JP2017170890A - Method for molding plastic product and arrangement therefor - Google Patents

Method for molding plastic product and arrangement therefor Download PDF

Info

Publication number
JP2017170890A
JP2017170890A JP2017038408A JP2017038408A JP2017170890A JP 2017170890 A JP2017170890 A JP 2017170890A JP 2017038408 A JP2017038408 A JP 2017038408A JP 2017038408 A JP2017038408 A JP 2017038408A JP 2017170890 A JP2017170890 A JP 2017170890A
Authority
JP
Japan
Prior art keywords
molding
plastic
raw material
region
plastic product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017038408A
Other languages
Japanese (ja)
Inventor
チェン シア−チュン
Shia Chung Chen
チェン シア−チュン
チャン ユン−シアン
Yung Hsiang Chang
チャン ユン−シアン
リー クアン−フア
Kuan Hua Lee
リー クアン−フア
リウ ユ−シウ
Yu Hsiu Liu
リウ ユ−シウ
セン ヤ−リン
Ya Lin Tseng
セン ヤ−リン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chung Yuan Christian University
Original Assignee
Chung Yuan Christian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Yuan Christian University filed Critical Chung Yuan Christian University
Publication of JP2017170890A publication Critical patent/JP2017170890A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for molding a plastic product and an arrangement therefor.SOLUTION: The method for molding a plastic product and the arrangement therefor includes: a step in which a raw material is placed into a molding area and a fluid plastic and a plurality of magnetically conductive fiber are included as raw material; a step in which, by forming magnetic field in the molding area, the positions of the magnetically conductive fibers in the fluid plastic is adjusted; and a step in which the raw material is fixed.SELECTED DRAWING: Figure 2

Description

本発明は、プラスチック製品の成形方法(plastic product forming method)に関し、更に詳しくは、流体プラスチック及び磁気伝導性繊維を含む原材料の固化成形方法に関する。   The present invention relates to a plastic product forming method, and more particularly to a solidification method for raw materials including fluid plastics and magnetic conductive fibers.

従来の製品の製造方法は数多あるが、一部の方法ではプラスチックを原料として製造を行う。プラスチックは製品の製造に用いられるよくある原料であるが、プラスチックの構造強度は求められている強度に未だ達していない。従来の製造方法においては、プラスチック原料に繊維を添加することにより製品全体の強度を強化させている。   There are many conventional methods for manufacturing products, but some methods use plastic as a raw material. Plastic is a common raw material used in the manufacture of products, but the structural strength of plastic has not yet reached the required strength. In the conventional manufacturing method, the strength of the entire product is enhanced by adding fibers to the plastic raw material.

しかしながら、繊維がプラスチック原料中で分布される位置及び角度も製品の強度に影響を与える。従来のプラスチック製品の製造方式の多くは射出成形、押出成形等であるが、現在これら前記製造方式では、流速及び温度を利用して繊維の分布を推測しており、繊維の角度が調整できない。このため、プラスチック製品の機械的性質が掌握できなかった。   However, the position and angle at which the fibers are distributed in the plastic raw material also affects the strength of the product. Many of the conventional manufacturing methods for plastic products are injection molding, extrusion molding, and the like. At present, however, the fiber distribution is estimated using flow velocity and temperature, and the angle of the fibers cannot be adjusted. For this reason, the mechanical properties of the plastic product could not be grasped.

そこで、本発明者は上記の欠点が改善可能と考え、鋭意検討を重ねた結果、合理的設計で上記の課題を効果的に改善する本発明の提案に到った。   Therefore, the present inventor considered that the above-mentioned drawbacks can be improved, and as a result of intensive studies, the present inventor has arrived at a proposal of the present invention that effectively improves the above-described problems by rational design.

本発明は、以上の従来技術の課題を解決する為になされたものである。本発明の目的は、プラスチック製品の成形方法を提供することである。すなわち、磁気伝導性繊維の位置及び角度の調整が可能なプラスチック製品の製造方法であり、製造者が必要に応じて製品の機械的性質を調整可能になる。   The present invention has been made to solve the above-described problems of the prior art. An object of the present invention is to provide a method for molding a plastic product. That is, this is a method for manufacturing a plastic product in which the position and angle of the magnetic conductive fiber can be adjusted, and the manufacturer can adjust the mechanical properties of the product as required.

上述した課題を解決し、目的を達成するために、本発明に係るプラスチック製品の成形方法は、原材料が成形領域に入れられ、前記原材料として流体プラスチック及び複数の磁気伝導性繊維を含む工程と、磁場が前記成形領域に形成されることにより、これら前記磁気伝導性繊維の前記流体プラスチックにおける位置が調整される工程と、前記原材料が固化される工程とを含む。   In order to solve the above-described problems and achieve the object, a method for molding a plastic product according to the present invention includes a step in which a raw material is placed in a molding region, and includes a fluid plastic and a plurality of magnetic conductive fibers as the raw material. A step of adjusting the position of the magnetic conductive fibers in the fluid plastic by forming a magnetic field in the molding region and a step of solidifying the raw material are included.

本発明の好ましい実施形態では、前記原材料は材料供給区から前記成形領域に注入される。   In a preferred embodiment of the present invention, the raw material is injected from the material supply zone into the molding region.

本発明の好ましい実施形態では、これら前記磁気伝導性繊維は、金属繊維、炭素繊維、及びニッケルめっきガラス繊維で構成されるグループから選択される。   In a preferred embodiment of the present invention, the magnetic conductive fibers are selected from the group consisting of metal fibers, carbon fibers, and nickel plated glass fibers.

本発明の好ましい実施形態では、これら前記磁気伝導性繊維の前記流体プラスチックにおける位置が調整されると、前記成形領域の温度及び圧力が制御される。   In a preferred embodiment of the present invention, the temperature and pressure of the molding region are controlled when the position of the magnetic conductive fibers in the fluid plastic is adjusted.

本発明の好ましい実施形態では、前記流体プラスチックの粘度係数及び前記磁場の強度により前記磁気伝導性繊維の角度が決定される。   In a preferred embodiment of the present invention, the angle of the magnetic conductive fiber is determined by the viscosity coefficient of the fluid plastic and the strength of the magnetic field.

本発明の好ましい実施形態では、前記流体プラスチックは熱可塑性プラスチックであり、冷却により前記原材料が固化される。   In a preferred embodiment of the present invention, the fluid plastic is a thermoplastic, and the raw material is solidified by cooling.

本発明の好ましい実施形態では、前記原材料が固化された後、前記固化後の原材料のスループレーン導電率が測定される工程を更に備える。   In a preferred embodiment of the present invention, the method further comprises a step of measuring through-plane conductivity of the solidified raw material after the raw material is solidified.

また、本発明に係るプラスチック製品の成形設備は、成形領域及び磁気領域を備える。成形領域は原材料の納置に用いられ、前記原材料として流体プラスチック及び複数の磁気伝導性繊維を含む。磁気領域は前記成形領域の周囲に設置され、前記磁気領域は磁場を発生させ、前記磁場は前記成形領域を通過させる。   The plastic product molding facility according to the present invention includes a molding region and a magnetic region. The molding area is used to store raw materials and includes fluid plastic and a plurality of magnetic conductive fibers as the raw materials. A magnetic region is installed around the forming region, the magnetic region generates a magnetic field, and the magnetic field passes through the forming region.

本発明の好ましい実施形態では、第一流道で流体が流動する方向は熱交換面の法線方向にほぼ平行する。   In a preferred embodiment of the present invention, the direction in which the fluid flows in the first flow path is substantially parallel to the normal direction of the heat exchange surface.

本発明の好ましい実施形態では、前記成形領域に流体で接続される材料供給区を更に備え、前記材料供給区では前記原材料が前記成形領域に注射される。   In a preferred embodiment of the present invention, the apparatus further comprises a material supply section that is fluidly connected to the molding region, and the raw material is injected into the molding region in the material supply section.

本発明の好ましい実施形態では、前記成形領域及び前記磁気領域を含む金型を更に備え、前記磁気領域は一対の磁石及び一対の仕切りブロックを有し、前記一対の仕切りブロックは前記一対の磁石と前記成形領域との間に設置される。   In a preferred embodiment of the present invention, the apparatus further comprises a mold including the molding region and the magnetic region, wherein the magnetic region includes a pair of magnets and a pair of partition blocks, and the pair of partition blocks includes the pair of magnets and the pair of magnets. It is installed between the molding regions.

本発明の好ましい実施形態では、前記成形領域はダイコアにより定義されることで形成され、前記成形領域は注入口を更に備え、前記材料供給区では前記注入口から前記原材料が前記ダイコア内部に供給される。   In a preferred embodiment of the present invention, the molding region is formed by being defined by a die core, the molding region further includes an injection port, and the raw material is supplied into the die core from the injection port in the material supply zone. The

本発明の好ましい実施形態では、前記磁気領域は一対のスライダーを備え、前記一対の磁石は前記一対のスライダーにそれぞれ設置され、前記一対のスライダーの移動により前記磁石の間の距離が調整される。   In a preferred embodiment of the present invention, the magnetic region includes a pair of sliders, the pair of magnets are respectively installed on the pair of sliders, and the distance between the magnets is adjusted by movement of the pair of sliders.

本発明の好ましい実施形態では、前記磁石は電磁石または永久磁石である。   In a preferred embodiment of the present invention, the magnet is an electromagnet or a permanent magnet.

上述の実施形態によると、本発明に係るプラスチック製品の成形方法は少なくとも以下の長所を達成させる。磁場が利用されて磁気伝導性繊維の流体プラスチックにおける角度及び位置が調整され、固化後の原材料の磁気伝導性繊維が制御され、製造者がプラスチック製品の機械的性質を容易に掌握可能になる。   According to the above-described embodiment, the plastic product molding method according to the present invention achieves at least the following advantages. A magnetic field is utilized to adjust the angle and position of the magnetically conductive fiber in the fluid plastic, control the magnetically conductive fiber of the raw material after solidification, and allow the manufacturer to easily grasp the mechanical properties of the plastic product.

本発明の一実施形態に係るプラスチック製品の成形設備を示す斜視図である。It is a perspective view which shows the molding equipment of the plastic product which concerns on one Embodiment of this invention. 本発明の一実施形態に係るプラスチック製品の成形設備を示す斜視図である。It is a perspective view which shows the molding equipment of the plastic product which concerns on one Embodiment of this invention. 本発明に係るプラスチック製品の成形方法の工程を示す概略図である。It is the schematic which shows the process of the molding method of the plastic product which concerns on this invention. 本発明に係るプラスチック製品の成形方法の磁気伝導性繊維を示す概略図である。It is the schematic which shows the magnetic conductive fiber of the shaping | molding method of the plastic product which concerns on this invention. 本発明に係るプラスチック製品の成形方法の繊維配向テンソルを示す概略図である。It is the schematic which shows the fiber orientation tensor of the molding method of the plastic product which concerns on this invention.

本発明における好適な実施の形態について、添付図面を参照して説明する。尚、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention.

本発明に係るプラスチック製品の成形方法及びプラスチック製品の成形設備1は、流体の原材料9の固化成形に応用され、原材料9として流体プラスチック91及び複数の磁気伝導性繊維92を含む(図1参照)。以下では、先ずプラスチック製品の成形設備1について説明する。流体プラスチック91は熱可塑性プラスチックである。磁気伝導性繊維92は、金属繊維、炭素繊維、またはニッケルめっきガラス繊維であり、金属繊維として、ステンレス鋼繊維、鋼繊維、及びニッケル繊維等を含み、炭素繊維として、炭素繊維の表面が金属に被覆されるもの(ニッケルめっき炭素繊維0.7μm)及びカーボングラファイト顆粒が堆積されるもの等を含む。   The plastic product molding method and plastic product molding equipment 1 according to the present invention is applied to solidification molding of a fluid raw material 9 and includes a fluid plastic 91 and a plurality of magnetic conductive fibers 92 as the raw material 9 (see FIG. 1). . In the following, first, the plastic product molding equipment 1 will be described. The fluid plastic 91 is a thermoplastic plastic. The magnetic conductive fiber 92 is a metal fiber, carbon fiber, or nickel-plated glass fiber, and includes stainless steel fiber, steel fiber, nickel fiber, etc. as the metal fiber, and the surface of the carbon fiber is made of metal as the carbon fiber. Including those to be coated (nickel-plated carbon fiber 0.7 μm) and those on which carbon graphite granules are deposited.

プラスチック製品の成形設備1は金型10及び材料供給区20を備え、金型10は成形領域11及び磁気領域12を含む。磁気領域12は成形領域11の周囲に設置され、磁気領域12は磁場Hを発生させ、磁場Hは成形領域11を通過させる(図1参照)。   The plastic product molding equipment 1 includes a mold 10 and a material supply section 20, and the mold 10 includes a molding region 11 and a magnetic region 12. The magnetic region 12 is installed around the forming region 11, and the magnetic region 12 generates a magnetic field H, and the magnetic field H passes through the forming region 11 (see FIG. 1).

成形領域11はダイコア111により形成される。すなわち、ダイコア111の内部空間が成形領域11であり、ダイコア111の内部輪郭が成形後の製品の外形となる。成形領域11は注入口112を更に備え、注入口112はダイコア111の内部空間及び材料供給区20にそれぞれ接続される。磁気領域12は、一対のスライダー121と、一対の磁石122と、一対の仕切りブロック123とを含む。スライダー121、磁石122、及び仕切りブロック123は成形領域11の両側にそれぞれ設置される。仕切りブロック123はダイコア111に設置されると共にダイコア111の内部空間に近接させ、仕切りブロック123は磁場を透過させる材質で製造され、例えば、プラスチック、鉄、アルミニウム等である。2つの磁石122は2つのスライダー121にそれぞれ設置され、磁石122は永久磁石または電磁石である。スライダー121は成形領域11の両側に滑動可能に設置される。本発明の好ましい実施形態では、磁石122は永久磁石であり、スライダー121により成形領域11の磁場Hの大きさが調整されるか、或いは磁石122の成形領域11における磁場Hが0になる。   The molding region 11 is formed by the die core 111. That is, the inner space of the die core 111 is the molding region 11, and the inner contour of the die core 111 is the outer shape of the product after molding. The molding region 11 further includes an inlet 112, which is connected to the internal space of the die core 111 and the material supply section 20, respectively. The magnetic region 12 includes a pair of sliders 121, a pair of magnets 122, and a pair of partition blocks 123. The slider 121, the magnet 122, and the partition block 123 are installed on both sides of the molding region 11, respectively. The partition block 123 is installed in the die core 111 and is brought close to the internal space of the die core 111, and the partition block 123 is made of a material that transmits a magnetic field, such as plastic, iron, and aluminum. The two magnets 122 are respectively installed on the two sliders 121, and the magnet 122 is a permanent magnet or an electromagnet. The slider 121 is slidably installed on both sides of the molding region 11. In a preferred embodiment of the present invention, the magnet 122 is a permanent magnet, and the magnitude of the magnetic field H in the molding region 11 is adjusted by the slider 121 or the magnetic field H in the molding region 11 of the magnet 122 is zero.

上述はプラスチック製品の成形設備1の描写である(図2参照)。以下では、プラスチック製品の成形方法の工程を説明する。
工程1において、原材料9が材料供給区20から成形領域11に注入される。材料供給区20には大量の原材料9が保存され、原材料9は注入口112からダイコア111の内部空間に注入される。
The above is a depiction of the plastic product molding facility 1 (see FIG. 2). Below, the process of the molding method of a plastic product is demonstrated.
In step 1, raw material 9 is injected from material supply zone 20 into molding region 11. A large amount of raw material 9 is stored in the material supply zone 20, and the raw material 9 is injected into the internal space of the die core 111 from the injection port 112.

本発明の好ましい実施形態では、プラスチック製品の成形方法は射出成形の製造方法に応用可能である。よって、工程1は射出成形における充填(filling)工程であり、その原材料9は材料供給区20のノズル(図示せず)から射出され、注入口112からダイコア111の内部空間に注入され、ダイコア111の内部空間全体に充満される。製造者は原材料9を注射する際に、磁気伝導性繊維92の流体プラスチック91における分布位置に対する噴射速度の影響の計算を行う。   In a preferred embodiment of the present invention, the plastic product molding method is applicable to an injection molding manufacturing method. Therefore, the process 1 is a filling process in injection molding, and the raw material 9 is injected from a nozzle (not shown) in the material supply section 20 and injected into the inner space of the die core 111 from the injection port 112. The whole interior space is filled. When the manufacturer injects the raw material 9, the manufacturer calculates the influence of the jet velocity on the distribution position of the magnetic conductive fiber 92 in the fluid plastic 91.

工程2において、磁場Hが成形領域11に形成されることにより、原材料9中の磁気伝導性繊維92の流体プラスチック91における位置が調整される。図4に示すように、流体プラスチック91が成形領域11に最初に注入されると、磁場Hが磁気伝導性繊維92の位置及び角度に影響を与え、磁場Hの方向が左から右になると(図面上での方向にすぎず、現実の方向を制限するものではない)、磁気伝導性繊維92が常磁性物質である場合、磁気伝導性繊維92は磁場Hの方向に従って回転する。磁気伝導性繊維92が反磁性物質である場合、磁気伝導性繊維92は磁場Hの反対方向に回転する。製造者は角度の方向調整の必要に応じて磁場Hの方向を決定させる。   In Step 2, the magnetic field H is formed in the molding region 11, whereby the position of the magnetic conductive fiber 92 in the raw material 9 in the fluid plastic 91 is adjusted. As shown in FIG. 4, when the fluid plastic 91 is first injected into the molding region 11, the magnetic field H affects the position and angle of the magnetic conductive fiber 92, and the direction of the magnetic field H changes from left to right ( If the magnetic conductive fiber 92 is a paramagnetic material, the magnetic conductive fiber 92 rotates according to the direction of the magnetic field H. When the magnetic conductive fiber 92 is a diamagnetic material, the magnetic conductive fiber 92 rotates in the direction opposite to the magnetic field H. The manufacturer determines the direction of the magnetic field H according to the necessity of adjusting the direction of the angle.

上述したように、本発明に係るプラスチック製品の成形方法は射出成形であり、工程2は圧力が保持される段階であり、原材料9の流体プラスチック91が流体に保持されることで、磁気伝導性繊維92が移動及び回転の調整の裕度を有する。製造者は繊維の配向の必要に応じて磁気伝導性繊維92の好ましい角度及び位置を決定できる。   As described above, the plastic product molding method according to the present invention is injection molding. Step 2 is a stage in which pressure is maintained, and the fluid plastic 91 of the raw material 9 is retained in the fluid, so that the magnetic conductivity is maintained. The fiber 92 has a tolerance for adjustment of movement and rotation. The manufacturer can determine the preferred angle and position of the magnetically conductive fibers 92 as required by the fiber orientation.

磁気伝導性繊維92の流体プラスチック91における角度及び位置調整幅は、流体プラスチック91の粘度係数の影響を受ける。流体プラスチック91の粘度係数は、その温度及び圧力に関係しており、製造者は成形領域11の温度及び圧力を調整させることにより、磁気伝導性繊維92の位置及び角度の調整幅を調整可能である。   The angle and position adjustment width of the magnetic conductive fiber 92 in the fluid plastic 91 are affected by the viscosity coefficient of the fluid plastic 91. The viscosity coefficient of the fluid plastic 91 is related to its temperature and pressure, and the manufacturer can adjust the adjustment range of the position and angle of the magnetic conductive fiber 92 by adjusting the temperature and pressure of the molding region 11. is there.

上述したように、本発明の好ましい実施形態では、磁石122がスライダー121に設置され、製造者はスライダー121を利用して磁石122と成形領域11との間の距離を調整させることにより、磁石122の成形領域11における磁場Hの大きさが調整可能である。磁石122は電磁石であり、製造者は電力を調整させることにより磁場Hの大きさを調整可能である。   As described above, in a preferred embodiment of the present invention, the magnet 122 is installed on the slider 121, and the manufacturer uses the slider 121 to adjust the distance between the magnet 122 and the molding region 11, thereby causing the magnet 122. The magnitude of the magnetic field H in the molding region 11 can be adjusted. The magnet 122 is an electromagnet, and the manufacturer can adjust the magnitude of the magnetic field H by adjusting the electric power.

工程3において、原材料9が固化される。上述したように、本発明の好ましい実施形態では、原材料9は熱可塑性プラスチックであり、ダイコア111が冷却されることにより成形領域11内の原材料9が冷却されて成形され、流体プラスチック91が固化され、磁気伝導性繊維92の位置も固定される。   In step 3, the raw material 9 is solidified. As described above, in the preferred embodiment of the present invention, the raw material 9 is a thermoplastic, and the die core 111 is cooled to cool the raw material 9 in the molding region 11 to be molded, and the fluid plastic 91 is solidified. The position of the magnetic conductive fiber 92 is also fixed.

工程4において、固化後の原材料9が成形領域11から脱離される。固化成形された原材料9が離型され、金型10中から取り出される。   In step 4, the solidified raw material 9 is detached from the molding region 11. The solidified raw material 9 is released from the mold 10.

工程5において、固化後の原材料9のスループレーン導電率または機械強度が測定される。磁気伝導性繊維92を製造するための材質は導磁性に限らず、導電性でもよい。よって、磁気伝導性繊維92が互いに接触すると固化後の原材料9が導電性質を有し、固化後の原材料9のスループレーン導電率を測定することにより、磁気伝導性繊維92の原材料9における角度を掌握できる。或いは、固化後の原材料9の機械強度を測定することにより、回転後の磁気伝導性繊維92が固化後の原材料に対する影響を確認できる。   In step 5, the through-plane conductivity or mechanical strength of the raw material 9 after solidification is measured. The material for manufacturing the magnetic conductive fiber 92 is not limited to the magnetic conductivity but may be conductive. Therefore, when the magnetic conductive fibers 92 come into contact with each other, the solidified raw material 9 has a conductive property, and by measuring the through-plane conductivity of the solidified raw material 9, the angle of the magnetic conductive fiber 92 in the raw material 9 can be determined. I can hold it. Alternatively, by measuring the mechanical strength of the raw material 9 after solidification, the influence of the rotated magnetic conductive fiber 92 on the raw material after solidification can be confirmed.

また、製造者は繊維配向テンソル(Fiber Orientation Tensior、 FOT)により磁場Hの磁気伝導性繊維92に対する影響を計算可能である。繊維配向テンソルは、繊維配向テンソルが0である場合、磁気伝導性繊維92が磁場Hの方向に平行し、即ち、磁気伝導性繊維92が磁場Hの影響を受けて方向を転換していない。繊維配向テンソルが1である場合、磁気伝導性繊維92が磁場方向に垂直になり、即ち、磁気伝導性繊維92が磁場Hの影響を受けて方向を転換している。繊維配向テンソルは磁気伝導性繊維の回転角度の余弦関数の平均であり、その公式は以下の通りである。…nは磁気伝導性繊維92の数量を表し、Θは磁気伝導性繊維92と磁場Hとの夾角を表す。   Further, the manufacturer can calculate the influence of the magnetic field H on the magnetic conductive fiber 92 by a fiber orientation tensor (FOT). In the fiber orientation tensor, when the fiber orientation tensor is 0, the magnetic conductive fiber 92 is parallel to the direction of the magnetic field H, that is, the magnetic conductive fiber 92 is not changed its direction under the influence of the magnetic field H. When the fiber orientation tensor is 1, the magnetic conductive fiber 92 is perpendicular to the magnetic field direction, that is, the magnetic conductive fiber 92 is changed in direction under the influence of the magnetic field H. The fiber orientation tensor is the average of the cosine function of the rotation angle of the magnetic conductive fiber, and its formula is as follows. ... n represents the quantity of the magnetic conductive fibers 92, and Θ represents the depression angle between the magnetic conductive fibers 92 and the magnetic field H.

本発明の好ましい実施形態では、プラスチック製品の成形方法は、固化後の原材料9の断面から繊維配向テンソルの測定を行い、断面に保留される磁気伝導性繊維92から磁気伝導性繊維92と磁場Hとの間の夾角を直接測定させる。図5に示すように、磁気伝導性繊維92が測定された断面に残留していない場合、磁気伝導性繊維92の回転後に生じた孔部により測定を行う。図5は磁気伝導性繊維92が回転後に生じた孔部を図示し、図5によると、磁気伝導性繊維92の回転後に生じた孔部はほぼ楕円形を呈し、夾角Θは孔部の長い軸径M及び短い軸径Mが測定されることにより獲得され、且つ機器を使用して測定を行うことにより磁気伝導性繊維92の垂直中心点Vc及び水平中心点hcが獲得され、即ち、磁気伝導性繊維92が存在する位置が獲得される。製造者はこれら前記数値に基づいて次回プラスチック製品を製造する際の磁場Hの大きさ及びノズルの流速を調整可能である。   In a preferred embodiment of the present invention, the plastic product molding method measures the fiber orientation tensor from the cross section of the raw material 9 after solidification, and from the magnetic conductive fibers 92 retained in the cross section to the magnetic conductive fibers 92 and the magnetic field H. The angle of depression between and is directly measured. As shown in FIG. 5, when the magnetic conductive fiber 92 does not remain in the measured cross section, the measurement is performed by the hole formed after the magnetic conductive fiber 92 is rotated. FIG. 5 illustrates a hole formed after the rotation of the magnetic conductive fiber 92. According to FIG. 5, the hole formed after the rotation of the magnetic conductive fiber 92 is substantially elliptical, and the depression angle Θ is a long hole. The vertical center point Vc and the horizontal center point hc of the magnetic conductive fiber 92 are obtained by measuring the shaft diameter M and the short shaft diameter M, and by performing measurement using the instrument, that is, magnetic The position where the conductive fiber 92 is present is obtained. The manufacturer can adjust the magnitude of the magnetic field H and the flow velocity of the nozzle when manufacturing the plastic product next time based on these numerical values.

上述のように、本発明に係るプラスチック製品の製造方法は、磁場を利用して磁気伝導性繊維の流体プラスチックにおける角度及び位置の調整を行うことにより、固化後の原材料の磁気伝導性繊維が制御されるため、製造者がプラスチック製品の機械的性質をより簡単に掌握可能になる。   As described above, the method of manufacturing a plastic product according to the present invention controls the magnetic conductive fiber of the raw material after solidification by adjusting the angle and position of the magnetic conductive fiber in the fluid plastic using a magnetic field. Thus, the manufacturer can more easily grasp the mechanical properties of the plastic product.

本実施方式は本発明の好ましい実施形態を例示するのみであり、再述を避けるため、可能な全ての変化の組み合わせの詳細は記載しない。然しながら、本技術分野で通常知識を有する者ならば、上述の各モジュールまたは部材が全て必須ではないことを理解できる。また、本発明を実施するため、仔細な他の従来のモジュールまたは部材を具備してもよい。各モジュールまたは部材は全て需要に応じて増設、省略、或いは改修可能であり、且つ何れか2つのモジュールの間に他のモジュールや部材が存在してもよい。   This implementation only exemplifies a preferred embodiment of the present invention, and details of all possible combinations of changes are not described in order to avoid restatement. However, one of ordinary skill in the art can understand that each of the modules or components described above is not essential. Moreover, in order to implement this invention, you may comprise the other detailed conventional module or member. Each module or member can be added, omitted, or modified according to demand, and another module or member may exist between any two modules.

ちなみに、上述は1つの実施形態にすぎず、実施形態を制限するものではない。本発明の基本的な機構を逸脱しないものは、全て本特許の主張する権利範囲に含まれ、特許請求範囲を基準とする。   Incidentally, the above description is only one embodiment and does not limit the embodiment. Anything that does not depart from the basic mechanism of the present invention is included in the scope of rights claimed by this patent, and is based on the scope of the claims.

1 プラスチック製品の成形設備
10 金型
11 成形領域
111 ダイコア
112 注入口
12 磁気領域
121 スライダー
122 磁石
123 仕切りブロック
20 材料供給区
9 原材料
91 流体プラスチック
92 磁気伝導性繊維
H 磁場
DESCRIPTION OF SYMBOLS 1 Plastic product molding equipment 10 Mold 11 Molding area 111 Die core 112 Inlet 12 Magnetic area 121 Slider 122 Magnet 123 Partition block 20 Material supply area 9 Raw material 91 Fluid plastic 92 Magnetic conductive fiber H Magnetic field

Claims (13)

原材料が成形領域に入れられ、前記原材料として流体プラスチック及び複数の磁気伝導性繊維を含む工程と、
磁場が前記成形領域に形成されることにより、これら前記磁気伝導性繊維の前記流体プラスチックにおける位置が調整される工程と、
前記原材料が固化される工程とを含むことを特徴とするプラスチック製品の製造方法。
A raw material is placed in a molding region, the raw material comprising a fluid plastic and a plurality of magnetically conductive fibers;
Adjusting the position of the magnetic conductive fibers in the fluid plastic by forming a magnetic field in the molding region; and
A method for producing a plastic product, comprising the step of solidifying the raw material.
前記原材料は材料供給区から前記成形領域に注入されることを特徴とする、請求項1に記載のプラスチック製品の製造方法。   The method for manufacturing a plastic product according to claim 1, wherein the raw material is injected into the molding region from a material supply zone. これら前記磁気伝導性繊維は、金属繊維、炭素繊維、及びニッケルめっきガラス繊維で構成されるグループから選択されることを特徴とする、請求項2に記載のプラスチック製品の製造方法。   The method of manufacturing a plastic product according to claim 2, wherein the magnetic conductive fibers are selected from the group consisting of metal fibers, carbon fibers, and nickel-plated glass fibers. これら前記磁気伝導性繊維の前記流体プラスチックにおける位置が調整されると、前記成形領域の温度及び圧力が制御されることを特徴とする、請求項3に記載のプラスチック製品の製造方法。   4. The method of manufacturing a plastic product according to claim 3, wherein the temperature and pressure of the molding region are controlled when the positions of the magnetic conductive fibers in the fluid plastic are adjusted. 前記流体プラスチックの粘度係数及び前記磁場の強度により前記磁気伝導性繊維の角度が決定されることを特徴とする、請求項4に記載のプラスチック製品の製造方法。   The method of manufacturing a plastic product according to claim 4, wherein the angle of the magnetic conductive fiber is determined by the viscosity coefficient of the fluid plastic and the strength of the magnetic field. 前記流体プラスチックは熱可塑性プラスチックであり、冷却により前記原材料が固化されることを特徴とする、請求項5に記載のプラスチック製品の製造方法。   6. The method of manufacturing a plastic product according to claim 5, wherein the fluid plastic is a thermoplastic plastic, and the raw material is solidified by cooling. 前記原材料が固化された後、前記固化後の原材料のスループレーン導電率(Through-Plane Conductivity)または機械強度が測定される工程を更に備えることを特徴とする、請求項6に記載のプラスチック製品の製造方法。   The plastic product according to claim 6, further comprising a step of measuring a through-plane conductivity or mechanical strength of the solidified raw material after the raw material is solidified. Production method. 原材料の納置に用いられ、前記原材料として流体プラスチック及び複数の磁気伝導性繊維を含む成形領域と、
前記成形領域の周囲に設置され、磁場を発生させ、前記磁場が前記成形領域を通過させる磁気領域とを備えることを特徴とするプラスチック製品の成形設備。
A molding region that is used for storage of raw materials and includes fluid plastic and a plurality of magnetic conductive fibers as the raw materials;
A plastic product molding facility comprising: a magnetic region installed around the molding region, generating a magnetic field, and allowing the magnetic field to pass through the molding region.
前記成形領域に流体で接続される材料供給区を更に備え、前記材料供給区では前記原材料が前記成形領域に注射されることを特徴とする、請求項8に記載のプラスチック製品の成形設備。   9. The plastic product molding equipment according to claim 8, further comprising a material supply section that is fluidly connected to the molding area, wherein the raw material is injected into the molding area. 前記成形領域及び前記磁気領域を含む金型を更に備え、前記磁気領域は一対の磁石及び一対の仕切りブロックを有し、前記一対の仕切りブロックは前記一対の磁石と前記成形領域との間に設置されることを特徴とする、請求項9に記載のプラスチック製品の成形設備。   The mold further includes a mold including the molding region and the magnetic region, and the magnetic region has a pair of magnets and a pair of partition blocks, and the pair of partition blocks are installed between the pair of magnets and the molding region. The plastic product molding equipment according to claim 9, wherein: 前記成形領域はダイコアにより定義されることで形成され、前記成形領域は注入口を更に備え、前記材料供給区では前記注入口から前記原材料が前記ダイコア内部に供給されることを特徴とする、請求項10に記載のプラスチック製品の成形設備。   The molding region is formed by being defined by a die core, the molding region further includes an injection port, and the raw material is supplied into the die core from the injection port in the material supply zone. Item 11. A plastic product molding facility according to Item 10. 前記磁気領域は一対のスライダーを備え、前記一対の磁石は前記一対のスライダーにそれぞれ設置され、前記一対のスライダーの移動により前記磁石の間の距離が調整されることを特徴とする、請求項11に記載のプラスチック製品の成形設備。   12. The magnetic region includes a pair of sliders, and the pair of magnets are installed on the pair of sliders, respectively, and a distance between the magnets is adjusted by movement of the pair of sliders. Equipment for molding plastic products as described in 1. 前記磁石は電磁石または永久磁石であることを特徴とする、請求項12に記載のプラスチック製品の成形設備。
The apparatus for molding plastic products according to claim 12, wherein the magnet is an electromagnet or a permanent magnet.
JP2017038408A 2016-03-25 2017-03-01 Method for molding plastic product and arrangement therefor Pending JP2017170890A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW105109587A TWI611895B (en) 2016-03-25 2016-03-25 Plastic produce forming method and device thereof
TW105109587 2016-03-25

Publications (1)

Publication Number Publication Date
JP2017170890A true JP2017170890A (en) 2017-09-28

Family

ID=59971657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017038408A Pending JP2017170890A (en) 2016-03-25 2017-03-01 Method for molding plastic product and arrangement therefor

Country Status (2)

Country Link
JP (1) JP2017170890A (en)
TW (1) TWI611895B (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889039A (en) * 1973-04-26 1975-06-10 Horizons Inc Nucleation and orientation of linear polymers
JPS59143312A (en) * 1983-02-04 1984-08-16 Japan Steel Works Ltd:The Magnetic field generating equipment of plastic magnet injection molder
JPS59122216U (en) * 1983-02-04 1984-08-17 株式会社日本製鋼所 Magnetic field generator for plastic magnet injection molding machine
JPS61176106A (en) * 1985-01-31 1986-08-07 Ube Ind Ltd Manufacture of permeable member
JPS6454054A (en) * 1987-08-25 1989-03-01 Toray Industries Magnetic material composition
JPH05110283A (en) * 1991-10-15 1993-04-30 Hitachi Ltd Plastic box body and molding method thereof
JPH07164471A (en) * 1993-12-16 1995-06-27 Nec Corp Injection molding method
JPH0890582A (en) * 1994-09-21 1996-04-09 Nec Corp Injection molding method
JPH1167567A (en) * 1997-08-12 1999-03-09 Sumitomo Metal Ind Ltd Manufacture for bond magnet
JP2001040224A (en) * 1999-07-29 2001-02-13 Bridgestone Corp Heat transfer anisotropic resin and its production
JP2003026828A (en) * 2001-07-18 2003-01-29 Jsr Corp Heat-conductive sheet and method for producing the same and heat-conductive plate
JP2006237583A (en) * 2005-01-31 2006-09-07 Tdk Corp Magnetic-field forming device and method of fabricating ferrite magnet
US20060251754A1 (en) * 2003-07-25 2006-11-09 Peter Herring Methods and apparatus for forming a moulding comprising magnetic particles
JP2008192966A (en) * 2007-02-07 2008-08-21 Sumitomo Metal Mining Co Ltd Composition for bond magnet and bond magnet using the same
JP2010189523A (en) * 2009-02-17 2010-09-02 Polymatech Co Ltd Oriented molding and method for manufacturing the same
US20130309488A1 (en) * 2012-05-17 2013-11-21 Suzuki Motor Corporation Resin molded body and method of manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI255223B (en) * 2005-06-15 2006-05-21 Cheng Fa Plastic Mfg Co Ltd Method for injection molding thermoplastic product with thick ribs
US9457521B2 (en) * 2011-09-01 2016-10-04 The Boeing Company Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced parts

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889039A (en) * 1973-04-26 1975-06-10 Horizons Inc Nucleation and orientation of linear polymers
JPS59143312A (en) * 1983-02-04 1984-08-16 Japan Steel Works Ltd:The Magnetic field generating equipment of plastic magnet injection molder
JPS59122216U (en) * 1983-02-04 1984-08-17 株式会社日本製鋼所 Magnetic field generator for plastic magnet injection molding machine
JPS61176106A (en) * 1985-01-31 1986-08-07 Ube Ind Ltd Manufacture of permeable member
JPS6454054A (en) * 1987-08-25 1989-03-01 Toray Industries Magnetic material composition
JPH05110283A (en) * 1991-10-15 1993-04-30 Hitachi Ltd Plastic box body and molding method thereof
JPH07164471A (en) * 1993-12-16 1995-06-27 Nec Corp Injection molding method
JPH0890582A (en) * 1994-09-21 1996-04-09 Nec Corp Injection molding method
JPH1167567A (en) * 1997-08-12 1999-03-09 Sumitomo Metal Ind Ltd Manufacture for bond magnet
JP2001040224A (en) * 1999-07-29 2001-02-13 Bridgestone Corp Heat transfer anisotropic resin and its production
JP2003026828A (en) * 2001-07-18 2003-01-29 Jsr Corp Heat-conductive sheet and method for producing the same and heat-conductive plate
US20060251754A1 (en) * 2003-07-25 2006-11-09 Peter Herring Methods and apparatus for forming a moulding comprising magnetic particles
JP2006237583A (en) * 2005-01-31 2006-09-07 Tdk Corp Magnetic-field forming device and method of fabricating ferrite magnet
JP2008192966A (en) * 2007-02-07 2008-08-21 Sumitomo Metal Mining Co Ltd Composition for bond magnet and bond magnet using the same
JP2010189523A (en) * 2009-02-17 2010-09-02 Polymatech Co Ltd Oriented molding and method for manufacturing the same
US20130309488A1 (en) * 2012-05-17 2013-11-21 Suzuki Motor Corporation Resin molded body and method of manufacturing same
JP2013241489A (en) * 2012-05-17 2013-12-05 Suzuki Motor Corp Resin molded body and method of manufacturing the same

Also Published As

Publication number Publication date
TW201733763A (en) 2017-10-01
TWI611895B (en) 2018-01-21

Similar Documents

Publication Publication Date Title
CN106903851B (en) Injection molding method for producing a molded part, molded part produced by injection molding, and injection mold
CN105189621A (en) Functionally graded polymer articles and methods of making same
TW201540843A (en) A device for heating a mold
JP5833460B2 (en) Mold and method for producing thermoplastic resin fiber reinforced composite material molded article
CN204340095U (en) A kind of injection forming mold device of temperature-controllable
JP2017170890A (en) Method for molding plastic product and arrangement therefor
CN205853286U (en) A kind of structure of controlling temperature of hot runner mould
CN103909648A (en) Hot-pressing molding mold for GMT sheet
JPH06315961A (en) Method and apparatus for injection molding without causing visible sink mark on product
CN107283873B (en) Plastic forming method and its equipment
CN206066817U (en) A kind of space multipoint mode Fast Filling system for large scale plastic product production
CN105252716A (en) Plastic mold
JP6303690B2 (en) Mold apparatus and molding method
CN210791829U (en) Automobile instrument desk injection mold with large-enclosure embedded cooling insert
JP5722944B2 (en) Manufacturing method of plastic magnet
JP2009090558A (en) Injection molding mold, manufacturing method of injection molded article and injection molded article
CN203876216U (en) Thermal-compression forming mold for GMT (Glass fiber Mat Thermo-plastic) sheet
CN102689404A (en) Injection molding apparatus and method for manufacturing long molded article
CN202123234U (en) Casting mould with large cooling area
Raz Advantages of additive technologies usage in design of cooling channels
CN203752466U (en) Three-dimensional (3D) conformal cooling device
JP6304487B2 (en) Mold and injection molding method
CN203495226U (en) Injection moulding die unfavorable for melted mark generation
JP2009061677A (en) Mold apparatus for molding
CN220219567U (en) Injection mold capable of being molded rapidly

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181009