以下、本発明の実施形態を図面を参照して説明する。
実施形態1.
図1は、本発明の無人飛行装置制御システムおよび検査対象となる建築物を示す模式図である。本発明の無人飛行装置制御システムは、無人飛翔体(以下、UAVと記す。)10と、投影ステーション20とを備える。前述のように、UAVは、無人飛行装置と称することもできる。
UAV10は、カメラを搭載している。UAV10に搭載されたカメラは、検査対象となる建築物30の表面を撮像し、建築物の表面の画像を生成する。この画像によって、建築物の状態検査(インフラストラクチャ劣化診断)を行える。
投影ステーション20は、プロジェクタ21を備え、プロジェクタ21から、UAV10の制御内容を示す情報を含む画像(以下、情報画像と記す)を、建築物30の表面に投影する。投影ステーション20は、車両29に搭載され、移動したり、同じ場所で停止し続けたりすることができる。
投影ステーション20は、検査対象の建築物30の外観および3次元形状の情報を予め記憶している。さらに、投影ステーション20は、投影ステーション20と建築物30との位置関係を認識する。投影ステーション20と建築物30との位置関係は、図示しない様々な測量装置を用いて行い、3次元空間上の位置だけでなく、向きも高精度に測定しておく。なお、建築物30の3次元形状を得る方法は、設計時の図面や3D−CAD(3Dimension Computer-Aided Design)データを用いる方法でもよいし、3D−LiDAR(3Dimension Light Detection and Ranging)等を用いて現物を予め測定する方法でもよい。また、建築物30の3次元形状の情報は、建築物30全体に関する情報に限らず、建築物30のうち本発明を用いて観察する部分に関する情報であってもよい。また、建築物30と投影ステーション20との位置関係を精度良く知る方法については、トータルステーション等を用いた三角測量等、既知の手法が多数あるため、説明を省略する。投影ステーション20と建築物30との位置関係は予め計測しておくのが基本である。ただし、風等の影響で作業中に建築物30が変形する可能性がある場合や、投影ステーション20が船上等の不安定な位置にある場合には、本発明による作業中に位置関係を計測してもよい。
投影ステーション20は、その位置関係および記憶している情報に基づいて、建築物30の表面上における情報画像の投影箇所を複数定め、UAV10の経路35を導出する。また、投影ステーション20は、その各投影箇所に投影する情報画像を生成する。また、投影ステーション20は、UAV10が情報画像を撮像するための位置(以下、目標位置と記す。)やその目標位置での姿勢(傾きまたは向き)やカメラの向きを定める。この姿勢やカメラの向きは、情報画像を撮像する際の姿勢やカメラの向きである。投影ステーション20は、例えば、次の目標位置までの移動制御内容や、移動時の姿勢やカメラの向きを指示するための情報画像を、目標位置間の位置関係に基づいて生成する。また、情報画像には、UAV10に状態検査のための撮像を指示する情報も含まれる。投影ステーション20は、順次、情報画像を建築物30の表面に投影する。なお、後述するように、実際には、UAV10は目標位置からずれた位置で情報画像を撮像することが一般的であり、情報画像を撮像する際の姿勢やカメラの向きも、定められた姿勢でなくてよい。
UAV10は、情報画像が投影された建築物30の表面をカメラによって撮像する。以下、UAV10のカメラが撮像したことによって得られた画像をカメラ画像と記す。UAV10は、カメラ画像内の情報画像(カメラ画像内に写っている情報画像)が示している制御内容に従って動作する。例えば、UAV10は、カメラ画像内の情報画像に基づいて、状態検査のための撮像を行ったり、次の目標位置の方向に移動したりする。
UAV10は、カメラ画像内の情報画像に基づいて動作することによって、経路35の近傍を移動しつつ、状態検査のために建築物30の表面を撮像する。
UAV10は、経路35上の目標位置で情報画像を撮像するとは限らない。UAV10は風等の種々の影響を受けるので、UAV10が予め定められた目標位置と同一の箇所に到達することは困難であることが一般的である。そのため、UAV10は、目標位置の近傍に到達したならば、建築物30の表面を撮像する。UAV10は、その結果得られたカメラ画像に基づいて、その位置と、目標位置のずれを計算する。そして、UAV10は、カメラ画像内の情報画像が示す移動制御内容と、計算したずれとに基づいて、現在位置から次の目標位置までの移動のための制御内容を導出する。
図2は、目標位置からずれた箇所でUAV10が撮影を行った場合に、UAV10が次の目標位置までの移動制御内容を把握する状況を示す模式図である。図2に示す例において、建築物30の表面の領域A1,A2は、情報画像の投影箇所である。また、領域A1に投影された情報画像を撮像するための位置として目標位置P1が定められているとする。同様に、領域A2に投影された情報画像を撮像するための位置として目標位置P2が定められているとする。また、目標位置P1,P2それぞれにおけるUAV10の姿勢やカメラの向きも定められている。上記のように、UAV10は風等の種々の影響を受けるので、UAV10は、目標位置P1と完全に一致する位置で、領域A1に投影された情報画像を撮像することは困難である。そのため、UAV10は、目標位置P1の近傍の位置P1’で、領域A1に投影された情報画像を撮像する。このときの、UAV10の姿勢やカメラの向きも、予め定められた目標位置P1における姿勢やカメラの向きと一致していないことが一般的である。
UAV10は、目標位置P1において、定められた姿勢およびカメラの向きで、領域A1に投影された情報画像を撮像したと仮定した場合におけるカメラ画像内の情報画像の輪郭と、実際に、位置P1’で情報画像を撮像して得たカメラ画像内の情報画像の輪郭とに基づいて、目標位置P1と位置P1’とのずれM(図2参照)を計算する。また、領域A1に投影された情報画像には、目標位置P1から目標位置P2に移動するための移動制御内容が示されている。UAV10は、その移動制御内容と、計算したずれMとに基づいて、位置P1’から目標位置P2に移動するための制御内容を導出し、その制御内容に基づいて、次の目標位置P2に向けて移動する。UAV10は、領域A2に投影された情報画像を撮像する場合にも、目標位置P2の近傍で情報画像を撮像し、同様に、次の目標位置に移動するための制御内容を導出する。
なお、予め定められた目標位置において、定められた姿勢およびカメラの向きで、情報画像を撮影したと仮定した場合におけるカメラ画像内の情報画像の輪郭の情報は、事前にUAV10に与えられる。
また、UAV10は、風等の種々の影響により、情報画像の正面位置で情報画像を撮影できないことが一般的である。そのため、カメラ画像において、情報画像は歪んで写っていることが一般的である。UAV10は、その情報画像の歪みを取り除く処理を行ってから、カメラ画像内に写っている情報画像が示している制御内容を認識する。
図3は、投影ステーション20が投影する情報画像の例を示す説明図である。図4は、図3に例示した情報画像内の記号の意味を示す説明図である。
情報画像40は、例えば、移動制御記号41と、カメラ向き制御記号43と、姿勢制御記号44とを含む。
移動制御記号41は、UAV10の移動に関する制御内容を示す記号である。移動制御記号41によって、進行方向の指示、滞空指示および速度指示を行うことができる。図3に例示する移動制御記号41は、矢印の形状をしており、その矢印の示す方向が、指示している進行方法である。図3に示す例では、下方への移動を指示している。移動制御記号41によって指示する進行方向は、下方向に限定されない。
また、移動制御記号41は、付加されているバー42によって、UAV10に滞空することを指示することができる。バー42は、滞空の指示を意味している。移動制御記号41のアローヘッド(arrowhead )とは反対側の端部にバー42が設けられた場合、滞空してから、矢印方向(本例では、下方)に移動することを意味する。また、移動制御記号41のアローヘッド側の端部にバー42を表示することによって、移動してから滞空することを指示することもできる。以下の説明では、説明を簡単にするために、UAV10が、情報画像40が示す制御内容を認識してから滞空し、その滞空時間内に状態検査のための撮像を行い、その後、指示された方向に移動するものとして説明する。この場合、バー42はアローヘッドとは反対側の端部に表示される。また、バー42は、滞空中に状態検査のための撮像を指示する意味も有しているものとして説明する。
また、移動制御記号41は、移動制御記号41(矢印形状の記号)の内部の色の濃淡の変化の仕方によって、UAV10が移動する際の移動速度を指示する。なお、図3および図4では、矢印形状の記号の色の濃淡の変化を、便宜的に、模様の変化で表している。実際の矢印形状内の色の濃淡は、例えば、徐々に変化してもよい。
なお、バー42の向きは、例えば、矢印の向きと垂直に定められる。ただし、バー42の向きの定め方は、この例に限られず、例えば、常に水平であってもよい。図5は、バー42の表示態様の例を示す説明図である。図5では、移動制御記号41内部の色の濃淡の表示を省略している。図5(a)は、バー42の向きを矢印の向きと垂直に定める場合の例を示している。図5(b)は、バー42の向きを常に水平に定める場合の例を示している。図5に例示するように矢印が右向きである場合、図5(a)に示す例では、バー42は縦向きのバーとして定められる。一方、図5(b)に示す例では、バー42は水平であり、矢印の内部に示される。
カメラ向き制御記号43は、UAV10に搭載されているカメラの向きに関する制御内容を表す記号である。カメラ向き制御記号43によって、カメラの仰俯角および水平角が制御される。図3では、カメラ向き制御記号43がU字回転矢印である場合を例示している。本例では、U字回転矢印は、カメラの仰俯角を上向きにし、水平角は固定することを意味しているものとする。カメラの向きに関する制御内容と、カメラ向き制御記号43の形状との対応関係は、予め定めておけばよい。
なお、次の目標位置までの移動中のカメラの向きと、次の目標位置に対応する撮影時のカメラの向きとを別々に規定している場合には、投影ステーション20は、それぞれの向きに対応するカメラ向き制御記号を、情報画像40に含めてもよい。
姿勢制御記号44は、UAV10の姿勢に関する制御内容を表す記号である。図3では、姿勢制御記号44が半円図形である場合を例示している。本例では、半円図形は、UAV10の姿勢を水平に制御することを意味しているものとする。UAV10の姿勢に関する制御内容と、姿勢制御記号44の形状との関係は、予め定めておけばよい。
なお、次の目標位置までの移動中の姿勢と、次の目標位置に対応する撮影時の姿勢とを別々に規定している場合には、投影ステーション20は、それぞれの姿勢に対応する姿勢制御記号を、情報画像40に含めてもよい。
また、図3では、図示を省略しているが、ある目標位置で、その目標位置に対応して定められた姿勢およびカメラの向きで情報画像を撮像したと仮定した場合におけるカメラ画像内の情報画像の輪郭を表す情報が、情報画像40に含まれていてもよい。以下、ある目標位置で、その目標位置に対応して定められた姿勢およびカメラの向きで情報画像を撮像したと仮定した場合におけるカメラ画像内の情報画像の輪郭を表す情報を輪郭情報と記す。
移動制御記号41、バー42、カメラ向き制御記号43および姿勢制御記号44は、UAV10の制御内容を識別する識別情報であり、情報画像40は、そのような識別情報を含む画像であると言うことができる。また、図3では、制御内容を識別する識別情報(移動制御記号41、バー42、カメラ向き制御記号43および姿勢制御記号44)が図形の記号で表されている場合を例示している。制御内容を識別する識別情報を、図3に例示するように、図形の記号等で表すことにより、検査作業者が遠方からでも視認しやすくすることができる。
また、UAV10の制御内容を識別する識別情報は、QRコード(登録商標)やバーコード等の記号であってもよい。
また、UAV10の制御内容を識別する識別情報は、漢字、数字または象形文字等の記号であってもよい。
また、UAV10の制御内容を識別する識別情報は、例えば、「30秒滞在後下に1メートル飛行」のような文章であってもよい。
また、検査作業者の見やすさの観点から、投影ステーション20は、情報画像40内の情報(制御内容を識別する識別情報)を、例えば、点滅させるようにして、情報画像40を投影してもよい。このように情報画像40を投影することで、情報画像40の内容を目立たせることができ、検査作業者は、その内容を認識しやすくなる。
また、投影ステーション20は、制御内容を識別する識別情報の他に、他の情報も情報画像40に含めてよい。例えば、投影ステーション20は、状態情報(例えば、UAV10の現在の高度や、作業の進み具合を示すステップ番号等)を情報画像40に含めてもよい。
前述の輪郭情報は、目標位置P1と実際の位置P1’とのずれMを求める際に用いられる。目標位置P1と実際の位置P1’とのずれMを求めるために必要な情報は、前述の輪郭情報でなくてもよい。投影ステーション20は、目標位置P1と実際の位置P1’とのずれMを求めるために必要な情報を情報画像40に含め、UAV10はその情報を予め記憶していてもよい。例えば、投影ステーション20は、輪郭情報の代わりに4隅に特別なアイコンを含んだ情報画像40を投影し、UAV10はカメラ画像内に写ったそれらのアイコンの位置関係によって、ずれMを求めてもよい。このように、輪郭を用いずに認識しやすい形状を用いることで、UAV10がずれMを誤認識する可能性を減らすことができる。
また、投影ステーション20は、目標位置P1と実際の位置P1’とのずれMを求めるために必要な情報を、情報画像40内に固定的に含めてもよい。例えば、検査区域を示す検査区域番号(図示略)が情報画像40に含まれるとする。投影ステーション20は、検査区域番号の前半部分を例えばアルファベット等で固定的に定め、後半部分を任意に定めてもよい。UAV10はカメラ画像内に写ったその固定的な部分の変形によって、ずれMを求めてもよい。このように情報画像40の一部を固定的に定め、カメラ画像内におけるその部分の画像に基づいてずれMを求めることによって、ずれMを求めるための情報画像40内の要素が、検査作業者の邪魔にならないようにすることができる。
次に、UAV10の構成例について説明する。図6は、UAV10の構成例を示すブロック図である。本例では、UAV10が4つのプロペラ(図6において図示略)を有し、4つのプロペラと一対一に対応する4つのモータを有する場合を例にして説明する。ただし、プロペラおよびモータの数は、上記の例に限定されない。
UAV10は、カメラ11と、制御部13と、カメラ角度制御部15と、モータドライバ16と、4つのモータ17a〜17dと、通信部18とを備える。
カメラ11は、インフラストラクチャ劣化診断の検査対象となる建築物30(図1参照)の表面を撮像し、建築物の表面を写したカメラ画像を生成する。カメラの視野内に情報画像が投影されている場合には、その情報画像もカメラ画像内に写っている。カメラ11は、生成したカメラ画像を制御部13に入力する。カメラ11の向きは制御可能である。
ここで、建築物30(図1参照)の表面におけるカメラの視野と、その視野を撮影した場合のカメラ画像について説明する。
図7は、建築物30(図1参照)の表面におけるカメラの視野の例を示す模式図である。図7(a)は、UAV10(図7において図示略)のカメラ11が、建築物30の表面30aを撮像する状況の例を示す模式的上面図である。また、建築物30の表面30aには、情報画像40が投影されているものとする。風等の影響により、カメラ11が建築物30の表面30aと完全に正対して表面30aを撮像することは困難である。そのため、図7(a)に示すように、カメラ11が、斜め方向から建築物30の表面30aを撮像することが一般的である。図7(b)は、図7(a)に示す状態における建築物30の表面30a上のカメラ11の視野を示す模式図である。表面30aにおけるカメラ11の視野49は、四角形である。図7(b)に示す例では、カメラ11が斜め方向から建築物30の表面30aを撮像する状態となっていることによって、視野49が台形である場合を例示している。視野49が台形になるとは限らない。ただし、視野49が長方形になるのは、カメラ11が建築物30の表面30aと正対している場合であり、図7(a)に示すようにカメラ11が斜め方向から建築物30の表面30aを撮像する場合、視野49が長方形になることはない。また、投影ステーション20は、表面30a上で情報画像40が長方形になるように、情報画像40を投影する。従って、表面30a上に投影された情報画像40は長方形である。視野49の頂点をA,B,C,Dとする。また、建築物30の表面30aに投影された情報画像40の頂点をa,b,c,dとする。なお、図7(b)において、情報画像40内の種々の記号の図示は省略している。この点は、図8等においても同様である。
カメラ11は、視野49を撮像し、カメラ画像を生成する。図8は、図7(b)に示す視野49を撮像することによって生成したカメラ画像の例を示す模式図である。カメラ画像50は、長方形である。カメラ画像50の個々の頂点はそれぞれ、図7(b)に示す視野49の個々の頂点と対応している。視野49の頂点Aに対応するカメラ画像50の頂点も符号Aで表す。他のカメラ画像の頂点も同様である。また、カメラ画像50に写った情報画像40(図8参照)の個々の頂点は、建築物30の表面30aに投影された情報画像40(図7(b)参照)の個々の頂点と対応している。図7(b)に示す情報画像40の頂点aに対応するカメラ画像50内の情報画像40(図8参照)の頂点も符号aで表す。カメラ画像50内の情報画像40の他の頂点も同様である。以下、カメラ画像50内の情報画像40の輪郭を、輪郭abcdと記す。
カメラ11は、長方形ではない視野49を撮影し、長方形のカメラ画像50を生成する。従って、カメラ11の視野49内に投影されていた長方形の情報画像40は、図8に示すように、カメラ画像50内で歪んで写っている。
制御部13は、カメラ11からカメラ画像50が入力されると、カメラ画像50内の情報画像40の輪郭abcdを検出する。
また、制御部13には、事前に輪郭情報が与えられている。既に説明したように、輪郭情報は、ある目標位置で、その目標位置に対応して定められた姿勢およびカメラの向きで情報画像を撮像したと仮定した場合におけるカメラ画像内の情報画像の輪郭を表す情報である。図9は、図8に示すカメラ画像に、輪郭情報が示すカメラ画像内の輪郭を重ね合わせた状態の例を示す模式図である。制御部13は、輪郭情報が示すカメラ画像50内の輪郭51と、カメラ画像50内の情報画像40の輪郭abcdとに基づいて、UAV10の現在位置と目標位置とのずれMを計算する。なお、ずれMには位置に留まらず姿勢情報も含まれる。以後も同様であるので、特に記載がない場合は姿勢情報について省略する。
制御部13は、カメラ画像内に情報画像を認識できなかった場合には、モータドライバ16を介して各モータ17a〜17dを制御することで、UAV10を移動させる。
また、制御部13は、カメラ画像内に情報画像を認識できた場合には、UAV10の現在位置と目標位置とのずれMを計算する。さらに、制御部13は、カメラ画像50内の情報画像40の歪みを取り除く処理(換言すれば、カメラ画像50内の情報画像40を長方形にする処理)を行い、その処理後の情報画像40が示す制御内容を把握し、その制御内容に従って、UAV10を制御する。例えば、制御部13は、情報画像40が示す制御内容に従って、建築物30の表面の状態検査のための撮像を行う。また、制御部13は、計算したずれM(UAV10の現在位置と目標位置のずれ)と、情報画像40が示す次の目標位置までの移動制御内容と、現在位置から次の目標位置までの移動のための制御内容を導出し、その制御内容に応じてモータドライバ16を介して各モータ17a〜17dを制御することで、UAV10を移動させる。また、制御部13は、情報画像40が示す制御内容に従って、UAV10の姿勢を制御したり、カメラ角度制御部15を介してカメラ11の向きを制御したりする。
カメラ角度制御部15は、制御部13に従い、カメラ11の向きを制御する。具体的には、カメラ角度制御部15は、カメラ角度制御部15は、カメラ11の仰俯角および水平角を制御する。
モータドライバ16は、制御部13に従って、各モータ17a〜17dを駆動する。モータドライバ16は、各モータ17a〜17dを別々に駆動可能である。従って、制御部13は、UAV10を前後に移動させる制御、UAV10を左右に移動させる制御、UAV10を上下に移動させる制御、ピッチ角制御、ロール角制御およびヨー角制御を実現できる。
通信部18は、投影ステーション20との通信に用いられる通信インタフェースである。
制御部13およびカメラ角度制御部15は、例えば、プログラムに従って動作するコンピュータのCPUによって実現されていてもよい。この場合、CPUがそのプログラムを読み込み、そのプログラムに従って、制御部13およびカメラ角度制御部15として動作すればよい。また、制御部13およびカメラ角度制御部15がそれぞれ別々のハードウェアで実現されていてもよい。
次に、投影ステーション20の構成例について説明する。図10は、投影ステーション20の構成例を示す模式的ブロック図である。投影ステーション20は、プロジェクタ21と、プロジェクタ制御部22と、データ記憶部23と、経路導出部24と、情報画像生成部25と、通信部27とを備える。
データ記憶部23は、建築物の外観および建築物の3次元形状の情報を記憶する記憶装置である。
経路導出部24は、投影ステーション20と建築物との位置関係を認識する。このとき、経路導出部24は、投影ステーション20の現在位置を、例えば、外部から与えられてもよい。経路導出部24は、その位置関係と、建築物の外観および建築物の3次元形状の情報との情報に基づいて、建築物30の表面上における情報画像の投影箇所を複数定める。さらに、経路導出部24は、UAV10の経路を導出する。
経路導出部24は、例えば、データ記憶部23に記憶されている情報に基づいて、建築物の表面を格子状に区切ることによって、複数の検査区域を定め、個々の検査区域内の所定箇所(例えば、検査区域の中央)を情報画像の投影箇所として定めてもよい。ただし、情報画像の投影箇所の決定方法は、上記の例に限られず、他の方法で、投影箇所を決定してもよい。また、経路導出部24は、その各投影箇所に投影された情報画像を撮像できるようにUAV10の経路を定めればよい。このとき、経路導出部24は、UAV10の消費電力が最小となる経路を定めることが好ましい。ただし、経路導出部24は、消費電力以外の基準に基づいて経路を定めてもよい。
このとき、経路導出部24は、投影箇所に投影された情報画像をUAV10が撮影するための目標位置を、投影箇所に対応させて決定する。さらに、経路導出部24は、その目標位置でのUAV10の姿勢やカメラの向きを定める。この姿勢やカメラの向きは、情報画像を撮像する際の姿勢やカメラの向きである。ただし、風等の影響により、実際に移動するUAV10が、定められた目標位置で、定められた姿勢およびカメラの向きで情報画像を撮像することは困難である。そのため、UAV10は、目標位置の近傍で情報画像を撮像すればよい。また、そのときのUAV10の姿勢やカメラの向きも、目標位置とともに定められた姿勢やカメラの向きと一致していなくよい。
情報画像生成部25は、投影箇所毎に、情報画像を生成する。情報画像生成部25は、投影箇所(#iとする。)に対応する目標位置(#Piとする。)と、その次の投影箇所(#i+1とする。)に対応する目標位置(#Pi+1とする。)との位置関係に基づいて、投影箇所#iに投影する情報画像を生成すればよい。また、情報画像生成部25は、目標位置毎に輪郭情報を生成する。
プロジェクタ21は、情報画像を建築物の表面に投影する。プロジェクタ21の向きは可変である。
プロジェクタ制御部22は、プロジェクタ21の向きを制御する。プロジェクタ制御部22がプロジェクタ21の向きを変えることで、定められた投影箇所に情報画像を投影することができる。
また、プロジェクタ制御部22は、プロジェクタ21を情報画像の投影箇所に向ける際に、そのプロジェクタ21の向き、建築物の外観および建築物の3次元形状の情報に基づいて、建築物の表面上で情報画像が歪まないように、情報画像を補正する。換言すれば、プロジェクタ制御部22は、建築物の表面上に長方形の情報画像が投影されるように、情報画像を補正する。プロジェクタ21は、プロジェクタ制御部22によって補正された情報画像を投影する。なお、以降の説明では、プロジェクタ制御部22による情報画像の補正動作についての説明を省略する場合がある。
通信部27は、UAV10との通信に用いられる通信インタフェースである。
経路導出部24、情報画像生成部25およびプロジェクタ制御部22は、例えば、プログラムに従って動作するコンピュータのCPUによって実現されていてもよい。この場合、CPUがそのプログラムを読み込み、そのプログラムに従って、経路導出部24、情報画像生成部25およびプロジェクタ制御部22として動作すればよい。また、経路導出部24、情報画像生成部25およびプロジェクタ制御部22がそれぞれ別々のハードウェアで実現されていてもよい。
また、制御部13(図6参照)が、UAV10ではなく、投影ステーション20または他の情報処理装置に設けられていてもよい。そして、制御部13の動作が、投影ステーション20または他の情報処理装置で行われ、UAV10の移動制御、姿勢制御、カメラ11の向きの制御等が外部(例えば、投影ステーション20)との通信によって実現されてもよい。
次に、本発明の第1の実施形態の処理経過について説明する。図11は、本発明の第1の実施形態の処理経過の例を示すフローチャートである。なお、図11に示すフローチャートは例示であり、本発明の処理経過は、図11に示すフローチャートに限定されない。
また、投影ステーション20の経路導出部24は、予め、建築物の表面上における情報画像の投影箇所を複数定め、UAV10の経路を導出し、UAV10が情報画像を撮像するための各目標位置、並びに、各目標位置でのUAV10の姿勢およびカメラの向きを定めているものとする。また、第1の実施形態では、説明を簡単にするために、検査途中での経路の変更はないものとして説明する。また、瞬間的に生じた大きな外乱によるUAV10への影響(例えば、瞬間的な突風によりUAV10が経路から大きく外れてしまうこと等)はないものとして説明する。ただし、通常の風等に起因する目標位置からのずれ(図2参照)は生じ得る。
投影ステーション20は、プロジェクタ21から、情報画像を、建築物の表面上におけるその画像の投影箇所に投影する(ステップT1)。1回目のステップT1では、投影ステーション20は、1番目の情報画像をその画像の投影箇所に投影する。
また、制御部13は、ステップT1で投影された目標画像を撮像するための目標位置に向けてUAV10を移動させる(ステップB1)。1番目の情報画像が投影されている場合には、検査作業者がUAV10を遠隔操作する。検査作業者は、1番目の情報画像がカメラ11の視野内に入るように、UAV10を移動させる。制御部13は、検査作業者による遠隔操作に従い、建築物の表面上に投影された情報画像がカメラ11の視野内に入るようにUAV10を移動させる。
また、UAV10は、移動しながら、カメラ11によって建築物の表面を撮像し、カメラ画像を得る(ステップB2)。カメラ11は、生成したカメラ画像を制御部13に入力する。
制御部13は、カメラ画像が入力されると、カメラ画像の中の情報画像を検索する(ステップB3)。検索に成功したということは、カメラ画像内に情報画像を認識できたということである。また、検索に失敗したということは、カメラ画像内に情報画像を認識できなかったということである。カメラ画像内に情報画像を認識できた場合(ステップB3のYes)、制御部13は、UAV10の現在位置と目標位置とのずれを計算する(ステップB4)。情報画像がカメラ画像内にない場合や、情報画像が途切れている場合等、ステップB3でカメラ画像内に情報画像を認識できなかった場合、UAV10は移動を続ける。
図12は、情報画像を認識できないカメラ画像の例を示す模式図である。
図12(a)は、カメラ画像50内に情報画像が写っていない場合を示している。この場合、カメラ画像内に情報画像が存在しないので、制御部13は、カメラ画像内に情報画像を認識できない。
図12(b)は、カメラ画像50内に情報画像40の一部のみが写っている場合を示している。この場合、情報画像40が途切れているので、制御部13は、カメラ画像内に情報画像を認識できない。
図12(c)は、カメラ画像50内に情報画像40が写っているが、カメラ画像50内の情報画像40の面積が非常に小さい場合(閾値よりも小さい場合)である。この場合、情報画像40の面積が小さすぎるために、制御部13は、カメラ画像内に情報画像を認識できない。
カメラ画像内に情報画像を認識できなかった場合(ステップB3のNo)、UAV10は、ステップB1以降の動作を繰り返す。なお、1番目の投影箇所に対応する目標位置方向に移動している場合、制御部13は、直近に得られたカメラ画像に基づいてどの方向に移動すればよいのかを判定できない場合には、引き続き、検査作業者による遠隔操作に従ってUAV10を移動させる。例えば、直近に得られたカメラ画像に情報画像が全く写っていない場合、制御部13は、引き続き、検査作業者による遠隔操作に従ってUAV10を移動させる。また、制御部13は、直近に得られたカメラ画像に基づいてどの方向に移動すればよいのかを判定できる場合には、検査作業者による遠隔操作に依らず、自律的な動作を開始する。例えば、図12(b)に例示するように、直近に得られたカメラ画像50内に情報画像40の一部が写っている場合、制御部13は、情報画像40全体をカメラ11の視野内に入れるためには、どちらの方向にUAV10を移動させればよいのかを判定できる。この場合、制御部13は、情報画像40全体をカメラ11の視野内に入れるように、自律的にUAV10を移動させる。
カメラ画像の中に情報画像を認識できなかった場合(ステップB3のNo)、カメラ画像の中に情報画像を認識できるまで、ステップB1〜B3を繰り返す。
カメラ画像の中に情報画像を認識できる場合は、図9に例示するように、カメラ画像50内に情報画像40が適度な大きさで写っていて(換言すれば閾値以上の面積で写っていて)、情報画像40の輪郭abcdを検出できる場合である。この場合、制御部13は、輪郭情報が示すカメラ画像50内の輪郭51(図9参照)と、カメラ画像50内の情報画像40の輪郭abcd(図9参照)とに基づいて、UAV10の現在位置と目標位置とのずれを計算する(ステップB4)。
カメラ画像の中に情報画像を認識できたということは、UAV10が目標位置の近傍に存在していると言うことができる。なお、実際には、UAV10は、移動しながらステップB1〜B3の処理を繰り返している。そのため、カメラ画像の中に情報画像が全て入った瞬間に、ステップB3で情報画像が完全に認識されたとして、ステップB4に進んでしまう。換言すると、UAV10が目標位置から比較的離れた位置であってもカメラ画像の端の方に情報画像が入った瞬間に、制御部13は、ステップB4を実行してしまう。これを防ぐため、図11では省略しているが、「情報画像がカメラ画像のある一定の範囲に入るまでステップB4への移行を停止する」、あるいは、「カメラ画像のある一定の範囲に情報画像を入れるための移動方向を判定しステップB1以降を繰り返す」、あるいは、「一定時間(または一定フレーム数)、情報画像がカメラ画像内で認識されるまでステップB4への移行を停止する」等の処理があってもよい。あるいは、ステップB4においてずれMを計算できるため、このずれMに対応した移動量を計算しステップB1以降を繰り返すとなお良い。これに加えて、ずれMが規定の形状となるようカメラの向きを制御しつつステップB1を繰り返すとさらに良い。ずれMを基にしたUAV10の移動やカメラ11の制御により、より精確な位置にUAV10を移動させたり、より精確な姿勢にUAV10をさせたりすることができるからである。
UAV10の現在位置と目標位置とのずれを計算した後、制御部13は、カメラ画像50内の情報画像40の歪みを取り除く(ステップB5)。既に説明したように、建築物の表面に投影されている情報画像40は長方形であり、カメラの視野49は長方形ではない(図7(b)参照)。一方、その視野49を撮像することによって得られるカメラ画像50は長方形である。従って、カメラ画像50内に写っている情報画像40は、長方形ではなく、歪んだ状態になっている(図8参照)。ステップB5において、制御部13は、この歪みを取り除く。
続いて、制御部13は、歪みが取り除いた後の情報画像40が示す命令(制御内容)を認識し、その命令を実行する(ステップB6)。
本例では、制御部13が、図3に例示する情報画像40が示す命令(制御内容)を認識し、その命令を実行する場合を例にして説明する。
具体的には、制御部13は、その場で所定時間滞空し、滞空中に建築物の表面の状態検査のための撮像をする旨を認識する。そして、制御部13は、その命令に従って、その場で所定時間滞空し、滞空中に建築物の表面をカメラ11によって撮像する。このとき、カメラ11の視野内に情報画像40が投影された状態のままであってもよい。
また、制御部13は、所定時間滞空後に下降する旨、下降する際にカメラ11の水平角を固定したままカメラ11を上向きにする旨、および、UAV10の姿勢を水平に制御する旨を認識する。このとき、制御部13は、ステップB4で計算したUAV10の現在位置と目標位置とのずれと、下降する旨の移動制御内容とに基づいて、次の目標位置までの移動のための制御内容を導出し、その制御内容に応じてモータドライバ16を介して各モータ17a〜17dを制御することで、UAV10を移動させる。すなわち、制御部13は、情報画像40が示す移動に関する制御内容を、ステップB4で計算したずれによって補正し、補正後の制御内容に基づいて、UAV10を移動させる。
また、制御部13は、情報画像40が示す命令を認識した後、命令認識が完了した旨を、投影ステーション20に通知する(ステップB7)。
制御部13は、上述の補正後の制御内容に基づいて、UAV10の移動を開始すると、ステップB1以降の動作を繰り返す。このステップB1では、1番目の投影箇所に対応する目標位置に向けて移動する場合と異なり、制御部13は、検査作業者による遠隔操作に依らず、自律的にUAV10を移動させる。
プロジェクタ制御部22は、命令認識が完了した旨の通知をUAV10から受信すると、プロジェクタ21にそれまで投影していた情報画像の投影を停止させる。また、情報画像生成部25は、命令認識が完了した旨の通知をUAV10から受信すると、次の情報画像の投影箇所(ここでは、2番目の情報画像の投影箇所)を特定し、その投影箇所に投影する2番目の情報画像を生成する(ステップT2)。本例では、情報画像生成部25は、2番目の目標位置の近傍で状態検査のための撮像を指示する命令や、2番目の目標位置から3番目の目標位置までUAV10を移動させるための命令等を含む情報画像を生成する。
UAV10は、移動しながらカメラ11によって建築物の表面を撮像し(ステップB2)、制御部13は、ステップB3を実行する。2番目の情報画像が投影されるまでの間、2番目の情報画像はカメラ画像に写らないので、UAV10は、ステップB1〜B3を繰り返す。
プロジェクタ制御部22は、情報画像生成部25がステップT2で、次の投影箇所に投影する情報画像(ここでは、2番目の情報画像)を生成すると、その情報画像をその投影箇所に投影するようにプロジェクタ21を制御する。この結果、プロジェクタ21は、2番目の情報画像の投影箇所に、2番目の情報画像を投影する(ステップT1)。
新たに投影された情報画像がカメラ11の視野内に入る位置までUAV10が移動し、カメラ画像内に情報画像を認識できた場合(ステップB3のYes)、UAV10は、ステップB4以降の処理を繰り返せばよい。また、投影ステーション20は、ステップB7の通知を受けた場合、それまで投影していた情報画像の投影を停止し、ステップT2,T1を実行すればよい。
上記の処理を繰り返すことによって、UAV10は、定められた経路の近傍を移動しつつ、状態検査のために建築物の表面を撮像することができる。
また、投影ステーション20が、最後の情報画像を投影し、制御部13が、最後の情報画像に示されている命令を実行した場合、ステップB7の通知を行うことなく、無人飛行装置制御システムは処理を終了してよい。この場合、投影ステーション20が、最後の情報画像内に、最後の情報画像であることを示す所定の記号を含めておき、制御部13が最後の情報画像であることを認識できるようにしておけばよい。
本実施形態によれば、制御部13は、カメラ画像内に情報画像を認識できるまで、ステップB1〜B3を繰り返し、カメラ画像内に情報画像を認識できた場合には、ずれMを計算し、カメラ画像内の情報画像のゆがみを取り除き、情報画像が示す命令を認識し、その命令に従って動作する。制御部13がこの動作を繰り返すことで、定められた経路の近傍を移動しつつ、状態検査のために建築物の表面を撮像することができる。従って、簡易な構成で、建築物の付近の目標位置近傍にUAV10を誘導することができる。
また、本発明では、情報画像によってUAV10を誘導するので、UAV10はGPS信号を受信する必要がない。従って、本発明では、どの場所においてもGPS信号による位置情報を得るために、GPS衛星の代わりとなる設備を多数設ける必要がない。この点でも、本発明では、システムの構成を簡易にすることができる。
また、本発明では、情報画像によってUAV10を誘導する。UAV10は情報画像に近付いてずれを求めるため、情報画像とUAV10の位置および姿勢を精確に得ることが可能である。すなわち、測定装置であるUAV10は、測定対象である情報画像に近接しているため誤差要因が少なくなり、この結果、GPSや他の方法に比べて精緻な位置測定、および、測定結果に基づいた誘導が可能となる。
また、UAV10は、UAV10の現在位置と目標位置とのずれを、情報画像に基づいて導出する。このずれを差分として用いることで、UAV10は精確に目標位置に移動することもできる。
また、UAV10は、UAV10の現在位置と目標位置とのずれと、情報画像が示す移動制御内容とに基づいて、次の目標位置までの移動制御内容を導出する。この結果、UAV10は、次の目標位置の近傍まで移動することができる。すなわち、良好な精度でUAV10の移動を制御することができる。また、上記のように、本発明では、UAV10はGPS信号を受信する必要がない。従って、GPS信号の受信が困難な場所であっても、精度良くUAV10を制御することができる。
また、投影ステーション20は情報画像を一定の大きさで建築物に投影しており、UAV10はこの情報画像を監視している。また、この情報画像とUAV10との位置関係はUAV10の内部で計算できるため、UAV10は、その位置関係を、ほぼリアルタイムで連続して取得できる。従って、例えば、突風等の外乱によりUAV10の位置が大きく変化したり姿勢が崩れたりしても、UAV10は建築物に接触する前に位置や姿勢を補正することができる。
次に、第1の実施形態の変形例について説明する。
上記の実施形態では、ステップB5において、制御部13は、カメラ画像50内の情報画像40の歪みを取り除く場合を説明した。情報画像40の歪みを取り除かなくても、情報画像40が示す命令を制御部13が認識できるのであれば、ステップB5を省略してもよい。
また、上記の実施形態では、ステップB6において、建築物の状態検査のために建築物の表面を撮像する際、カメラ11の視野内に情報画像40が投影された状態のまま、建築物の表面を撮像する場合を示した。建築物の状態検査のために建築物の表面を撮像する際、制御部13が、投影ステーション20に情報画像の投影の停止を指示してもよい。この場合、投影ステーション20の情報画像生成部25は、1つの投影箇所に対して、状態検査のための撮像を指示する情報画像と、次の目標位置への移動を指示する情報画像とを生成すればよい。情報画像生成部25は、状態検査のための撮像を指示する情報画像内に、その情報画像の投影中止を投影ステーション20に通知する旨の命令、その通知後に(換言すれば、投影ステーション20がその通知に応じて投影を中止した後に)状態検査のために建築物を撮像する旨の命令、およびその撮像完了後に撮像完了を投影ステーション20に通知する旨の命令を含める。投影ステーション20は、その情報画像を先に投影箇所に投影する。制御部13がそれらの命令を認識し、投影中止を投影ステーション20に通知した場合、投影ステーション20は、その情報画像の投影を中止する。UAV10は、その状態で、建築物の表面を撮像する。また、UAV10が、撮像完了を投影ステーション20に通知した場合には、次の目標位置への移動を指示する情報画像を同じ投影箇所に投影する。このとき、状態検査のための撮像を行っている間に、風等の影響によりUAV10が多少移動することがある。そのため、次の目標位置への移動を指示する情報画像が投影後も、UAV10は、ステップB2以降の動作を再度行うことが好ましい。UAV10の現在位置と目標位置とのずれを再度計算するためである。そして、ステップB6において、制御部13は、その情報画像が示す移動に関する制御内容をそのずれによって補正すればよい。
情報画像が投影された状態で建築物の表面を撮像すると、カメラ画像において、情報画像以外の部分が相対的に暗くなってしまう場合がある。上記のように、UAV10が状態検査のための撮像を行う場合に、投影ステーション20が情報画像の投影を停止することで、そのようなことを防止できる。
また、UAV10が状態検査のための撮像を行うときに投影ステーション20が情報画像の投影を停止する場合、プロジェクタ制御部22は、プロジェクタ21に情報画像の投影を停止させた後、プロジェクタ21に白色光または適当な色の光を照射させてもよい。このとき、プロジェクタ21は、プロジェクタ制御部22に従い、状態検査の対象となる建築物の表面に光を照射する。この結果、UAV10は、建築物の表面に光が照射された状態で、建築物の状態検査のために建築物の表面を撮像する。
プロジェクタ21が建築物の表面に光を照射することによって、UAV10のカメラ11が建築物の表面を撮像する際における光量不足を補える。例えば、カメラ11が建築物の奥まった箇所を撮像する場合や、夜間に無人飛行装置制御システムを運用する場合、光量が不足して、建築物の表面が明瞭に写っているカメラ画像が得られない。UAV10のカメラ11が建築物の状態検査のために建築物の表面を撮像する時に、プロジェクタ21が建築物の表面に光を照射することによって、上記のように光量不足を補うことができ、カメラ11は、建築物の表面が明瞭に写っているカメラ画像を生成することができる。
なお、投影ステーション20は、プロジェクタ21とは別に、光を照射するための投光器を備えていてもよい。
また、投光ステーション20から投影する情報画像の輪郭の形状は、常に同じでなくてもよい。輪郭情報は、情報画像を認識するステップB3の前に既知である必要がある。そのため、1つ前の情報画像に含めておいたり、投影ステーション20が通信によってUAV10に通達したり、あるいは、予め情報画像毎の輪郭情報をUAV10に記憶させておいたりすればよい。制御部13は、ずれMを計算する毎に、情報画像に対応する輪郭情報を適用すればよい。また、情報画像の輪郭の形状を変形させることにより、建築物の状態検査の際に情報画像が邪魔にならないようにすることができる。
以下に示す各実施形態では、既に説明した事項と同様の事項については、説明を省略する。
実施形態2.
本発明の第2の実施形態では、UAV10が大きな外乱を受けたことによって、UAV10の姿勢や位置が変化し、制御部13がカメラ画像内に写っていた情報画像を見失った場合の動作について説明する。UAV10が外乱を受ける前にカメラ画像内に情報画像が写っていて、制御部13がその情報画像を認識していたとしても、外乱によってUAV10の姿勢や位置が変化したことによって、建築物に投影されている情報画像がカメラ11の視野外に出てしまうと、カメラ画像内に情報画像が写らなくなる。すなわち、制御部13がカメラ画像内の情報画像を見失うことになる。
この場合、制御部13は、UAV10の姿勢を各方向に変化させ、カメラ11により撮像を行う。あるいは、制御部13は、カメラ角度制御部15を介して、カメラ11の向きを変化させ、カメラ11により撮像を行う。このとき、制御部13は、UAV10の姿勢を変化させるととともに、カメラ11の向きを変化させてもよい。この結果、制御部13は、情報画像が写っているカメラ画像を取得したならば、ステップB4(図11参照)以降の動作を行えばよい。
また、このとき、制御部13は、直近の複数のフレームのカメラ画像に基づいて、UAV10の位置および姿勢が、制御部13がカメラ画像内の情報画像を認識していた時の位置および姿勢からどれだけ変化したかを検出してもよい。
あるいは、UAV10が慣性航法装置を備えていてもよい。そして、UAV10の位置および姿勢が、制御部13がカメラ画像内の情報画像を認識していた時の位置および姿勢からどれだけ変化したかを、慣性航法装置が検出してもよい。
そして、制御部13は、UAV10の位置および姿勢それぞれの変化量に基づいて、カメラ11の視野を情報画像方向に向けるために、UAV10の姿勢やカメラ11の向きをどの方向に向けるかを判定してもよい。制御部13は、その判定結果に応じて、UAV10の姿勢やカメラ11の向きを変化させればよい。この場合、制御部13は、迅速に、カメラ11の視野を情報画像方向に向けることができ、投影されている情報画像を早めに撮像することができる。
また、制御部13は、制御部13がカメラ画像内の情報画像を認識していた時からのUAV10の位置および姿勢の変化量を投影ステーション20に通知してもよい。制御部13は、上記の例と同様に、この変化量を、直近の複数のフレームのカメラ画像に基づいて検出してもよい。あるいは、UAV10が慣性航法装置を備え、制御部13がカメラ画像内の情報画像を認識していた時からのUAV10の位置および姿勢の変化量を慣性航法装置が検出してもよい。
UAV10の位置および姿勢の変化量を通知されると、投影ステーション20の情報画像生成部25(図10参照)は、その変化量に基づいて、カメラ11の視野範囲を計算し、その視野範囲に投影する情報画像を生成する。この情報画像は、制御部13がカメラ画像内の情報画像を認識していた位置までUAV10を誘導するための情報画像である。プロジェクタ制御部22は、計算されたカメラの視野範囲の方向にプロジェクタ21を向け、プロジェクタ21にその情報画像を投影させる。そして、カメラ11が撮像を行い(ステップB2)、その後、UAV10は、ステップB3以降の動作を行えばよい。この結果、UAV10は、その情報画像に従って、制御部13がカメラ画像内の情報画像を認識していた位置まで戻ることができる。また、プロジェクタ制御部22は、ステップ7の通知を受けた後に、元の投影箇所に元の情報画像をプロジェクタに再度投影させればよい。この場合にも、カメラ11が撮像を行い(ステップB2)、その後、UAV10は、ステップB3以降の動作を行えばよい。
また、投影ステーション20が、UAV10を追尾しながらUAV10を撮像する追尾カメラ(図示略)と、その追尾カメラによって得られたUAV10の画像に基づいて、UAV10の位置および姿勢の変化量を検出する状態変化量検出部(図示略)とを備える構成であってもよい。この場合、状態変化量検出部は、追尾カメラによって得られた画像に基づいて、UAV10が外乱によって急激に移動したことを検出した場合、その移動の直前の時点からのUAV10の位置および姿勢の変化量を検出する。そして、上記の場合と同様に、情報画像生成部25(図10参照)は、その変化量に基づいて、カメラの視野範囲を計算し、その視野範囲に投影する情報画像を生成する。この情報画像は、制御部13がカメラ画像内の情報画像を認識していた位置までUAV10を誘導するための情報画像である。プロジェクタ制御部22は、計算されたカメラの視野範囲の方向にプロジェクタ21を向け、プロジェクタ21にその情報画像を投影させる。その後の動作については、上記と同様であり、説明を省略する。
第2の実施形態によれば、UAV10は、外乱によって、カメラ11の視野が情報画像とは異なる方向に向いてしまったとしても、UAV10は、再度、その情報画像を捉え、通常の制御に復帰することができる。
実施形態3.
本発明の第3の実施形態では、無人飛行装置制御システムは、情報画像とUAV10の影とが重なってカメラ画像に写る状態を回避する。
投影ステーション20の経路導出部24は、情報画像の投影箇所として、UAV10の影と重ならない投影箇所を定める。
例えば、経路導出部24が、データ記憶部23に記憶されている情報に基づいて、建築物の表面を格子状に区切ることによって、複数の検査区域を定め、個々の検査区域内の所定箇所(例えば、検査区域の中央)を情報画像の投影箇所として定めるとする。また、経路導出部24は、投影箇所毎に、UAV10の目標位置、並びに、その目標位置でのUAV10の姿勢およびカメラの向きも定める。そして、経路導出部24は、投影箇所毎に、投影箇所とUAV10の影とが重なるか否かを判定する。この判定は、投影ステーション20と目標位置と投影箇所との位置関係に基づいて行うことができる。経路導出部24は、UAV10の影と重なる投影箇所に関して、検査区域内で、UAV10の影と重ならない位置に変更し、その変更に合わせて、投影箇所に対応するUAV10の姿勢およびカメラの向きも変更する。このとき、経路導出部24がUAV10の目標位置も変更することがあってもよい。検査区域内で、投影箇所の位置を変更しても、UAV10の影と重なってしまう場合には、その検査区域に関しては、投影箇所を定めないと決定する。そして、経路導出部24は、UAV10の影と重ならない投影箇所を対象として、その各投影箇所に投影された情報画像を撮像するための経路を決定する。
このように情報画像の投影箇所を定めることによって、投影箇所に投影される情報画像とUAV10の影とが重なった状態でカメラ画像に写ってしまうことを防止しやすくなる。
また、上記のように、経路導出部24がUAV10の影と重ならない投影箇所を定めた場合であっても、UAV10が風等の影響を受けるので、投影箇所に対応する目標位置で情報画像を撮像することは一般的に少ない。その結果、上記のように投影箇所を定めた場合であっても、投影箇所に投影される情報画像とUAV10の影とが重なる場合が生じ得る。
この場合、制御部13は、UAV10を移動させればよい。図13は、情報画像とUAV10の影とが重なって写ったカメラ画像の例を示す模式図である。制御部13は、情報画像40の輪郭の一部が黒色の画素群の存在によって途切れていると判定した場合、図13に例示するように、情報画像40の外周部の一部分と影55とが重なっていると判定する。制御部13は、このように判定した場合、例えば、任意の方向に移動し、ステップB1(図11参照)以降の動作を実行すればよい。また、このとき、制御部13は、情報画像40の輪郭のうち影55によって途切れている箇所に基づいて、UAV10を移動させる方向を判定し、その方向にUAV10を移動させてもよい。図14は、UAV10が移動することによって、情報画像40とUAV10の影55とが重ならない状態になったカメラ画像の例を示す模式図である。図14に例示するカメラ画像では、情報画像40の輪郭全体の位置を検出可能である。制御部13は、UAV10を移動させた後、図14に例示するカメラ画像を用いて、現在位置を目標位置とのずれを計算できる。その後、制御部13は、ステップB5(図11参照)以降の動作を実行すればよい。
このように、情報画像40とUAV10の影との重なりを検出した場合、制御部13は、UAV10を移動させることによって、情報画像40とUAV10の影との重なりを回避することができる。この動作は、UAV10の影と投影箇所とが重ならないように経路導出部24が投影箇所を決定していない場合であっても適用可能である。
上記の説明では、UAV10が移動することによって情報画像40とUAV10の影との重なりを回避する動作を説明した。制御部13は、投影ステーション20に情報画像の投影位置を変更させることによって、情報画像40とUAV10の影との重なりを回避してもよい。例えば、制御部13が、上記の場合と同様に、情報画像40の外周部の一部分と影55とが重なっていると判定したとする。この場合、制御部13は、情報画像40の輪郭のうち影55によって途切れている箇所に基づいて、情報画像40と影55との重なりを回避すれるために投影ステーション20が情報画像の投影箇所をどの方向にどれだけ移動させればよいかを判定し、投影箇所の移動方向および移動量を投影ステーション20に通知する。この通知は、投影箇所の変更の指示であると言うことができる。この通知を受けた投影ステーション20の情報画像生成部25は、通知された移動方向および移動量に応じて、情報画像40の内容を変更する。これは、情報画像の投影箇所が変わることによって、次の投影箇所への移動制御内容が変化するためである。また、経路導出部24は、通知された移動方向および移動量に応じて投影箇所を移動させた場合における目標位置、並びに、その目標位置における姿勢およびカメラの方向も定める。プロジェクタ制御部22は、通知された移動方向および移動量に応じて投影箇所の方向にプロジェクタ21を向け、プロジェクタ21にその情報画像40を投影させる。この結果、UAV10は、例えば、図14に例示するカメラ画像を得る。その後、制御部13は、ステップB4(図11参照)以降の動作を実行すればよい。
このように、UAV10が投影ステーション20に情報画像40の投影箇所を変更させることでも、情報画像40とUAV10の影との重なりを回避することができる。この動作は、UAV10の影と投影箇所とが重ならないように経路導出部24が投影箇所を決定していない場合であっても適用可能である。
実施形態4.
本発明の第4の実施形態では、UAV10は、天候等の影響によって消費電力が大きく、全ての検査区域で状態検査のための撮像を行えない場合に、経路の途中で経路を変更する。
第1の実施形態で説明したように、経路導出部24は、例えば、各投影箇所に投影された情報画像を撮像できるようにUAV10の経路を定める。すなわち、各投影箇所の付近を通過するようにUAV10の経路を定める。
このとき、経路導出部24は、UAV10の消費電力が最小となる経路を定めることが好ましい。ここで、UAV10が電力を多く消費するのは、飛行の速度ベクトルが変わる場合である。従って、経路導出部24は、例えば、UAV10の速度ベクトル変更が最小となる経路を定めればよい。
経路導出部24が、図15に例示する経路を定めたとする。図15では、建築物の表面上の各検査区域およびUAV10の経路61を図示している。また、検査区域Raは、最初の検査区域であり、検査区域Rzは、最後の検査区域である。
経路導出部24は、経路61上に、UAV10が近道となる経路に切り替え可能な位置(以下、切り替え可能位置と記す。)を定める。切り替え可能位置は、1つであっても、複数であってもよい。図15に示す切り替え可能位置71を例にして説明する。
経路導出部24は、経路61を定めた後、切り替え可能位置71から終点79までの近道となる経路の候補を複数定める。経路導出部24は、既に通過した検査区域を通過しないように、経路の候補を定める。また、経路の候補は、切り替え可能位置71から終点79までの近道であるので、未通過の検査区域を全て通過する必要はない。また、切り替え可能位置71に関して定められる複数の経路の候補が通過する検査区域の数は、経路の候補毎に異なっていてよい。換言すれば、切り替え可能位置71から終点79まで経路の候補の長さは、それぞれ異なっていてよい。なお、本例では説明を簡単にするため、経路の各候補において、切り替え可能位置71から次の検査区域までの一区間分の移動経路は、予め定められた経路と変わらないものとする。
経路導出部24は、切り替え可能位置71以外の各切り替え可能位置に対しても、切り替え可能位置毎に、終点79までの近道となる経路の候補を複数定める。
以下、説明を簡単にするため、検査区域に対応するUAV10の目標位置が、切り替え可能位置として定められるものとする。
UAV10の制御部13は、命令認識が完了した旨を投影ステーション20に通知する際(ステップB7)、飛行開始後の消費エネルギ、その時点における電池残量、および天候(ここでは、横風の風速を例にする。)を計測し、それらの値も、投影ステーション20に通知する。なお、これらの値を計測するためのセンサをUAV10に搭載しておけばよい。ただし、制御部13は、例えば、飛行可能距離が十分確保できる条件(例えば、電池残量が閾値以上残っているという条件)が満たされている場合には、消費エネルギ、電池残量および天候(横風の風速)を投影ステーション20に通知しなくてもよい。
また、経路導出部24は、予め、消費エネルギ、電池残量および天候(横風の風速)を説明変数とし、UAV10の飛行可能距離を被説明変数とする飛行可能距離の予測式を保持している。この予測式は、例えば、回帰分析等の機械学習によって予め定めておけばよい。経路導出部24は、UAV10から消費エネルギ、電池残量および天候を通知されると、それらの値を、予測式の説明変数に代入することによって、UAV10の飛行可能距離を算出する。
さらに、経路導出部24は、UAV10が存在している切り替え可能位置に対して予め定めていた経路の候補毎に、経路の候補の長さから、予測式によって算出した飛行可能距離を減算する。経路導出部24は、この減算結果が最も小さい経路の候補を、最適な近道と判定し、以降、その経路の候補をUAV10の経路とする。
UAV10の消費電力は、風等の天候に影響を受ける。例えば、強風が吹いている場合は、その強風に対向する推力が必要なるため、無風時よりも消費電力が大きくなる。この結果、最初に定められた経路61に沿ってUAV10が移動し続けようとした場合、経路の途中で電池残量が0になってしまう場合が起こり得る。本実施形態によれば、切り替え可能位置で終点79までの近道となる経路に切り替えることができるので、通過する検査区画の数を少なくすることと引き換えに、終点79までUAV10の飛行を維持することができる。
なお、上記の例では、飛行可能距離の予測式に用いられる説明変数として、消費エネルギ、電池残量および天候を例示したが、他の説明変数を用いてもよい。
実施形態5.
本発明の第5の実施形態では、UAV10が大きな外乱を受けたことによって、UAV10の位置が変化した場合、投影ステーション20は、その変化後の位置から経路の終点までの経路を、再度、導出する。
外乱によってUAV10が移動し、UAV10の制御部13がカメラ画像内の情報画像を見失った場合、制御部13は、第2の実施形態で例示した場合と同様に、カメラ画像内の情報画像を認識していた時からのUAV10の位置および姿勢の変化量を投影ステーション20に通知する。
投影ステーション20の経路導出部24は、この通知を受けると、この通知に基づいて、現在のUAV10の位置を計算する。そして、経路導出部24は、その位置からの経路を再度、導出する。ただし、経路導出部24は、既にUAV10が通過した検査区域を通過しないように、新たに経路を導出すればよい。また、新たな経路は、未通過の検査区域を全て通過しなくてもよい。また、このとき、経路導出部24は、例えば、消費電力が最小となる経路を選択することが好ましい。例えば、前述のように、経路導出部24は、UAV10の速度ベクトルの変化が最小となる経路を定めてもよい。
本実施形態によれば、突風等の外乱によってUAV10が移動したとしても、その位置からの経路を経路導出部24が再度定める。従って、UAV10の消費電力の増加を抑えることができ、UAV10の運用効率を上げることができる。
実施形態6.
本発明の第6の実施形態において、投影ステーション20は、建築物等の対象物の投影面(以降、「投影対象面」とする)の反射率に応じた情報画像を生成(補正)し、生成された情報画像を投影する。
なお以下の説明において、反射率とは、物体固有の各波長における光の各反射量を示す。したがって、同一の物体に対し、ある波長の反射率が判明していたとしても、別の波長における反射率は同じとは限らない。一定の波長領域における反射率とは、その波長領域の反射率の積分値を示す。また以下の説明において、輝度とは各波長における単位面積あたりの光のエネルギーを示す。また以下の説明において、光のスペクトルとは、ある波長範囲の各波長における輝度分布を示す。
反射率は、例えば、UAV10に搭載されたカメラ11により撮像された投影対象面の撮像画像に基づき算出される。具体的には、例えば、UAV10の制御部13は、カメラ11により撮像された投影対象面の撮像画像から、投影対象面を照明している光のスペクトルを予測して、予測結果から各波長の反射率を算出する。すなわち、制御部13は、投影対象面の撮像画像の色の情報に基づいて、反射率を算出する。また、制御部13は、太陽光が反射しているとして各波長の反射率を算出しても良い。照明光のスペクトルを推定する手法は様々な方法が知られているため省略する。
その他、例えば、投影ステーション20が予め定められた基準となる画像(以降、「基準画像」とする)を投影対象面に投影することにより、反射率が算出されてもよい。例えば、白色の枠形状の画像が基準画像として投影対象面に投影されると、投影対象面は、各波長の反射率にしたがってスペクトルを変化させ、反射光として出力する。UAV10のカメラ11は、この反射光(白色の枠形状)を含む建築物の表面を撮像し、カメラ画像を生成する。そして、制御部13は、カメラ画像内におけるその枠形状部分のスペクトル(枠形状の白色光を反射した画像がカメラ内でどのような色で写っているか)を認識することで、反射率を算出する。すなわち、制御部13は、投影対象面に投影された基準画像の色の情報と基準となる撮像画像の色の情報とに基づいて、反射率を算出する。なお、基準画像の色は、白色に限らず、ある波長範囲においてスペクトル形状が一定である光であってもよい。このように、基準画像を投影する場合、投影対象面を照明している光のスペクトルを推測する必要が無いため、より正確な反射率が求められる。
なお、上記説明においては、UAV10の制御部13が反射率を算出する場合を例として説明したが、制御部13に限らず、投影ステーション20のプロジェクタ制御部22や情報画像生成部25、その他の装置が反射率を算出してもよい。反射率を算出するこれらの構成は、反射率算出部として機能する。また、上記説明においては、UAV10に搭載されたカメラ11が投影対象面や投影対象面に投影された基準画像を撮像する場合を例として説明した。しかしながら、これらを撮像するカメラは、カメラ11に限らず、投影ステーション20に搭載されているカメラやその他のカメラであってもよい。以下の説明においても、UAV10に搭載されたカメラ11が基準画像等を撮像し、UAV10の制御部13が反射率を算出する場合を例として説明する。
制御部13は、算出した反射率を投影ステーション20のプロジェクタ制御部22に通知する。投影ステーション20のプロジェクタ制御部22は、各波長の反射率情報を受信すると、その反射率に応じて、情報画像生成部25によって生成された情報画像のスペクトルを補正する。
反射率が一様である場合、投影した画像はそのままの色味で再現される。これに対し、各波長で反射率が異なる場合、例えば、白色光で投影した枠形状の画像はカメラ画像内で別の色として認識される。例えば、建築物の表面が緑色に塗装されている場合、反射率は例えば550nm±30nmの波長範囲で100%に近く、他の波長は0%に近い。つまり、例えば400nm〜650nmの白色光による情報画像を投影しても、カメラで観察されるのは550nm±30nmの緑色光の成分のみとなり、他の波長成分の光は観察されない。この場合、550nm±30nm以外の波長で描画された情報が欠損する。
そこで、プロジェクタ制御部22は、反射率を受信すると、その波長に応じて、情報画像のスペクトルを、例えば、波長が530nm〜570nmの範囲内に収まるように補正する。この結果、カメラ11は、建築物の表面に投影された情報画像を過不足無く撮像することができる。同時に、プロジェクタ制御部22は、色の他に、情報画像の輝度を補正してもよい。投影ステーション20のプロジェクタ制御部22は、反射率を元に情報画像の輝度を補正する。例えば、プロジェクタ制御部22は、建築物の反射率が低い場合には、情報画像の輝度を上げるように補正する。
このように反射率を元に情報画像のスペクトルを補正することによって、建築物の表面に投影した情報画像の一部または全てがUAV10の制御部13で認識出来ず情報が不足することを防止できる。なお、情報画像生成部25は、制御部13から受信した反射率に応じたスペクトルの情報画像を新たに生成してもよい。このような情報画像生成部25による情報画像の補正や生成を、反射率に応じた画像の生成とする場合がある。
また、情報画像は特定の波長のみで構成されていても良い。すなわち、プロジェクタ21は、例えば、赤色、緑色および青色のそれぞれの色毎に、所定の波長の光のみを照射する光源を有するプロジェクタ(例えば、レーザプロジェクタ)であってもよい。プロジェクタ制御部22は、反射率に応じて、プロジェクタ21の光源を切り替えることによって、情報画像の色を補正してもよい。
さらに、UAV10のカメラ11には、所定の波長の光のみを透過させるフィルタであって、透過させる光の波長を切り替え可能な構成のフィルタ(光透過部)を備えていてもよい。例えば、フィルタが透過させる光の波長は、プロジェクタ21が有する個々の光源に合わせて定められていればよい。例えば、カメラ11のフィルタは、プロジェクタ21の赤色の光源に対応する波長の光のみを透過させる状態、プロジェクタ21の緑色の光源に対応する波長の光のみを透過させる状態、および、プロジェクタ21の青色の光源に対応する波長の光のみを透過させる状態のいずれかに切り替え可能なフィルタである。例えば、制御部13は、赤色という情報を投影ステーション20に通知した場合、カメラ11のフィルタをプロジェクタ21の赤色の光源に対応する波長の光のみを透過させる状態に切り替える。同様に、制御部13は、緑色という情報を投影ステーション20に通知した場合、カメラ11のフィルタをプロジェクタ21の緑色の光源に対応する波長の光のみを透過させる状態に切り替える。同様に、制御部13は、青色という情報を投影ステーション20に通知した場合、カメラ11のフィルタをプロジェクタ21の青色の光源に対応する波長の光のみを透過させる状態に切り替える。なお、カメラ11が備えるフィルタの態様は特に限定されない。例えば、一般的なカラーカメラには、各画素にベイヤー配列(Bayer arrangement )のR/G/Bフィルタが配置されている。このフィルタによって対応する光源の光のみを用いてもよい。すなわち、緑色の光源のみを用いるのであれば、緑色の画素のみを用いてもよい。同様に、他の色の光源を用いるのであれば、その光源に対応する画素のみを用いてもよい。また、モノクロカメラと、外部に取り付けた交換式カラーフィルタとの組み合わせを用いてもよい。また、カメラ11に上記のフィルタが設けられていなくてもよい。
特に直射日光下等、プロジェクタの輝度に対して周辺光が強い場合、投影ステーション20のプロジェクタ21にはレーザ等、波長幅の狭い光源を用い、この波長の光のみを透過させる狭帯域フィルタをUAV10に取り付けるとなお良い。より正確には、UAV10のカメラ11が撮像する画像の光のスペクトルは、プロジェクタ21が投影する光と、(太陽光などの)周辺光の両方とが、建築物の表面の反射率に従って反射された光である。また、カメラ11が取得する輝度は積分輝度である。したがって、例えばある波長幅における周辺光の積分輝度が100であり、プロジェクタ21が投影する光の積分輝度が10であった場合、その反射光も周辺光の成分が10倍大きくなる。つまり周辺光と同時に情報画像をカメラ11が撮影しても、情報画像ではない領域との積分輝度差が小さく、制御部13は情報画像を抽出できない場合がある。これを防ぐため、狭帯域光源およびフィルタで使用する波長域を限定し、ある特定の波長の光のみを用いる。すなわち、カメラ11が撮像する光の積分範囲を狭くすると、プロジェクタ21の積分輝度は10のまま変わらないが、周辺光の積分輝度は100から例えば10に減少するため、反射光の輝度差が同程度となり、情報画像が検出可能となる。
また、周辺光からの反射に対しプロジェクタ光からの反射が弱い場合、投影ステーション20は、プロジェクタ光が有る場合と無い場合の画像を比較し、プロジェクタ光からの反射成分を抽出しても良い。すなわち、UAV10と投影ステーション20はタイマーやタイミング信号により同期をとり、投影ステーション20のプロジェクタ21が投影の有無を切り替えるタイミングを、UAV10の制御部13が判定できるようにする。UAV10はこのタイミングに従い、プロジェクタ光が含まれる場合と、含まれない場合の画像を撮像する。どちらの画像にも周辺光成分が含まれるため、前者と後者の差分画像を制御部13が生成すれば、プロジェクタ光からの反射成分のみを抽出することが可能である。すなわち、投影ステーション20は、対象物の投影面に画像を投影している場合の投影面の撮像画像と、対象物の投影面に画像を投影していない場合の投影面の撮像画像との差分に基づいて、投影面の反射率に応じた画像を生成する。
さらに、投影ステーション20がカメラを備える場合、予め投影ステーション20のカメラが建築物の表面の画像を撮像し、経路導出部24はその画像に基づいて建築物の表面のうち、周辺光成分が弱い箇所(直射日光が当たっておらず影が生じている領域)を抽出しても良い。そして、経路導出部24が、その周辺光成分の弱い領域を情報画像の投影箇所を定めてもよい。
また、周辺光成分が強い領域と弱い領域の境界領域や、投影面に模様が描かれた領域に情報画像を投影する必要が有る場合は、その領域の周辺光の強度分布や模様の反射率を考慮して情報画像生成部25は情報画像を生成するとよい。すなわち、例えば、日光が当たっている部分における情報画像の背景部分は輝度レベルを落とし、日光が当たっておらず影になっている部分の情報画像の背景部分は輝度レベルを高くして、日光の有無により情報画像がUAV10の制御部13に誤認識されるのを避ける。また模様に関しても、反射光となった時点で一様に見えるよう各部分の光のスペクトルを変化させて、誤認識を避ける映像を投影する。
本実施形態によれば、建築物の表面が特定の波長の光しか反射しない場合であっても、カメラ11は、情報画像が写ったカメラ画像を生成することができる。また、建築物の表面に投影した情報画像が環境光に埋もれることを防止することができる。従って、カメラ画像内の情報画像を検出しやすくすることができる。
実施形態7.
本発明の第7の実施形態では、情報画像の投影面と、状態検査のための撮像の対象面が異なる場合の動作について説明する。
図16は、情報画像の投影面と、状態検査のための撮像の対象面とが異なる状況の例を示す模式図である。状態検査のための撮像対象となる領域が、領域82であるとする。しかし、領域82は、水平である。また、領域82には、建築物30の構造物39によって、プロジェクタ21から見て死角となる領域が存在する。また、プロジェクタ21から見て死角となる領域には、情報画像を投影することができない。領域82のうち、プロジェクタ21から見て死角とならない領域にプロジェクタ21が情報画像を投影したとしても、UAV10は、水平な領域82に投影された情報画像を撮像できない場合がある。
このような状況では、情報画像の投影面と、状態検査のための撮像の対象面とを異なる面とすればよい。
領域81は、情報画像の投影箇所を含む領域である。プロジェクタ21は、領域81に情報画像(以下、この情報画像を情報画像Qと記す。)を投影する。プロジェクタ21の情報画像生成部25(図10参照)は、情報画像Qを生成する際、移動中のカメラの向きの制御内容とは別に、滞空中のカメラの向きの制御内容も情報画像Qに含めておく。本例では、情報画像生成部25は、滞空中にはカメラの向きを真上方向に向けることを指示する制御内容を、情報画像Qに含めておく。
UAV10は、情報画像Qの一つ前の情報画像に基づいて、目標位置P3の方向に進み、ステップB1〜B3(図11参照)を行う。そして、カメラ画像内に情報画像を認識できたならば、UAV10は、ステップB4以降の動作を行う。
UAV10の制御部13(図6参照)、ステップB6において、情報画像Qに従い、その場でUAV10を滞空させる。さらに、制御部13は、情報画像Qに含まれる上記の制御内容に従い、滞空中にカメラの向きを真上方向に向ける。制御部13は、この状態で滞空している間に、状態検査のための撮像を行う。このとき、カメラ11は真上方向を向いているので、検査対象となる領域82を撮像でき、領域82のカメラ画像を生成することができる。
本実施形態によれば、状態検査のための撮像の対象面に情報画像を投影できなくても、他の面に投影された情報画像Qを利用して目標位置の近傍に到達することができる。そして、情報画像Qに含まれている制御内容に従って、UAV10は、滞空中におけるカメラ方向を変え、状態検査のための撮像の対象面を撮像し、その面のカメラ画像を生成することができる。
実施形態8.
建築物の経年劣化により、建築物の表面にひび割れや浮き等の欠陥が生じる場合がある。本発明の第8の実施形態の無人飛行装置制御システムは、そのような欠陥を検出する。また、無人飛行装置制御システムは、その欠陥に応じて、投影された情報画像が歪まないように情報画像を補正する。
本発明の第8の実施形態では、プロジェクタ21は、所定のパターンを表す画像(以下、パターン画像と記す。)も、建築物の表面に投影する。UAV10の制御部13は、カメラ画像内に写っているパターンの形状に応じて、建築物の表面の欠陥の状態を検出する。投影ステーション20は、その欠陥の状態に応じて、情報画像を補正する。
以下、より具体的に説明する。プロジェクタ21は、パターン画像を建築物の表面に投影する。パターン画像は、例えば、メッシュパターンを表す画像であってもよい。本実施形態では、説明を簡単にするために、所定のパターンとして水平な直線を例にして説明する。図17は、水平な直線を表すパターン画像の例を示す模式図である。図17では、1本の直線を表すパターン画像を示しているが、パターン画像内に複数の直線が表わされていてもよい。
図18は、経年劣化によって段差が生じた建築物の表面にパターン画像を投影し、UAV10のカメラ11がその投影箇所を撮像している状態を示す模式図である。図19は、図18に示す状態の模式的側面図である。図18および図19に示す例では、建築物の面91は、面92よりも浮いた状態となり、段差が生じている
カメラ11が、パターン画像(水平な直線)が投影された面91および面92を撮像し、カメラ画像を生成する。図20は、パターン画像を撮像した結果得られたカメラ画像の例を示す模式図である。図20に示すカメラ画像には、面91,92および線93が写っている。プロジェクタ21は、水平な直線を面91,92に投影しているが、面91,92の段差により、その直線では、カメラ画像内では、曲がった線93として写る。
また、投影ステーション20は、パターン画像の投影方向と壁面とがなす角度をUAV10に伝達する。投影ステーション20は、通信によって、この角度をUAV10に伝達してもよい。あるいは、投影ステーション20は、この角度の情報を含む情報画像を投影し、UAV10の制御部13が、カメラ画像内の情報画像によって、角度の情報を認識してもよい。
UAV10の制御部13は、カメラ画像内に写ったパターン(本例では、線93)の形状を認識する。制御部13は、カメラ画像内に写ったパターンの形状に基づいて、建築物の表面の状態を判定する。本例では、制御部13は、カメラ画像内に写った線93の形状から、面91と面92との段差があると判定する。すなわち、制御部13は、面91と面92との段差の大きさおよび段差が生じている位置を検出する。例えば、制御部13に、パターン画像の投影方向と壁面とがなす角度と、カメラ画像内のパターンの形状変形との対応関係を予め記憶させておけばよい。そして、制御部13は、カメラ画像内のパターンの形状変形に対応する建築物の表面の状態を特定することによって、建築物の表面の状態を判定すればよい。
制御部13は、建築物の表面の状態の情報(本例では、面91と面92との段差の大きさ、および段差が生じている位置)を投影ステーション20に送信する。
投影ステーション20のプロジェクタ制御部22は、制御部13から送信された建築物の表面の状態の情報を受信する。すると、プロジェクタ制御部22は、データ記憶部23に記憶されている建築物の外観および建築物の3次元形状の情報と、UAV10(制御部13)から受信した建築物の表面の状態の情報とに基づいて、投影された情報画像が歪まないように、情報画像を補正する。
本実施形態によれば、制御部13は、経年劣化等により生じた建築物の欠陥とその欠陥の大きさを検出することができる。さらに、制御部13は、建築物の表面の状態の情報を投影ステーション20に送信するので、投影ステーション20(プロジェクタ制御部22)は、投影された情報画像が歪まないように、情報画像を補正することができる。従って、投影ステーション20は、良好な状態で情報画像を建築物の表面に投影することができ、UAV10の誘導精度をより高くすることができる。
本発明の各実施形態は、インフラストラクチャ劣化診断の他、建築物の巡回監視を行うためにUAVを制御する場合等にも適用可能である。
次に、本発明の概要について説明する。図21は、本発明の無人飛行装置制御システムの概要を示す模式図である。無人飛行装置制御システム100は、画像投影部101と、制御部103とを備える。
画像投影部101(例えば、投影ステーション20)は、撮像装置(例えば、カメラ11)を搭載する無人飛行装置(例えば、UAV10)の動作を制御する画像(例えば、情報画像)であって、対象物(例えば、状態検査の対象となる建築物)の投影面の反射率に応じて生成された画像を対象物に投影する。
制御部103(例えば、制御部13)は、撮像装置によって撮像された画像に基づき、無人飛行装置の動作を制御する。
そのような構成により、対象物に無人飛行装置の動作を制御するための画像を投影して対象物の付近の目標位置近傍に無人飛行装置を誘導する場合において、画像を投影する環境を考慮して無人飛行装置を制御することができる。