JP2017172847A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2017172847A
JP2017172847A JP2016057962A JP2016057962A JP2017172847A JP 2017172847 A JP2017172847 A JP 2017172847A JP 2016057962 A JP2016057962 A JP 2016057962A JP 2016057962 A JP2016057962 A JP 2016057962A JP 2017172847 A JP2017172847 A JP 2017172847A
Authority
JP
Japan
Prior art keywords
cooler
refrigerator
storage material
chamber
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016057962A
Other languages
Japanese (ja)
Other versions
JP6492291B2 (en
Inventor
克則 堀井
Katsunori Horii
克則 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016057962A priority Critical patent/JP6492291B2/en
Priority to PCT/JP2017/009911 priority patent/WO2017163965A1/en
Priority to CN201780019821.1A priority patent/CN108885046A/en
Publication of JP2017172847A publication Critical patent/JP2017172847A/en
Application granted granted Critical
Publication of JP6492291B2 publication Critical patent/JP6492291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator which can maintain a cooling capacity by using a cold storage material and achieve energy saving.SOLUTION: A refrigerator includes a cooler 115 which cools a storage compartment by the operation of a compressor, and a cooling compartment accommodating the cooler 115. A cold storage material 131 is arranged in a return duct 102b of a storage compartment, and the cooler 115 is arranged adjacent to the cold storage material 131, so that a heat load of cool air returning to the cooler 115 is reduced, and a power consumption is reduced when a load amount is large due to daytime or opening/closing a door in real use.SELECTED DRAWING: Figure 7

Description

この発明は、蓄冷材を備えた冷蔵庫に関するものである。   The present invention relates to a refrigerator provided with a cold storage material.

従来、蓄冷材を備えた冷蔵庫として、消費電力の低減を図るものが提案されている。(例えば、特許文献1参照)
特許文献1には箱体の内部空間を仕切壁により仕切られ、内部に蓄冷材を備えた冷凍室を有し、冷凍室内の温度が所定の第一温度なるよう冷却運転を行う通常運転と、冷凍室内の温度が第一温度よりも低温の第二温度となるよう冷却運転を行う蓄冷運転とを選択的に行い、蓄冷材は、第一温度より低温でかつ第二温度より高温の凝固点を有し、相変化による潜熱を冷熱として蓄える潜熱蓄冷材によりピーク時の消費電力量を低減することが提案されている。
Conventionally, as a refrigerator provided with a cold storage material, a refrigerator for reducing power consumption has been proposed. (For example, see Patent Document 1)
Patent Document 1 has a normal operation in which the internal space of the box is partitioned by a partition wall, has a freezer compartment provided with a cold storage material inside, and performs a cooling operation so that the temperature in the freezer compartment becomes a predetermined first temperature; The cold storage operation is selectively performed so that the temperature in the freezer compartment becomes the second temperature lower than the first temperature, and the cold storage material has a freezing point that is lower than the first temperature and higher than the second temperature. It has been proposed to reduce peak power consumption by using a latent heat storage material that stores latent heat due to phase change as cold heat.

特開2012−242064号公報JP 2012-242064 A

上記従来の冷蔵庫では、貯蔵室の内壁面を構成する仕切壁に蓄冷材を設けるため、仕切壁の厚さが大きくなり、貯蔵室の内容積が少なくなる。また仕切壁に凹凸形状があると、蓄冷材もその形状に合わせて複雑な構成になる、という課題を有していた。   In the said conventional refrigerator, since a cool storage material is provided in the partition wall which comprises the inner wall face of a store room, the thickness of a partition wall becomes large and the internal volume of a store room decreases. In addition, if the partition wall has an uneven shape, the cold storage material has a problem that it has a complicated configuration in accordance with the shape.

上記従来の課題を解決するために、本発明の冷蔵庫は、圧縮機の運転によって冷却される貯蔵室と、前記貯蔵室を冷却する冷却器を備えた冷却室と、相変化する蓄冷材と、前記貯蔵室を冷却した冷気が前記冷却器へ戻る戻りダクトを備えた冷蔵庫であって、前記蓄冷材は前記戻りダクト内に配置され、前記蓄冷材の近傍に前記冷却器が配置しているものである。   In order to solve the above conventional problems, the refrigerator of the present invention includes a storage room that is cooled by operation of a compressor, a cooling room that includes a cooler that cools the storage room, a regenerator material that changes phase, A refrigerator having a return duct in which cool air that has cooled the storage chamber returns to the cooler, wherein the cool storage material is disposed in the return duct, and the cooler is disposed in the vicinity of the cool storage material It is.

これによって、食品出し入れ時の負荷投入時に、蓄熱材と冷却器の冷熱による冷却量で冷却するので、貯蔵室内の温度上昇を低減し、圧縮機の駆動回転数を、従来より低回転で運転しながら放冷するので、圧縮機の高回転による運転を抑制しながら、冷却性能を向上させることにより、エネルギー効率の向上を図ることができる。   As a result, when the load is applied at the time of loading and unloading food, cooling is performed with the cooling amount of the heat storage material and the cooler, so the temperature rise in the storage chamber is reduced, and the compressor is operated at a lower rotational speed than before. Therefore, the energy efficiency can be improved by improving the cooling performance while suppressing the operation due to the high rotation of the compressor.

本発明の冷蔵庫は、実使用時の昼間やドア開閉による負荷量が多いときの消費電力量を低減することができる。   The refrigerator of the present invention can reduce power consumption during daytime during actual use or when there is a large amount of load due to door opening and closing.

本発明の実施の形態の冷蔵庫の正面図Front view of a refrigerator according to an embodiment of the present invention 本発明の実施の形態の冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator of embodiment of this invention 本発明の実施の形態1の冷蔵庫の要部の構成を示す図The figure which shows the structure of the principal part of the refrigerator of Embodiment 1 of this invention. 本発明の実施の形態1の冷蔵庫の要部の構成を示す図The figure which shows the structure of the principal part of the refrigerator of Embodiment 1 of this invention. 本発明の実施の形態1の冷蔵庫の要部の構成を示す図The figure which shows the structure of the principal part of the refrigerator of Embodiment 1 of this invention. 本発明の実施の形態1の冷蔵庫の要部の構成を示す図The figure which shows the structure of the principal part of the refrigerator of Embodiment 1 of this invention. 本発明の実施の形態1の冷蔵庫の要部の構成を示す図The figure which shows the structure of the principal part of the refrigerator of Embodiment 1 of this invention. 本発明の実施の形態1の冷蔵庫の要部の構成を示す図The figure which shows the structure of the principal part of the refrigerator of Embodiment 1 of this invention. 本発明の実施の形態1の冷蔵庫の温度と蓄冷量と圧縮機回転数の変化を示す図The figure which shows the temperature of the refrigerator of Embodiment 1 of this invention, the cool storage amount, and the change of compressor rotation speed 本発明の実施の形態1の電力変化の概要図Overview diagram of power change of Embodiment 1 of the present invention 本発明の実施の形態2の冷蔵庫の要部の構成を示す図The figure which shows the structure of the principal part of the refrigerator of Embodiment 2 of this invention. 本発明の実施の形態3の冷蔵庫の要部の構成を示す図The figure which shows the structure of the principal part of the refrigerator of Embodiment 3 of this invention. 本発明の実施の形態4の冷蔵庫の要部の構成を示す図The figure which shows the structure of the principal part of the refrigerator of Embodiment 4 of this invention. 本発明の実施の形態4の冷蔵庫の要部の構成を示す図The figure which shows the structure of the principal part of the refrigerator of Embodiment 4 of this invention. 本発明の実施の形態5の冷蔵庫の縦断面図Vertical section of the refrigerator of Embodiment 5 of the present invention 本発明の実施の形態5の冷蔵庫の冷凍サイクルを示す図The figure which shows the refrigerating cycle of the refrigerator of Embodiment 5 of this invention.

請求項1に記載の発明は、圧縮機の運転によって冷却される貯蔵室と、前記貯蔵室を冷却する冷却器を備えた冷却室と、相変化する蓄冷材と、前記貯蔵室を冷却した冷気が前記冷却器へ戻る戻りダクトを備えた冷蔵庫であって、前記蓄冷材は前記戻りダクト内に配置され、前記蓄冷材の近傍に前記冷却器が配置していることにより、冷却器によって蓄冷材は蓄冷され、貯蔵室からの戻り冷気温度を低下させることができるため、冷却器の昇温を防ぐことができる。   The invention according to claim 1 is a storage chamber that is cooled by operation of a compressor, a cooling chamber that includes a cooler that cools the storage chamber, a phase change cold storage material, and cold air that has cooled the storage chamber. Is a refrigerator having a return duct returning to the cooler, wherein the cool storage material is disposed in the return duct, and the cooler is disposed in the vicinity of the cool storage material. Is stored, and the temperature of the return cold air from the storage room can be lowered, so that the temperature rise of the cooler can be prevented.

請求項2に記載の発明は、前記蓄冷材は冷却器を構成する冷却室の横で、前記冷却室と断熱区画された戻りダクト内に配置しているものであり、冷却器から蓄冷材への蓄冷効果を高めることができる。   According to a second aspect of the present invention, the regenerator material is disposed in a return duct that is insulated from the cooling chamber, beside a cooling chamber constituting a cooler, and from the cooler to the regenerator material. The cold storage effect can be enhanced.

請求項3に記載の発明は、前記貯蔵室は冷蔵室であり、前記戻りダクトは前記冷蔵室を循環した冷気が戻るダクトであるものであり、冷蔵室の戻り冷気温度を下げ、含まれる湿気も除去できるので冷却器への霜付きを低減できる。   According to a third aspect of the present invention, the storage room is a refrigeration room, the return duct is a duct for returning the cold air circulated through the cold room, the return cold air temperature of the cold room is lowered, and the contained moisture Can also be removed, so that frost on the cooler can be reduced.

請求項4に記載の発明は、前記蓄冷材は前記戻りダクト内に形成された段差部に配置しているものであり、蓄冷材配置部分での通風抵抗を抑制し、偏着霜の低減を図る。   According to a fourth aspect of the present invention, the cold storage material is disposed in a stepped portion formed in the return duct, and the ventilation resistance in the cold storage material arrangement portion is suppressed, thereby reducing uneven frost. Plan.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1による冷蔵庫の正面図、図2は図1のA−A断面図、図3a〜図3fは同実施の形態1による冷蔵室の要部拡大図、図4は同実施の形態における冷蔵庫の制御ブロック図、図5は同実施の形態における冷蔵庫の投入負荷検知から急冷運転の制御フローチャートである。
(Embodiment 1)
1 is a front view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, and FIGS. 3a to 3f are enlarged views of essential parts of the refrigerator compartment according to Embodiment 1. FIG. Fig. 5 is a control block diagram of the refrigerator in the same embodiment, and Fig. 5 is a control flowchart of the rapid cooling operation from detection of the input load of the refrigerator in the same embodiment.

図1及び図2において、冷蔵庫101は上段、中段、及び下段の5つに区画された貯蔵室を備える。具体的には、上段の貯蔵室は冷蔵室102で前面に観音開き式扉を有し、下方に引出し扉を備える第一の冷凍室103と、それと並行に引出し扉を備える製氷室105があり、最下部に配置される引出し扉を備えた野菜室106と、製氷室105と野菜室106の間に配置した第二の冷凍室104とから構成される。   1 and 2, the refrigerator 101 includes a storage room divided into five parts, an upper stage, a middle stage, and a lower stage. Specifically, the upper storage room is a refrigerating room 102 having a double door at the front, a first freezing room 103 having a drawer door below, and an ice making room 105 having a drawer door in parallel therewith, The vegetable compartment 106 is provided with a drawer door disposed at the bottom, and the ice compartment 105 and the second freezer compartment 104 disposed between the vegetable compartment 106.

各扉は、それぞれ、冷蔵室扉102a、第一の冷凍室扉103a、第二の冷凍室扉104a、製氷室扉105a、野菜室扉106aとして図示する。冷蔵室102と、横並びの製氷室105と第一の冷凍室103とは、上下に断熱区画壁111により区画される。さらに、横並びの製氷室105及び第一の冷凍室103と第二の冷凍室104、第二の冷凍室104と野菜室106も、同様に断熱区画壁111により上下に区画される。   Each door is illustrated as a refrigerator door 102a, a first freezer door 103a, a second freezer door 104a, an ice making door 105a, and a vegetable door 106a. The refrigerator compartment 102, the side-by-side ice making compartments 105, and the first freezing compartment 103 are partitioned vertically by a heat insulating partition wall 111. Further, the side-by-side ice making chamber 105, the first freezing chamber 103 and the second freezing chamber 104, and the second freezing chamber 104 and the vegetable chamber 106 are similarly partitioned vertically by the heat insulating partition wall 111.

また、外箱108と内箱109の間に充填された断熱壁110で形成された冷蔵庫101は、上部に設けた冷蔵室102内の下部に独立した貯蔵室としての変温室107を区画形成している。変温室107は切替え室として構成され、本実施の形態の場合は、0℃付近の冷蔵温度帯の第一の温度帯(チルド)と、第一の温度帯と約−6℃以下の冷凍温度帯との間の温度帯となる約−3℃の第二の温度帯(パーシャル)に設定可能である。   In addition, the refrigerator 101 formed by the heat insulating wall 110 filled between the outer box 108 and the inner box 109 partitions and forms a variable temperature chamber 107 as an independent storage room in the lower part of the refrigerator room 102 provided at the upper part. ing. The temperature changing room 107 is configured as a switching room. In the case of the present embodiment, the first temperature zone (chilled) in the refrigeration temperature zone near 0 ° C., the first temperature zone, and the freezing temperature of about −6 ° C. or less. It can be set to a second temperature zone (partial) of about −3 ° C., which is a temperature zone between the zone.

次に冷却システムの構成について説明する。第二の冷凍室104の背面後方には、冷却室114が形成され、内部に冷却器115を有し、冷却器115の下部には除霜ヒータ122が配置されている。上部機械室113に設置された圧縮機112とともに、冷蔵庫101を冷却する冷凍サイクルを構成する。また、冷却室114には、冷却器115で熱交換された冷気を強制循環させる送風ファン116が配置され、その上方には冷蔵室102に流入する冷気を分配するダンパー装置117aと、変温室107に流入する冷気を分配するダンパー装置117bを配置している。   Next, the configuration of the cooling system will be described. A cooling chamber 114 is formed behind the second freezing chamber 104 and has a cooler 115 inside. A defrost heater 122 is disposed below the cooler 115. Together with the compressor 112 installed in the upper machine room 113, a refrigeration cycle for cooling the refrigerator 101 is configured. The cooling chamber 114 is provided with a blower fan 116 that forcibly circulates the cool air exchanged by the cooler 115, and a damper device 117 a that distributes the cool air flowing into the refrigerating chamber 102, and a variable temperature chamber 107. A damper device 117b that distributes the cold air flowing in is disposed.

また冷却室114は、前方に配置された第一の冷凍室103および第二の冷凍室104と区画壁123によって前後に区画されている。   Further, the cooling chamber 114 is partitioned forward and backward by a first freezing chamber 103 and a second freezing chamber 104 and a partition wall 123 disposed in front.

各貯蔵室において、冷蔵室102の庫内温度は約2〜3℃であり、野菜室106の庫内温度は約2〜5℃であり、第一の冷凍室103、第二の冷凍室104の庫内温度は約−18〜−20℃と温度帯を分けて使用可能である。それにより、食品の保存に適した温度帯を選択し、食品を貯蔵することによって、より高い保鮮性と長期保存を実現することができる。   In each storage room, the internal temperature of the refrigerator compartment 102 is about 2 to 3 ° C., the internal temperature of the vegetable compartment 106 is about 2 to 5 ° C., and the first freezer room 103 and the second freezer room 104. The internal temperature can be divided into about -18 to -20 ° C and the temperature zone. Thereby, by selecting a temperature range suitable for the preservation of food and storing the food, higher freshness and long-term preservation can be realized.

図1及び図2において、冷蔵庫101は上段、中段、及び下段の5つに区画された貯蔵室を備える。具体的には、上段の貯蔵室は冷蔵室102で前面に観音開き式扉を有し、下方に引出し扉を備える第一の冷凍室103と、それと並行に引出し扉を備える製氷室105があり、最下部に配置される引出し扉を備えた野菜室106と、製氷室105と野菜室106の間に配置した第二の冷凍室104とから構成される。   1 and 2, the refrigerator 101 includes a storage room divided into five parts, an upper stage, a middle stage, and a lower stage. Specifically, the upper storage room is a refrigerating room 102 having a double door at the front, a first freezing room 103 having a drawer door below, and an ice making room 105 having a drawer door in parallel therewith, The vegetable compartment 106 is provided with a drawer door disposed at the bottom, and the ice compartment 105 and the second freezer compartment 104 disposed between the vegetable compartment 106.

各扉は、それぞれ、冷蔵室扉102a、第一の冷凍室扉103a、第二の冷凍室扉104a、製氷室扉105a、野菜室扉106aとして図示する。冷蔵室102と、横並びの製氷室105と第一の冷凍室103とは、上下に断熱区画壁111により区画される。さらに、横並びの製氷室105及び第一の冷凍室103と第二の冷凍室104、第二の冷凍室104と野菜室106も、同様に断熱区画壁111により上下に区画される。   Each door is illustrated as a refrigerator door 102a, a first freezer door 103a, a second freezer door 104a, an ice making door 105a, and a vegetable door 106a. The refrigerator compartment 102, the side-by-side ice making compartments 105, and the first freezing compartment 103 are partitioned vertically by a heat insulating partition wall 111. Further, the side-by-side ice making chamber 105, the first freezing chamber 103 and the second freezing chamber 104, and the second freezing chamber 104 and the vegetable chamber 106 are similarly partitioned vertically by the heat insulating partition wall 111.

また、外箱108と内箱109の間に充填された断熱壁110で形成された冷蔵庫101は、上部に設けた冷蔵室102内の下部に独立した貯蔵室としての変温室107を区画形成している。変温室107は切替え室として構成され、本実施の形態の場合は、0℃付近の冷蔵温度帯の第一の温度帯(チルド)と、第一の温度帯と約−6℃以下の冷凍温度帯との間の温度帯となる約−3℃の第二の温度帯(パーシャル)に設定可能である。   In addition, the refrigerator 101 formed by the heat insulating wall 110 filled between the outer box 108 and the inner box 109 partitions and forms a variable temperature chamber 107 as an independent storage room in the lower part of the refrigerator room 102 provided at the upper part. ing. The temperature changing room 107 is configured as a switching room. In the case of the present embodiment, the first temperature zone (chilled) in the refrigeration temperature zone near 0 ° C., the first temperature zone, and the freezing temperature of about −6 ° C. or less. It can be set to a second temperature zone (partial) of about −3 ° C., which is a temperature zone between the zone.

次に冷却システムの構成について説明する。第二の冷凍室104の背面後方には、冷却室114が形成され、内部に冷却器115を有し、上部機械室113に設置された圧縮機112とともに、冷蔵庫101を冷却する冷凍サイクルを構成する。また、冷却室114には、冷却器115で熱交換された冷気を強制循環させる送風ファン116が配置され、その上方には冷蔵室102に流入する冷気を分配するダンパー装置117aと、変温室107に流入する冷気を分配するダンパー装置117bを配置している。各貯蔵室において、冷蔵室102の庫内温度は約2〜3℃であり、野菜室106の庫内温度は約2〜5℃であり、第一の冷凍室103、第二の冷凍室104の庫内温度は約−18〜−20℃と温度
帯を分けて使用可能である。それにより、食品の保存に適した温度帯を選択し、食品を貯蔵することによって、より高い保鮮性と長期保存を実現することができる。
Next, the configuration of the cooling system will be described. A cooling chamber 114 is formed on the rear rear side of the second freezing chamber 104, has a cooler 115 inside, and constitutes a refrigeration cycle for cooling the refrigerator 101 together with the compressor 112 installed in the upper machine chamber 113. To do. The cooling chamber 114 is provided with a blower fan 116 that forcibly circulates the cool air exchanged by the cooler 115, and a damper device 117 a that distributes the cool air flowing into the refrigerating chamber 102, and a variable temperature chamber 107. A damper device 117b that distributes the cold air flowing in is disposed. In each storage room, the internal temperature of the refrigerator compartment 102 is about 2 to 3 ° C., the internal temperature of the vegetable compartment 106 is about 2 to 5 ° C., and the first freezer room 103 and the second freezer room 104. The internal temperature can be divided into about -18 to -20 ° C and the temperature zone. Thereby, by selecting a temperature range suitable for the preservation of food and storing the food, higher freshness and long-term preservation can be realized.

また図3a〜図3fに示すように、冷却室114内の冷却器115は、複数のフィン124と両端部に備えたエンドプレート125に冷媒パイプ126を貫設して、蛇行状に複数段に形成されている。   As shown in FIGS. 3a to 3f, the cooler 115 in the cooling chamber 114 includes a plurality of fins 124 and end plates 125 provided at both ends thereof, through which refrigerant pipes 126 are provided so as to meander in a plurality of stages. Is formed.

冷却室114は冷却器115の前部を区画壁123で構成しており、区画壁123は冷却器115の横方向に断熱形成されている。そして冷却室114の横に冷蔵室102の戻り風路に連通する戻りダクト102bを構成している。   In the cooling chamber 114, the front portion of the cooler 115 is constituted by a partition wall 123, and the partition wall 123 is heat-insulated in the lateral direction of the cooler 115. Next to the cooling chamber 114, a return duct 102b communicating with the return air path of the refrigerator compartment 102 is configured.

冷却室114と冷蔵室戻りダクト102bは、区画壁123によって冷却器115の前方を塞ぐことで、横並びに配置構成される。   The cooling chamber 114 and the refrigerating chamber return duct 102 b are arranged side by side by closing the front of the cooler 115 with the partition wall 123.

そして蓄冷材127は、樹脂製ケースで構成されており、冷却器115の側部で冷却室114の両側壁との間のスペースに配置されている。より具体的には、冷却器115と冷蔵室戻りダクト102bとを区画する区画仕切り114aが形成されており、区画仕切り114aと冷却器115との間に一側の蓄冷材127が配置し、他側の蓄冷材127は冷却器115と冷却室114を構成する段差部114bと冷却器115との間に配置している。   The cold storage material 127 is formed of a resin case, and is disposed in a space between the side walls of the cooler 115 and both side walls of the cooling chamber 114. More specifically, a partition partition 114a that partitions the cooler 115 and the refrigerator return duct 102b is formed, and one side of the regenerator 127 is disposed between the partition partition 114a and the cooler 115, and the like. The cool storage material 127 on the side is disposed between the cooler 115 and the stepped portion 114 b constituting the cooling chamber 114 and the cooler 115.

蓄冷材127は、冷媒パイプ126の一部であるU字状曲げパイプ126aを覆う凹部127aが形成され、蓄冷材127の外殻に形成された係止手段がU字状曲げパイプ126aに係止されて固定されている。   The cold storage material 127 is formed with a recess 127a that covers the U-shaped bent pipe 126a that is a part of the refrigerant pipe 126, and the locking means formed on the outer shell of the cold storage material 127 is locked to the U-shaped bent pipe 126a. Has been fixed.

また、冷却器115の下方に配置した除霜ヒータ122よりも上方に蓄冷材127は配置されている。そして、蓄冷材127の潜熱または顕熱と冷却器115の冷熱とで貯蔵室を冷却する。   In addition, the regenerator material 127 is disposed above the defrost heater 122 disposed below the cooler 115. Then, the storage room is cooled by the latent heat or sensible heat of the cool storage material 127 and the cool heat of the cooler 115.

また図3dのように、蓄冷材の凹部127a内にはU字状曲げパイプ126aが挿入されており、U字状曲げパイプ126aごとに独立して凹部127aが形成されており、U字状曲げパイプ126aを個別に覆うように構成されているので、冷却器115の冷熱を蓄冷材127に蓄冷しやすい。また凹部127aとU字状曲げパイプ126aとの間は隙間を作って配置され接触しないようにしている。   Further, as shown in FIG. 3d, a U-shaped bent pipe 126a is inserted into the recessed portion 127a of the regenerator material, and the recessed portion 127a is formed independently for each U-shaped bent pipe 126a. Since the pipe 126a is individually covered, the cold energy of the cooler 115 is easily stored in the cool storage material 127. Further, a gap is formed between the concave portion 127a and the U-shaped bending pipe 126a so as not to contact.

また図3eのように、冷却器115の両端に形成されるU字状曲げパイプ126aが挿入される蓄冷材127の凹部127bは上下方向に複数段配置されたU字状曲げパイプ126aごとに独立して配置しておらず、凹部127bは上段のU字状曲げパイプから下段のU字状曲げパイプまで連通する連通溝127cが凹部127bに形成されていてもよい。   Further, as shown in FIG. 3e, the concave portions 127b of the cold storage material 127 into which the U-shaped bent pipes 126a formed at both ends of the cooler 115 are inserted are independent for each of the U-shaped bent pipes 126a arranged in a plurality of stages in the vertical direction. However, the recess 127b may be formed with a communication groove 127c that communicates from the upper U-shaped bent pipe to the lower U-shaped bent pipe.

上記のように構成された蓄冷材127についてその動作を説明する。   The operation | movement is demonstrated about the cool storage material 127 comprised as mentioned above.

図4に示すように、扉開閉が少なく負荷投入が少ない夜間などの安定運転時は、圧縮機112の回転数は低回転で運転しながらON/OFF運転を繰り返し、各貯蔵室を設定温度に冷却している。この時、冷却器115の温度は約−26℃となっており、蓄冷材127も同ほぼ同じ温度になって冷却されている。蓄冷材127の融解温度は−22℃である。   As shown in FIG. 4, during stable operation such as nighttime when door opening and closing is small and load is low, the compressor 112 is turned on and off repeatedly while operating at a low speed, and each storage room is set to a set temperature. It is cooling. At this time, the temperature of the cooler 115 is about −26 ° C., and the regenerator 127 is also cooled to the same temperature. The melting temperature of the cold storage material 127 is −22 ° C.

そして扉開閉が増えて負荷の出し入れが多くなる放冷運転時は、図5のように、蓄冷材
127の潜熱と冷却器の冷熱とで放冷運転を行う。蓄冷材127の潜熱利用によって、圧縮機112の回転数は低回転から中回転運転で運転制御する。これによって電力増加の時間帯の圧縮機112の高回転運転を抑制するので電気代を低減できる。
Then, at the time of the cooling operation in which the door opening / closing increases and the load is taken in and out, the cooling operation is performed by the latent heat of the cool storage material 127 and the cooler of the cooler as shown in FIG. By using the latent heat of the cold storage material 127, the rotation speed of the compressor 112 is controlled from low rotation to medium rotation operation. As a result, the high rotation operation of the compressor 112 during the power increase time period is suppressed, so that the electricity cost can be reduced.

また負荷変動に伴う冷却器115の温度上昇を低減することができるので温度変動ロスを削減できる。そして、蓄冷材127が融解温度を保ったまま放冷した後、蓄冷材127は温度上昇するが、蓄冷材127は冷却器115に近接して設置しているので、冷却器115から蓄冷材127への蓄冷は圧縮機112の回転数を中回転数のまま行っている。圧縮機112の回転数を抑えながら蓄冷運転が行われており、エネルギー効率の向上を図ることができる。   Moreover, since the temperature rise of the cooler 115 accompanying the load fluctuation can be reduced, the temperature fluctuation loss can be reduced. Then, after the cool storage material 127 is allowed to cool while maintaining the melting temperature, the temperature of the cool storage material 127 rises. However, since the cool storage material 127 is installed in the vicinity of the cooler 115, the cool storage material 127 starts from the cooler 115. The cold storage is performed while the rotation speed of the compressor 112 is kept at the medium rotation speed. The cold storage operation is performed while suppressing the rotation speed of the compressor 112, and energy efficiency can be improved.

そして圧縮機112の回転数は中回転を維持したまま蓄冷運転を行い、蓄冷材127が冷却器115の温度とほぼ同等温度に冷却されれば低回転で運転する。冷却運転が所定時間積算されると、冷却器115の霜取り運転に入る。この時、除霜ヒータ122の熱により冷却器115の除霜が始まる。U字状曲げパイプ126aの除霜水は凹部127a内で解けて露受け皿129へ排水される。   Then, the compressor 112 performs a cold storage operation while maintaining a medium rotation, and if the cool storage material 127 is cooled to a temperature substantially equal to the temperature of the cooler 115, the compressor 112 is operated at a low rotation. When the cooling operation is integrated for a predetermined time, the defrosting operation of the cooler 115 is started. At this time, the defrosting of the cooler 115 is started by the heat of the defrosting heater 122. The defrost water of the U-shaped bending pipe 126a is melted in the recess 127a and drained to the dew receiving tray 129.

また蓄冷材127を図3eのように形成することで、除霜水が凹部127b内に溜まることなく連通溝127cを通じて蓄冷材127の下部へ導かれ、開放部127dから除霜ヒータ122の下方に配置した露受け皿129への排水を向上できる。したがって、蓄冷材127と冷却器115との間に、着霜が解けた時の水溜まりが残り、冷却運転によって再び凍って氷角が発達するのを抑制することができる。これによって冷却器115の異常着霜を防止することができる。   Further, by forming the regenerator material 127 as shown in FIG. 3e, the defrost water is guided to the lower part of the regenerator material 127 through the communication groove 127c without being accumulated in the recess 127b, and below the defrost heater 122 from the open portion 127d. Drainage to the arranged dew tray 129 can be improved. Therefore, a pool of water when frost formation has melted remains between the regenerator 127 and the cooler 115, and it is possible to suppress freezing and ice angle development again due to the cooling operation. Thereby, abnormal frost formation of the cooler 115 can be prevented.

また、図3fのように、冷却器115の左右両端に配置されるU字状曲げパイプ126aが、縦列ごとに全体的に覆われるように蓄冷材127に凹部127eを形成してもよい。これによって、さらに冷却器115と蓄冷材127の間に発生する除霜水の排水を向上し、霜残りを低減することができる。   Moreover, as shown in FIG. 3 f, the recesses 127 e may be formed in the regenerator 127 so that the U-shaped bent pipes 126 a arranged at the left and right ends of the cooler 115 are entirely covered for each column. Thereby, the drainage of the defrost water generated between the cooler 115 and the regenerator material 127 can be further improved, and the frost residue can be reduced.

また夜間の安定運転時において、圧縮機112を低回転で運転し、冷蔵室102のダンパー装置117aおよび変温室107のダンパー装置117bを閉じて冷凍室103、104を循環するモードで冷却し、蓄冷材127を効率よく融解温度(−22℃)以下に冷却してもよい。   Further, during stable operation at night, the compressor 112 is operated at a low speed, the damper device 117a of the refrigerator compartment 102 and the damper device 117b of the variable temperature chamber 107 are closed and cooled in a mode in which the freezer compartments 103 and 104 are circulated, and stored in cold storage. The material 127 may be efficiently cooled below the melting temperature (−22 ° C.).

また、夜間の安定運転時は扉開閉の多い放冷運転時よりも冷凍室の設定温度を2〜3℃下げて冷却運転し、蓄冷材127を融解温度以下に蓄冷し、扉開閉が多い放冷運転時の圧縮機運転率を下げるようにしてもよい。   In addition, during stable operation at night, the cooling room is cooled by lowering the set temperature of the freezing room by 2 to 3 ° C. compared to the cooling operation with many doors opening and closing, the cold storage material 127 is stored below the melting temperature, and the doors are opened and closed frequently. You may make it reduce the compressor operation rate at the time of cold operation.

また蓄冷材127と冷却器115を近接配置するとしたが、部分的に接触させてもよい。接触させることで冷却器115の冷熱を蓄冷材127へ熱移動しやすくなるので蓄熱時間を短縮することができる。   Moreover, although the cool storage material 127 and the cooler 115 are arranged close to each other, they may be partially brought into contact with each other. By making it contact, it becomes easy to heat-transfer the cool heat of the cooler 115 to the cool storage material 127, so that the heat storage time can be shortened.

また蓄冷材127は、金属製ケースで形成されていてもよく、冷却器115の冷熱を蓄冷材へ効率よく伝達することができる。   Moreover, the cool storage material 127 may be formed with the metal case, and can transmit the cold heat of the cooler 115 to a cool storage material efficiently.

また冷却器115の両側部に蓄冷材127を配置したが、少なくとも片側に配置してもよく、その場合、冷蔵室戻りダクト102bに近い冷却器115の側部に配置してもよい。冷蔵室戻りダクト102bの風量は大きいので、冷却器115の冷蔵室戻りダクト102bに近い側は、戻り冷気に含まれる湿気が着霜しやすく、熱交換性能の低下を招くおそれがあり、蓄冷材127を設置することで冷却性能を確保することができる。   Moreover, although the cool storage material 127 was arrange | positioned at the both sides of the cooler 115, you may arrange | position at least one side and may arrange | position in the side part of the cooler 115 near the refrigerator compartment return duct 102b in that case. Since the air volume of the refrigerating room return duct 102b is large, the side of the cooler 115 close to the refrigerating room return duct 102b is liable to form frost on the moisture contained in the return cold air, which may cause a decrease in heat exchange performance. By installing 127, cooling performance can be ensured.

また、冷凍室103,104や製氷室105への冷気量を調節する冷凍室吐出ダンパ(図示しない)があれば、冷凍室103、104が適温に達している場合、圧縮機112の運転を停止し、冷凍室吐出ダンパを閉じ、ファン116を運転し冷蔵室ダンパ117aまたは変温室ダンパ117bを開閉して、冷却器115と蓄冷材127の潜熱または顕熱を使って、冷蔵室102および変温室107の冷却運転を行うので、消費電力量を低減することができる。   Further, if there is a freezer discharge damper (not shown) that adjusts the amount of cold air to the freezer chambers 103 and 104 and the ice making chamber 105, the operation of the compressor 112 is stopped when the freezer chambers 103 and 104 have reached an appropriate temperature. Then, the freezer discharge damper is closed, the fan 116 is operated, the refrigerating room damper 117a or the variable temperature storage damper 117b is opened and closed, and the latent heat or sensible heat of the cooler 115 and the cold storage material 127 is used to Since the cooling operation 107 is performed, the power consumption can be reduced.

(実施の形態2)
図6は実施の形態2に係る蓄冷材の構成を示す図である。冷蔵庫の全体構成は図1、2と同様である。
(Embodiment 2)
FIG. 6 is a diagram illustrating a configuration of the regenerator material according to the second embodiment. The whole structure of the refrigerator is the same as that shown in FIGS.

図6に示すように、冷却器115の上部に蓄冷材130を配置している。具体的には、冷却器115の上段の冷媒パイプ126を上から覆うように凹部が構成されている。冷却器115の正面視で右側側部には冷蔵室戻りダクトが形成されており、蓄冷材130は冷却器115の左右幅方向の中央部よりも左側寄り、すなわち冷蔵室戻りダクトに近い側ではなく、反対側で片側に寄せて冷却器115の上部に配置されている。蓄冷材130の配置側の冷却器115の下方は、野菜室106を循環した冷気戻り口(図示しない)がある。   As shown in FIG. 6, the regenerator material 130 is disposed on the upper part of the cooler 115. Specifically, the recess is configured to cover the upper refrigerant pipe 126 of the cooler 115 from above. In the front view of the cooler 115, a refrigerator compartment return duct is formed on the right side, and the regenerator material 130 is closer to the left side than the central portion of the cooler 115 in the left-right width direction, that is, on the side close to the refrigerator compartment return duct. Rather, it is arranged on the opposite side and placed on one side of the cooler 115. Below the cooler 115 on the arrangement side of the cool storage material 130 is a cold air return port (not shown) that circulates through the vegetable compartment 106.

また冷媒パイプ126には複数のフィン124が構成されているが、蓄冷材130の配置箇所に対応する冷媒パイプ126にはフィンはなく、蓄冷材130はエンドプレート125から冷却器115の左右幅方向の中心に向かって、ファン116の投影位置を超えない範囲に延在して略水平に配置され、蓄冷材130の外殻に形成された係止手段が冷媒パイプ126に係止されて固定されている。   The refrigerant pipe 126 includes a plurality of fins 124, but the refrigerant pipe 126 corresponding to the location of the regenerator material 130 has no fins, and the regenerator material 130 extends from the end plate 125 to the left-right width direction of the cooler 115. , Extending in a range not exceeding the projection position of the fan 116 and disposed substantially horizontally, locking means formed on the outer shell of the regenerator material 130 is locked and fixed to the refrigerant pipe 126. ing.

また蓄冷材130の外殻はフィン124が配置している箇所の外形寸法と合うように形成されている。したがって、冷却器115の前部を形成する区画壁123が必要以上に前方に飛出して形成されるのを防止することができ、貯蔵室空間を維持することができる。   The outer shell of the regenerator material 130 is formed so as to match the outer dimensions of the location where the fins 124 are disposed. Therefore, it is possible to prevent the partition wall 123 forming the front portion of the cooler 115 from being projected forward more than necessary, and the storage room space can be maintained.

上記のように構成された蓄冷材130の動作について説明する。   Operation | movement of the cool storage material 130 comprised as mentioned above is demonstrated.

冷却器115の冷媒パイプ126に近接配置した蓄冷材130は冷却器115の冷熱によって蓄冷され、上記に記載した図4、5の動作で庫内の温度上昇を低減し、圧縮機112の回転数を抑えることで昼間電力の削減を図ることができる。   The cool storage material 130 disposed in the vicinity of the refrigerant pipe 126 of the cooler 115 is stored by the cool heat of the cooler 115, and the temperature rise in the refrigerator is reduced by the operation of FIGS. By reducing the power, daytime power can be reduced.

また、冷却器115の上段で、風量の大きい冷蔵室戻りダクト102bに近い側ではなく、遠い側に位置する風量の小さい野菜室戻り口側に蓄冷材130を配置したので、蓄冷材130による風量の低下を防止し、冷蔵室から戻る湿気を多く含んだ戻り冷気の熱交換を妨げることなく、蓄冷材130と冷却器115とで冷却性能を維持することができる。   In addition, since the cool storage material 130 is arranged on the return side of the vegetable room with a small air volume located on the far side, not on the side near the refrigerating room return duct 102b with a large air volume in the upper stage of the cooler 115, the air volume by the cool storage material 130 The cooling performance can be maintained by the cool storage material 130 and the cooler 115 without hindering the decrease in temperature and preventing the heat exchange of the return cold air containing a large amount of moisture returning from the refrigerator compartment.

(実施の形態3)
図7は実施の形態3に係る蓄冷材の構成を示す図である。冷蔵庫の全体構成は図1、2と同様である。
(Embodiment 3)
FIG. 7 is a diagram illustrating a configuration of the regenerator material according to the third embodiment. The whole structure of the refrigerator is the same as that shown in FIGS.

図7に示すように、冷却室114の冷却器115の側方に形成された冷蔵室戻りダクト102b内に蓄冷材131が埋設されている。冷蔵室戻りダクト102bは断熱材で形成されており、蓄冷材131は冷蔵室102の戻り風路に連通する冷蔵室戻りダクト102bを構成する内箱109面に配置している。また蓄冷材131は冷却器115の高さ寸法とほぼ同等の高さで、平板状に形成されており、冷蔵室戻りダクト102bと段差がない
ようにダクト面を構成する内箱109の配置部分に段差部を形成し埋設されている。また上記に記載した図4、5の動作で蓄冷材131は蓄冷されている。
As shown in FIG. 7, a cold storage material 131 is embedded in a refrigerating chamber return duct 102 b formed on the side of the cooler 115 in the cooling chamber 114. The refrigerator compartment return duct 102b is formed of a heat insulating material, and the cool storage material 131 is disposed on the surface of the inner box 109 constituting the refrigerator compartment return duct 102b communicating with the return air passage of the refrigerator compartment 102. Further, the regenerator material 131 has a height substantially equal to the height of the cooler 115 and is formed in a flat plate shape, and the arrangement portion of the inner box 109 constituting the duct surface so that there is no step with the refrigerating room return duct 102b. A stepped portion is formed and embedded. Moreover, the cool storage material 131 is stored cold by the operation | movement of FIGS.

上記のように構成された蓄冷材131の動作について説明する。   Operation | movement of the cool storage material 131 comprised as mentioned above is demonstrated.

冷却器115で熱交換された冷気はファン116によって、各貯蔵室に強制通風され、冷蔵室102に吐出された冷気は冷蔵室102内を循環し、冷蔵室102の戻り口(図示しない)に吸い込まれ、冷凍室104の背面に形成された冷蔵室戻りダクト102bを通る。戻り冷気の温度は約5〜6℃で、蓄冷材131は近傍にある冷却器115と断熱壁によって左右に区画されているが、冷蔵室戻りダクト102bと連通しており約−15℃に蓄冷されている。融解温度を約−10℃とする蓄冷材を使って潜熱利用してもよいが、蓄冷材131の顕熱を利用して冷蔵室戻り冷気を冷却することができる。   The cold air heat-exchanged by the cooler 115 is forcibly ventilated to each storage room by the fan 116, and the cold air discharged to the refrigerating room 102 circulates in the refrigerating room 102 and is returned to a return port (not shown) of the refrigerating room 102. It is sucked and passes through the refrigerator compartment return duct 102b formed on the back surface of the freezer compartment 104. The temperature of the return cold air is about 5 to 6 ° C., and the cool storage material 131 is divided on the left and right by the cooler 115 and the heat insulating wall in the vicinity, but communicates with the refrigerator return duct 102b and stores the cool storage at about −15 ° C. Has been. Although the latent heat may be used by using a regenerator material having a melting temperature of about −10 ° C., the cold air returning from the refrigerator compartment can be cooled using the sensible heat of the regenerator material 131.

したがって、冷気が冷蔵室戻りダクト102bを通るときに、埋設された蓄冷材131の部分を通過するため、冷却器115戻って熱交換する前に、先に蓄冷材131で熱交換されるので、蓄冷材131によって戻り冷気に含まれた湿気を吸収することができ、冷却器115と熱交換したときに冷却器115への着霜を低減することができる。   Therefore, when the cold air passes through the refrigerating room return duct 102b, it passes through the portion of the embedded cold storage material 131. Moisture contained in the return cold air can be absorbed by the cool storage material 131, and frost formation on the cooler 115 can be reduced when heat exchange with the cooler 115 is performed.

また、冷却器115と熱交換する戻り冷気の温度を蓄冷材131で冷却することができるので冷却器115への負荷量を低減し省エネ性能を向上することができる。   Moreover, since the temperature of the return cold air heat-exchanged with the cooler 115 can be cooled by the cool storage material 131, the load amount to the cooler 115 can be reduced and the energy saving performance can be improved.

また、冷蔵室戻りダクト102bは冷却器115の側方に配置し、冷却器115の下方には除霜ヒータ122を配置しているので、冷却器115の除霜時に、着霜した蓄冷材131の除霜も一緒に行うことができ、着霜過多による冷蔵室戻りダクト102bのダクト詰まりを防止することができる。   In addition, the refrigerator compartment return duct 102b is disposed on the side of the cooler 115, and the defrost heater 122 is disposed below the cooler 115. Therefore, when the cooler 115 is defrosted, the frosted cold storage material 131 is formed. The defrosting can also be performed together, and clogging of the refrigerator compartment return duct 102b due to excessive frost formation can be prevented.

平板状の蓄冷材131としたが、戻り冷気との熱交換促進をはかるために略ロ字状に戻りダクト面すべてに蓄冷材131を埋設してもよい。   Although the plate-shaped regenerator material 131 is used, the regenerator material 131 may be embedded in the entire duct surface by returning to a substantially square shape in order to promote heat exchange with the return cold air.

(実施の形態4)
図8a、図8bは実施の形態4に係る蓄冷材の構成を示す図である。冷蔵庫の全体構成は図1、2と同様である。
(Embodiment 4)
8a and 8b are diagrams showing the configuration of the cold storage material according to the fourth embodiment. The whole structure of the refrigerator is the same as that shown in FIGS.

図8a、図8bに示すように、冷蔵室吐出ダクト120内に蓄冷材132を配置している。冷蔵室102の背面には、冷蔵室吐出ダクト120を構成するダクトカバー120aと内箱109があり、ダクトカバー120aと内箱109に囲まれて風路となる冷蔵室吐出ダクト120を形成している。内箱109の表面(ダクト側)に凹部109aを形成し、平板状の蓄冷材132は凹部109a内に埋設し、ダクト面が突出しないように構成して風路抵抗を低減するように配置している。また冷蔵室102の下部に変温室107への冷気吐出口(図示しない)が冷蔵室ダクトカバー120aに構成されている。蓄冷材132は冷蔵室102の背面で、少なくとも変温室107の吐出口と投影面的に重なった位置から上方に向かって配置している。   As shown in FIGS. 8 a and 8 b, a regenerator material 132 is disposed in the refrigerating room discharge duct 120. On the back surface of the refrigerator compartment 102, there are a duct cover 120 a and an inner box 109 that constitute the refrigerator compartment discharge duct 120, and a refrigerator compartment discharge duct 120 that forms an air passage surrounded by the duct cover 120 a and the inner box 109 is formed. Yes. A concave portion 109a is formed on the surface (duct side) of the inner box 109, and the flat plate-shaped regenerator material 132 is embedded in the concave portion 109a so that the duct surface does not protrude so as to reduce the air path resistance. ing. In addition, a cold air discharge port (not shown) to the variable temperature chamber 107 is formed in the cold room duct cover 120a at the lower part of the cold room 102. The regenerator material 132 is arranged on the back surface of the refrigerating chamber 102 upward from a position overlapping at least the discharge port of the variable temperature chamber 107 on the projection surface.

上記のように構成された蓄冷材132の動作について説明する。   Operation | movement of the cool storage material 132 comprised as mentioned above is demonstrated.

冷却室114からファン116によって強制通風された冷気(約−15℃)は冷蔵室吐出ダクト120を通り、蓄冷材132は上記に記載した図4、5の動作によって冷却器115の冷気によって蓄冷材132を冷却することが可能となり、約−10℃に冷却されている。そして蓄冷材132から放冷される冷気と共に冷蔵室102へ約2℃の冷気となって吐出される。特に、圧縮機112が停止時にファン116を運転して、冷凍室吐出ダン
パ(図示しない)を閉じ、冷蔵室102を冷却する場合、冷却器115の冷熱と冷蔵室102の背面に形成した蓄冷材132とによって冷却できるので消費電力量を低減することができる。
The cool air (about −15 ° C.) forcibly ventilated from the cooling chamber 114 by the fan 116 passes through the refrigerating chamber discharge duct 120, and the cool storage material 132 is cooled by the cool air of the cooler 115 by the operation of FIGS. 132 can be cooled and is cooled to about −10 ° C. Then, it is discharged as cold air of about 2 ° C. into the refrigerating chamber 102 together with the cold air cooled from the cold storage material 132. In particular, when the compressor 112 is stopped, the fan 116 is operated to close the freezer discharge damper (not shown) and cool the refrigerating chamber 102, thereby cooling the cooler 115 and the regenerator material formed on the back of the refrigerating chamber 102. Therefore, power consumption can be reduced.

また、変温室107の冷気吐出口107aの背面にも蓄冷材132が延在して配置しているので、蓄冷材132からの冷気によって圧縮機112の停止中でも変温室107を適温に冷却することができる。   Moreover, since the cool storage material 132 is also extended and arranged on the back surface of the cool air outlet 107a of the variable temperature chamber 107, the variable temperature chamber 107 can be cooled to an appropriate temperature even when the compressor 112 is stopped by the cool air from the cool storage material 132. Can do.

また、蓄冷材132が内箱109の表面に配置されることで、冷蔵室吐出ダクト120への吸熱および放熱を繰返すことで外気との温度差が小さくなり断熱材として作用し、本体の吸熱量を低減することができる。   Further, by arranging the cold storage material 132 on the surface of the inner box 109, the temperature difference from the outside air is reduced by repeating the heat absorption and heat dissipation to the refrigerator compartment discharge duct 120, and acts as a heat insulating material. Can be reduced.

(実施の形態5)
図9は実施の形態5に係る蓄冷材の構成を示す図である。冷凍室103、104の後方に冷却室133が形成され、冷却室133の後方で背面の断熱壁110との間に蓄冷室135が形成されている。冷却室133内には冷却器115と冷却器115の上方に強制通風する第1ファン134が備えられ、蓄冷室135内には蓄冷材136と蓄冷材136の外周には冷媒パイプを巻きつけた蓄冷用の第2冷却器137が構成され、蓄冷材136の上部には蓄冷された冷熱を強制通風する第2ファン138が配置している。
(Embodiment 5)
FIG. 9 is a diagram showing the configuration of the regenerator material according to the fifth embodiment. A cooling chamber 133 is formed behind the freezing chambers 103 and 104, and a cold storage chamber 135 is formed behind the cooling chamber 133 and the heat insulating wall 110 on the back surface. The cooling chamber 133 is provided with a cooler 115 and a first fan 134 that forcibly ventilates the cooler 115. A refrigerant pipe is wound around the outer periphery of the cool storage material 136 and the cool storage material 136 in the cool storage chamber 135. A second cooler 137 for cold storage is configured, and a second fan 138 that forcibly ventilates the stored cold heat is disposed above the cold storage material 136.

冷却室133と蓄冷室135は前後方向に配置しているが、第1ファン134と第2ファン138は左右方向(図示しない)に配置している。また各貯蔵室の戻りダクトは冷却室133および蓄冷室135に連通し冷却器115および蓄冷用の第2冷却器137で熱交換される構成となっている。また、図10のように冷却器115と蓄冷用の第2冷却器137は並列配置され、切替弁139によって冷媒流路を切替可能にしている。   The cooling chamber 133 and the cold storage chamber 135 are arranged in the front-rear direction, but the first fan 134 and the second fan 138 are arranged in the left-right direction (not shown). The return duct of each storage chamber communicates with the cooling chamber 133 and the cold storage chamber 135 so that heat is exchanged between the cooler 115 and the second cooler 137 for cold storage. Further, as shown in FIG. 10, the cooler 115 and the second cooler 137 for storing heat are arranged in parallel, and the refrigerant flow path can be switched by the switching valve 139.

夜間など扉開閉の少ない負荷量が小さい時は圧縮機112を低回転で運転しながら冷却器115に冷媒を循環させて各貯蔵室を冷却し、各室が適温になれば、切替弁139を切替えて、第2ファンは停止したまま、蓄冷用の第2冷却器137に冷媒を循環させて蓄熱する。冷蔵室温度が上限温度を超えた時は、冷凍室ダンパ(図示しない)を閉じて、第1ファン134を運転して冷却を行う。冷凍室温度が上限温度を超えた時は、冷却器115に冷媒が循環するように切替弁139を切替えて、冷凍室103、104を冷却する。このように負荷量が小さい夜間などに蓄冷材136を蓄冷し凝固点温度(−22℃)以下、あるいはその周辺温度になるように冷却する。   When the door load is small, such as at night, the refrigerant is circulated through the cooler 115 while the compressor 112 is operated at a low speed to cool the storage chambers. After switching, the refrigerant is circulated through the second cooler 137 for cold storage to store heat while the second fan is stopped. When the refrigerator compartment temperature exceeds the upper limit temperature, the freezer damper (not shown) is closed and the first fan 134 is operated to perform cooling. When the freezer temperature exceeds the upper limit temperature, the changeover valve 139 is switched so that the refrigerant circulates in the cooler 115 to cool the freezer compartments 103 and 104. In this way, the cold storage material 136 is stored cold at night when the load is small, and is cooled to the freezing point temperature (−22 ° C.) or lower or the ambient temperature.

そして、扉開閉の多い負荷量が大きくなる時に、圧縮機112を停止して蓄冷室135から第2ファン138の運転によって、冷蔵室102、変温室107、野菜室106、冷凍室103、104を冷却し、または冷凍室103、104が適温であれば、蓄冷室に備えた冷凍室ダンパ(図示しない)を閉じて冷蔵室102、変温室107、野菜室106を冷却する。このように昼間の電力ピーク時に圧縮機112を停止して蓄冷材136の放冷によって冷却するので電気代を削減できる。   When the load amount that opens and closes the door increases, the compressor 112 is stopped and the second fan 138 is operated from the cold storage room 135, so that the refrigerator room 102, the variable temperature room 107, the vegetable room 106, and the freezing rooms 103 and 104 are moved. If it cools or the freezer compartments 103 and 104 are suitable temperature, the freezer compartment damper (not shown) with which the cool storage room was equipped will be closed, and the refrigerator compartment 102, the variable temperature room 107, and the vegetable compartment 106 will be cooled. In this way, the compressor 112 is stopped at the daytime power peak and the cool storage material 136 is allowed to cool, so that the electricity cost can be reduced.

また圧縮機112は高回転で運転せず、中回転で運転しながら蓄冷室135に冷媒循環させ蓄冷材の放冷によって冷却することで消費電力を低減できる。   Further, the compressor 112 is not operated at a high rotation, but the refrigerant is circulated in the cold storage chamber 135 while being operated at a medium rotation, and the power consumption can be reduced by cooling by cooling the cold storage material.

また蓄冷材温度検知手段(図示しない)によって、蓄冷材温度が所定温度よりも高い場合に冷却器115に冷媒を循環させて冷却室133によって各貯蔵室を冷却する運転に切替えてもよい。   In addition, when the temperature of the regenerator material is higher than a predetermined temperature, the regenerator material temperature detection means (not shown) may be switched to an operation in which the refrigerant is circulated through the cooler 115 and each storage chamber is cooled by the cooling chamber 133.

また前方に冷却室133、後方に蓄冷室135を配置したが、蓄冷室135を前方配置
してもよく、第1ファン134と第2ファン138を前後に配置してもよい。手前に配置される室のファンの回転軸の傾きを、後方配置される室のファンの回転軸の傾きよりも大きくすることで、上部貯蔵室への風量を確保することができる。
Further, although the cooling chamber 133 is disposed in the front and the cool storage chamber 135 is disposed in the rear, the cool storage chamber 135 may be disposed in the front, and the first fan 134 and the second fan 138 may be disposed in the front and rear. By making the inclination of the rotation axis of the fan of the chamber arranged in the foreground larger than the inclination of the rotation axis of the fan of the room arranged in the rear, the air volume to the upper storage chamber can be secured.

また冷却室133と蓄冷室135は断熱し独立風路を構成しているため、冷却室133のデフロスト時の除霜ヒータによる蓄冷室135の温度上昇を抑制することができる。   In addition, since the cooling chamber 133 and the cold storage chamber 135 are insulated to form an independent air passage, an increase in the temperature of the cold storage chamber 135 by the defrost heater at the time of defrosting of the cooling chamber 133 can be suppressed.

以上のように、本発明にかかる冷蔵庫は、実使用時の昼間やドア開閉による負荷量が多いときの消費電力量を低減することができるので、業務用冷蔵庫等あらゆる冷却機器の用途にも適用できる。   As described above, the refrigerator according to the present invention can reduce power consumption during daytime in actual use or when there is a lot of load due to door opening and closing, so it can be applied to various cooling devices such as commercial refrigerators. it can.

101 冷蔵庫
102b 戻りダクト
109a、127a、127b、127e 凹部
114、133 冷却室
115 冷却器
120 冷蔵室吐出ダクト
125 エンドプレート
126 冷媒パイプ
126a U字状曲げパイプ
127、130、131、132、136 蓄冷材
137 第2冷却器
139 切替弁
140 第1冷却器
101 Refrigerator 102b Return duct 109a, 127a, 127b, 127e Recess 114, 133 Cooling chamber 115 Cooler 120 Refrigerating chamber discharge duct 125 End plate 126 Refrigerant pipe 126a U-shaped bent pipe 127, 130, 131, 132, 136 Cold storage material 137 Second cooler 139 Switching valve 140 First cooler

Claims (4)

圧縮機の運転によって冷却される貯蔵室と、前記貯蔵室を冷却する冷却器を備えた冷却室と、相変化する蓄冷材と、前記貯蔵室を冷却した冷気が前記冷却器へ戻る戻りダクトを備えた冷蔵庫であって、前記蓄冷材は前記戻りダクト内に配置され、前記蓄冷材の近傍に前記冷却器が配置していることを特徴とする冷蔵庫。 A storage room cooled by operation of the compressor, a cooling room having a cooler for cooling the storage room, a regenerator material that changes phase, and a return duct for returning the cool air that has cooled the storage room to the cooler. It is a refrigerator provided, Comprising: The said cool storage material is arrange | positioned in the said return duct, The said cooler has arrange | positioned in the vicinity of the said cool storage material, The refrigerator characterized by the above-mentioned. 前記蓄冷材は冷却器を構成する冷却室の横で、前記冷却室と断熱区画された戻りダクト内に配置していることを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the cool storage material is disposed in a return duct that is insulated from the cooling chamber, beside a cooling chamber constituting a cooler. 前記貯蔵室は冷蔵室であり、前記戻りダクトは前記冷蔵室を循環した冷気が戻るダクトであることを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the storage chamber is a refrigeration chamber, and the return duct is a duct to which cold air circulated through the refrigeration chamber returns. 前記蓄冷材は前記戻りダクト内に形成された段差部に配置していることを特徴とする請求項1から3のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the cold storage material is arranged in a step portion formed in the return duct.
JP2016057962A 2016-03-23 2016-03-23 refrigerator Active JP6492291B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016057962A JP6492291B2 (en) 2016-03-23 2016-03-23 refrigerator
PCT/JP2017/009911 WO2017163965A1 (en) 2016-03-23 2017-03-13 Refrigerator
CN201780019821.1A CN108885046A (en) 2016-03-23 2017-03-13 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057962A JP6492291B2 (en) 2016-03-23 2016-03-23 refrigerator

Publications (2)

Publication Number Publication Date
JP2017172847A true JP2017172847A (en) 2017-09-28
JP6492291B2 JP6492291B2 (en) 2019-04-03

Family

ID=59899431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057962A Active JP6492291B2 (en) 2016-03-23 2016-03-23 refrigerator

Country Status (3)

Country Link
JP (1) JP6492291B2 (en)
CN (1) CN108885046A (en)
WO (1) WO2017163965A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7221519B2 (en) * 2018-12-27 2023-02-14 アクア株式会社 refrigerator
JP2023060414A (en) * 2021-10-18 2023-04-28 パナソニックIpマネジメント株式会社 refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118989U (en) * 1983-01-31 1984-08-10 シャープ株式会社 Freezer refrigerator
JP2009174779A (en) * 2008-01-24 2009-08-06 Fuji Electric Retail Systems Co Ltd Showcase
GB2514622A (en) * 2013-05-31 2014-12-03 New Wave Innovation Ltd Improvements to a refrigerator that uses a phase change material as a thermal store
US20160187048A1 (en) * 2014-12-24 2016-06-30 Samsung Electronics Co., Ltd. Refrigerator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2718834A1 (en) * 1994-04-15 1995-10-20 Fafournoux Bernard Freezer comprising a device for rapid freezing with cold accumulators.
JP2004212022A (en) * 2003-01-09 2004-07-29 Sanyo Electric Co Ltd Refrigerator
CN2793651Y (en) * 2005-05-24 2006-07-05 广东科龙电器股份有限公司 Refrigerator with cold-storing duct
CN2830999Y (en) * 2005-05-25 2006-10-25 广东科龙电器股份有限公司 Refrigerator
JP2010043825A (en) * 2008-03-14 2010-02-25 Panasonic Corp Refrigerator
EP2339275B1 (en) * 2009-12-24 2017-02-08 Panasonic Corporation Refrigerator
WO2012102234A1 (en) * 2011-01-28 2012-08-02 シャープ株式会社 Insulating container, and method for operating same
CN102419046A (en) * 2011-12-23 2012-04-18 海尔集团公司 Freezer with cold regenerator
CN204388454U (en) * 2014-12-31 2015-06-10 海信容声(广东)冰箱有限公司 A kind of wind cooling refrigerator
CN104949426B (en) * 2015-06-17 2017-10-13 上海理工大学 Wind cooling refrigerator
CN204963354U (en) * 2015-07-17 2016-01-13 合肥华凌股份有限公司 Refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118989U (en) * 1983-01-31 1984-08-10 シャープ株式会社 Freezer refrigerator
JP2009174779A (en) * 2008-01-24 2009-08-06 Fuji Electric Retail Systems Co Ltd Showcase
GB2514622A (en) * 2013-05-31 2014-12-03 New Wave Innovation Ltd Improvements to a refrigerator that uses a phase change material as a thermal store
US20160187048A1 (en) * 2014-12-24 2016-06-30 Samsung Electronics Co., Ltd. Refrigerator

Also Published As

Publication number Publication date
CN108885046A (en) 2018-11-23
WO2017163965A1 (en) 2017-09-28
JP6492291B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
KR101306536B1 (en) Refrigerator
US8099975B2 (en) Icemaker for a refrigerator
JP4488966B2 (en) refrigerator
CN104101154A (en) Refrigerator
JP5617669B2 (en) refrigerator
JP6492291B2 (en) refrigerator
JP6405526B2 (en) refrigerator
JP2012127629A (en) Cooling storage cabinet
JP6028220B2 (en) refrigerator
JP2014238182A (en) Refrigerator
JP6145643B2 (en) refrigerator
JP2008111640A (en) Refrigerator
JP2017172850A (en) refrigerator
JP6678542B2 (en) refrigerator
JP2008138903A (en) Refrigerator
KR102508224B1 (en) Refrigerator
JP2008070042A (en) Refrigerator
JP6811371B2 (en) refrigerator
JP2005345061A (en) Refrigerator
JP6405525B2 (en) refrigerator
JP2017172849A (en) refrigerator
JP5401866B2 (en) refrigerator
KR100640869B1 (en) Structure of Kimchi Refrigerator
JP7463217B2 (en) refrigerator
JP2010071563A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

TRDD Decision of grant or rejection written
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R151 Written notification of patent or utility model registration

Ref document number: 6492291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151