに類似した筒状に形成される。
加熱部20に用いる熱源としては、加熱ヒータなどの電気的なものやガスバーナーなどの電気以外のものが用いられる。内筒管11の内部において粉状体や粉粒体などからなる装入物Bを850〜1000℃程度の焼成温度で熱処理する場合には、加熱雰囲気21及び外筒管12を1000℃以上に加熱している。
Moreover, the outer cylinder pipe | tube 12 is arrange | positioned so that the charging part 20 in the inner cylinder pipe | tube 11 may be heated via the outer cylinder pipe | tube 12 with the heating part 20 from the outer side.
The heating unit 20 preferably has a heating atmosphere 21 provided so as to cover the outside of the outer tube 12 and a heat source (not shown) provided in the heating atmosphere 21.
The heating atmosphere 21 is formed in a cylindrical shape or a similar cylindrical shape so as to be surrounded by the furnace wall 22 outside the outer cylindrical tube 12.
As a heat source used for the heating unit 20, an electrical device such as a heater or a device other than electricity such as a gas burner is used. In the case where the charge B made of a powder or granular material is heat-treated at a firing temperature of about 850 to 1000 ° C. inside the inner tube 11, the heating atmosphere 21 and the outer tube 12 are set to 1000 ° C. or more. Heating.

内筒管11及び外筒管12の具体例として、図1(a)(b)〜図3(a)(b)に示される例の場合には、内筒管11の全体がセラミックで長尺状の一体管に形成され、外筒管12の全体がニッケル基合金で長尺状の一体管に形成されている。
内筒管11及び外筒管12は、それぞれの軸線となる回転中心11a及び回転中心12aを設置床面Fに対し適宜角度θで略平行に傾斜させて、内筒管11の入口部11dよりも出口部11eの方が低くなるように設置している。これにより、供給口31から入口部11dに供給された装入物Bを、内筒管11の回転動作により出口部11eへ向け揺動しながら滑り移動させ、この間に加熱部20からの伝導熱で加熱している。
詳しく説明すると、装入物Bは、内筒管11の回転動作に伴う周方向への持ち上げと、装入物Bの自重による周方向逆向きで且つ炉心管1の傾斜方向下位への滑り落ちが交互に繰り返される。このため、内筒管11の内周面11cに沿って装入物Bが周方向へ揺動しながら下流側へ滑り移動する。
また、その他の例として図示しないが、内筒管11又は内筒管11のいずれか一方若しくは内筒管11及び外筒管12の両方を一体管タイプから、短尺状に形成された複数の分割管を互いに接続配置して一体化した短尺分割接続タイプに変更することも可能である。特に、内筒管11を短尺連結タイプに変更した場合には、セラミックなどの耐熱性非金属でも容易に大型化(大径化及び長尺化)が可能になる。
As specific examples of the inner tube 11 and the outer tube 12, in the example shown in FIGS. 1A, 1B and 3A, 3B, the entire inner tube 11 is made of ceramic and is long. The outer tube 12 is formed of a nickel-base alloy into a long integrated tube.
The inner cylinder pipe 11 and the outer cylinder pipe 12 are respectively inclined from the inlet portion 11d of the inner cylinder pipe 11 by tilting the rotation center 11a and the rotation center 12a, which are the respective axis lines, at an appropriate angle θ with respect to the installation floor surface F. Also, the outlet portion 11e is installed so as to be lower. As a result, the charge B supplied from the supply port 31 to the inlet portion 11d is slid while swinging toward the outlet portion 11e by the rotation of the inner tube 11, while the conduction heat from the heating unit 20 is transferred. It is heated with.
More specifically, the charge B is lifted in the circumferential direction associated with the rotation of the inner tube 11, and slipped down in the circumferential direction opposite to the weight of the charge B and to the lower direction in the inclination direction of the core tube 1. Are repeated alternately. For this reason, the charge B slides and moves downstream along the inner peripheral surface 11c of the inner tube 11 while swinging in the circumferential direction.
Although not shown in the drawings as other examples, either the inner tube 11 or the inner tube 11 or both the inner tube 11 and the outer tube 12 are formed from a single tube type, and are divided into a plurality of short shapes. It is also possible to change to the short divided connection type in which the tubes are connected to each other and integrated. In particular, when the inner tube 11 is changed to a short connection type, even a heat-resistant nonmetal such as ceramic can be easily increased in size (increased in diameter and lengthened).

内筒管11及び外筒管12の軸方向他端側には、内筒管11の出口部11eに向けて不活性ガスや熱風などの気体を供給するための気体導入口33が設けられる。これにより、装入物Bの酸化を防止しつつ、熱処理で装入物Bから発生した有害な排出ガスを、内筒管11及び外筒管12の軸方向一端側に設けられる排気口34から、内筒管11及び外筒管12の外部に排気させるように構成されている。すなわち、内筒管11の入口部11dと管状の供給口31と間には、排出ガスを通すための排気ライン34aが形成されている。
さらに、加熱部20の具体例として図示例の場合には、外筒管12の軸方向中間部のみを筒状の加熱雰囲気21で覆い間接的に加熱している。
また、その他の例として図示しないが、加熱雰囲気21に代え熱源で直接的に加熱したり、外筒管12の軸方向略全体を加熱雰囲気21で間接的に加熱したり、外筒管12の軸方向略全体を熱源で直接的に加熱するなど変更することも可能である。
A gas introduction port 33 for supplying a gas such as an inert gas or hot air toward the outlet portion 11 e of the inner tube 11 is provided on the other axial end of the inner tube 11 and the outer tube 12. Thereby, while preventing the oxidation of the charge B, harmful exhaust gas generated from the charge B by the heat treatment is discharged from the exhaust port 34 provided on one end side in the axial direction of the inner tube 11 and the outer tube 12. The exhaust pipe is configured to be exhausted to the outside of the inner tube 11 and the outer tube 12. That is, an exhaust line 34 a for passing exhaust gas is formed between the inlet portion 11 d of the inner tube 11 and the tubular supply port 31.
Further, in the case of the illustrated example as a specific example of the heating unit 20, only the intermediate portion in the axial direction of the outer tube 12 is covered with the cylindrical heating atmosphere 21 and heated indirectly.
Although not shown in the drawings as other examples, the heating atmosphere 21 is used instead of direct heating with a heat source, the entire axial direction of the outer tube 12 is heated indirectly with the heating atmosphere 21, or the outer tube 12 It is also possible to change, for example, directly heating the entire axial direction with a heat source.

そして、外筒管12に対する内筒管11の配置(取り付け位置)は、内筒管11の外周面11bにおいて軸方向へ延びる周方向一部と、外筒管12の内周面12bにおいて軸方向へ延びる周方向一部と、を重力や支持手段などにより互いに接触させている。
特に、内筒管11の外周面11bの周方向一部において軸方向略全体に亘る長尺部位と、外筒管12の内周面12bの周方向一部において軸方向略全体に亘る長尺部位と、を互いに接触させることが好ましい。
ここでいう「軸方向略全体」とは、内筒管11及び外筒管12の軸方向全長のみに限らず、これに加えて、内筒管11及び外筒管12の軸方向端部を除いた略全長も含まれる。
このような内筒管11及び外筒管12の接触により、外筒管12に対して内筒管11が遊転可能に支持される。内筒管11及び外筒管12の間には、前記の内筒管11及び外筒管12の接触部位を除いて空間部13が部分的に形成される。
The arrangement (attachment position) of the inner cylindrical tube 11 with respect to the outer cylindrical tube 12 is such that a part of the outer circumferential surface 11b of the inner cylindrical tube 11 extends in the axial direction and an axial direction of the inner circumferential surface 12b of the outer cylindrical tube 12. And a part in the circumferential direction extending to each other are brought into contact with each other by gravity or support means.
In particular, a part of the outer peripheral surface 11b of the inner cylindrical tube 11 that extends substantially over the entire axial direction and a part of the inner peripheral surface 12b of the outer cylindrical tube 12 that extends substantially over the entire axial direction. The parts are preferably brought into contact with each other.
The “substantially the entire axial direction” here is not limited to the total axial length of the inner cylindrical tube 11 and the outer cylindrical tube 12, and in addition to this, the axial end portions of the inner cylindrical tube 11 and the outer cylindrical tube 12 are defined. Excluding the overall length.
By such contact between the inner tube 11 and the outer tube 12, the inner tube 11 is supported so as to be free to rotate with respect to the outer tube 12. A space portion 13 is partially formed between the inner tube 11 and the outer tube 12 except for the contact portion between the inner tube 11 and the outer tube 12.

空間部13は、内筒管11及び外筒管12の径方向に形成される径方向隙間13aと、内筒管11及び外筒管12の軸方向に形成される軸方向隙間13bとからなる。
径方向隙間13aは、内筒管11の外周面11bと外筒管12の内周面12bの間に、内筒管11及び外筒管12の接触部位で分断された非筒状に形成される。径方向隙間13aを特定する内筒管11の外径及び外筒管12の内径は、内筒管11及び外筒管12の構成材料の熱膨張率(熱膨張係数)の違いにより、径方向へ熱変形(膨張・収縮)の伸縮差が発生しても、両者間の径方向隙間13aが消滅しない程度に設定されている。
軸方向隙間13bは、内筒管11の軸方向端部と外筒管12の軸方向端部の間に、筒状に形成される。軸方向隙間13bを特定する内筒管11及び外筒管12の軸方向長さは、内筒管11及び外筒管12の構成材料の熱膨張率(熱膨張係数)の違いにより、軸方向へ熱変形(膨張・収縮)の伸縮差が発生しても、その取り付け状態において両者間の軸方向隙間13bが消滅しない程度に設定されている。
径方向隙間13a及び軸方向隙間13bの具体例として、外筒管12の構成材料の熱膨張率が内筒管11の構成材料の熱膨張率よりも大きい場合には、装入物Bの熱処理後において先に外筒管12が冷えて収縮しても、内筒管11の外周面11bと径方向へ及び軸方向へ接触しないように設定している。
The space portion 13 includes a radial gap 13 a formed in the radial direction of the inner cylindrical pipe 11 and the outer cylindrical pipe 12, and an axial gap 13 b formed in the axial direction of the inner cylindrical pipe 11 and the outer cylindrical pipe 12. .
The radial gap 13 a is formed between the outer peripheral surface 11 b of the inner cylindrical tube 11 and the inner peripheral surface 12 b of the outer cylindrical tube 12 in a non-cylindrical shape that is divided at a contact portion between the inner cylindrical tube 11 and the outer cylindrical tube 12. The The outer diameter of the inner tube 11 and the inner diameter of the outer tube 12 that specify the radial gap 13a are different from each other in the radial direction due to the difference in the coefficient of thermal expansion (thermal expansion coefficient) of the constituent materials of the inner tube 11 and the outer tube 12. Even if a difference in expansion / contraction due to thermal deformation (expansion / contraction) occurs, the radial gap 13a between them is set so as not to disappear.
The axial gap 13 b is formed in a cylindrical shape between the axial end of the inner tube 11 and the axial end of the outer tube 12. The axial lengths of the inner cylindrical tube 11 and the outer cylindrical tube 12 that specify the axial gap 13b depend on the difference in the thermal expansion coefficient (thermal expansion coefficient) of the constituent materials of the inner cylindrical tube 11 and the outer cylindrical tube 12 in the axial direction. Even if a difference in expansion / contraction due to heat deformation (expansion / contraction) occurs, the axial gap 13b between the two is not set to disappear in the attached state.
As a specific example of the radial gap 13a and the axial gap 13b, when the coefficient of thermal expansion of the constituent material of the outer cylindrical tube 12 is larger than the coefficient of thermal expansion of the constituent material of the inner cylindrical tube 11, the heat treatment of the charge B Even if the outer tube 12 is cooled and contracted later, the outer tube 11 is set so as not to contact the outer peripheral surface 11b of the inner tube 11 in the radial direction and the axial direction.

外筒管12に対する内筒管11の配置例として、図1(a)(b)〜図3(a)(b)に示される例の場合には、内筒管11の外周面11bの周方向一部において軸方向略全体に亘る長尺部位と、外筒管12の内周面12bの周方向一部において軸方向略全体に亘る長尺部位と、を重力により互いに接触させている。
詳しく説明すると、外筒管12の内部に内筒管11を載置することで、内筒管11の自重により、内筒管11の外周面11bの周方向一部(底部)が、外筒管12の内周面12bの周方向一部(底部)と接触している。
この接触部位(底部)同士を除く周方向の大部分に、空間部13として非筒状の径方向隙間13aが区画形成されている。
さらに、傾斜した設置された内筒管11及び外筒管12において上位の軸方向一端側に、空間部13として環状の軸方向隙間13bが区画形成されている。このため、内筒管11及び外筒管12の構成材料の熱膨張率の違いにより、軸方向へ熱変形(膨張・収縮)の伸縮差が発生しても、軸方向隙間13bで内筒管11及び外筒管12の伸縮差が十分に吸収可能となっている。
また、その他の例として図示しないが、外筒管12の内部において内筒管11を吊持するなどにより、内筒管11の外周面11bの周方向一部(底部以外の所定部位)が、外筒管12の内周面12bの周方向一部(底部以外の所定部位)と接触するように変更することも可能である。傾斜した設置された内筒管11及び外筒管12において下位の軸方向他端側に、軸方向隙間13bを区画形成することも可能である。
As an example of the arrangement of the inner tube 11 with respect to the outer tube 12, in the example shown in FIGS. 1A, 1B and 3A, 3B, the circumference of the outer peripheral surface 11b of the inner tube 11 is shown. A long part over substantially the whole axial direction in a part of the direction and a long part over almost the whole axial direction in a part of the inner peripheral surface 12b of the outer tube 12 are brought into contact with each other by gravity.
More specifically, by placing the inner tube 11 inside the outer tube 12, the circumferential portion (bottom) of the outer peripheral surface 11b of the inner tube 11 is caused by the weight of the inner tube 11 so that the outer tube 11 The pipe 12 is in contact with a part (bottom part) of the inner circumferential surface 12 b in the circumferential direction.
A non-cylindrical radial gap 13a is defined as a space 13 in most of the circumferential direction excluding the contact parts (bottom parts).
Further, an annular axial gap 13 b is formed as a space 13 on the upper axial end side of the inclined inner cylinder tube 11 and outer cylinder tube 12. For this reason, even if a difference in expansion and contraction due to thermal deformation (expansion / contraction) occurs in the axial direction due to the difference in thermal expansion coefficient between the constituent materials of the inner cylinder pipe 11 and the outer cylinder pipe 12, the inner cylinder pipe is formed in the axial gap 13b. 11 and the expansion / contraction difference of the outer tube 12 can be sufficiently absorbed.
Although not shown in the drawings as another example, a part of the outer circumferential surface 11b of the inner cylinder tube 11 in the circumferential direction (predetermined part other than the bottom) is formed by suspending the inner cylinder pipe 11 inside the outer cylinder pipe 12. It is also possible to change so as to come into contact with a part of the inner peripheral surface 12b of the outer tube 12 in the circumferential direction (a predetermined part other than the bottom). In the inclined inner cylinder tube 11 and outer cylinder tube 12, it is also possible to partition the axial gap 13b on the lower axial other end side.

このような内筒管11及び外筒管12の接触部位には、伝熱部14と回転伝動部15が形成される。
伝熱部14とは、内筒管11の外周面11bの周方向一部と外筒管12の内周面12bの周方向一部との接触部位を通って、外筒管12の熱を内筒管11に伝える熱伝導機構である。このため、前記の接触部位の面積、すなわち外筒管12に対する内筒管11の接触面積を可能な限り広く設定することが好ましい。
伝熱部14の具体例として、図1(a)(b)〜図3(a)(b)に示される例の場合には、外筒管12の内周面12bの周方向一部において軸方向略全体に亘る接触部位と、内筒管11の外周面11bの周方向一部において軸方向略全体に亘る接触部位と、に亘って直線状の伝熱部14が形成されている。
また、その他の例として図示しないが、外筒管12の内周面12bの周方向一部において軸方向一部の接触部位と、内筒管11の外周面11bの周方向一部において軸方向一部の接触部位と、に亘って伝熱部14を形成することも可能である。
A heat transfer section 14 and a rotation transmission section 15 are formed at the contact portion between the inner tube 11 and the outer tube 12.
The heat transfer part 14 passes through a contact portion between a part in the circumferential direction of the outer peripheral surface 11b of the inner cylindrical pipe 11 and a part in the circumferential direction of the inner peripheral surface 12b of the outer cylindrical pipe 12 and heats the outer cylindrical pipe 12. This is a heat conduction mechanism that transmits to the inner tube 11. For this reason, it is preferable to set the area of the contact portion, that is, the contact area of the inner tube 11 to the outer tube 12 as wide as possible.
As a specific example of the heat transfer section 14, in the case of the example shown in FIGS. 1A, 1 </ b> B to 3 </ b> A, 3 </ b> B, in a part in the circumferential direction of the inner peripheral surface 12 b of the outer tube 12. A linear heat transfer section 14 is formed across the contact portion that extends over substantially the entire axial direction and the contact portion that extends over substantially the entire axial direction in a portion of the outer peripheral surface 11 b of the inner tube 11.
Although not shown in the drawings as another example, a part of the contact portion in the axial direction in a part of the inner peripheral surface 12b of the outer cylindrical tube 12 and a part of the peripheral direction of the outer peripheral surface 11b of the inner cylindrical tube 11 in the axial direction It is also possible to form the heat transfer section 14 over a part of the contact portion.

回転伝動部15とは、内筒管11の外周面11bの周方向一部と外筒管12の内周面12bの周方向一部との接触部位を利用して、外筒管12の回転力を内筒管11に伝える動力伝達機構である。
回転伝動部15による外筒管12から内筒管11への回転伝達としては、滑り摩擦によるの揺動伝達、定速度の連続回転伝達、間欠的な振動発生伝達などが挙げられる。
The rotation transmission portion 15 is a rotation of the outer cylindrical tube 12 by utilizing a contact portion between a part of the outer peripheral surface 11b of the inner cylindrical tube 11 in the circumferential direction and a part of the inner peripheral surface 12b of the outer cylindrical tube 12 in the circumferential direction. This is a power transmission mechanism that transmits force to the inner tube 11.
Examples of the rotation transmission from the outer cylindrical tube 12 to the inner cylindrical tube 11 by the rotation transmission unit 15 include oscillation transmission due to sliding friction, constant-speed continuous rotation transmission, and intermittent vibration generation transmission.

滑り摩擦による揺動伝達は、図1(a)(b)に示されるように、内筒管11の外周面11bの周方向一部と外筒管12の内周面12bの周方向一部との接触部位に、回転伝動部15として滑り摩擦部位15aを有している。
滑り摩擦部位15aは、外筒管12の連続的な回転(正転)に連動した内筒管11の回転(正転)移動と、内筒管11の回転に伴う装入物Bの重量移動で内筒管11が逆向きに滑る逆回転(反転)移動と、を繰り返すように構成される。これにより、所定角度領域で内筒管11を揺動させる。これら正転と逆転による内筒管11の揺動は、必ずしも規則性や周期性を必要とはせず、後述の打撃機構30による装入物Bの付着防止用の打撃振動と、内筒管11内の堆積厚みを浅くする効果が、いずれも得られれば不規則で不定期な揺動でも良い。
詳しく説明すると、先ずは滑り摩擦部位15aで生じる摩擦抵抗により、外筒管12の一方向へ連続的な正転に連動して、内筒管11が同方向へ正転移動する。これに伴って、内筒管11の内周面11cとの間に生じる摩擦抵抗で装入物Bが周方向(正転方向)への持ち上げられる。その次に、内筒管11の正転移動に伴って装入物Bが周方向へ所定角度位置まで持ち上げられると、装入物Bの重量移動により、内筒管11の外周面11bが外筒管12の内周面12bに対し滑って、内筒管11が周方向逆向きの反転移動を開始する。その後、装入物Bの中心部が鉛直位置に至ると、内筒管11の逆向き滑り移動が停止する。これ以降は前述した動作を繰り返す。このため、外筒管12が一方向へ連続的に正転しても、所定角度領域に亘り内筒管11が正転移動と反転移動を交互に繰り返して揺動することになる。
図示例では、外筒管12の内周面12bの周方向一部において軸方向略全体に亘る接触部位と、内筒管11の外周面11bの周方向一部において軸方向略全体に亘る接触部位と、に亘って直線状の滑り摩擦部位15aが形成されている。
また、滑り摩擦部位15aは、内筒管11の回転動作に伴う装入物Bの揺動に加え、内筒管11が所定角度領域に亘り揺動することで、装入物Bの揺動幅を更に広くさせるように、内筒管11が動き易くなるような外筒管12との隙間により設定することが好ましい。
この場合には、下流側へ向かう装入物Bの流れ移動を促進させると同時に、装入物Bにおいて加熱底面側から表面層B1までの堆積厚みを浅くすることが期待できる。その結果として、簡単な構造で装入物Bの移送促進と加熱均一性を共に実現でき、装入物Bを低コストで高品質な熱処理が可能になる。
As shown in FIGS. 1 (a) and 1 (b), the swing transmission due to sliding friction is a part of the outer peripheral surface 11 b of the inner tube 11 and a part of the inner surface 12 b of the outer tube 12. The sliding friction part 15a is provided as the rotational transmission part 15 in the contact part.
The sliding friction portion 15 a is configured to rotate (forward) the inner tube 11 in conjunction with continuous rotation (forward) of the outer tube 12, and move the weight of the charge B accompanying the rotation of the inner tube 11. Thus, it is configured to repeat the reverse rotation (inversion) movement in which the inner tube 11 slides in the reverse direction. Thereby, the inner tube 11 is swung in a predetermined angle region. The swinging of the inner tube 11 due to the forward rotation and the reverse rotation does not necessarily require regularity or periodicity. The striking vibration for preventing adhesion of the charge B by the striking mechanism 30 described later, and the inner tube If any of the effects of reducing the thickness of the deposit in 11 is obtained, irregular and irregular oscillation may be used.
More specifically, first, due to the frictional resistance generated in the sliding friction portion 15a, the inner tube 11 is rotated forward in the same direction in conjunction with continuous forward rotation in one direction of the outer tube 12. Along with this, the charge B is lifted in the circumferential direction (forward rotation direction) by the frictional resistance generated between the inner cylindrical tube 11 and the inner peripheral surface 11c. Next, when the charge B is lifted to a predetermined angular position in the circumferential direction along with the forward rotation of the inner tube 11, the outer peripheral surface 11 b of the inner tube 11 is removed by the weight movement of the charge B. The inner tube 11 starts to reverse in the reverse direction in the circumferential direction by sliding with respect to the inner peripheral surface 12b of the tube 12. Thereafter, when the central portion of the charge B reaches a vertical position, the reverse sliding movement of the inner tube 11 stops. Thereafter, the above-described operation is repeated. For this reason, even if the outer tube 12 is continuously forward rotated in one direction, the inner tube 11 is oscillated by alternately repeating forward rotation and reverse movement over a predetermined angle region.
In the illustrated example, a contact portion that extends over substantially the entire axial direction in a part of the inner peripheral surface 12b of the outer tube 12 and a contact that covers substantially the entire axial direction of a portion of the outer surface 11b of the inner tube 11 in the circumferential direction. A linear sliding friction part 15a is formed over the part.
Further, the sliding friction portion 15a swings the charging material B by swinging the charging tube B over a predetermined angle region in addition to the rocking motion of the charging material B accompanying the rotation of the inner cylindrical tube 11. In order to further increase the width, it is preferable to set the gap with the outer tube 12 so that the inner tube 11 can move easily.
In this case, it is expected that the flow movement of the charge B toward the downstream side is promoted, and at the same time, the thickness of the charge B from the heating bottom surface side to the surface layer B1 is made shallow. As a result, it is possible to realize both transfer promotion and heating uniformity of the charge B with a simple structure, and the charge B can be subjected to high-quality heat treatment at low cost.

定速度の連続回転伝達は、図2(a)(b)に示されるように、内筒管11の外周面11bの周方向一部と外筒管12の内周面12bの周方向一部との接触部位に、回転伝動部15として凹凸部位15bを有している。
凹凸部位15bは、内筒管11の外周面11bの周方向一部と外筒管12の内周面12bの周方向一部が周方向へ互いに係合する凹凸形状に形成され、外筒管12に対して内筒管11の回転を規制している。これにより、外筒管12の連続的な回転に連動して内筒管11を同方向へ連続して滑らかに回転移動させるように構成されている。
図示例では、傾斜した設置された内筒管11及び外筒管12において下位の軸方向他端側部位において、内筒管11の外周面11bに凹凸部位15bとなる外歯車を周設し、外筒管12の内周面12bに凹凸部位15bとなる内歯車を周設している。
また、その他の例として図示しないが、凹凸部位15bとして歯車以外の伝動部品を用いることも可能である。
As shown in FIGS. 2A and 2B, constant rotation transmission at a constant speed is a part of the outer peripheral surface 11b of the inner tube 11 and a part of the inner surface 12b of the outer tube 12 in the peripheral direction. In the contact area with the rotation transmission section 15, an uneven portion 15 b is provided.
The uneven portion 15b is formed in an uneven shape in which a portion of the outer peripheral surface 11b of the inner tube 11 and a portion of the inner surface 12b of the outer tube 12 are engaged with each other in the circumferential direction. 12, the rotation of the inner tube 11 is restricted. Thus, the inner cylinder tube 11 is configured to continuously and smoothly rotate in the same direction in conjunction with the continuous rotation of the outer cylinder tube 12.
In the illustrated example, an outer gear serving as a concavo-convex portion 15b is provided around the outer peripheral surface 11b of the inner tube 11 at the lower axial other end portion of the inclined inner tube 11 and outer tube 12, An internal gear serving as a concavo-convex portion 15 b is provided around the inner peripheral surface 12 b of the outer tube 12.
Further, although not shown as another example, it is possible to use transmission parts other than gears as the uneven portion 15b.

間欠的な振動発生伝達は、図3(a)(b)に示されるように、内筒管11の外周面11bの周方向一部と外筒管12の内周面12bの周方向一部との接触部位に、回転伝動部15として多角形嵌合部位15cを有している。
多角形嵌合部位15cは、内筒管11の外周面11bの周方向一部と外筒管12の内周面12bの周方向一部が周方向へ互いに係合する正多角形の凹凸形状に形成される。これにより、外筒管12の連続的な回転に連動して内筒管11を同方向へ回転移動させ、且つ間欠的に振動が生じるように構成されている。
図示例では、傾斜した設置された内筒管11及び外筒管12において下位の軸方向他端側部位において、内筒管11の外周面11bに多角形嵌合部位15cとなる正多角形凸部を周設し、外筒管12の内周面12bに多角形嵌合部位15cとなる正多角形凹部を周設している。
また、その他の例として図示しないが、多角形嵌合部位15cの凹凸形状を正多角形の角数が異なる図示例以外の形状に変更することも可能である。
As shown in FIGS. 3 (a) and 3 (b), intermittent vibration generation and transmission is performed on a part of the outer peripheral surface 11b of the inner tube 11 and a part of the inner surface 12b of the outer tube 12 in the peripheral direction. A polygonal fitting part 15c is provided as the rotational transmission part 15 at the contact part.
The polygonal fitting portion 15c is a regular polygonal concavo-convex shape in which a part of the outer peripheral surface 11b of the inner tube 11 and a part of the inner surface 12b of the outer tube 12 are engaged in the circumferential direction. Formed. As a result, the inner tube 11 is rotated in the same direction in conjunction with the continuous rotation of the outer tube 12, and the vibration is generated intermittently.
In the illustrated example, the regular polygonal convexity that forms the polygonal fitting portion 15c on the outer peripheral surface 11b of the inner tube 11 at the lower axial other end portion of the inclined inner tube 11 and outer tube 12 is shown. The regular polygonal recessed part used as the polygonal fitting part 15c is provided in the inner peripheral surface 12b of the outer cylinder pipe 12 around the part.
Although not shown as another example, the uneven shape of the polygonal engagement portion 15c can be changed to a shape other than the illustrated example in which the regular polygon has a different number of corners.

一方、外筒管12の外側には、図1(b),図2(b)及び図3(b)に示されるように、打撃機構30が設けられ、内筒管11の内周面11cに付着した粉状体や粉粒体などからなる装入物Bを打撃振動により落下させることが好ましい。
打撃機構30は、外筒管12の外面12cと当接する打撃部31と、打撃部4aを外筒管12の外面12cに向け往復動させる打撃振動発生器33と、を有している。打撃振動発生器33の作動で打撃部31の先端を外筒管12の外面12cに突き当たることにより、外筒管12に発生した打撃振動が内筒管11との接触部位を介して伝播され、内筒管11を直接的に振動させるように構成されている。
図示例の場合には、打撃部31が加熱部20の炉壁22を貫通して往復動自在に支持され、加熱雰囲気21と炉壁22を挟んで形成される低温雰囲気に打撃振動発生器33を配設している。打撃機構30において少なくとも打撃部31は、外筒管12の軸方向へ所定間隔毎に複数配設されて、外筒管12の軸方向全長に打撃振動を発生させている。
また、その他の例として図示しないが、打撃機構30を図示例以外の構造に変更することも可能である。
On the other hand, as shown in FIG. 1B, FIG. 2B, and FIG. 3B, a striking mechanism 30 is provided on the outer side of the outer cylindrical tube 12, and the inner peripheral surface 11c of the inner cylindrical tube 11 is provided. It is preferable to drop the charge B made of a powdery body or a granular material adhering to the surface by impact vibration.
The striking mechanism 30 includes a striking portion 31 that comes into contact with the outer surface 12 c of the outer tube 12, and a striking vibration generator 33 that reciprocates the striking portion 4 a toward the outer surface 12 c of the outer tube 12. By hitting the tip of the striking portion 31 against the outer surface 12c of the outer tube 12 by the operation of the hammering vibration generator 33, the hammering vibration generated in the outer tube 12 is propagated through the contact portion with the inner tube 11, The inner tube 11 is configured to vibrate directly.
In the case of the illustrated example, the striking part 31 penetrates the furnace wall 22 of the heating part 20 and is supported so as to reciprocate, and the striking vibration generator 33 is formed in a low-temperature atmosphere formed with the heating atmosphere 21 and the furnace wall 22 interposed therebetween. Is arranged. In the striking mechanism 30, at least the striking portions 31 are arranged at predetermined intervals in the axial direction of the outer cylindrical tube 12, and generate striking vibrations over the entire axial length of the outer cylindrical tube 12.
Although not shown as another example, the striking mechanism 30 can be changed to a structure other than the illustrated example.

このような本発明の実施形態に係る熱処理装置Aによると、内筒管11の外周面11bの周方向一部と、外筒管12の内周面12bの周方向一部とを接触させ、この接触部位に設けられる伝熱部14により、加熱雰囲気21で加熱した外筒管12の熱が内筒管11に伝えられる。
これと同時に、前記の接触部位に設けられる回転伝動部15により外筒管12の回転力が内筒管11に伝えられる。
このため、供給口31から内筒管11の内部に供給した装入物Bが、外筒管12から内筒管11への回転伝動で下流側へスムーズに移送されると同時に、外筒管12から内筒管11への伝導熱で装入物Bが素早く熱処理される。
したがって、内筒管11及び外筒管12の周方向一部同士が部分接触した二重筒構造で外筒管12から内筒管11への伝熱性と回転力の伝達を同時に向上させることができる。
その結果、内筒と外筒の隙間に不定形断熱材を詰め込んで内筒及び外筒が一体化される従来のものに比べ、外筒管12から内筒管11への熱伝達と回転力の伝達を共に高効率で達成することはできる。このため、熱エネルギーの削減及び熱処理時間の短縮化が図れ、高品質の熱処理を簡単な構造で効率良く且つ安価に実現できる。
According to such a heat treatment apparatus A according to the embodiment of the present invention, a part in the circumferential direction of the outer peripheral surface 11b of the inner tube 11 and a part in the circumferential direction of the inner surface 12b of the outer tube 12 are brought into contact with each other. The heat of the outer tube 12 heated in the heating atmosphere 21 is transmitted to the inner tube 11 by the heat transfer section 14 provided at the contact portion.
At the same time, the rotational force of the outer tube 12 is transmitted to the inner tube 11 by the rotation transmission portion 15 provided at the contact portion.
Therefore, the charge B supplied from the supply port 31 to the inside of the inner tube 11 is smoothly transferred to the downstream side by the rotational transmission from the outer tube 12 to the inner tube 11, and at the same time, the outer tube Charge B is quickly heat-treated by the conduction heat from 12 to the inner tube 11.
Therefore, it is possible to simultaneously improve the heat transfer from the outer tube 12 to the inner tube 11 and the transmission of the rotational force with a double tube structure in which parts of the inner tube 11 and the outer tube 12 are partially in contact with each other in the circumferential direction. it can.
As a result, heat transfer and rotational force from the outer tube 12 to the inner tube 11 compared to the conventional one in which the inner tube and the outer tube are integrated by filling the gap between the inner tube and the outer tube with an amorphous heat insulating material. Both can be achieved with high efficiency. For this reason, heat energy can be reduced and heat treatment time can be shortened, and high-quality heat treatment can be realized efficiently and inexpensively with a simple structure.

また、内筒管11の外周面11bと外筒管12の内周面12bの間には、両者の周方向一部を除いて空間部13が径方向へ大きく形成可能となる。
このため、内筒管11及び外筒管12の構成材料の熱膨張率の違いにより、径方向へ熱変形(膨張・収縮)の伸縮差が発生しても、空間部13で内筒管11及び外筒管12の伸縮差が十分に吸収可能となる。
したがって、装入物Bの熱処理後において硬度に優れた外筒管12が先に冷えて収縮しても、硬度に劣る内筒管11の破損を防止することができる。
その結果、硬度に劣る内筒管11を長期に亘り使用できて、メンテナンス性及び経済性に優れる。
Further, between the outer peripheral surface 11b of the inner cylindrical tube 11 and the inner peripheral surface 12b of the outer cylindrical tube 12, the space portion 13 can be formed larger in the radial direction except for a part in the circumferential direction thereof.
For this reason, even if a difference in expansion and contraction due to thermal deformation (expansion / contraction) occurs in the radial direction due to the difference in thermal expansion coefficient between the constituent materials of the inner tube 11 and the outer tube 12, the inner tube 11 in the space 13. And the expansion-contraction difference of the outer cylinder pipe 12 can fully be absorbed.
Therefore, even if the outer cylindrical tube 12 excellent in hardness after the heat treatment of the charge B is cooled and contracted first, damage to the inner cylindrical tube 11 inferior in hardness can be prevented.
As a result, the inner tube 11 having inferior hardness can be used for a long period of time, and is excellent in maintainability and economy.

特に、内筒管11の外周面11bの周方向一部において軸方向略全体に亘る長尺部位と、外筒管12の内周面12bの周方向一部において軸方向略全体に亘る長尺部位と、を互いに接触させることが好ましい。
この場合には、内筒管11の長尺構造における自重撓みを積極的に考慮する必要がなくなる。
このため、内筒管11の材質選択や短尺分割接続などの構造設計における自由度が向上する。
したがって、炉心管10の長尺化と大型化に伴う内筒管11の設計上の制約が減るとともに、内筒管11への要求強度を減らすことができる。
その結果、内筒管11の構造を簡素化できて、製造コストの低減化が図れる。
In particular, a part of the outer peripheral surface 11b of the inner cylindrical tube 11 that extends substantially over the entire axial direction and a part of the inner peripheral surface 12b of the outer cylindrical tube 12 that extends substantially over the entire axial direction. The parts are preferably brought into contact with each other.
In this case, it is not necessary to positively consider the self-weight deflection in the long structure of the inner tube 11.
For this reason, the freedom degree in structural design, such as material selection of the inner cylinder pipe 11, and a short division | segmentation connection, improves.
Therefore, the design restriction of the inner tube 11 associated with the lengthening and enlargement of the core tube 10 is reduced, and the required strength of the inner tube 11 can be reduced.
As a result, the structure of the inner tube 11 can be simplified, and the manufacturing cost can be reduced.

さらに、内筒管11の外周面11bの周方向一部と外筒管12の内周面12bの周方向一部とを、重力により互いに接触させることが好ましい。
この場合には、外筒管12の内周面12bに対して内筒管11の外周面11bを載置するだけで、治具や支持具などを必要とせずに両者の組み付けが完了する。
したがって、簡単な構造で外筒管12に内筒管11を組み付けることができる。
その結果、更なる構造の簡素化が実現できて、更なるメンテナンス性及び経済性の向上が図れる。
Furthermore, it is preferable that a part in the circumferential direction of the outer peripheral surface 11b of the inner tube 11 and a part in the circumferential direction of the inner surface 12b of the outer tube 12 are brought into contact with each other by gravity.
In this case, only the outer peripheral surface 11b of the inner cylindrical tube 11 is placed on the inner peripheral surface 12b of the outer cylindrical tube 12, and the assembly of both is completed without requiring a jig or a support.
Therefore, the inner tube 11 can be assembled to the outer tube 12 with a simple structure.
As a result, further simplification of the structure can be realized, and further improvement in maintainability and economy can be achieved.

また、回転伝動部15が、内筒管11の外周面11bの周方向一部と、外筒管12の内周面12bの周方向一部との接触部位に、周方向へ互いに係合する凹凸部位15bを有することが好ましい。
この場合には、外筒管12の連続的な回転に連動して内筒管11が同方向へ連続して滑らかに回転移動する。
したがって、簡単な構造で外筒管12から内筒管11へ回転力をスムーズに且つ確実に伝達することができる。
その結果、熱エネルギーの削減及び熱処理時間の更なる短縮化が図れ、高品質の熱処理をより効率良く且つ安価に実現できる。
Moreover, the rotation transmission part 15 mutually engages in the circumferential direction at the contact part of the circumferential direction part of the outer peripheral surface 11b of the inner cylinder pipe 11, and the circumferential direction part of the inner peripheral surface 12b of the outer cylinder pipe 12. It is preferable to have the uneven part 15b.
In this case, the inner tube 11 continuously rotates and moves in the same direction in conjunction with the continuous rotation of the outer tube 12.
Therefore, the rotational force can be smoothly and reliably transmitted from the outer tube 12 to the inner tube 11 with a simple structure.
As a result, thermal energy can be reduced and heat treatment time can be further shortened, and high-quality heat treatment can be realized more efficiently and inexpensively.

また、回転伝動部15が、内筒管11の外周面11bの周方向一部と、外筒管12の内周面12bの周方向一部との接触部位に、周方向へ互いに係合する多角形嵌合部位15cを有することが好ましい。
この場合には、外筒管12の連続的な回転に連動して内筒管11が同方向へ回転移動しながら、多角形嵌合部位15cの各角部分同士が突き当たる度に、内筒管11の全体に対して間欠的な振動が付与される。
したがって、簡単な構造で内筒管11への振動伝播性を向上させることができる。
その結果、内筒管11の内周面11cに付着した装入物Bを打撃振動により落下させるための打撃機構30の設置数を減らすか又は無くしても、間欠的な振動により内筒管11の内周面11cに付着した装入物Bを確実に落下させることができる。
これにより、熱処理装置Aの全体構造を簡素化できて、メンテナンス性及び経済性の更なる向上が図れる。
Moreover, the rotation transmission part 15 mutually engages in the circumferential direction at the contact part of the circumferential direction part of the outer peripheral surface 11b of the inner cylinder pipe 11, and the circumferential direction part of the inner peripheral surface 12b of the outer cylinder pipe 12. It is preferable to have a polygonal fitting portion 15c.
In this case, each time the corner portions of the polygonal fitting portion 15c come into contact with each other while the inner tube 11 rotates and moves in the same direction in conjunction with the continuous rotation of the outer tube 12, the inner tube 11 is intermittently applied to the entirety of 11.
Therefore, the vibration propagation property to the inner tube 11 can be improved with a simple structure.
As a result, even if the number of hitting mechanisms 30 for dropping the charge B adhering to the inner peripheral surface 11c of the inner tube 11 is reduced or eliminated, the inner tube 11 is intermittently vibrated. The charge B adhering to the inner peripheral surface 11c can be reliably dropped.
Thereby, the whole structure of the heat processing apparatus A can be simplified and the further improvement of maintainability and economical efficiency can be aimed at.

なお、前示の実施形態では、外筒管12を回転駆動部の作動により連続的に回転移動させる場合について説明したが、これに限定されず、前記の回転駆動部を間欠作動して外筒管12を間欠的に回転移動させることにより、回転伝動部15で内筒管11に間欠的な回転伝達してもよい。
この場合も、図3(a)(b)に示される例と同様な作用効果が得られる。
In the above-described embodiment, the case where the outer tube 12 is continuously rotated by the operation of the rotation drive unit has been described. However, the present invention is not limited to this. By rotating the tube 12 intermittently, the rotation transmission unit 15 may transmit intermittent rotation to the inner tube 11.
Also in this case, the same effect as the example shown in FIGS. 3A and 3B can be obtained.

A 熱処理装置 11 内筒管
11a 回転中心 11b 外周面
11c 内周面 12 外筒管
12a 回転中心 12b 内周面
13 空間部 14 伝熱部
15 回転伝動部 15a 摩擦部位
15b 凹凸部位 15c 多角形嵌合部位
B 装入物 31 供給口
A Heat treatment apparatus 11 Inner tube 11a Rotation center 11b Outer surface 11c Inner surface 12 Outer tube 12a Rotation center 12b Inner surface 13 Space portion 14 Heat transfer portion 15 Rotation drive portion 15a Friction portion 15b Uneven portion 15c Polygonal fitting Part B Charge 31 Supply port

Claims (5)

粉状又は粉粒状の装入物を回転動作により移送しながら熱処理する熱処理装置であって、
前記装入物の供給口と連通して回転自在に設けられる内筒管と、
前記内筒管の回転中心と不一致な回転中心で回転自在に設けられる外熱式の外筒管と、
前記内筒管及び前記外筒管の間に両者の周方向一部を除いて設けられる空間部と、
前記内筒管の前記外周面の周方向一部及び前記外筒管の前記内周面の周方向一部の接触部位に設けられる伝熱部及び回転伝動部と、を備えることを特徴とする熱処理装置。
A heat treatment device for heat treatment while transferring powdered or powdered charge by rotating operation,
An inner tube that is rotatably connected to the supply port of the charge;
An externally-heated outer tube that is rotatably provided at a rotation center that does not coincide with the rotation center of the inner tube;
A space provided between the inner tube and the outer tube excluding a part of the circumferential direction of both,
A heat transfer portion and a rotation transmission portion provided at a contact portion of a part in the circumferential direction of the outer peripheral surface of the inner cylindrical tube and a part of the outer peripheral tube in the circumferential direction of the inner peripheral surface. Heat treatment equipment.
前記内筒管の前記外周面の周方向一部において軸方向略全体に亘る長尺部位と、前記外筒管の前記内周面の周方向一部において軸方向略全体に亘る長尺部位と、が互いに接触することを特徴とする請求項1記載の熱処理装置。   A long part over substantially the whole axial direction in a part in the circumferential direction of the outer peripheral surface of the inner tube, and a long part over almost the whole axial direction in a part in the circumferential direction of the inner peripheral surface of the outer tube The heat treatment apparatus according to claim 1, wherein the two are in contact with each other. 前記内筒管の前記外周面の周方向一部と前記外筒管の前記内周面の周方向一部とが、重力により互いに接触することを特徴とする請求項1又は2記載の熱処理装置。   3. The heat treatment apparatus according to claim 1, wherein a part in the circumferential direction of the outer peripheral surface of the inner cylindrical tube and a part in the circumferential direction of the inner peripheral surface of the outer cylindrical tube are in contact with each other by gravity. . 前記回転伝動部が、前記内筒管の前記外周面の周方向一部と前記外筒管の前記内周面の周方向一部との接触部位に、周方向へ互いに係合する凹凸部位を有することを特徴とする請求項1、2又は3記載の熱処理装置。   The rotation transmission part has an uneven part engaged with each other in the circumferential direction at a contact part between a part in the circumferential direction of the outer peripheral surface of the inner cylindrical pipe and a part in the circumferential direction of the inner peripheral surface of the outer cylindrical pipe. The heat treatment apparatus according to claim 1, 2 or 3. 前記回転伝動部が、前記内筒管の前記外周面の周方向一部と前記外筒管の前記内周面の周方向一部との接触部位に、周方向へ互いに係合する多角形嵌合部位を有することを特徴とする請求項1、2又は3記載の熱処理装置。   Polygonal fitting in which the rotation transmission portion engages with each other in the circumferential direction at a contact portion between a part in the circumferential direction of the outer peripheral surface of the inner tube and a part in the circumferential direction of the inner surface of the outer tube The heat treatment apparatus according to claim 1, wherein the heat treatment apparatus has a combined portion.
JP2016060246A 2016-03-24 2016-03-24 Heat treatment device Pending JP2017172888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016060246A JP2017172888A (en) 2016-03-24 2016-03-24 Heat treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060246A JP2017172888A (en) 2016-03-24 2016-03-24 Heat treatment device

Publications (1)

Publication Number Publication Date
JP2017172888A true JP2017172888A (en) 2017-09-28

Family

ID=59970807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016060246A Pending JP2017172888A (en) 2016-03-24 2016-03-24 Heat treatment device

Country Status (1)

Country Link
JP (1) JP2017172888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204893A (en) * 2017-06-07 2018-12-27 株式会社リュウクス Burning device and furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204893A (en) * 2017-06-07 2018-12-27 株式会社リュウクス Burning device and furnace

Similar Documents

Publication Publication Date Title
EP3382310A1 (en) Rotary furnace
JP2017172888A (en) Heat treatment device
US20120267360A1 (en) Rotary type microwave heating furnace and heating method thereof
JP5586894B2 (en) Externally heated rotary furnace and its core tube
JP2000234887A (en) Heat exchanging bent tube having inner face protrusion
JP2015501771A (en) Vibrating spiral transfer device
JP2012102901A (en) Rotary furnace
JP7103840B2 (en) Powder material manufacturing method using a core tube external heat type powder material firing device and a core tube external heat type powder material firing device
CN219064106U (en) High-temperature vacuum rotary furnace
JP2012180955A (en) Hammering device of rotary kiln
JP5077478B1 (en) Baking apparatus and endless belt manufacturing method
WO2014203733A1 (en) Gas supply tube and heat processing device
JP2017172889A (en) Heat treatment device
JP6027923B2 (en) Externally heated rotary kiln
CN107213983A (en) Material rolling and feeding device of non-rotating heating cavity
JP2008041698A (en) Processor, and processing method
RU179059U1 (en) ELECTRIC FURNACE FOR PRODUCING EXPLOSED VERMICULITIS FROM VERMICULITE CONCENTRATES
CN208082508U (en) A kind of chemistry experiment mud tripod device
JP2009283247A (en) Exothermic body unit, and heating device
JP2016080227A (en) Heat exchanger, burning furnace and method for producing ceramic
JP2020053336A (en) Heat generator, method for manufacturing heat generator, and heating device
CN212109483U (en) Shaft furnace oscillation device for scrap steel preheating furnace
CN104896916A (en) Rotating heat treatment equipment
CN210261576U (en) Preheating device before phosphogypsum calcination
JP2006089819A (en) Cvd coating method and cvd coating device