JP2017169410A - Power reception device - Google Patents

Power reception device Download PDF

Info

Publication number
JP2017169410A
JP2017169410A JP2016054647A JP2016054647A JP2017169410A JP 2017169410 A JP2017169410 A JP 2017169410A JP 2016054647 A JP2016054647 A JP 2016054647A JP 2016054647 A JP2016054647 A JP 2016054647A JP 2017169410 A JP2017169410 A JP 2017169410A
Authority
JP
Japan
Prior art keywords
circuit
power receiving
power
antenna
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016054647A
Other languages
Japanese (ja)
Other versions
JP6496678B2 (en
Inventor
新之介 佐藤
Shinnosuke Sato
新之介 佐藤
栗原 直樹
Naoki Kurihara
直樹 栗原
尚弘 池田
Hisahiro Ikeda
尚弘 池田
高橋 昌義
Masayoshi Takahashi
昌義 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016054647A priority Critical patent/JP6496678B2/en
Publication of JP2017169410A publication Critical patent/JP2017169410A/en
Application granted granted Critical
Publication of JP6496678B2 publication Critical patent/JP6496678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve the problem of a circuit failure in a power reception device, when performing wireless power supply between a ground device and a moving body, caused by excessive power supply when approaching closer than expected, because of a coupling coefficient change due to a distance fluctuation therebetween, in wireless power supply in which, in order to improve power supply efficiency, a power reception device antenna is resonated to increase an antenna end voltage (or current).SOLUTION: When a power wave reception level rises, an inductor is connected in parallel with a capacitor which is disposed in series with the antenna to form a parallel resonant circuit. Thus, the circuit in the power reception device is protected by increasing overall antenna impedance to suppress reception efficiency.SELECTED DRAWING: Figure 1

Description

本発明は磁気結合を利用した非接触給電システムの受電装置に関する。   The present invention relates to a power receiving device of a non-contact power feeding system using magnetic coupling.

近年、電気自動車や民生用電子機器の分野において、非接触給電(ワイヤレス給電)システムの需要が高まっている。このシステムでは、受電装置を備えた電子機器を給電装置に対向させて設置することにより、双方をケーブルで接続することなく、電力を供給することが出来る。   In recent years, the demand for non-contact power supply (wireless power supply) systems is increasing in the fields of electric vehicles and consumer electronic devices. In this system, by installing an electronic device including a power receiving device so as to face the power feeding device, it is possible to supply electric power without connecting both with a cable.

このようなワイヤレス給電を行う装置が特許文献1、特許文献2に記載されている。   Patent Documents 1 and 2 describe apparatuses that perform such wireless power feeding.

特許文献1には、「非接触充電装置3は、充電器2の1次コイル7に対応して設けられる2次コイル13と、2次コイル13と並列に接続される共振コンデンサー14を含む共振回路15と、共振回路15と2次電池11との間に配置される整流回路16とを備えている。整流回路16と2次電池11との間に、充放電制御回路19と、充電電流の電圧値および/または電流値を監視する充電電力監視回路20・21を設ける。共振回路15には、共振コンデンサー14および/または2次コイル13の接続状態を切換えて、共振回路15のインピーダンスを大小に切換える切換えスイッチ25を設ける。充電電力監視回路20・21が、2次電池11の電圧値および/または電流値が所定値に達したことを検知した満充電状態において、充放電制御回路19で切換えスイッチ25を切換えて、共振回路15を受電状態が最適な第1受電状態から、受電電力が著しく低下する第2受電状態に変更することを特徴とする。」と記載されている。   Patent Document 1 states that “the non-contact charging device 3 includes a secondary coil 13 provided corresponding to the primary coil 7 of the charger 2 and a resonance capacitor 14 connected in parallel with the secondary coil 13. The circuit 15 includes a rectifier circuit 16 disposed between the resonant circuit 15 and the secondary battery 11. Between the rectifier circuit 16 and the secondary battery 11, a charge / discharge control circuit 19 and a charging current are provided. The charging power monitoring circuits 20 and 21 for monitoring the voltage value and / or current value of the resonance circuit 15 are provided.The resonance circuit 15 switches the connection state of the resonance capacitor 14 and / or the secondary coil 13 to change the impedance of the resonance circuit 15. A changeover switch 25 is provided for switching between large and small.When the charge power monitoring circuit 20 or 21 detects that the voltage value and / or current value of the secondary battery 11 has reached a predetermined value, The electrical control circuit 19 switches the changeover switch 25 to change the resonance circuit 15 from the first power receiving state in which the power receiving state is optimal to the second power receiving state in which the received power is significantly reduced. ing.

特許文献2には、「本開示の一実施の形態に係る受電装置は、給電装置から非接触で給電された電力を受電する受電部と、受電部が受電した電力の受電電圧を変動させる保護回路部と、保護回路部の動作状態を複数の閾値に基づいて複数の状態に制御する制御部とを備えたものである。」と記載されている。   Patent Document 2 states that “a power receiving device according to an embodiment of the present disclosure includes a power receiving unit that receives power fed in a non-contact manner from a power feeding device, and protection that varies a received voltage of power received by the power receiving unit. The circuit unit and a control unit that controls the operation state of the protection circuit unit to a plurality of states based on a plurality of threshold values ”are described.

特開2013-212043JP2013-212043 国際公開番号 WO 2015/115285International Publication Number WO 2015/115285

ワイヤレス給電は、例えば地上に備え付けられた給電装置と移動体に備えつけられた受電装置間で用いられるため、両者の距離の変動や、対向の位置ずれなどにより結合係数が変化する。ここで、受電装置側では給電効率を高めるために受電アンテナの共振を鋭く(Qを高く)設定してアンテナ端電圧(もしくは電流)を上昇させているため、給電装置との距離が想定よりも接近したときには過大な電力供給を受けることとなる。この電力供給の変動は装置仕様によって異なるが、大きいときで100倍以上の変化幅を有する装置もあり、受電装置内の機器が故障する問題がある。   Since wireless power feeding is used, for example, between a power feeding device provided on the ground and a power receiving device provided on a moving body, the coupling coefficient changes due to a change in the distance between them or a positional deviation between the two. Here, on the power receiving device side, the resonance of the power receiving antenna is set sharply (Q is increased) to increase the antenna end voltage (or current) in order to increase the power feeding efficiency, so the distance from the power feeding device is larger than expected. When approaching, excessive power supply will be received. Although the fluctuation of the power supply varies depending on the device specifications, there is a device having a change width of 100 times or more when it is large, and there is a problem that a device in the power receiving device breaks down.

上記問題の解決手段として、受電装置が必要以上の電力を受けた場合に、受電装置内のアンテナの受信感度を低下させて、受電装置内回路の故障を防ぐ方式が用いられている。   As a means for solving the above problem, when the power receiving device receives more power than necessary, a method is used in which the reception sensitivity of the antenna in the power receiving device is lowered to prevent a failure of the circuit in the power receiving device.

特許文献1では、受信装置内の2次電池が満充電となったときに、過充電を防ぐためにアンテナ共振に用いているコンデンサを開放し、非共振アンテナとすることで受電アンテナのインピーダンスを高くして受信効率を低下させる構成が示されている。しかし、この手法では受電アンテナのインピーダンスをアンテナコイルが持つリアクタンス以上に高めることが出来ず、受信効率も単ループアンテナ(非共振アンテナ)以下に低減できない。すなわち、保護性能がループアンテナの寸法により制限されず、大電力に対して十分な保護性能を得たいという課題がある。   In Patent Document 1, when the secondary battery in the receiving device is fully charged, the capacitor used for antenna resonance is opened to prevent overcharging, and the impedance of the power receiving antenna is increased by using a non-resonant antenna. Thus, a configuration for reducing the reception efficiency is shown. However, with this method, the impedance of the power receiving antenna cannot be increased beyond the reactance of the antenna coil, and the reception efficiency cannot be reduced below that of a single loop antenna (non-resonant antenna). In other words, the protection performance is not limited by the dimensions of the loop antenna, and there is a problem that it is desired to obtain sufficient protection performance against high power.

また特許文献2では、受電装置内のアンテナ端電圧が増大して整流回路出力電圧が閾値を越えた場合に、直列共振アンテナの両端にコンデンサを接続してアンテナ端電圧を低減する構成が示されている。しかし、この手法では、受電アンテナに流れる電流が逆に増大するために直列共振用のコンデンサなどが故障する可能性があるという課題がある。   Patent Document 2 discloses a configuration in which a capacitor is connected to both ends of a series resonant antenna to reduce the antenna end voltage when the antenna end voltage in the power receiving apparatus increases and the rectifier circuit output voltage exceeds a threshold value. ing. However, this method has a problem that a capacitor for series resonance or the like may break down because the current flowing through the power receiving antenna increases conversely.

本発明の目的は、給電装置から受電装置に到達する電力のダイナミックレンジが広い場合でも、受電装置の回路を保護する受電装置を提供することにある。   An object of the present invention is to provide a power receiving device that protects a circuit of a power receiving device even when the dynamic range of power reaching the power receiving device from the power feeding device is wide.

上記の課題を解決するため、代表的な本発明の受電装置の一つは、給電装置が出力する電力波を受信するための受電アンテナと、受電アンテナに接続して受信した電力を使用する受電部とを備えた受電装置において、受電部の動作を監視して電力の過大入力を検知する判定部と、受電アンテナに直列接続し、判定部の出力に応じて両端のインピーダンスを上昇させる保護回路とを備え、判定部が電力の過大入力を検知したときに保護回路の両端のインピーダンスを上昇させることによって受電アンテナの受信効率を低下させることを特徴とする。   In order to solve the above problem, one of the representative power receiving devices of the present invention includes a power receiving antenna for receiving a power wave output from the power feeding device, and a power receiving device that uses the power received by being connected to the power receiving antenna. In a power receiving device comprising a power supply unit, a determination unit that monitors the operation of the power reception unit and detects an excessive input of power, and a protection circuit that is connected in series to the power receiving antenna and increases the impedance at both ends according to the output of the determination unit And the reception efficiency of the power receiving antenna is lowered by increasing the impedance at both ends of the protection circuit when the determination unit detects an excessive input of power.

本発明によれば、過大入力時に切替部を短絡してアンテナ共振用コンデンサと共振用インダクタを並列接続し、それらを電力波と同一の周波数で並列共振させることで、アンテナ共振用コンデンサの両端のインピーダンスを上昇させて、受信効率を大幅に低下させることができる。これにより、給電装置から受電装置に到達する電力のダイナミックレンジが広い場合でも、受電装置の回路を保護することが出来る。   According to the present invention, the switching unit is short-circuited at the time of excessive input, the antenna resonance capacitor and the resonance inductor are connected in parallel, and they are parallel-resonated at the same frequency as the power wave, so that both ends of the antenna resonance capacitor are connected. By increasing the impedance, the reception efficiency can be greatly reduced. Thereby, even when the dynamic range of the electric power reaching the power receiving device from the power feeding device is wide, the circuit of the power receiving device can be protected.

実施例1のシステムの全体概要図である。1 is an overall schematic diagram of a system according to a first embodiment. 実施例1の回路構成を示すブロック図である。1 is a block diagram illustrating a circuit configuration of Example 1. FIG. 図2のアンテナ回路を並列共振アンテナとした場合を示す図である。It is a figure which shows the case where the antenna circuit of FIG. 2 is used as a parallel resonant antenna. 図2のアンテナ共振用コンデンサと保護回路共振用インダクタを入れ替えた図である。FIG. 3 is a diagram in which the antenna resonance capacitor and the protection circuit resonance inductor of FIG. 2 are interchanged. ハイインピーダンス回路を用いた例を示す図である。It is a figure which shows the example using a high impedance circuit. 保護回路を複数備えた例を示す図である。It is a figure which shows the example provided with two or more protection circuits. 保護回路共振用インダクタを複数備えた例を示す図である。It is a figure which shows the example provided with two or more inductors for protection circuit resonance. 図1の構成において、切替部に可変抵抗またはMOSFETを用いた図である。FIG. 2 is a diagram in which a variable resistor or a MOSFET is used for a switching unit in the configuration of FIG. 図4の構成において、切替部に可変抵抗またはMOSFETを用いた図である。FIG. 5 is a diagram in which a variable resistor or a MOSFET is used for a switching unit in the configuration of FIG.

以下、実施例を図面を用いて説明する。   Hereinafter, examples will be described with reference to the drawings.

本実施例の全体概要を図1に示す。本実施例の受電装置(220)は、対向する給電装置(210)が出力する電力波(200)を受信するための受電アンテナ(221)と、受電アンテナ(221)で受信した電力を使用する受電部(122)と、受電部(122)の動作を監視して電力波(200)の過大入力を検知する判定部(123)と、判定部(123)が過大入力を検知して出力する検知信号によってインピーダンスを上昇させる保護回路(231)を備え、さらに、保護回路(231)を受電アンテナ(221)と直列に実装する。   An overall outline of this embodiment is shown in FIG. The power receiving device (220) of the present embodiment uses the power receiving antenna (221) for receiving the power wave (200) output by the opposing power feeding device (210) and the power received by the power receiving antenna (221). The power receiving unit (122), the determination unit (123) that detects the excessive input of the power wave (200) by monitoring the operation of the power receiving unit (122), and the determination unit (123) detects and outputs the excessive input A protection circuit (231) that increases the impedance by the detection signal is provided, and the protection circuit (231) is mounted in series with the power receiving antenna (221).

本実施例の詳細な実施形態を図2に示す。給電装置(210)は、内部に電力波の発生源である電力源(211)と、電力源(211)に接続して外部に電力波(200)を出力する給電アンテナ(212)を備える。   A detailed embodiment of this example is shown in FIG. The power feeding device (210) includes a power source (211) that is a power wave generating source, and a power feeding antenna (212) that is connected to the power source (211) and outputs a power wave (200) to the outside.

受電装置(220)は、受電アンテナ(221)と直列にアンテナ共振用コンデンサ(228)を接続してアンテナ回路(230)を形成する。アンテナ共振用コンデンサ(228)の定数は、アンテナ回路(230)の共振周波数が電力波(200)の周波数と一致するように設定する。アンテナ回路(230)の両端には整流回路(223)を接続して、アンテナに誘起された交流電圧を直流電圧に変換する。整流回路(223)の出力には、例えば外部への信号出力や、内部に備えたバッテリーの充電など、任意の機能を有する負荷回路(224)を接続する。   The power receiving device (220) connects the antenna resonance capacitor (228) in series with the power receiving antenna (221) to form an antenna circuit (230). The constant of the antenna resonance capacitor (228) is set so that the resonance frequency of the antenna circuit (230) matches the frequency of the power wave (200). A rectifier circuit (223) is connected to both ends of the antenna circuit (230) to convert an AC voltage induced in the antenna into a DC voltage. The output of the rectifier circuit (223) is connected to a load circuit (224) having an arbitrary function such as signal output to the outside or charging of a battery provided inside.

また、整流回路(223)の動作を監視して電力波の過大入力を検知する判定回路(225)と、判定回路(225)が過大入力を検知して出力する検知信号によって短絡する切替部(226)を備える。すなわち、切替部(226)は、判定回路(225)が過大入力を検知して出力する検知信号を受け取った時に、その両端のインピーダンスを低下させる。   Also, a determination circuit (225) that monitors the operation of the rectifier circuit (223) to detect an excessive input of the power wave, and a switching unit that is short-circuited by a detection signal that the determination circuit (225) detects and outputs an excessive input ( 226). That is, the switching unit (226) reduces the impedance at both ends when the determination circuit (225) receives a detection signal output by detecting an excessive input.

さらに、アンテナ共振用コンデンサ(228)と電力波(200)の周波数で共振する保護回路共振用インダクタ(227)を備え、保護回路共振用インダクタ(227)と切替部(226)を直列接続したものを、アンテナ共振用コンデンサ(228)に並列接続する。   In addition, it includes a capacitor for resonant antenna (228) and an inductor for resonant circuit (227) that resonates at the frequency of the power wave (200), and the protective circuit resonant inductor (227) and switching unit (226) are connected in series. Are connected in parallel to the antenna resonance capacitor (228).

本構成によれば、受電装置(220)が受信する電力波(200)のレベルが通常の範囲のときには、切替部(226)を開放状態とし、アンテナ回路(230)が電力波(200)の周波数で共振して受信効率が向上する。   According to this configuration, when the level of the power wave (200) received by the power receiving device (220) is in a normal range, the switching unit (226) is opened and the antenna circuit (230) is connected to the power wave (200). Resonance with frequency improves reception efficiency.

一方、過大入力時には判定回路(225)が切替部(226)を短絡することにより、アンテナ共振用コンデンサ(228)と保護回路共振用インダクタ(227)を並列接続して保護回路(231)を形成する。保護回路(231)は電力波(200)の周波数で並列共振するため、両端のインピーダンスが大幅に上昇する。これにより、電力波(200)の受信効率を低下させ、回路を保護することが出来る。   On the other hand, when the input is excessive, the judgment circuit (225) shorts the switching unit (226), thereby connecting the antenna resonance capacitor (228) and the protection circuit resonance inductor (227) in parallel to form the protection circuit (231). To do. Since the protection circuit (231) resonates in parallel at the frequency of the power wave (200), the impedance at both ends is significantly increased. Thereby, the reception efficiency of the power wave (200) can be lowered and the circuit can be protected.

なお、図2ではアンテナ共振用コンデンサ(228)および保護回路共振用インダクタ(227)の数を1個ずつ記載しているが、それぞれ複数であっても良い。ここで、複数のアンテナ共振用コンデンサ(228)がある場合でも、そのうちの1個以上のコンデンサに対して保護回路(231)を形成することで、同様の効果を得ることが出来る。   In FIG. 2, the number of antenna resonance capacitors (228) and the number of protection circuit resonance inductors (227) is shown one by one. Here, even when there are a plurality of antenna resonance capacitors (228), the same effect can be obtained by forming the protection circuit (231) for one or more of the capacitors.

ここで、上記の説明でアンテナ回路(230)および保護回路(231)の共振周波数を、電力波(200)の周波数と一致させるとしたが、完全に一致させなくても同様の効果が得られ、かつ部品の定数ばらつきに起因する保護回路のインピーダンスばらつきを低減することができるという利点もある。   Here, in the above description, the resonance frequency of the antenna circuit (230) and the protection circuit (231) is made to match the frequency of the power wave (200), but the same effect can be obtained even if it does not completely match. In addition, there is an advantage that variation in impedance of the protection circuit due to variation in the constants of components can be reduced.

また、判定回路(225)が監視する対象は、整流回路(223)の動作以外にも、整流回路(223)が出力する直流電圧値や、負荷回路(224)の動作(部品温度やバッテリー充電量)などでも良い。   In addition to the operation of the rectifier circuit (223), the determination circuit (225) monitors the DC voltage value output by the rectifier circuit (223) and the operation of the load circuit (224) (part temperature and battery charge). Amount) etc.

また、上記説明では切替部(226)を短絡と開放の2状態を示すスイッチのようなものとして説明をしたが、図8の(a)および(b)に示すように、可変抵抗やMOSFETなどに置き換えても良い。図8のように構成することにより、可変抵抗(826)またはMOSFET(829)の抵抗値を離散的ではなく連続的に調整することが可能になるため、電力波(200)の受信効率を連続的に低下させて整流回路(223)の出力電圧を判定回路(225)の制限値付近に安定させることが可能である。なお、MOSFETには寄生ダイオードが付くことから、検知信号の入力が無い場合でも片方向のインピーダンスが低くなる問題があるが、図8の(c)に示すように、2つのMOSFETを逆向きに直列接続したり、図8の(d)に示すように、ダイオードブリッジを用いてMOSFETに片方向のみ電流を流すような回路構成にすることで、上記の問題を解決できる。   In the above description, the switching unit (226) has been described as a switch that indicates two states of short circuit and open circuit. However, as shown in FIGS. 8 (a) and 8 (b), a variable resistor, MOSFET, etc. It may be replaced with. 8 makes it possible to continuously adjust the resistance value of the variable resistor (826) or the MOSFET (829) instead of discretely, so that the reception efficiency of the power wave (200) is continuously increased. Thus, the output voltage of the rectifier circuit (223) can be stabilized near the limit value of the determination circuit (225). In addition, since a parasitic diode is attached to the MOSFET, there is a problem that the impedance in one direction is lowered even when no detection signal is input. However, as shown in FIG. The above problems can be solved by connecting in series or by using a circuit configuration in which a current is allowed to flow through the MOSFET only in one direction using a diode bridge as shown in FIG. 8 (d).

また、図3に示すように、アンテナ並列共振用コンデンサ(322)をアンテナ回路(230)と並列に接続して、並列共振アンテナ回路(330)としても良い。通常受電時は並列共振アンテナ回路(330)が共振して受信効率を向上し、過大入力時は保護回路(231)を形成して受信効率を低下する。さらに、並列共振アンテナ回路(330)は出力インピーダンスが高いため、整流回路(223)および負荷回路(224)の入力インピーダンスが高い場合に高効率で電力を伝達可能となる。   Further, as shown in FIG. 3, a parallel resonant antenna circuit (330) may be formed by connecting an antenna parallel resonant capacitor (322) in parallel with the antenna circuit (230). During normal power reception, the parallel resonant antenna circuit (330) resonates to improve the reception efficiency, and when it is excessively input, a protection circuit (231) is formed to lower the reception efficiency. Furthermore, since the parallel resonant antenna circuit (330) has a high output impedance, power can be transmitted with high efficiency when the input impedances of the rectifier circuit (223) and the load circuit (224) are high.

実施例1に対して、アンテナ共振用コンデンサ(228)と保護回路共振用インダクタ(227)を入替えた例を図4に示す。アンテナ共振用コンデンサ(228)の代わりに保護回路用アンテナインダクタ(428)を実装し、保護回路共振用インダクタ(227)の代わりに保護回路共振用コンデンサ(427)を実装して電力波の周波数で共振するように定数を設定する。   FIG. 4 shows an example in which the antenna resonance capacitor (228) and the protection circuit resonance inductor (227) are replaced with those of the first embodiment. The protection circuit antenna inductor (428) is mounted instead of the antenna resonance capacitor (228), and the protection circuit resonance capacitor (427) is mounted instead of the protection circuit resonance inductor (227). Set a constant to resonate.

本構成によれば、過大入力時に実施例1と同様の保護効果を得ることが出来る。なお、図4の構成ではアンテナ回路(230)が通常受電時に非共振アンテナとなるが、アンテナ共振用コンデンサ(228)を追加して実施例1と同様に共振アンテナとしても良い。   According to this configuration, the same protective effect as that of the first embodiment can be obtained at the time of excessive input. In the configuration of FIG. 4, the antenna circuit (230) is a non-resonant antenna during normal power reception, but an antenna resonance capacitor (228) may be added to form a resonant antenna as in the first embodiment.

また、保護回路用アンテナインダクタ(428)の代わりに、受電アンテナ(221)の一部もしくは配線パターンなどのインダクタンスを用いて保護回路(231)を形成することも可能である。   Further, instead of the protection circuit antenna inductor (428), the protection circuit (231) can be formed by using a part of the power receiving antenna (221) or an inductance such as a wiring pattern.

また、上記説明では切替部(226)を短絡と開放の2状態を示すスイッチのようなものとして説明をしたが、図9の(a)および(b)に示すように、可変抵抗やMOSFETなどに置き換えても良い。図9のように構成することにより、可変抵抗(826)またはMOSFET(829)の抵抗値を離散的ではなく連続的に調整することが可能になるため、電力波(200)の受信効率を連続的に低下させて整流回路(223)の出力電圧を判定回路(225)の制限値付近に安定させることが可能である。なお、MOSFETには寄生ダイオードが付くことから、検知信号の入力が無い場合でも片方向のインピーダンスが低くなる問題があるが、図9の(c)に示すように、2つのMOSFETを逆向きに直列接続したり、図9の(d)に示すように、ダイオードブリッジを用いてMOSFETに片方向のみ電流を流すような回路構成にすることで、上記の問題を解決できる。   In the above description, the switching unit (226) is described as a switch that indicates two states of short circuit and open circuit. However, as shown in FIGS. It may be replaced with. By configuring as shown in FIG. 9, the resistance value of the variable resistor (826) or the MOSFET (829) can be continuously adjusted instead of discretely, so that the reception efficiency of the power wave (200) is continuously increased. Thus, the output voltage of the rectifier circuit (223) can be stabilized near the limit value of the determination circuit (225). In addition, since a parasitic diode is attached to the MOSFET, there is a problem that the impedance in one direction is lowered even when no detection signal is input. However, as shown in FIG. The above problem can be solved by connecting in series, or by using a circuit configuration in which a current is allowed to flow through the MOSFET only in one direction using a diode bridge as shown in FIG. 9 (d).

過大入力時にアンテナ回路(230)の配線経路を切替える例を図5に示す。受電装置(220)は給電装置(210)が出力する電力波(200)を受信するための受電アンテナ(221)を備え、受電アンテナと直列にアンテナ共振用コンデンサ(228)および切替部(226)を接続してアンテナ回路(230)を形成する。また、アンテナ回路(230)の両端に整流回路(223)を接続して誘起された交流電圧を直流電圧に変換し、整流回路(223)の出力に負荷回路(224)を接続する。また、整流回路(223)の動作を監視して電力波の過大入力を検知する判定回路(225)を備え、判定回路(225)が過大入力を検知して出力する検知信号によって切替部(226)を開放する。また、任意のインピーダンスに設定したハイインピーダンス回路(532)を切替部(226)と並列に接続する。   An example of switching the wiring path of the antenna circuit (230) at the time of excessive input is shown in FIG. The power receiving device (220) includes a power receiving antenna (221) for receiving the power wave (200) output from the power feeding device (210), and includes an antenna resonance capacitor (228) and a switching unit (226) in series with the power receiving antenna. Are connected to form an antenna circuit (230). Further, the rectifier circuit (223) is connected to both ends of the antenna circuit (230) to convert the induced AC voltage into a DC voltage, and the load circuit (224) is connected to the output of the rectifier circuit (223). In addition, it includes a determination circuit (225) that monitors the operation of the rectifier circuit (223) and detects an excessive input of the power wave, and the determination circuit (225) detects the excessive input and outputs the switching unit (226 ) Is released. Further, a high impedance circuit (532) set to an arbitrary impedance is connected in parallel with the switching unit (226).

本構成によれば、通常受電時は切替部(226)を短絡するため、アンテナ回路(230)が共振して受信効率を向上させる。一方、過大入力時は切替部(226)を開放してハイインピーダンス回路(532)をアンテナ回路(230)と直列接続するため、電力波(200)の受信効率を低下させて回路を保護することが出来る。   According to this configuration, since the switching unit (226) is short-circuited during normal power reception, the antenna circuit (230) resonates to improve reception efficiency. On the other hand, when the input is excessive, the switching unit (226) is opened and the high impedance circuit (532) is connected in series with the antenna circuit (230), so that the reception efficiency of the power wave (200) is lowered to protect the circuit. I can do it.

なお、アンテナ共振用コンデンサ(228)の数は2個以上でも良いし、実装せずに非共振アンテナとしても良い。   Note that the number of antenna resonance capacitors (228) may be two or more, or may be a non-resonant antenna without being mounted.

ここで、上記の説明でアンテナ回路(230)および保護回路(231)の共振周波数を、電力波(200)の周波数と一致させるとしたが、完全に一致させなくても同様の効果が得られ、かつ部品の定数ばらつきに起因する保護回路のインピーダンスばらつきを低減することができるという利点もある。   Here, in the above description, the resonance frequency of the antenna circuit (230) and the protection circuit (231) is made to match the frequency of the power wave (200), but the same effect can be obtained even if it does not completely match. In addition, there is an advantage that variation in impedance of the protection circuit due to variation in the constants of components can be reduced.

また、判定回路(225)が監視する対象は、整流回路(223)の動作以外にも、整流回路(223)が出力する直流電圧値や、負荷回路(224)の動作(部品温度やバッテリー充電量)などでも良い。   In addition to the operation of the rectifier circuit (223), the determination circuit (225) monitors the DC voltage value output by the rectifier circuit (223) and the operation of the load circuit (224) (part temperature and battery charge). Amount) etc.

実施例1に対して、第二の保護回路(631)を備える例を図6に示す。受電アンテナ(221)と直列接続する第二のアンテナ共振用コンデンサ(628)と、判定回路(225)が過大入力を検知して出力する信号によって短絡する第二の切替部(626)と、第二のアンテナ共振用コンデンサ(628)と電力波(200)の周波数で共振する第二の保護回路共振用インダクタ(627)を備え、第二の保護回路共振用インダクタ(627)と第二の切替部(626)を直列接続したものを、第二のアンテナ共振用コンデンサ(628)と並列接続する。さらに、判定回路(225)は過大入力の判定閾値を2つ有しており、第一の閾値を上回ることで(第一の)切替部(226)を短絡し、第二の閾値を上回ることで第二の切替部(626)を短絡する。また、第二の閾値を第一の閾値より高く設定する。   FIG. 6 shows an example in which a second protection circuit (631) is provided with respect to the first embodiment. A second antenna resonance capacitor (628) connected in series with the power receiving antenna (221), a second switching unit (626) which is short-circuited by a signal output by the determination circuit (225) detecting an excessive input, A second protection circuit resonance inductor (627) that resonates at the frequency of the second antenna resonance capacitor (628) and the power wave (200), and the second protection circuit resonance inductor (627) and the second switching The part (626) connected in series is connected in parallel with the second antenna resonance capacitor (628). Furthermore, the judgment circuit (225) has two judgment thresholds for excessive input, and when the first threshold is exceeded, the (first) switching unit (226) is short-circuited and exceeds the second threshold. To short-circuit the second switching unit (626). Further, the second threshold is set higher than the first threshold.

本実施例によれば、保護回路(231)(631)の数が増加したことでアンテナ回路(230)のインピーダンス上昇量が増加し、受信効率をより低下させることが出来る。また、保護回路を段階的に動作することで、受信効率を段階的に低下させ、整流電圧を安定させることが出来る。なお、保護回路の数は3つ以上でも良い。保護回路の数が多いほど、多段階に受信効率を抑制可能となる。   According to the present embodiment, the increase in the number of protection circuits (231) and (631) increases the amount of increase in impedance of the antenna circuit (230), thereby further reducing the reception efficiency. In addition, by operating the protection circuit in stages, the reception efficiency can be reduced in stages and the rectified voltage can be stabilized. Note that the number of protection circuits may be three or more. As the number of protection circuits increases, the reception efficiency can be suppressed in multiple stages.

保護回路(231)に複数の保護回路共振用インダクタを備える構成例を図7に示す。実施例1に対して、判定回路(225)が過大入力を検知して出力する信号によって短絡する第二の切替部(726)と、第二の切替部(726)に直列接続する第二の保護回路共振用インダクタ(727)を備え、第二の切替部(726)と第二の保護回路共振用インダクタ(727)を直列接続したものを、アンテナ共振用コンデンサ(228)および(第一の)保護回路共振用インダクタ(227)と並列接続する。さらに、判定回路(225)は過大入力の判定閾値を2つ有しており、第一の閾値を上回ることで(第一の)切替部(226)を短絡し、第二の閾値を上回ることで第二の切替部(726)を短絡する。また、第二の閾値を第一の閾値より高く設定する。   FIG. 7 shows a configuration example in which the protection circuit (231) includes a plurality of protection circuit resonance inductors. Compared to the first embodiment, the determination circuit (225) detects a excessive input and outputs a second switching unit (726) that is short-circuited by a signal that is output, and a second switching unit (726) that is connected in series to the second switching unit (726). A protection circuit resonance inductor (727) is provided, and a second switching unit (726) and a second protection circuit resonance inductor (727) connected in series are connected to an antenna resonance capacitor (228) and (first ) Connect in parallel with inductor (227) for resonance of protection circuit. Furthermore, the judgment circuit (225) has two judgment thresholds for excessive input, and when the first threshold is exceeded, the (first) switching unit (226) is short-circuited and exceeds the second threshold. To short-circuit the second switching unit (726). Further, the second threshold is set higher than the first threshold.

また、(第一の)切替部(226)と第二の切替部(726)を短絡してアンテナ共振用コンデンサ(228)、(第一の)保護回路共振用インダクタ(227)、第二の保護回路共振用インダクタ(727)で形成する第二の保護回路(732)のインピーダンスを、(第一の)切替部(226)のみを短絡してアンテナ共振用コンデンサ(228)、(第一の)保護回路共振用インダクタ(227)で形成する第一の保護回路(731)のインピーダンスよりも高く設定する。   In addition, the (first) switching unit (226) and the second switching unit (726) are short-circuited so that the antenna resonance capacitor (228), the (first) protection circuit resonance inductor (227), the second The impedance of the second protection circuit (732) formed by the protection circuit resonance inductor (727) is short-circuited only by the (first) switching unit (226), and the antenna resonance capacitor (228), (first ) Set higher than the impedance of the first protection circuit (731) formed by the protection circuit resonance inductor (227).

本構成によれば、受電装置(220)が受信する電力波(200)のレベルが上昇していくと、始めに判定回路(225)が第一の閾値を検知して第一の保護回路(731)を形成し、電力波(200)の受信効率を低下させる。   According to this configuration, when the level of the power wave (200) received by the power receiving device (220) increases, the determination circuit (225) first detects the first threshold value and detects the first protection circuit ( 731) to reduce the reception efficiency of the power wave (200).

電力波(200)のレベルが更に上昇すると、判定回路(225)が第二の閾値を検知して第二の保護回路を形成し、保護回路のインピーダンスを更に上昇させて電力波(200)の受信効率を更に低下させる。   When the level of the power wave (200) further increases, the determination circuit (225) detects the second threshold value to form a second protection circuit, and further increases the impedance of the protection circuit to increase the power wave (200). The reception efficiency is further reduced.

本構成によれば、受電装置(220)が受信する電力波のレベル上昇に応じて保護回路(231)のインピーダンスを上昇することで、電力波(200)の受信効率を段階的に低下することが出来る。   According to this configuration, the reception efficiency of the power wave (200) can be reduced stepwise by increasing the impedance of the protection circuit (231) in response to an increase in the level of the power wave received by the power receiving device (220). I can do it.

なお、保護回路共振用インダクタの数は3つ以上でも良く、数が多いほど多段階に受信効率を抑制可能となる。   The number of protection circuit resonance inductors may be three or more, and the reception efficiency can be suppressed in multiple stages as the number increases.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

122 受電部
123 判定部
200 電力波
210 給電装置
211 電力源
212 給電アンテナ
220 受電装置
221 受電アンテナ
223 整流回路
224 負荷回路
225 判定回路
226 切替部
227 保護回路共振用インダクタ
228 アンテナ共振用コンデンサ
230 アンテナ回路
231 保護回路
322 アンテナ並列共振用コンデンサ
330 並列共振アンテナ回路
427 保護回路共振用コンデンサ
428 保護回路用アンテナインダクタ
532 ハイインピーダンス回路
626 第二の切替部
627 第二の保護回路共振用インダクタ
628 第二のアンテナ共振用コンデンサ
631 第二の保護回路
726 第二の切替部
727 第二の保護回路共振用インダクタ
731 第一の保護回路
732 第二の保護回路
826 可変抵抗
829 MOSFET830 nチャネルMOSFET
831 ダイオード
122 Power receiver
123 Judgment part
200 power wave
210 Power feeder
211 Power source
212 Feed antenna
220 Power receiving device
221 Power receiving antenna
223 Rectifier circuit
224 Load circuit
225 judgment circuit
226 Switching section
227 Inductor for protection circuit resonance
228 Antenna resonance capacitor
230 Antenna circuit
231 Protection circuit
322 Capacitor for antenna parallel resonance
330 Parallel resonant antenna circuit
427 Capacitor for protection circuit resonance
428 Antenna inductor for protection circuit
532 High impedance circuit
626 Second switching part
627 Inductor for resonance of second protection circuit
628 Second antenna resonance capacitor
631 Second protection circuit
726 Second switching part
727 Second protection circuit resonance inductor
731 First protection circuit
732 Second protection circuit
826 variable resistance
829 MOSFET830 n-channel MOSFET
831 diode

Claims (8)

給電装置が出力する電力波を受信するための受電アンテナと、前記受電アンテナに接続して受信した電力を使用する受電部とを備えた受電装置において、
前記受電部の動作を監視して電力の過大入力を検知する判定部と、
前記受電アンテナに直列接続し、前記判定部の出力に応じて両端のインピーダンスを上昇させる保護回路とを備え、
前記判定部が電力の過大入力を検知したときに前記保護回路の両端のインピーダンスを上昇させることによって前記受電アンテナの受信効率を低下させることを特徴とする受電装置。
In a power receiving device including a power receiving antenna for receiving a power wave output from a power feeding device, and a power receiving unit that uses power received by being connected to the power receiving antenna,
A determination unit that monitors the operation of the power reception unit and detects an excessive input of power; and
A protection circuit that is connected in series to the power receiving antenna and increases impedance at both ends in accordance with the output of the determination unit;
The power receiving device, wherein when the determination unit detects an excessive input of power, the reception efficiency of the power receiving antenna is decreased by increasing impedances at both ends of the protection circuit.
請求項1記載の受電装置において、
前記受電アンテナは直列に接続する1個以上のアンテナ共振用コンデンサを備え、
前記受電部は前記受電アンテナで受信した電力波を整流する整流回路と、前記整流回路の出力で動作する負荷回路とを備え、
前記判定部は前記整流回路の出力または前記負荷回路の動作を監視して電力波の過大入力を検知しその検知信号を出力する判定回路を備え、
前記保護回路は、前記判定回路が過大入力を検知して出力する前記検知信号を受け取った時に両端のインピーダンスを低下させる切替部と、保護回路共振用インダクタを直列接続したものからなり、
前記保護回路を、前記アンテナ共振用コンデンサの少なくとも1個以上に並列接続させることを特徴とする受電装置。
The power receiving device according to claim 1,
The power receiving antenna includes one or more antenna resonance capacitors connected in series;
The power receiving unit includes a rectifier circuit that rectifies a power wave received by the power receiving antenna, and a load circuit that operates at the output of the rectifier circuit,
The determination unit includes a determination circuit that monitors an output of the rectifier circuit or an operation of the load circuit, detects an excessive input of a power wave, and outputs a detection signal thereof,
The protection circuit includes a switching unit that reduces impedance at both ends when the determination circuit receives the detection signal that is output by detecting an excessive input, and a protection circuit resonance inductor connected in series,
A power receiving device, wherein the protection circuit is connected in parallel to at least one of the antenna resonance capacitors.
請求項2に記載の受電装置において、
前記判定回路が過大入力を検知したときに出力する前記検知信号を受け取り、前記切替部が両端のインピーダンスを低下させたときに、前記アンテナ共振用コンデンサの両端のインピーダンスが上昇することを特徴とする受電装置。
The power receiving device according to claim 2,
When the detection circuit receives the detection signal output when detecting an excessive input, and the switching unit decreases the impedance at both ends, the impedance at both ends of the antenna resonance capacitor increases. Power receiving device.
請求項1記載の受電装置において、
前記受電アンテナは直列に接続する1個以上の保護回路用アンテナインダクタを備え、
前記受電部は前記受電アンテナで受信した電力波を整流する整流回路と、前記整流回路の出力で動作する負荷回路とを備え、
前記判定部は前記整流回路の出力または前記負荷回路の動作を監視して電力波の過大入力を検知しその検知信号を出力する判定回路を備え、
前記保護回路は、前記判定回路が過大入力を検知して出力する前記検知信号によって両端のインピーダンスを低下させる切替部と、保護回路共振用コンデンサを直列接続したものからなり、
前記保護回路を、前記保護回路用アンテナインダクタの少なくとも1個以上に並列接続させることを特徴とする受電装置。
The power receiving device according to claim 1,
The power receiving antenna includes at least one protection circuit antenna inductor connected in series;
The power receiving unit includes a rectifier circuit that rectifies a power wave received by the power receiving antenna, and a load circuit that operates at the output of the rectifier circuit,
The determination unit includes a determination circuit that monitors an output of the rectifier circuit or an operation of the load circuit, detects an excessive input of a power wave, and outputs a detection signal thereof,
The protection circuit comprises a switching unit for reducing impedance at both ends by the detection signal output by the determination circuit detecting and outputting an excessive input, and a protection circuit resonance capacitor connected in series,
A power receiving device, wherein the protection circuit is connected in parallel to at least one of the protection circuit antenna inductors.
請求項4に記載の受電装置において、
前記判定部が過大入力を検知したときに出力する前記検知信号を受け取り、前記切替部が両端のインピーダンスを低下させたときに、前記保護回路用アンテナインダクタの両端のインピーダンスが上昇することを特徴とする受電装置。
The power receiving device according to claim 4,
When the determination unit receives the detection signal output when detecting an excessive input, and the switching unit decreases the impedance at both ends, the impedance at both ends of the antenna inductor for protection circuit is increased. Power receiving device.
請求項2乃至請求項5のいずれか1つに記載の受電装置において、
前記判定回路は、前記整流回路の出力または前記負荷回路の動作を監視して電力波の過大入力を検知したとき、前記過大入力の程度に応じて複数の種類の前記検知信号を出力し、
前記切替部は、受信した前記検知信号の種類に応じて両端のインピーダンスを低下させることを特徴とする受電装置。
The power receiving device according to any one of claims 2 to 5,
The determination circuit, when monitoring the output of the rectifier circuit or the operation of the load circuit and detecting an excessive input of a power wave, outputs a plurality of types of detection signals according to the degree of the excessive input,
The switching unit reduces impedance at both ends according to the type of the received detection signal.
請求項1記載の受電装置において、
前記受電アンテナに接続して受信した電力を整流する整流回路と、
前記整流回路の出力で動作する負荷回路と、
前記受電アンテナと前記整流回路との間に直列接続する切替部と、
前記切替部に並列接続する保護回路とを備え、
前記判定部は、前記整流回路の出力または前記負荷回路の動作を監視して過大入力を検知しその検知信号を出力する判定回路とを備え、
前記判定回路が過大入力を検知して出力する前記検知信号によって前記切替部の両端のインピーダンスを上昇させることを特徴とする受電装置。
The power receiving device according to claim 1,
A rectifier circuit for rectifying the received power connected to the power receiving antenna;
A load circuit operating at the output of the rectifier circuit;
A switching unit connected in series between the power receiving antenna and the rectifier circuit;
A protection circuit connected in parallel to the switching unit,
The determination unit includes a determination circuit that monitors an output of the rectifier circuit or an operation of the load circuit, detects an excessive input, and outputs a detection signal;
The power receiving device, wherein the determination circuit detects an excessive input and raises impedances at both ends of the switching unit by the detection signal output.
請求項7記載の受電装置において、
前記切替部に、高いインピーダンスを持つハイインピーダンス回路を並列接続することを特徴とする受電装置。
The power receiving device according to claim 7, wherein
A power receiving device, wherein a high impedance circuit having a high impedance is connected in parallel to the switching unit.
JP2016054647A 2016-03-18 2016-03-18 Power receiving device Active JP6496678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016054647A JP6496678B2 (en) 2016-03-18 2016-03-18 Power receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016054647A JP6496678B2 (en) 2016-03-18 2016-03-18 Power receiving device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019042151A Division JP6755990B2 (en) 2019-03-08 2019-03-08 Power receiving device

Publications (2)

Publication Number Publication Date
JP2017169410A true JP2017169410A (en) 2017-09-21
JP6496678B2 JP6496678B2 (en) 2019-04-03

Family

ID=59914115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016054647A Active JP6496678B2 (en) 2016-03-18 2016-03-18 Power receiving device

Country Status (1)

Country Link
JP (1) JP6496678B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176683A (en) * 2018-03-29 2019-10-10 Tdk株式会社 Wireless power reception device and wireless power transmission system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866832U (en) * 1981-10-27 1983-05-07 日新電機株式会社 current limiting device
JPH0919048A (en) * 1995-06-30 1997-01-17 Japan Radio Co Ltd Protective circuit of temperature abnormality
JPH11164497A (en) * 1997-11-28 1999-06-18 Shinko Electric Co Ltd Non-contact feeder system
JP2008206296A (en) * 2007-02-20 2008-09-04 Sony Ericsson Mobilecommunications Japan Inc Electronic device
JP2015119559A (en) * 2013-12-18 2015-06-25 キヤノン株式会社 Electronic apparatus, method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866832U (en) * 1981-10-27 1983-05-07 日新電機株式会社 current limiting device
JPH0919048A (en) * 1995-06-30 1997-01-17 Japan Radio Co Ltd Protective circuit of temperature abnormality
JPH11164497A (en) * 1997-11-28 1999-06-18 Shinko Electric Co Ltd Non-contact feeder system
JP2008206296A (en) * 2007-02-20 2008-09-04 Sony Ericsson Mobilecommunications Japan Inc Electronic device
JP2015119559A (en) * 2013-12-18 2015-06-25 キヤノン株式会社 Electronic apparatus, method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176683A (en) * 2018-03-29 2019-10-10 Tdk株式会社 Wireless power reception device and wireless power transmission system

Also Published As

Publication number Publication date
JP6496678B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
US11240942B2 (en) Control of ionic cooling in wireless charging systems
KR102161826B1 (en) Voltage Converter, wireless power receiver and wireless power transmission system
US9831711B2 (en) Foreign object detection device, foreign object detection method, and non-contact charging system
US9933539B2 (en) Foreign object detection device, foreign object detection method, and non-contact charging system
TWI565179B (en) Wireless power receiver and method of managing power thereof
US9484737B2 (en) Protector of rectifier and wireless power receiver including protector
US9444247B2 (en) Apparatus and method of protecting power receiver of wireless power transmission system
US9831917B2 (en) Electric field coupling type wireless electric power transmitting system and electric power receiving apparatus included in the same
US10778035B2 (en) Feed unit and feed system
US10862339B2 (en) Power reception device and power transmission device
JP6007561B2 (en) Power supply device and power supply system
US10381877B2 (en) Electrical energy receiving end capable of overvoltage protection and wireless electrical energy transmission device
US10608471B2 (en) Multimode wireless power receiver circuit
US11936196B2 (en) Failsafe safety circuits for protection from faults or loss of rectification control during wireless power transfer
CN112542899A (en) Advanced overvoltage protection strategy for wireless power transfer
JP2015065724A (en) Contactless power supply system
KR101792636B1 (en) System and Method for transmission Wireless Power without Data Communication Channel
WO2015099065A1 (en) Non-contact power reception circuit, non-contact power reception apparatus, and non-contact power transmission/reception apparatus
JP6496678B2 (en) Power receiving device
JP2013102665A (en) Power-feed device and power-feed system
KR20210129561A (en) Electronic device performing over-voltage protecting operation and method for controlling thereof
JP6755990B2 (en) Power receiving device
KR101585397B1 (en) Apparatus and method for protecting rx system of wireless power transmission system
WO2023149316A1 (en) Wireless power reception device
JP5828994B1 (en) Resonant power transmission system and transmitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6496678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150