WO2015099065A1 - Non-contact power reception circuit, non-contact power reception apparatus, and non-contact power transmission/reception apparatus - Google Patents

Non-contact power reception circuit, non-contact power reception apparatus, and non-contact power transmission/reception apparatus Download PDF

Info

Publication number
WO2015099065A1
WO2015099065A1 PCT/JP2014/084357 JP2014084357W WO2015099065A1 WO 2015099065 A1 WO2015099065 A1 WO 2015099065A1 JP 2014084357 W JP2014084357 W JP 2014084357W WO 2015099065 A1 WO2015099065 A1 WO 2015099065A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
contact power
unit
power receiving
circuit
Prior art date
Application number
PCT/JP2014/084357
Other languages
French (fr)
Japanese (ja)
Inventor
太田 雅彦
雅也 桐原
市川 勝英
城杉 孝敏
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2015507291A priority Critical patent/JPWO2015099065A1/en
Publication of WO2015099065A1 publication Critical patent/WO2015099065A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/248Supports; Mounting means by structural association with other equipment or articles with receiving set provided with an AC/DC converting device, e.g. rectennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/14Length of element or elements adjustable
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention relates to a non-contact power receiving apparatus for communication with non-contact power transmission, and in particular, the frequency used for communication and non-contact power transmission is different, and both antennas for communication and non-contact power reception are placed close to each other. It relates to the technology to prepare.
  • Recent mobile terminals have a communication function of non-contact type IC cards such as FeliCa (registered trademark) and NFC (Near Field Communication) that realize an electronic money function and an electronic settlement function.
  • non-contact type IC cards such as FeliCa (registered trademark) and NFC (Near Field Communication) that realize an electronic money function and an electronic settlement function.
  • wireless power consortium Qi has become an international standard, and a power supply base using contactless power transmission that can be charged simply by placing a mobile terminal on the power supply base has been commercialized. Has been.
  • FIG. 1610a A block diagram of the non-contact power transmission device 1610a described in this document is shown in FIG.
  • the power transmission antenna 1620a is connected to a power reception circuit 1630.
  • the power transmission antenna 1620a includes a resonance antenna 22a that can resonate at a predetermined frequency and accumulate power and a power transfer antenna 24a that extracts power accumulated in the resonance antenna 1622a.
  • Communication antenna 1640 is surrounded by power transmission antenna 1620a. In such an arrangement, the entire contactless power transmission device 1610a can save space, but the coupling coefficient between the power transmission antenna 1620a and the communication antenna 1640 is large.
  • the control circuit 1670 controls the cutoff circuit 1650 so as to cut off the communication antenna 1640 and the communication circuit 1660 during power transmission.
  • the control circuit 1670 controls the cutoff circuit 1650 to protect the communication circuit 1660 from the transmitted power, assuming that power transmission has started when the transmitted power level exceeds a predetermined threshold.
  • a cutoff circuit it is described that a bandpass filter or a resonance circuit is added to a system from a semiconductor switch, a mechanical switch, or a communication antenna 1640 to a communication circuit 1660 to cut off AC power accompanying power transmission. .
  • the antenna mounted on the non-contact power receiving device is required to reduce the mounting space of the antenna in order to downsize the non-contact power receiving device.
  • the wireless communication antenna and the non-contact power receiving antenna in the non-contact power receiving apparatus are arranged close to each other, the coupling coefficient between the power transmission antenna and the communication antenna increases, and thus the power is transmitted to the wireless communication antenna of the power receiving apparatus.
  • the wireless communication circuit of the non-contact power receiving apparatus may be broken by receiving a power and flowing a large current through the wireless communication circuit.
  • a constant current flows through the non-contact power receiving antenna due to the induced electromotive force during communication, an electromagnetic field is generated from the non-contact power receiving antenna as a reaction to cause interference to the wireless communication antenna.
  • Patent Document 1 discloses a method of protecting a wireless communication circuit by blocking between the wireless communication antenna of the non-contact power receiving apparatus and the wireless communication circuit.
  • the configuration using the cutoff circuit described in Patent Document 1 does not contribute at all to the problem of interference with the wireless communication antenna by the non-contact power receiving antenna during communication. For this reason, interference between the antennas of the wireless communication antenna and the non-contact power receiving antenna in the non-contact power receiving apparatus remains, and it is not possible to prevent deterioration of communication sensitivity and power supply efficiency due to this.
  • the non-contact power receiving circuit of the present invention includes a wireless communication unit, a non-contact power receiving unit that wirelessly receives power wirelessly transmitted from the power transmission side, whether or not power is being received, and whether or not communication is being performed.
  • a detection circuit that detects at least one of the output and outputs the result, and at least switches between a resonance frequency of the wireless communication unit and a resonance frequency of the non-contact power reception unit based on the output of the detection circuit And a single resonance frequency switching unit.
  • the at least one resonance frequency switching unit switches at least one of a resonance frequency of the non-contact power reception unit and a resonance frequency of the wireless communication unit to a frequency that is used for wireless communication and becomes resonant, and the non-contact power reception unit
  • the resonance frequency switching unit At least one of the resonance frequency of the power receiving unit and the resonance frequency of the wireless communication unit may be switched to a frequency that is used for non-contact power transmission and becomes resonant.
  • the at least one resonance frequency switching unit may change at least one of a capacitor capacity, an inductance, a magnetic field, and an electric field of the non-contact power receiving unit or the wireless communication unit based on an output from the detection circuit. It is good also as a structure which switches a resonant frequency by.
  • the wireless communication unit of the present invention is connected to at least two signal lines for connecting to a communication circuit that communicates with the counterpart communication device via the wireless communication unit, and the non-contact power receiving circuit further includes the wireless communication unit.
  • a shunt circuit connected between the communication unit and the communication circuit is provided, and the shunt circuit can short-circuit or open the at least two signal lines based on the output of the detection circuit.
  • the shunt circuit includes a first switch for short-circuiting or opening between the at least two signal lines, and when the detection circuit outputs a detection result that the non-contact power reception unit is receiving power or the wireless When the detection circuit does not output a detection result that the communication unit is communicating, the shunt circuit turns on the first switch to short-circuit between the at least two signal lines, and the non-contact power reception unit When the detection circuit does not output a detection result indicating that power is being received or when the detection circuit outputs a detection result that the wireless communication unit is communicating, the shunt circuit turns off the first switch. Thus, the connection between the at least two signal lines may be released.
  • the at least one resonance frequency switching unit includes a first capacitor connected to the non-contact power receiving unit, a second switch and a second capacitor connected in parallel to the first capacitor, and the at least one resonance frequency switching unit includes: The resonance frequency switching unit turns on the second switch, and supplies the power received by the non-contact power receiving unit and the non-contact power receiving unit via the first capacitor and the second capacitor connected in parallel. And switching the resonance frequency of the non-contact power receiving unit to one of the frequency used for wireless communication and the frequency used for non-contact power transmission, and turning off the second switch The second capacitor is disconnected, and the non-contact power receiving unit and the power supply circuit are made conductive through the first capacitor, so that the frequency used for wireless communication and the non-contact power transmission can be transmitted.
  • the at least one resonance frequency switching unit is used for wireless communication so that the resonance of the non-contact power reception unit is set to a resonance frequency. If the detection circuit outputs the detection result that the non-contact power receiving unit is receiving power or the detection circuit does not output the detection result that the wireless communication unit is communicating, the frequency is switched.
  • the at least one resonance frequency switching unit may switch a resonance frequency of the non-contact power receiving unit so as to be a frequency that is used for non-contact power transmission and becomes resonant.
  • a communication unit or a non-contact power receiving unit may be arranged.
  • the wireless communication unit can be arranged so as to surround the non-contact power receiving unit on the outside.
  • the non-contact power receiving unit may be arranged so as to surround the wireless communication unit on the outside.
  • the non-contact power receiving circuit further includes a power receiving coil connected to a power supply circuit that supplies electric power received by the non-contact power receiving unit, and the non-contact power receiving unit is a resonance coil and is received by the non-contact power receiving unit.
  • At least one resonance frequency switching unit is not connected to a power supply circuit that supplies power, and the third and fourth capacitors connected to the resonance coil and a third capacitor that opens and closes a connection between the fourth capacitor and the third capacitor.
  • the third and fourth capacitors are connected in parallel, and the at least one resonance frequency switching unit opens the third switch to disconnect the fourth capacitor, thereby
  • the resonance coil is turned on to switch the resonance frequency of the non-contact power reception unit to one of a frequency used for wireless communication and a frequency used for non-contact power transmission, Is closed, and the resonance coil is made conductive through the third capacitor and the fourth capacitor connected in parallel, and the other one of the frequency used for wireless communication and the frequency used for non-contact power transmission.
  • the resonance frequency of the non-contact power receiving unit is switched to the frequency of the case, and when the detection circuit does not output a detection result that the non-contact power receiving unit is receiving power or the wireless communication unit is communicating
  • the at least one resonance frequency switching unit switches the resonance frequency of the non-contact power receiving unit so as to be a frequency that is used for wireless communication and becomes resonant.
  • the resonance frequency switching section is used in non-contact power transmission may be configured to switch the resonance frequency of the non-contact power receiving unit such that the frequency at which resonance.
  • the non-contact power reception unit is a resonance coil
  • the resonance frequency switching unit is connected to one end of the resonance coil and is connected to a power supply circuit that supplies power received by the non-contact power reception unit.
  • a fourth switch for connecting any one of the second and third feed lines to the fourth feed line, and the at least one resonance frequency switching unit includes a second switch The fourth switch is switched so that the feeder line is connected to the fourth feeder line, and the frequency of the contactless power receiving unit is set to one of the frequency used for wireless communication and the frequency used for contactless power transmission.
  • the fourth switch is switched so that the resonance frequency of the non-contact power receiving unit is switched to the other frequency of the frequency used for wireless communication and the frequency used for non-contact power transmission.
  • the at least one resonance frequency switching The unit switches the resonance frequency of the non-contact power receiving unit to be a frequency used for wireless communication and becomes resonant, and when the detection circuit outputs a detection result that the non-contact power receiving unit is receiving power or When the detection circuit does not output a detection result that the wireless communication unit is communicating, the at least one resonance frequency switching unit is used for non-contact power transmission and The may be possible to switch the resonance frequency of the non-contact power receiving unit such that the frequency that.
  • the at least one resonance frequency switching unit communicates the fifth communication unit connected to the wireless communication unit and the counterpart communication device via the wireless communication unit without using the fifth capacitor.
  • a fifth switch connected to the circuit, wherein the at least one resonance frequency switching unit switches the fifth switch so that the wireless communication unit becomes conductive without passing through a fifth capacitor, thereby performing wireless communication.
  • the resonance frequency of the wireless communication unit is switched to one of the frequency used and the frequency used for non-contact power transmission, and the fifth switch is turned on so that the wireless communication unit becomes conductive through a fifth capacitor.
  • the at least one The resonance frequency switching unit switches the resonance frequency of the wireless communication unit so that the resonance frequency is used for wireless communication, and the detection circuit outputs a detection result that the non-contact power reception unit is receiving power.
  • the at least one resonance frequency switching unit is used for non-contact power transmission and has a resonance frequency. The resonance frequency of the wireless communication unit may be switched.
  • the wireless communication unit is a resonance coil, and the at least one resonance frequency switching unit is connected to a communication circuit connected to one end of the resonance coil and communicating with the counterpart communication device via the wireless communication unit.
  • 1 signal line, a second signal line connected to the other end of the resonance coil, and a sixth capacitor connected in series, and a third signal connected between one end and the other end of the resonance coil A fourth signal line connected to the communication circuit, and a sixth switch for connecting any one of the second signal line and the third signal line to the fourth signal line,
  • At least one resonance frequency switching unit switches the sixth switch so that it is connected to the fourth signal line via the second signal line, and is used for the frequency used for wireless communication and non-contact power transmission
  • One of the frequencies to be transmitted to the wireless communication unit The resonance frequency is switched, the sixth switch is switched so as to be connected to the fourth signal line via the third signal line, and the frequency used for wireless communication and the frequency used for contactless power transmission
  • the resonance frequency of the wireless communication unit is switched to the other frequency and the detection circuit does not output
  • the contactless power receiving circuit includes a wireless communication unit, a contactless power receiving unit that receives power wirelessly transmitted from the power transmission side in a contactless manner, whether or not power is being received, and during communication.
  • a detection circuit that detects at least one of whether or not and outputs the result, and a communication circuit that communicates with the counterpart communication device via the wireless communication unit and the wireless communication unit With shunt circuit,
  • the wireless communication unit is connected to at least two signal lines for connecting to the communication circuit, and the shunt circuit short-circuits or opens between the at least two signal lines based on the output of the detection circuit.
  • the shunt circuit includes a first switch for short-circuiting or opening between the at least two signal lines, and when the detection circuit outputs a detection result that the non-contact power reception unit is receiving power or the When the detection circuit does not output a detection result that the wireless communication unit is communicating, the shunt circuit turns on a seventh switch to short-circuit the at least two signal lines, and the non-contact power receiving unit When the detection circuit does not output the detection result that the wireless communication unit is receiving power or when the detection circuit outputs the detection result that the wireless communication unit is communicating, the shunt circuit sets the seventh switch. It can be turned off to open the connection between the at least two signal lines.
  • the non-contact power receiving device of the present invention includes the above-described non-contact power receiving circuit, a communication circuit that communicates with the counterpart communication device via a wireless communication unit, and a power supply circuit that supplies power received by the non-contact power receiving unit It is characterized by providing.
  • the non-contact power transmission / reception device of the present invention includes the above-described non-contact power reception device and a non-contact power transmission device that transmits power to the non-contact power reception device in a non-contact manner.
  • the present invention switches the resonance frequency of the wireless communication unit and the resonance frequency of the non-contact power reception unit to use the interference between the wireless communication unit and the non-contact power reception unit in reverse, thereby reducing the communication sensitivity. Degradation of power reception efficiency can be prevented. Further, by forming a loop in the wireless communication unit during power reception, it is possible to prevent the communication circuit of the non-contact power receiving apparatus from being broken. Thereby, the mounting space of the wireless communication antenna and the non-contact power receiving antenna in the power receiving device can be reduced, and the power receiving terminal can be downsized.
  • 1 is a block diagram of a contactless power receiving device according to a first embodiment of the present invention.
  • 1 is a block diagram of a contactless power receiving device according to a first embodiment of the present invention.
  • 1 is a block diagram of a contactless power receiving device according to a first embodiment of the present invention.
  • It is a block diagram of the non-contact power receiving apparatus which concerns on the 2nd Embodiment of this invention.
  • It is a block diagram of the non-contact power receiving apparatus which concerns on the 3rd Embodiment of this invention.
  • It is a circuit block diagram of the non-contact power receiving apparatus which concerns on Example 1 of this invention.
  • FIG. 1 shows a configuration diagram of a non-contact power transmitting / receiving device 100 according to an embodiment of the present invention.
  • the non-contact power transmission / reception device 100 includes a non-contact power supply stand 110 and a non-contact power reception device 120.
  • the power supply stand 110 wirelessly transmits power using a flat coil or the like.
  • the non-contact power receiving apparatus 120 receives electric power transmitted from the power supply stand 110 using a loop antenna, a coil antenna, or the like.
  • the power supply stand 110 can further perform wireless communication with the non-contact power receiving device 120.
  • the power supply stand 110 includes only a power supply function, and wireless communication may be performed with other communication devices. Good.
  • the non-contact power receiving device 120 may wirelessly communicate with other communication devices in addition to the power supply stand 110.
  • the contactless power receiving device 120 may be a portable electric device such as a mobile phone, a smartphone, or a notebook computer, but includes any electric device that can receive power by contactless contact.
  • the power supply stand 110 may be, for example, a charger for a portable device such as a mobile phone or an automatic ticket gate at a station, but may be any device as long as it can wirelessly supply power.
  • FIG. 2 is a block diagram of the contactless power receiving device according to the first embodiment of the present invention.
  • the contactless power receiving device 120 includes a contactless power receiving circuit 200, a communication circuit 210, and a power supply circuit 220.
  • the non-contact power reception circuit 200 includes an antenna unit 230, and the antenna unit 230 includes a wireless communication antenna 231 that is a wireless communication unit and a non-contact power reception antenna 232 that is a non-contact power reception unit.
  • the non-contact power receiving circuit 200 further includes a detection circuit 240 that detects whether or not power is being received and whether or not communication is being performed, and outputs the result, a resonance frequency switching unit 250 for the wireless communication antenna 231, and a non-contact A resonance frequency switching unit 260 for the power receiving antenna 232 is provided.
  • the frequency used for wireless communication is different from the frequency used for wireless power transmission.
  • the communication circuit 210 is a circuit that communicates with the communication apparatus of the other party via the wireless communication antenna 231. For example, a signal transmitted from the communication apparatus of the other party is processed, and an appropriate response process is performed.
  • the power supply circuit 220 receives power received from the non-contact power receiving antenna 232 and performs processing such as rectification, receives power necessary for the non-contact power receiving device 120, and functions as a power source. The received power may be stored in the storage battery.
  • the detection circuit 240 is connected to the output end side of the wireless communication antenna 231 and the non-contact power receiving antenna 232, for example, and is set in the wireless communication mode at an initial stage and does not output any signal. Then, when the input level from the wireless communication antenna 231 to the communication circuit 210 exceeds a certain threshold value, it is determined that the power is being received, the mode is switched to the non-contact power transmission mode, and the detection result that the power is being received is output. To do. Thereafter, when the input level from the non-contact power receiving antenna 232 to the power supply circuit 220 falls below a certain threshold value, it is determined that the power reception is completed, the wireless communication mode is returned, and the output indicating that the power is being received is stopped.
  • the method for detecting whether the non-contact power receiving device is receiving power or communicating is not limited to the above-described configuration.
  • the input level of the power supply circuit 220 may be examined and switched when a certain threshold value is exceeded.
  • the input level to the communication circuit 210 may also be checked when switching from the non-contact power transmission mode to the wireless communication mode.
  • the detection circuit 240 may output a signal indicating that communication is being performed instead of a signal indicating that power is being received. If there is no signal indicating that power is being received from the detection circuit 240 or if there is no signal indicating that communication is being performed, it may be considered that a result indicating that communication is being performed or power is being received is output. When not receiving power or not communicating, a signal that clearly indicates that no power is received or communicated may be issued. Moreover, you may output the signal which specifies both during communication or power receiving. For example, a signal indicating that communication is being performed is output in the wireless communication mode, and a signal indicating that power is being received is output in the non-contact power transmission mode.
  • the signal from the detection circuit 240 may be continuously output while the state is maintained, or may be output only once after the state is changed. In addition, any output may be detected as long as it is an output for determining whether or not power is being received and whether or not communication is being performed.
  • the wireless communication antenna 231 and the non-contact power receiving antenna 232 are coil antennas. However, those skilled in the art will appreciate that these may be loop antennas, or any configuration that can receive wireless communication and receive non-contact power.
  • a signal is wirelessly transmitted from a communication counterpart device such as a power supply stand. Since the resonance frequency switching unit 250 for the wireless communication antenna 231 does not receive a signal indicating that the power is received from the detection circuit 240, the resonance frequency of the wireless communication antenna 231 is switched to a frequency used for wireless communication. An induced electromotive force is generated by the wireless transmission signal, and the wireless communication antenna 231 resonates at a frequency used for wireless communication. On the other hand, since the resonance frequency switching unit 260 for the non-contact power receiving antenna 232 does not receive an output signal indicating that power is received from the detection circuit 240, the non-contact power receiving antenna 232 resonates at a frequency used for wireless communication. Switches the resonance frequency. The resonance frequency switching units 250 and 260 may switch the resonance frequency to a frequency used for wireless communication when receiving a signal indicating that communication is being performed from the detection circuit 240.
  • the resonance frequency switching unit 250 for the wireless communication antenna 231 receives a signal indicating that power has been received from the detection circuit 240, and switches the resonance frequency of the wireless communication antenna 231 to a frequency used for wireless power transmission.
  • the resonance frequency switching unit 260 for the non-contact power receiving antenna 232 receives an output indicating that power is received from the detection circuit 240 and resonates so that the non-contact power receiving antenna 232 resonates at a frequency used for wireless power transmission. Switch the frequency.
  • the wireless communication antenna 231 and the non-contact power receiving antenna 232 resonate at a frequency used for wireless power transmission.
  • the resonance frequency switching units 250 and 260 may switch the resonance frequency to a frequency used for wireless power transmission when not receiving a signal indicating that communication is being performed from the detection circuit 240.
  • the non-contact power receiving antenna is Since it does not resonate at the frequency used for wireless power transmission but resonates at the resonance frequency of wireless communication, interference by the non-contact power receiving antenna is reduced, and communication with little deterioration in sensitivity becomes possible. Further, at the time of non-contact power reception, since the wireless communication antenna does not resonate at the frequency used for wireless communication, but resonates at the frequency used for wireless power transmission, efficient non-contact power reception can be performed. .
  • the switching of the resonance frequency can be performed by changing the impedance of the wireless communication antenna 231 or the non-contact power receiving antenna 232, for example.
  • the impedance may be changed by changing the capacitance or inductance of a capacitor connected to each of the antennas 231 and 232.
  • both the wireless antenna and the non-contact power receiving antenna have the resonance frequency switching unit, but it is obvious that only one of them can operate. That is, when the resonance frequency switching unit is connected only to the non-contact power receiving antenna 232, when the detection circuit 240 outputs the detection result that power is being received, the non-contact power receiving antenna 232 is connected.
  • the resonance frequency switching unit 260 switches the resonance frequency of the non-contact power receiving antenna to a frequency used for wireless power transmission, and otherwise switches the resonance frequency to a frequency used for wireless communication.
  • the wireless communication antenna 231 can be connected to the communication circuit 210 directly or through other elements.
  • the resonance frequency of the wireless communication antenna is fixed at a frequency used for wireless communication. Thereby, although there is interference by the wireless communication antenna 231 during power reception, interference by the non-contact power reception antenna 232 during wireless communication can be reduced.
  • the resonance frequency switching unit 250 connected to the wireless communication antenna 231 changes the resonance frequency of the wireless communication antenna 231 to wireless power transmission. Switch to the frequency used, otherwise switch the resonance frequency to the frequency used for wireless communication.
  • the non-contact power receiving antenna 232 can be connected to the power supply circuit 220 directly or through other elements.
  • the non-contact power receiving antenna 232 is set to resonate at a frequency used for non-contact power transmission. Thereby, although there is interference by the power receiving antenna 232 during wireless communication, interference by the wireless communication antenna 231 during power reception can be reduced.
  • one resonance frequency switching unit is provided for each of the wireless communication antenna 231 and the non-contact power receiving antenna 232, but one resonance frequency switching unit switches the resonance frequency of both antennas. It is good.
  • the resonance frequency switching units 250 and 260 are connected to the wireless communication antenna 231 and the communication circuit 210 or the non-contact power receiving antenna 232 and the power feeding circuit 220.
  • the resonance frequency switching units 350 and 360 may not be connected to them.
  • the resonance frequency switching units 350 and 360 can switch the resonance frequency by being coupled to each antenna with a magnetic field or an electric field.
  • the resonance frequency switching units 350 and 360 are resonance coils, the resonance frequency switching unit 350 and the wireless communication antenna 231, and the resonance frequency switching unit 360 and the non-contact power receiving antenna 232 are coupled by a magnetic field or an electric field. It is also possible to adopt a configuration in which the resonance frequency of the resonance coil of the frequency switching units 350 and 360 is switched.
  • the resonance frequency switching units 250 and 260, the wireless communication antenna 231, and the non-contact power receiving antenna 232 may not be connected to the communication circuit 210 or the power feeding circuit 220.
  • the resonant frequency switching units 380 and 390 are connected to the wireless communication antenna 371 and the non-contact power receiving antenna 372, respectively, and switch the resonant frequency.
  • the wireless communication antenna 371 and the non-contact power receiving antenna 372 are used as resonance coils to receive a wireless communication signal or perform non-contact power reception.
  • the wireless communication antenna 371 and the non-contact power reception antenna 372 are coupled to the reception coil 373 for wireless communication and the power reception coil 374 for non-contact power reception by a magnetic field or an electric field, thereby transmitting signals to the communication circuit 210 or the power supply circuit 220. Electric power can be supplied.
  • FIG. 4 shows a second embodiment of the present invention.
  • a shunt circuit 470 connected between the wireless communication antenna 231 and the communication circuit 210 is further provided in addition to the first embodiment.
  • Other configurations are the same as those of the first embodiment.
  • the same constituent elements as those of the first embodiment are referred to by the same reference numerals, and the description thereof is omitted as appropriate.
  • the wireless communication antenna 231 is connected to two signal lines for connecting to the communication circuit 210, and the wireless communication antenna 231 is connected between the wireless communication antenna 231 and the communication circuit 210 via these two signal lines.
  • the resonance frequency switching unit 250 and the shunt circuit 470 are connected from the side.
  • the shunt circuit 470 shorts or opens the two signal lines.
  • the shunt circuit 470 opens the connection between the two signal lines. Thereby, the signal received by the wireless antenna 231 is transmitted to the communication circuit 210 without being detoured, and wireless communication can be performed.
  • the detection circuit 240 outputs a detection result that the non-contact power receiving antenna 232 is receiving power
  • the shunt circuit 470 short-circuits the two signal lines. As a result, most of the power received by the wireless communication antenna 231 is bypassed by the shunt circuit 470 and returned to the wireless communication antenna 231 and does not flow into the communication circuit 210.
  • the shunt circuit 470 may open the signal line when an output signal indicating that communication is in progress is obtained from the detection circuit 240, and may be short-circuited when a signal indicating that communication is being performed is not received.
  • the signal line may be opened when a signal indicating that communication is being performed, and may be short-circuited when a signal indicating that power is being received.
  • FIG. 5 shows a third embodiment.
  • the wireless communication antenna 231 nor the non-contact power receiving antenna 232 has a frequency switching unit. The rest is the same as in the second embodiment. According to such a configuration, although interference between antennas cannot be reduced, destruction of the communication circuit 210 due to power reception can be prevented.
  • the contactless power receiving device 120 includes a contactless power receiving circuit 200, a communication circuit 210, and a power supply circuit 220.
  • the non-contact power receiving circuit 200 includes an antenna unit 630, and the antenna unit 630 includes a wireless communication antenna 631 and a non-contact power receiving antenna 632.
  • the non-contact power receiving circuit 200 includes a detection circuit 240 that detects whether or not power is being received and outputs the result, and a resonance frequency switching unit 660 for the non-contact power receiving antenna 632.
  • Each antenna is a coil antenna.
  • the resonance frequency switching unit for the wireless communication antenna is not provided.
  • the resonance frequency of the wireless communication antenna is fixed at a frequency used for wireless communication.
  • the frequency used for wireless power transmission is 6.78 MHz, and the frequency used for wireless communication is 13.56 MHz. In the other embodiments, the same frequency is used unless otherwise specified.
  • a shunt circuit 670 is provided between the wireless communication antenna 631 and the communication circuit 210.
  • the wireless communication antenna 631 is connected to two signal lines for connection to the communication circuit 210, and a shunt circuit 670 is connected between the wireless communication antenna 631 and the communication circuit 210 via these two signal lines.
  • the shunt circuit 670 implements a shunt circuit by a switch 671 that shorts or opens two signal lines, but is not limited thereto.
  • the shunt circuit may have any configuration as long as the two signal lines are short-circuited or opened.
  • the resonance frequency switching unit 660 for the non-contact power receiving antenna 632 includes one capacitor 661 and another capacitor 662 and a switch 663 connected in parallel to the capacitor 661.
  • the switch 663 When the switch 663 is opened (off), only the capacitor 661 is connected to the non-contact power receiving antenna 632, and the resonance frequency of the non-contact power receiving antenna 632 becomes a frequency used for wireless communication.
  • the switch 663 is closed (ON) and the capacitor 661 and the capacitor 662 are connected in parallel and connected to the non-contact power receiving antenna 632, the resonance frequency of the non-contact power receiving antenna 632 is used for non-contact power transmission. Frequency.
  • the fact that only the capacitor 661 is connected to the non-contact power receiving antenna 632 only means that the capacitor 662 is not connected, and does not mean that no other elements are connected. The same applies to other descriptions in this specification.
  • FIG. 7 and 8 show examples of the arrangement of the wireless communication antenna 631 and the non-contact power receiving antenna 632 and the direction of magnetic flux of the non-contact power receiving circuit 200 in the present embodiment.
  • 7 and 8 are cross-sectional views of the antenna unit 630 shown in FIG.
  • the non-contact power receiving antenna 632 is provided outside the wireless communication antenna 631 on the same plane.
  • each coil is composed of several turns of winding wiring.
  • FIG. 7 the magnetic flux during wireless communication is indicated by an arrow
  • FIG. 8 the magnetic flux during power transmission is indicated by an arrow.
  • the direction of the magnetic flux is from the power transmission device side to the power reception device side.
  • the resonance frequency switching unit 660 turns off the switch 663, disconnects the capacitor 662, and makes the non-contact power receiving antenna 632 and the power supply circuit 220 conductive through the capacitor 661.
  • the non-contact power receiving antenna 632 resonates at a frequency used for wireless communication.
  • the shunt circuit 670 opens the terminal of the antenna coil 631 for wireless communication by turning off the switch 671. Then, a current based on the signal flows by the induced electromotive force inside the radio communication receiving antenna 631, which is transmitted to the communication circuit 210, and communication between the communication circuit and the counterpart communication device is executed.
  • the magnetic flux at the time of wireless communication may be a magnetic flux that passes through the coil for wireless communication antenna 631 from the power transmission device side and also passes through the coil for non-contact power receiving antenna 632. As a result, wireless communication via the non-contact power receiving antenna coil 632 is also performed, so that communication without deterioration in sensitivity is possible.
  • the resonance frequency switching unit 660 turns on the switch 663 and makes the non-contact power receiving antenna 632 and the power supply circuit 220 conductive through the capacitors 661 and 662 connected in parallel.
  • the non-contact power receiving antenna 632 resonates at a frequency used for wireless power transmission.
  • the shunt circuit 670 shorts between the coil terminals of the wireless communication antenna 631 by turning on (closing) the switch 671.
  • the wireless communication antenna 631 may interfere with the non-contact power receiving antenna 632. Compared to the influence on the wireless communication antenna 631, it is relatively small.
  • the switch 663 when the switch 663 is open, the capacitance provided by the resonance frequency switching unit 660 is only the capacitance of the capacitor 661.
  • the switch 663 When the switch 663 is closed, a value obtained by adding the capacitances of the capacitors 661 and 662 is obtained. That is, the capacity is larger when the switch 663 is closed. The larger the capacitance, the lower the resonance frequency. Therefore, when the switch 663 is closed, the resonance frequency is lower, and when the switch is opened, the resonance frequency is higher.
  • the frequency of contactless power transmission is 6.78 MHz and the frequency used for wireless communication is 13.56 MHz. Therefore, when selecting the frequency of contactless power transmission, the switch 663 is closed and the wireless communication is performed. When selecting, the switch 663 is opened. The capacities of these capacitors and how the switches are switched are appropriately selected depending on the frequency used for wireless communication and wireless power transmission.
  • the self-inductance value of the coil for the non-contact power receiving antenna is set to suppress the decrease in efficiency of non-contact power transmission. It needs to be bigger. Since a larger self-inductance value can be obtained by disposing the non-contact power receiving antenna 632 outside the wireless communication antenna 631, when the frequency of non-contact power transmission is lower than the frequency used for wireless communication, the non-contact It is possible to suppress a decrease in efficiency of power transmission.
  • FIG. 9 shows a circuit configuration of the second embodiment of the present invention.
  • the difference from the first embodiment is that the arrangement of the wireless communication antenna 931 and the non-contact power receiving antenna 932 in the antenna unit 930 is opposite to that of the first embodiment.
  • the non-contact power receiving antenna 632 is arranged outside the wireless communication antenna 631 so as to surround the wireless communication antenna 631, whereas in the present embodiment, the wireless communication antenna 931 is not contactless power receiving.
  • the non-contact power receiving antenna 932 is disposed outside the antenna 932 so as to surround it.
  • the other points are the same as those of the first embodiment.
  • the wireless communication antenna 931 is located outside the non-contact power receiving antenna 932, there is an effect that the communication area can be widened.
  • the resonance frequency switching unit 960 turns off the switch 963 and turns on the non-contact power receiving antenna 932 via the capacitor 961 when selecting the frequency of non-contact power transmission.
  • the switch 963 is turned on to conduct through the capacitor 961 and the capacitor 962.
  • the lower frequency so as to surround the wireless communication unit or non-contact power receiving unit that uses the higher one of the frequency used for wireless communication and the frequency used for non-contact power transmission.
  • Example 3 using a resonance coil and a power receiving coil will be described.
  • the circuit configuration of the third embodiment is shown in FIG.
  • the resonance frequency switching unit 1060 has a non-contact power receiving antenna 1064 that works as a resonance coil not connected to the power supply circuit 220 and Power is received by electromagnetic induction from two capacitors 1061 and 1062 connected to the non-contact power receiving antenna 1064, a switch 1063 that conducts the capacitor 1062 based on an output from the detection circuit 240, and a non-contact power receiving antenna 1064 that functions as a resonance coil.
  • the power receiving antenna 1065 serving as a power receiving coil.
  • the power receiving antenna 1065 is disposed on the back surface of the surface on which the wireless communication antenna 631 and the non-contact power receiving antenna 632 are disposed, for example. However, the arrangement surface is not limited to this.
  • the power receiving antenna 1065 is connected to the power supply circuit 220 and the detection circuit 240.
  • Capacitor 1061 has a capacity at which non-contact power receiving antenna 1064 acting as a resonance coil resonates at a frequency used for wireless communication, and a capacitor capacity obtained by adding the capacitances of capacitor 1061 and capacitor 1062 connected in parallel is a resonance coil.
  • the non-contact power receiving antenna 1064 acting as a capacitor resonates at a frequency used for non-contact power transmission.
  • the resonance frequency switching unit 1060 turns off the switch 1063, The capacitor 1062 is disconnected, and the non-contact power receiving antenna 1064 that functions as a resonance coil is made conductive through the capacitor 1061. Accordingly, the wireless communication antenna 631 and the non-contact power receiving antenna 1064 resonate at a frequency used for wireless communication, and wireless communication can be performed without interference by the non-contact power receiving antenna 1064.
  • the resonance frequency switching unit 1060 turns on the switch 1063.
  • the resonance coil 1064 is conducted through the capacitor 1061 and the capacitor 1062 connected in parallel. Accordingly, the non-contact power receiving antenna 1064 can resonate at a frequency used for wireless power transmission and can perform non-contact power reception.
  • the power receiving coil 1065 and the non-contact power receiving antenna 1064 acting as a resonance coil that is a coil antenna are coupled by a magnetic induction method, and the power supply circuit
  • the impedance matching with 220 becomes easy to take.
  • the wireless communication antenna 631 may be disposed outside the non-contact power receiving antenna 632.
  • the resonance frequency switching unit is connected to a wireless communication antenna that operates as a resonance coil and is not connected to the communication circuit 210, and the reception coil is connected to the communication circuit 210.
  • the configuration and operation of the resonance frequency switching unit are the same as those applied to the non-contact communication unit.
  • FIG. 11 shows a circuit configuration diagram of the fourth embodiment.
  • the resonance frequency switching unit 1160 is connected to one end of the coil of the non-contact power receiving antenna 632 that is a coil antenna.
  • the present embodiment is different from the first embodiment in that it includes a power supply line 1164 connected to the power supply circuit 220 and a switch 1165 that connects one of the power supply line 1162 and the power supply line 1163 to the power supply line 1164.
  • the resonance frequency of the non-contact power receiving antenna 632 when connected to the power supply line 1164 via the power supply line 1162 is a frequency used for non-contact power transmission and is connected to the power supply line 1164 via the power supply line 1163
  • the resonance frequency of the non-contact power receiving antenna 632 is set to be a frequency used for wireless communication. That is, the inductance of the antenna coil is changed by changing the number of turns of the coil acting as an antenna, and the resonance frequency of the antenna is switched.
  • the capacitor 1190 is a resonance capacitor.
  • the resonance frequency switching unit 1160 switches the switch 1165 so that the power supply line 1163 is connected to the power supply line 1164. Accordingly, the wireless communication antenna 631 and the non-contact power receiving antenna 632 resonate at a frequency used for wireless communication, and wireless communication can be performed without interference by the non-contact power receiving antenna 632.
  • the resonance frequency switching unit 1160 switches the switch 1165 so that the feed line 1162 is connected to the feed line 1164. Thereby, the non-contact power receiving antenna resonates at a frequency used for wireless power transmission and can perform non-contact power reception.
  • the mounting area can be reduced.
  • the optimal coil length can be easily selected for each of the non-contact power transmission frequency and the wireless communication frequency using the non-contact power receiving antenna and the changeover switch. And the range of selection of frequencies for wireless communication is widened.
  • the resonance frequency switching unit 660 described in the first embodiment and the resonance frequency switching unit 1160 described in the third embodiment can be used together.
  • the wireless communication antenna 631 may be disposed outside the non-contact power receiving antenna 632.
  • FIG. 12 shows a circuit configuration diagram of the fifth embodiment.
  • a capacitor 1271 connected between the wireless communication antenna 631 and the communication circuit 210 and the capacitor 1271
  • a resonance frequency switching unit 1270 having a switch 1272 that connects the wireless communication antenna 631 and the communication circuit 210 without using the antenna is provided.
  • the resonance frequency of the wireless communication antenna 631 when connected to the communication circuit 210 via the capacitor 1271 becomes a frequency used for non-contact power transmission, and wireless communication when connected to the communication circuit 210 without passing through the capacitor 1271
  • the resonance frequency of the antenna 631 is set to be a frequency used for wireless communication.
  • the capacitor 1290 is a resonance capacitor.
  • the resonance frequency switching unit 1270 does not pass the capacitor 1271 so that the wireless communication antenna 631 is connected to the communication circuit 210.
  • Switch 1272 is switched. Accordingly, the wireless communication antenna 631 can resonate at a frequency used for wireless communication and perform wireless communication.
  • the switch 1272 is switched so that the wireless communication antenna 631 is turned on via the capacitor 1271. Accordingly, the wireless communication antenna 631 and the non-contact power receiving antenna 632 resonate at a frequency used for wireless power transmission, and can perform non-contact power reception without interference by the wireless communication antenna 631.
  • FIG. 13 is a circuit configuration diagram of the sixth embodiment.
  • the resonance frequency switching unit 1370 is connected to one end of the coil of the wireless communication antenna 631 that is a resonance coil and is connected to the communication circuit 210.
  • the resonance frequency of the wireless antenna 631 which is a resonance coil when connected to the signal line 1374 via the signal line 1372 and the capacitor 1375, becomes a frequency used for non-contact power transmission, and is transmitted to the signal line 1374 via the signal line 1373.
  • the resonance frequency of the wireless communication antenna when connected is set to be a frequency used for wireless communication.
  • the resonance frequency switching unit 1370 switches the switch 1376 to be connected to the signal line 1374 via the signal line 1373. . Accordingly, the wireless communication antenna 631 can resonate at a frequency used for wireless communication and perform wireless communication.
  • the resonance frequency switching unit 1370 is connected to the signal line 1374 via the second signal line 1372 and the capacitor 1375. Switch 1376 is switched as follows. Accordingly, the wireless communication antenna 631 and the non-contact power receiving antenna 632 resonate at a frequency used for wireless power transmission, and can perform non-contact power reception without interference by the wireless communication antenna.
  • the wireless communication antenna 631 and the resonance frequency switching unit 1370 are used to wirelessly transmit the non-contact power transmission frequency and the wireless communication frequency. Since the optimum coil length can be selected in resonance with the capacitor 1375 connected to the communication antenna 631, there is an effect that the range of selection of the frequency for non-contact power transmission and the frequency for wireless communication is widened.
  • the resonance frequency switching unit 1270 of the fifth embodiment can be used together.
  • FIG. 14 shows a circuit configuration diagram of the seventh embodiment.
  • a resonance frequency switching unit 1270 connected to the wireless communication circuit of the fifth embodiment is added to the configuration of the first embodiment.
  • the contactless power receiving device 120 includes a contactless power receiving circuit 200, a communication circuit 210, and a power supply circuit 220.
  • the non-contact power receiving circuit 200 includes an antenna unit 630, and the antenna unit 630 includes a wireless communication antenna 631 and a non-contact power receiving antenna 632.
  • the non-contact power receiving circuit 200 includes a detection circuit 240 that detects whether or not power is being received and outputs the result, and a resonance frequency switching unit 660 for the non-contact power receiving antenna 632.
  • a resonance frequency switching unit 1270 having a capacitor 1271 connected between the wireless communication antenna 631 and the communication circuit 210 and a switch 1272 that connects the wireless communication antenna 631 and the communication circuit 210 without using the capacitor 1271.
  • the resonance frequency of the wireless communication antenna 631 when connected to the communication circuit 210 via the capacitor 1271 is a frequency used for non-contact power transmission, and wireless communication when connected to the communication circuit 210 without passing through the capacitor 1271
  • the resonance frequency of the antenna 621 is set to be a frequency used for wireless communication.
  • a shunt circuit 670 is provided between the wireless communication antenna 631 and the communication circuit 210.
  • the wireless communication antenna 631 is connected to two signal lines for connection to the communication circuit 210, and a shunt circuit 670 is connected between the wireless communication antenna 631 and the communication circuit 210 via these two signal lines.
  • the terminal of the wireless communication antenna coil 631 is opened by turning off the switch 671 in the shunt circuit 670.
  • the resonant frequency switching unit 1270 for the wireless communication antenna 631 switches the switch 1272 so that the wireless communication antenna 631 is conducted to the communication circuit 210 without using the capacitor 1271.
  • the resonance frequency switching unit 660 for the non-contact power receiving antenna 632 turns off the switch 663, disconnects the capacitor 662, and makes the non-contact power receiving antenna 632 and the power supply circuit 220 conductive through the capacitor 661.
  • the non-contact power receiving antenna 632 resonates at a frequency used for wireless communication.
  • the shunt circuit 670 shorts between the coil terminals of the wireless communication antenna 631 by turning on the switch 671.
  • the resonance frequency switching unit 1270 for the wireless communication antenna 631 switches the switch 1272 so that the wireless communication antenna 631 is conducted via the capacitor 1271.
  • the resonance frequency switching unit 660 for the non-contact power receiving antenna 632 turns on the switch 663 and causes the non-contact power receiving antenna 632 and the power supply circuit 220 to conduct through the capacitor 661 and the capacitor 662 connected in parallel.
  • the non-contact power receiving antenna 632 resonates at a frequency used for wireless power transmission.
  • the wireless communication antenna and the non-contact power receiving antenna are arranged close to each other, the wireless communication antenna and the non-contact power receiving antenna are combined at the time of wireless communication, thereby degrading the communication sensitivity.
  • the wireless communication antenna and the non-contact power receiving antenna can be combined to eliminate the deterioration of power receiving efficiency.
  • the resonance frequency switching unit 1160 of the fourth embodiment and the resonance frequency switching unit 1370 of the sixth embodiment can be used together.
  • FIG. 15 is a circuit diagram of the eighth embodiment.
  • the present embodiment is a configuration that does not include the resonance frequency switching unit 660 in the configuration of the first embodiment. Neither the radio antenna 631 nor the non-contact power receiving antenna 632 has a resonance frequency switching unit. The rest is the same as in the first embodiment.
  • the contactless power receiving device 120 includes a contactless power receiving circuit 200, a communication circuit 210, and a power supply circuit 220.
  • the non-contact power receiving circuit 200 includes an antenna unit 630, and the antenna unit 630 includes a wireless communication antenna 631 and a non-contact power receiving antenna 632.
  • the non-contact power receiving circuit 200 further includes a detection circuit 240 that detects whether power is being received and outputs the result.
  • the wireless communication antenna 631 is connected to two signal lines for connection to the communication circuit 210, and a shunt circuit 670 is connected between the wireless communication antenna 631 and the communication circuit 210 via these two signal lines.
  • the terminal of the wireless communication antenna coil 631 is opened by turning off the switch 671 in the shunt circuit 670.
  • the shunt circuit 670 turns on (closes) the switch 671 so that the coil terminals of the wireless communication antenna 631 are connected. Short circuit.
  • a current flows due to the induced electromotive force inside the wireless communication antenna coil 611, but a large current flows in a loop path formed by being short-circuited by the switch 671, and the current supply to the communication circuit 210 is suppressed. 210 can be prevented from being destroyed by excessive voltage.
  • the resonance frequency of the non-contact power receiving antenna when switching the resonance frequency of the non-contact power receiving antenna to the frequency used for wireless communication at the time of wireless communication, it is necessary to completely match the frequency used for wireless communication. Absent. In some cases, the sensitivity deterioration of wireless communication is less when the frequency slightly higher than the frequency used for wireless communication or the frequency slightly lower than the frequency used for wireless communication is set as the frequency used for wireless communication. is there. Similarly, when the resonance frequency of the wireless communication antenna is switched to the frequency used for contactless power transmission during contactless power reception, it is not necessary to completely match the frequency used for contactless power transmission.
  • Non-contact power reception with a frequency slightly higher than the frequency used for non-contact power transmission or a frequency slightly lower than the frequency used for non-contact power transmission than with the frequency used for non-contact power transmission There are cases in which there is little sensitivity degradation. This will be described with reference to FIG.
  • FIG. 17 shows a resonance state of wireless communication or non-contact power transmission.
  • FIG. 17A shows a single peak characteristic
  • FIG. 17B shows a double peak characteristic.
  • switching the resonance frequency of the non-contact power receiving antenna in the present invention to a frequency used for wireless communication and switching the resonance frequency of the wireless communication antenna to a frequency used for non-contact power transmission at the time of non-contact power reception are In addition to switching to a frequency used for wireless communication or non-contact power transmission accurately, switching to a frequency that resonates near that frequency is included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is a non-contact power reception apparatus that is provided with both antennas for communication and non-contact power reception close to each other, said antennas preventing a communication circuit from breaking, and having reduced interference between the antennas. This non-contact power reception circuit is provided with: a wireless communication unit; a non-contact power reception unit that receives, in a con-contact manner, power transmitted from the power transmission side in a wireless manner; a detection circuit, which detects whether power is being received and/or communication is being performed, and which outputs a result; and at least one resonant frequency switching unit, which switches the resonant frequency of the wireless communication unit and/or a resonant frequency of the non-contact power reception unit on the basis of the output from the detection circuit.

Description

非接触受電回路、非接触受電装置及び非接触送受電装置Non-contact power receiving circuit, non-contact power receiving device, and non-contact power transmitting / receiving device
 本発明は、非接触電力伝送と通信を行なう場合の非接触受電装置に関し、特に通信用と非接触電力伝送用で使用周波数が異なり、通信用と非接触受電用の両方のアンテナを近接して備える技術に関する。 The present invention relates to a non-contact power receiving apparatus for communication with non-contact power transmission, and in particular, the frequency used for communication and non-contact power transmission is different, and both antennas for communication and non-contact power reception are placed close to each other. It relates to the technology to prepare.
 最近の携帯端末は、電子マネー機能や電子決算機能等を実現するFeliCa(登録商標)、NFC(Near Field Communication)などの非接触型ICカードの通信機能を有している。一方、非接触電力伝送においてはワイヤレスパワーコンソーシアム(Wireless Power Consortium)のQi(チー)が国際標準規格になり、携帯端末などを給電台に置くだけで充電できる非接触電力伝送による給電台が製品化されている。 Recent mobile terminals have a communication function of non-contact type IC cards such as FeliCa (registered trademark) and NFC (Near Field Communication) that realize an electronic money function and an electronic settlement function. On the other hand, in wireless power transmission, wireless power consortium Qi has become an international standard, and a power supply base using contactless power transmission that can be charged simply by placing a mobile terminal on the power supply base has been commercialized. Has been.
 非接触電力伝送装置の一例としては、例えば、特許文献1に開示されたものがある。この文献に記載された非接触電力伝送装置1610aのブロック図を図16に示す。所定の周波数で共鳴して電力を蓄積できる共鳴アンテナ22aと、共鳴アンテナ1622aに蓄積された電力を取り出すための電力授受アンテナ24aとを備え、電力伝送アンテナ1620aは受電回路1630に接続される。通信アンテナ1640は、電力伝送アンテナ1620aに囲まれている。このような配置形態の場合、非接触電力伝送装置1610a全体としては省スペース化が図られることとなるが、電力伝送アンテナ1620aと通信アンテナ1640との間の結合係数が大きい。したがって、電力伝送が行われている際には、通信回路1660が予定する電流を上回る電流が通信回路1660に流れるため通信回路1660を保護する必要がある。この形態とは逆に電力伝送アンテナ1620aが通信アンテナ1640に囲まれている場合も同様である。 An example of a non-contact power transmission device is disclosed in Patent Document 1, for example. A block diagram of the non-contact power transmission device 1610a described in this document is shown in FIG. The power transmission antenna 1620a is connected to a power reception circuit 1630. The power transmission antenna 1620a includes a resonance antenna 22a that can resonate at a predetermined frequency and accumulate power and a power transfer antenna 24a that extracts power accumulated in the resonance antenna 1622a. Communication antenna 1640 is surrounded by power transmission antenna 1620a. In such an arrangement, the entire contactless power transmission device 1610a can save space, but the coupling coefficient between the power transmission antenna 1620a and the communication antenna 1640 is large. Therefore, when power transmission is performed, current exceeding the current planned by the communication circuit 1660 flows through the communication circuit 1660, so that the communication circuit 1660 needs to be protected. The same applies to the case where the power transmission antenna 1620a is surrounded by the communication antenna 1640, contrary to this embodiment.
 本従来例においては、電力伝送回路にて伝送する電力レベルに基づいて、電力伝送の際に通信アンテナ1640と通信回路1660との間を遮断するよう制御回路1670が遮断回路1650を制御する。制御回路1670は、伝送される電力レベルが所定の閾値を超えたことにより電力伝送が開始したものとして、伝送される電力から通信回路1660を保護するように遮断回路1650を制御している。遮断回路としては、半導体スイッチ、機械的スイッチ、ないし、通信アンテナ1640から通信回路1660に至る系にバンドパスフィルタや共振回路を付加して電力伝送に伴う交流電力を遮断することが記載されている。 In this conventional example, based on the power level transmitted by the power transmission circuit, the control circuit 1670 controls the cutoff circuit 1650 so as to cut off the communication antenna 1640 and the communication circuit 1660 during power transmission. The control circuit 1670 controls the cutoff circuit 1650 to protect the communication circuit 1660 from the transmitted power, assuming that power transmission has started when the transmitted power level exceeds a predetermined threshold. As a cutoff circuit, it is described that a bandpass filter or a resonance circuit is added to a system from a semiconductor switch, a mechanical switch, or a communication antenna 1640 to a communication circuit 1660 to cut off AC power accompanying power transmission. .
特許第5324008号Patent No. 5324008
 非接触受電装置に搭載されるアンテナは、非接触受電装置の小型化のためにアンテナの実装スペースの低減が要求される。しかし、非接触受電装置における無線通信アンテナと非接触受電アンテナを接近して配置しようとすると、電力伝送アンテナと通信アンテナとの間の結合係数が大きくなるため、その電力が受電装置の無線通信アンテナでも受電され、無線通信回路に大きな電流が流れることにより非接触受電装置の無線通信用回路を壊してしまうおそれがある。さらに、通信中において非接触受電アンテナにも誘導起電力により一定の電流が流れるため、その反作用として非接触受電アンテナから電磁界が生じ、無線通信アンテナへ干渉を引き起こす。電力伝送の場合には、反対に無線通信アンテナから生じる電磁界により非接触受電アンテナへの干渉が発生する。無線通信と非接触電力伝送に使用される周波数が異なる場合には、このお互いのアンテナ同士の干渉により、通信感度及び給電効率の劣化を招くという問題がある。 The antenna mounted on the non-contact power receiving device is required to reduce the mounting space of the antenna in order to downsize the non-contact power receiving device. However, when the wireless communication antenna and the non-contact power receiving antenna in the non-contact power receiving apparatus are arranged close to each other, the coupling coefficient between the power transmission antenna and the communication antenna increases, and thus the power is transmitted to the wireless communication antenna of the power receiving apparatus. However, there is a possibility that the wireless communication circuit of the non-contact power receiving apparatus may be broken by receiving a power and flowing a large current through the wireless communication circuit. In addition, since a constant current flows through the non-contact power receiving antenna due to the induced electromotive force during communication, an electromagnetic field is generated from the non-contact power receiving antenna as a reaction to cause interference to the wireless communication antenna. In the case of power transmission, on the contrary, an electromagnetic field generated from the wireless communication antenna causes interference with the non-contact power receiving antenna. When the frequencies used for wireless communication and non-contact power transmission are different, there is a problem that the communication sensitivity and power supply efficiency are deteriorated due to the interference between the antennas.
 特許文献1では、非接触受電装置の無線通信アンテナと無線通信用回路の間を遮断することで無線通信用回路を保護する方法を開示する。しかし、遮断回路によって大電流が通信回路に流れることを防止することはできたとしても、漏れ電流が流れることを完全に防ぐことは難しい。このため漏れ電流が無線通信アンテナを流れることによる非接触受電アンテナへの干渉を防ぐことはできない。また、特許文献1記載の遮断回路を用いた構成は、通信中における非接触受電アンテナによる無線通信アンテナへの干渉の問題に対しては何ら寄与しない。このため、非接触受電装置における無線通信アンテナと非接触受電アンテナのアンテナ同士の干渉は残ったままであり、これによる通信感度の劣化や給電効率の劣化を防ぐことはできない。 Patent Document 1 discloses a method of protecting a wireless communication circuit by blocking between the wireless communication antenna of the non-contact power receiving apparatus and the wireless communication circuit. However, even if it is possible to prevent a large current from flowing into the communication circuit by the interruption circuit, it is difficult to completely prevent the leakage current from flowing. For this reason, interference with the non-contact power receiving antenna due to leakage current flowing through the wireless communication antenna cannot be prevented. In addition, the configuration using the cutoff circuit described in Patent Document 1 does not contribute at all to the problem of interference with the wireless communication antenna by the non-contact power receiving antenna during communication. For this reason, interference between the antennas of the wireless communication antenna and the non-contact power receiving antenna in the non-contact power receiving apparatus remains, and it is not possible to prevent deterioration of communication sensitivity and power supply efficiency due to this.
 本発明は上記の課題に鑑みてなされたものであり、以下のような特徴を有している。すなわち本発明の非接触受電回路は、無線通信部と、送電側から無線伝送された電力を非接触で受電する非接触受電部と、受電中であるか否か及び通信中であるか否かの少なくとも一つを検出し、その結果を出力する検出回路と、前記検出回路の出力に基づいて、前記無線通信部の共振周波数及び前記非接触受電部の共振周波数のうち少なくとも一つを切り替える少なくとも一つの共振周波数切替部とを備える。 The present invention has been made in view of the above problems, and has the following characteristics. That is, the non-contact power receiving circuit of the present invention includes a wireless communication unit, a non-contact power receiving unit that wirelessly receives power wirelessly transmitted from the power transmission side, whether or not power is being received, and whether or not communication is being performed. A detection circuit that detects at least one of the output and outputs the result, and at least switches between a resonance frequency of the wireless communication unit and a resonance frequency of the non-contact power reception unit based on the output of the detection circuit And a single resonance frequency switching unit.
 本発明は、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記少なくとも一つの共振周波数切替部は、前記非接触受電部の共振周波数及び前記無線通信部の共振周波数のうち少なくとも一つを無線通信に使用され共振となる周波数に切り替え、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記共振周波数切替部は、前記非接触受電部の共振周波数及び前記無線通信部の共振周波数のうち少なくとも一つを非接触電力伝送に使用され共振となる周波数に切り替えてもよい。 In the present invention, when the detection circuit does not output the detection result that the non-contact power reception unit is receiving power or when the detection circuit outputs the detection result that the wireless communication unit is communicating, The at least one resonance frequency switching unit switches at least one of a resonance frequency of the non-contact power reception unit and a resonance frequency of the wireless communication unit to a frequency that is used for wireless communication and becomes resonant, and the non-contact power reception unit When the detection circuit outputs a detection result that power is being received or when the detection circuit does not output a detection result that the wireless communication unit is communicating, the resonance frequency switching unit At least one of the resonance frequency of the power receiving unit and the resonance frequency of the wireless communication unit may be switched to a frequency that is used for non-contact power transmission and becomes resonant.
 また、前記少なくとも一つの共振周波数切替部は、前記検出回路からの出力に基づいて前記非接触受電部または前記無線通信部のコンデンサ容量、インダクタンス、磁界及び電界のうちの少なくとも一つを変更することで共振周波数を切り替える構成としてもよい。 The at least one resonance frequency switching unit may change at least one of a capacitor capacity, an inductance, a magnetic field, and an electric field of the non-contact power receiving unit or the wireless communication unit based on an output from the detection circuit. It is good also as a structure which switches a resonant frequency by.
 さらに、本発明の無線通信部は、当該無線通信部を介して相手方通信装置と通信を行う通信回路と接続するための少なくとも二つの信号線に接続され、前記非接触受電回路は、さらに前記無線通信部と前記通信回路との間に接続されたシャント回路を備え、前記検出回路の出力に基づいて、前記シャント回路は前記少なくとも二つの信号線間を短絡ないし開放することができる。 Furthermore, the wireless communication unit of the present invention is connected to at least two signal lines for connecting to a communication circuit that communicates with the counterpart communication device via the wireless communication unit, and the non-contact power receiving circuit further includes the wireless communication unit. A shunt circuit connected between the communication unit and the communication circuit is provided, and the shunt circuit can short-circuit or open the at least two signal lines based on the output of the detection circuit.
 シャント回路は、前記少なくとも二つの信号線間を短絡または開放するための第1のスイッチを備え、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記シャント回路は第1のスイッチをオンにして前記少なくとも二つの信号線間を短絡し、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記シャント回路は第1のスイッチをオフにして前記少なくとも二つの信号線間の接続を開放するようにしてもよい。 The shunt circuit includes a first switch for short-circuiting or opening between the at least two signal lines, and when the detection circuit outputs a detection result that the non-contact power reception unit is receiving power or the wireless When the detection circuit does not output a detection result that the communication unit is communicating, the shunt circuit turns on the first switch to short-circuit between the at least two signal lines, and the non-contact power reception unit When the detection circuit does not output a detection result indicating that power is being received or when the detection circuit outputs a detection result that the wireless communication unit is communicating, the shunt circuit turns off the first switch. Thus, the connection between the at least two signal lines may be released.
 少なくとも一つの共振周波数切替部は、前記非接触受電部に接続された第1のコンデンサ及び当該第1のコンデンサに並列に接続された第2のスイッチと第2のコンデンサを含み、前記少なくとも一つの共振周波数切替部は、第2のスイッチをオンにして、第1のコンデンサ及び並列に接続された第2のコンデンサを介して前記非接触受電部と当該非接触受電部で受電された電力を供給する電源回路とを導通させて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の一方の周波数に前記非接触受電部の共振周波数を切り替え、第2のスイッチをオフにして第2のコンデンサを切断状態にして、第1のコンデンサを介して前記非接触受電部と前記電源回路とを導通させて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の他方の周波数に前記非接触受電部の共振周波数を切り替えるものであり、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記少なくとも一つの共振周波数切替部は、無線通信に使用され共振となる周波数となるように前記非接触受電部の共振周波数を切り替え、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記少なくとも一つの共振周波数切替部は、非接触電力伝送に使用され共振となる周波数となるように前記非接触受電部の共振周波数を切り替えてもよい。 The at least one resonance frequency switching unit includes a first capacitor connected to the non-contact power receiving unit, a second switch and a second capacitor connected in parallel to the first capacitor, and the at least one resonance frequency switching unit includes: The resonance frequency switching unit turns on the second switch, and supplies the power received by the non-contact power receiving unit and the non-contact power receiving unit via the first capacitor and the second capacitor connected in parallel. And switching the resonance frequency of the non-contact power receiving unit to one of the frequency used for wireless communication and the frequency used for non-contact power transmission, and turning off the second switch The second capacitor is disconnected, and the non-contact power receiving unit and the power supply circuit are made conductive through the first capacitor, so that the frequency used for wireless communication and the non-contact power transmission can be transmitted. When the resonance frequency of the non-contact power receiving unit is switched to the other frequency used for the non-contact power receiving unit, and the detection circuit does not output a detection result that the non-contact power receiving unit is receiving power, or the wireless communication When the detection circuit outputs a detection result that the communication unit is communicating, the at least one resonance frequency switching unit is used for wireless communication so that the resonance of the non-contact power reception unit is set to a resonance frequency. If the detection circuit outputs the detection result that the non-contact power receiving unit is receiving power or the detection circuit does not output the detection result that the wireless communication unit is communicating, the frequency is switched. The at least one resonance frequency switching unit may switch a resonance frequency of the non-contact power receiving unit so as to be a frequency that is used for non-contact power transmission and becomes resonant.
 無線通信に使用される周波数と非接触電力伝送に使用される周波数とのうち高い方の周波数を使用する無線通信部ないし非接触受電部を外側で囲むように、低い方の周波数を使用する無線通信部ないし非接触受電部を配置してもよい。 Radio using a lower frequency so as to surround a radio communication unit or a non-contact power receiving unit which uses a higher one of a frequency used for radio communication and a frequency used for non-contact power transmission. A communication unit or a non-contact power receiving unit may be arranged.
 非接触受電部を外側で囲むように前記無線通信部を配置することができる。 The wireless communication unit can be arranged so as to surround the non-contact power receiving unit on the outside.
 無線通信部を外側で囲むように前記非接触受電部を配置されてもよい。 The non-contact power receiving unit may be arranged so as to surround the wireless communication unit on the outside.
 非接触受電回路はさらに前記非接触受電部で受電された電力を供給する電源回路に接続される受電コイルを備え、非接触受電部は共鳴コイルであって、当該非接触受電部で受電された電力を供給する電源回路に接続されておらず、少なくとも一つの共振周波数切替部は、前記共鳴コイルに接続された第3及び第4のコンデンサと、第4のコンデンサの接続を開閉する第3のスイッチと、を備え、第3及び第4のコンデンサは並列に接続され、前記少なくとも一つの共振周波数切替部は、第3のスイッチを開いて第4のコンデンサを切断状態にして、第3のコンデンサを介して前記共鳴コイルを導通させて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の一方の周波数に前記非接触受電部の共振周波数を切り替え、第3のスイッチを閉じて、前記並列に接続された第3のコンデンサ及び第4のコンデンサを介して前記共鳴コイルを導通さて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の他方の周波数に前記非接触受電部の共振周波数を切り替えるものであり、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記少なくとも一つの共振周波数切替部は、無線通信に使用され共振となる周波数となるように前記非接触受電部の共振周波数を切り替え、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記共振周波数切替部は、非接触電力伝送に使用され共振となる周波数となるように前記非接触受電部の共振周波数を切り替えるように構成してもよい。 The non-contact power receiving circuit further includes a power receiving coil connected to a power supply circuit that supplies electric power received by the non-contact power receiving unit, and the non-contact power receiving unit is a resonance coil and is received by the non-contact power receiving unit. At least one resonance frequency switching unit is not connected to a power supply circuit that supplies power, and the third and fourth capacitors connected to the resonance coil and a third capacitor that opens and closes a connection between the fourth capacitor and the third capacitor. And the third and fourth capacitors are connected in parallel, and the at least one resonance frequency switching unit opens the third switch to disconnect the fourth capacitor, thereby The resonance coil is turned on to switch the resonance frequency of the non-contact power reception unit to one of a frequency used for wireless communication and a frequency used for non-contact power transmission, Is closed, and the resonance coil is made conductive through the third capacitor and the fourth capacitor connected in parallel, and the other one of the frequency used for wireless communication and the frequency used for non-contact power transmission. The resonance frequency of the non-contact power receiving unit is switched to the frequency of the case, and when the detection circuit does not output a detection result that the non-contact power receiving unit is receiving power or the wireless communication unit is communicating When the detection circuit outputs the detection result, the at least one resonance frequency switching unit switches the resonance frequency of the non-contact power receiving unit so as to be a frequency that is used for wireless communication and becomes resonant. When the detection circuit outputs a detection result that the power receiving unit is receiving power or when the detection circuit does not output the detection result that the wireless communication unit is communicating The resonance frequency switching section is used in non-contact power transmission may be configured to switch the resonance frequency of the non-contact power receiving unit such that the frequency at which resonance.
 非接触受電部が共鳴コイルであり、前記共振周波数切替部は、前記共鳴コイルの一端に接続された、前記非接触受電部で受電された電力を供給する電源回路に接続される第1の給電線と、前記共鳴コイルの他端に接続された第2の給電線と、前記共鳴コイルの一端と他端の間に接続された第3の給電線と、前記電源回路に接続される第4の給電線と、第2の給電線及び第3の給電線のいずれかを第4の給電線に接続する第4のスイッチと、を備え、前記少なくとも一つの共振周波数切替部は、第2の給電線が第4の給電線に接続されるように第4のスイッチを切り替えて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の一方の周波数に前記非接触受電部の共振周波数を切り替え、第3の給電線が第4の給電線に接続されるように第4のスイッチを切り替えて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の他方の周波数に前記非接触受電部の共振周波数を切り替えるものであり、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記少なくとも一つの共振周波数切替部は、無線通信に使用され共振となる周波数となるように前記非接触受電部の共振周波数を切り替え、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記少なくとも一つの共振周波数切替部は、非接触電力伝送に使用され共振となる周波数となるように前記非接触受電部の共振周波数を切り替えることにしてもよい。 The non-contact power reception unit is a resonance coil, and the resonance frequency switching unit is connected to one end of the resonance coil and is connected to a power supply circuit that supplies power received by the non-contact power reception unit. An electric wire, a second feed line connected to the other end of the resonance coil, a third feed line connected between one end and the other end of the resonance coil, and a fourth connected to the power circuit. And a fourth switch for connecting any one of the second and third feed lines to the fourth feed line, and the at least one resonance frequency switching unit includes a second switch The fourth switch is switched so that the feeder line is connected to the fourth feeder line, and the frequency of the contactless power receiving unit is set to one of the frequency used for wireless communication and the frequency used for contactless power transmission. Switch the resonance frequency and connect the 3rd feeder to the 4th feeder The fourth switch is switched so that the resonance frequency of the non-contact power receiving unit is switched to the other frequency of the frequency used for wireless communication and the frequency used for non-contact power transmission. When the detection circuit does not output a detection result that the power reception unit is receiving power or when the detection circuit outputs a detection result that the wireless communication unit is communicating, the at least one resonance frequency switching The unit switches the resonance frequency of the non-contact power receiving unit to be a frequency used for wireless communication and becomes resonant, and when the detection circuit outputs a detection result that the non-contact power receiving unit is receiving power or When the detection circuit does not output a detection result that the wireless communication unit is communicating, the at least one resonance frequency switching unit is used for non-contact power transmission and The may be possible to switch the resonance frequency of the non-contact power receiving unit such that the frequency that.
 少なくとも一つの共振周波数切替部は、前記無線通信部に接続された第5のコンデンサと当該第5のコンデンサを介さず前記無線通信部を当該無線通信部を介して相手方通信装置と通信を行う通信回路に接続する第5のスイッチとを備え、前記少なくとも一つの共振周波数切替部は、第5のコンデンサを介さないで前記無線通信部が導通するように第5のスイッチを切り替えて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の一方の周波数に前記無線通信部の共振周波数を切り替え、第5のコンデンサを介して前記無線通信部が導通するように第5のスイッチを切り替え、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の他方の周波数に前記無線通信部の共振周波数を切り替えるものであり、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記少なくとも一つの共振周波数切替部は、無線通信に使用され共振となる周波数となるように前記無線通信部の共振周波数を切り替え、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記少なくとも一つの共振周波数切替部は、非接触電力伝送に使用され共振となる周波数となるように前記無線通信部の共振周波数を切り替えてもよい。 The at least one resonance frequency switching unit communicates the fifth communication unit connected to the wireless communication unit and the counterpart communication device via the wireless communication unit without using the fifth capacitor. A fifth switch connected to the circuit, wherein the at least one resonance frequency switching unit switches the fifth switch so that the wireless communication unit becomes conductive without passing through a fifth capacitor, thereby performing wireless communication. The resonance frequency of the wireless communication unit is switched to one of the frequency used and the frequency used for non-contact power transmission, and the fifth switch is turned on so that the wireless communication unit becomes conductive through a fifth capacitor. Switching, switching the resonance frequency of the wireless communication unit to the other frequency of the frequency used for wireless communication and the frequency used for contactless power transmission, When the detection circuit does not output a detection result that the non-contact power receiving unit is receiving power or when the detection circuit outputs a detection result that the wireless communication unit is communicating, the at least one The resonance frequency switching unit switches the resonance frequency of the wireless communication unit so that the resonance frequency is used for wireless communication, and the detection circuit outputs a detection result that the non-contact power reception unit is receiving power. Or when the detection circuit does not output a detection result indicating that the wireless communication unit is communicating, the at least one resonance frequency switching unit is used for non-contact power transmission and has a resonance frequency. The resonance frequency of the wireless communication unit may be switched.
 無線通信部が共鳴コイルであり、前記少なくとも一つの共振周波数切替部は、前記共鳴コイルの一端に接続された、前記無線通信部を介して相手方通信装置と通信を行う通信回路に接続される第1の信号線と、前記共鳴コイルの他端に接続され、第6のコンデンサを直列に接続した第2の信号線と、前記共鳴コイルの一端と他端の間に接続された第3の信号線と、前記通信回路に接続される第4の信号線と、第2の信号線及び第3の信号線のいずれかを第4の信号線に接続する第6のスイッチと、を備え、前記少なくとも一つの共振周波数切替部は、第2の信号線を介して第4の信号線に接続されるように第6のスイッチを切り替えて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の一方の周波数に前記無線通信部の共振周波数を切り替え、第3の信号線を介して第4の信号線に接続されるように第6のスイッチを切り替えて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の他方の周波数に前記無線通信部の共振周波数を切り替えるものであり、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記少なくとも一つの共振周波数切替部は、無線通信に使用され共振となる周波数となるように前記無線通信部の共振周波数を切り替え、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記少なくとも一つの共振周波数切替部は、非接触電力伝送に使用され共振となる周波数となるように前記無線通信部の共振周波数を切り替えることもできる。 The wireless communication unit is a resonance coil, and the at least one resonance frequency switching unit is connected to a communication circuit connected to one end of the resonance coil and communicating with the counterpart communication device via the wireless communication unit. 1 signal line, a second signal line connected to the other end of the resonance coil, and a sixth capacitor connected in series, and a third signal connected between one end and the other end of the resonance coil A fourth signal line connected to the communication circuit, and a sixth switch for connecting any one of the second signal line and the third signal line to the fourth signal line, At least one resonance frequency switching unit switches the sixth switch so that it is connected to the fourth signal line via the second signal line, and is used for the frequency used for wireless communication and non-contact power transmission One of the frequencies to be transmitted to the wireless communication unit The resonance frequency is switched, the sixth switch is switched so as to be connected to the fourth signal line via the third signal line, and the frequency used for wireless communication and the frequency used for contactless power transmission When the resonance frequency of the wireless communication unit is switched to the other frequency and the detection circuit does not output a detection result that the non-contact power reception unit is receiving power or the wireless communication unit is communicating When the detection circuit outputs the detection result, the at least one resonance frequency switching unit switches the resonance frequency of the wireless communication unit so that the resonance frequency is used for wireless communication, and the contactless power reception When the detection circuit outputs a detection result that the unit is receiving power, or when the detection circuit does not output the detection result that the wireless communication unit is communicating, the at least One of the resonance frequency switching section is used in non-contact power transmission can be switched to a resonance frequency of the wireless communication unit so that the frequency at which resonance.
 本発明のさらなる実施形態においては、非接触受電回路は、無線通信部と、送電側から無線伝送された電力を非接触で受電する非接触受電部と、受電中であるか否か及び通信中であるか否かの少なくとも一つを検出し、その結果を出力する検出回路と、当該無線通信部を介して相手方通信装置と通信を行う通信回路と前記無線通信部との間に接続されたシャント回路を備え、
 前記無線通信部は、前記通信回路と接続するための少なくとも二つの信号線に接続され、前記検出回路の出力に基づいて、前記シャント回路は前記少なくとも二つの信号線間を短絡ないし開放することを特徴とする。
In a further embodiment of the present invention, the contactless power receiving circuit includes a wireless communication unit, a contactless power receiving unit that receives power wirelessly transmitted from the power transmission side in a contactless manner, whether or not power is being received, and during communication. A detection circuit that detects at least one of whether or not and outputs the result, and a communication circuit that communicates with the counterpart communication device via the wireless communication unit and the wireless communication unit With shunt circuit,
The wireless communication unit is connected to at least two signal lines for connecting to the communication circuit, and the shunt circuit short-circuits or opens between the at least two signal lines based on the output of the detection circuit. Features.
 前記シャント回路は、前記少なくとも二つの信号線間を短絡または開放するための第1のスイッチを備え、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記シャント回路は第7のスイッチをオンにして前記少なくとも二つの信号線間を短絡し、前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記シャント回路は第7のスイッチをオフにして前記少なくとも二つの信号線間の接続を開放することができる。 The shunt circuit includes a first switch for short-circuiting or opening between the at least two signal lines, and when the detection circuit outputs a detection result that the non-contact power reception unit is receiving power or the When the detection circuit does not output a detection result that the wireless communication unit is communicating, the shunt circuit turns on a seventh switch to short-circuit the at least two signal lines, and the non-contact power receiving unit When the detection circuit does not output the detection result that the wireless communication unit is receiving power or when the detection circuit outputs the detection result that the wireless communication unit is communicating, the shunt circuit sets the seventh switch. It can be turned off to open the connection between the at least two signal lines.
 また、本発明の非接触受電装置は、前述の非接触受電回路と、無線通信部を介して相手方通信装置と通信を行う通信回路と、非接触受電部で受電された電力を供給する電源回路とを備えることを特徴とする。 The non-contact power receiving device of the present invention includes the above-described non-contact power receiving circuit, a communication circuit that communicates with the counterpart communication device via a wireless communication unit, and a power supply circuit that supplies power received by the non-contact power receiving unit It is characterized by providing.
 さらに、本発明の非接触送受電装置は前述の非接触受電装置と、非接触受電装置に非接触で電力を送電する非接触送電装置とを備える。 Furthermore, the non-contact power transmission / reception device of the present invention includes the above-described non-contact power reception device and a non-contact power transmission device that transmits power to the non-contact power reception device in a non-contact manner.
 本発明は、上述のように、無線通信部の共振周波数及び非接触受電部の共振周波数を切り替えることで、無線通信部と非接触受電部同士の干渉を逆に利用し、通信感度の劣化や受電効率の劣化を防ぐことができる。さらに、受電中は無線通信部においてループを形成することにより、非接触受電装置の通信回路が壊れることを防ぐことができる。これにより、受電装置における無線通信アンテナと非接触受電アンテナの実装スペースの低減ができ、受電端末の小型化が可能となる効果がある。 As described above, the present invention switches the resonance frequency of the wireless communication unit and the resonance frequency of the non-contact power reception unit to use the interference between the wireless communication unit and the non-contact power reception unit in reverse, thereby reducing the communication sensitivity. Degradation of power reception efficiency can be prevented. Further, by forming a loop in the wireless communication unit during power reception, it is possible to prevent the communication circuit of the non-contact power receiving apparatus from being broken. Thereby, the mounting space of the wireless communication antenna and the non-contact power receiving antenna in the power receiving device can be reduced, and the power receiving terminal can be downsized.
本発明の一実施形態に係る非接触送受電装置の構成図である。It is a block diagram of the non-contact power transmission / reception apparatus which concerns on one Embodiment of this invention. 本発明の第1の実施形態に係る非接触受電装置のブロック図である。1 is a block diagram of a contactless power receiving device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る非接触受電装置のブロック図である。1 is a block diagram of a contactless power receiving device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る非接触受電装置のブロック図である。1 is a block diagram of a contactless power receiving device according to a first embodiment of the present invention. 本発明の第2の実施形態に係る非接触受電装置のブロック図である。It is a block diagram of the non-contact power receiving apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る非接触受電装置のブロック図である。It is a block diagram of the non-contact power receiving apparatus which concerns on the 3rd Embodiment of this invention. 本発明の実施例1に係る非接触受電装置の回路構成図である。It is a circuit block diagram of the non-contact power receiving apparatus which concerns on Example 1 of this invention. 本発明の実施例1におけるアンテナ部の断面図である。It is sectional drawing of the antenna part in Example 1 of this invention. 本発明の実施例1におけるアンテナ部の断面図である。It is sectional drawing of the antenna part in Example 1 of this invention. 本発明の実施例2に係る非接触受電装置の回路構成図である。It is a circuit block diagram of the non-contact power receiving apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係る非接触受電装置の回路構成図である。It is a circuit block diagram of the non-contact power receiving apparatus which concerns on Example 3 of this invention. 本発明の実施例4に係る非接触受電装置の回路構成図である。It is a circuit block diagram of the non-contact power receiving apparatus which concerns on Example 4 of this invention. 本発明の実施例5に係る非接触受電装置の回路構成図である。It is a circuit block diagram of the non-contact power receiving apparatus which concerns on Example 5 of this invention. 本発明の実施例6に係る非接触受電装置の回路構成図である。It is a circuit block diagram of the non-contact power receiving apparatus which concerns on Example 6 of this invention. 本発明の実施例7に係る非接触受電装置の回路構成図である。It is a circuit block diagram of the non-contact power receiving apparatus which concerns on Example 7 of this invention. 本発明の実施例8に係る非接触受電装置の回路構成図である。It is a circuit block diagram of the non-contact power receiving apparatus which concerns on Example 8 of this invention. 従来例の非接触電力伝送装置のブロック図である。It is a block diagram of the non-contact electric power transmission apparatus of a prior art example. 本発明の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of this invention. 本発明の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of this invention.
 図1は本発明の一実施形態に係る非接触送受電装置100の構成図を示す。非接触送受電装置100は非接触給電台110及び非接触受電装置120を備える。給電台110はフラットコイル等を用いて電力を無線伝送する。非接触受電装置120はループアンテナやコイルアンテナ等を用いて、給電台110から送電された電力を受電する。本実施形態においては給電台110はさらに非接触受電装置120と無線通信を行うこともできるものとするが、給電台110は給電機能のみを備え、無線通信は他の通信装置と行う構成としてもよい。非接触受電装置120は給電台110に加え他の通信装置とも無線通信してもよい。非接触受電装置120は典型的には携帯電話、スマートフォン、ノートパソコン等の携帯型電気機器が考えられるが、非接触により受電できるあらゆる電気機器を含む。給電台110は、例えば、携帯電話等の携帯機器のための充電器や駅の自動改札機が考えられるが、その他無線給電可能な装置であればいかなる装置であってもかまわない。 FIG. 1 shows a configuration diagram of a non-contact power transmitting / receiving device 100 according to an embodiment of the present invention. The non-contact power transmission / reception device 100 includes a non-contact power supply stand 110 and a non-contact power reception device 120. The power supply stand 110 wirelessly transmits power using a flat coil or the like. The non-contact power receiving apparatus 120 receives electric power transmitted from the power supply stand 110 using a loop antenna, a coil antenna, or the like. In the present embodiment, the power supply stand 110 can further perform wireless communication with the non-contact power receiving device 120. However, the power supply stand 110 includes only a power supply function, and wireless communication may be performed with other communication devices. Good. The non-contact power receiving device 120 may wirelessly communicate with other communication devices in addition to the power supply stand 110. Typically, the contactless power receiving device 120 may be a portable electric device such as a mobile phone, a smartphone, or a notebook computer, but includes any electric device that can receive power by contactless contact. The power supply stand 110 may be, for example, a charger for a portable device such as a mobile phone or an automatic ticket gate at a station, but may be any device as long as it can wirelessly supply power.
[第1の実施形態]
 図2は本発明の第1の実施形態に係る非接触受電装置のブロック図を示す。非接触受電装置120は、非接触受電回路200、通信回路210及び電源回路220を備える。非接触受電回路200は、アンテナ部230を備え、このアンテナ部230は、無線通信部である無線通信アンテナ231及び非接触受電部である非接触受電アンテナ232を備える。非接触受電回路200はさらに、受電中であるか否か及び通信中であるか否かを検出しその結果を出力する検出回路240、無線通信アンテナ231のための共振周波数切替部250及び非接触受電アンテナ232のための共振周波数切替部260を備える。無線通信に使用される周波数と無線電力伝送に使用される周波数とは異なる周波数とする。
[First Embodiment]
FIG. 2 is a block diagram of the contactless power receiving device according to the first embodiment of the present invention. The contactless power receiving device 120 includes a contactless power receiving circuit 200, a communication circuit 210, and a power supply circuit 220. The non-contact power reception circuit 200 includes an antenna unit 230, and the antenna unit 230 includes a wireless communication antenna 231 that is a wireless communication unit and a non-contact power reception antenna 232 that is a non-contact power reception unit. The non-contact power receiving circuit 200 further includes a detection circuit 240 that detects whether or not power is being received and whether or not communication is being performed, and outputs the result, a resonance frequency switching unit 250 for the wireless communication antenna 231, and a non-contact A resonance frequency switching unit 260 for the power receiving antenna 232 is provided. The frequency used for wireless communication is different from the frequency used for wireless power transmission.
 通信回路210は、相手方の通信装置と無線通信アンテナ231を介して通信を行う回路である。例えば、相手方の通信装置から送信された信号を処理し、適切な応答処理を行う。電源回路220は、非接触受電アンテナ232から受電された電力を受けて整流等の処理を行い、非接触受電装置120に必要な電力を受電し、電源として機能する。受電した電力を蓄電池に蓄電してもよい。 The communication circuit 210 is a circuit that communicates with the communication apparatus of the other party via the wireless communication antenna 231. For example, a signal transmitted from the communication apparatus of the other party is processed, and an appropriate response process is performed. The power supply circuit 220 receives power received from the non-contact power receiving antenna 232 and performs processing such as rectification, receives power necessary for the non-contact power receiving device 120, and functions as a power source. The received power may be stored in the storage battery.
 検出回路240は、例えば、無線通信アンテナ231及び非接触受電アンテナ232の出力端側に接続され、初期段階で無線通信モードとしておき、何らの信号も出力しない。そして、無線通信アンテナ231から通信回路210への入力レベルがある閾値を越えた段階で、受電中であると判断して、非接触電力伝送モードに切り替え、受電中であるとの検出結果を出力する。その後、非接触受電アンテナ232から電源回路220への入力レベルがある閾値を下回った段階で、受電が終了したと判断し、無線通信モードに戻し、受電中であるとの出力を停止する。 The detection circuit 240 is connected to the output end side of the wireless communication antenna 231 and the non-contact power receiving antenna 232, for example, and is set in the wireless communication mode at an initial stage and does not output any signal. Then, when the input level from the wireless communication antenna 231 to the communication circuit 210 exceeds a certain threshold value, it is determined that the power is being received, the mode is switched to the non-contact power transmission mode, and the detection result that the power is being received is output. To do. Thereafter, when the input level from the non-contact power receiving antenna 232 to the power supply circuit 220 falls below a certain threshold value, it is determined that the power reception is completed, the wireless communication mode is returned, and the output indicating that the power is being received is stopped.
 本発明においては、非接触受電装置が受電中であるか通信中であるかを検出する方法は前述の構成には限られない。例えば、無線通信モードから非接触電力伝送モードに切り替えるときにおいても電源回路220の入力レベルを調べ、ある閾値を超えた段階で切り替えてもよい。非接触電力伝送モードから無線通信モードに切り替えるときにおいても通信回路210への入力レベルを調べてもよい。 In the present invention, the method for detecting whether the non-contact power receiving device is receiving power or communicating is not limited to the above-described configuration. For example, when switching from the wireless communication mode to the non-contact power transmission mode, the input level of the power supply circuit 220 may be examined and switched when a certain threshold value is exceeded. The input level to the communication circuit 210 may also be checked when switching from the non-contact power transmission mode to the wireless communication mode.
 検出回路240は、受電中との信号の代わりに通信中であるとの信号を出力してもよい。検出回路240からの受電中であるとの信号ないし通信中であるとの信号がない場合には通信中ないし受電中であるという結果が出力されているとみなしてもよい。受電していない場合ないし通信していない場合には受電ないし通信していないことを明示する信号を出してもよい。また、通信中または受電中の両方を明示する信号を出力してもよい。例えば、無線通信モードにおいては、通信中であるとの信号を出力し、非接触電力伝送モードのときには受電中であるとの信号を出力する。検出回路240からの信号はその状態が維持されている間、出力し続けてもよいし、状態が変化した後に一度だけ出力してもよい。その他、受電中であるか否か及び通信中であるか否かを判断するための出力であればどのように検出しても、どのような出力であっても構わない。 The detection circuit 240 may output a signal indicating that communication is being performed instead of a signal indicating that power is being received. If there is no signal indicating that power is being received from the detection circuit 240 or if there is no signal indicating that communication is being performed, it may be considered that a result indicating that communication is being performed or power is being received is output. When not receiving power or not communicating, a signal that clearly indicates that no power is received or communicated may be issued. Moreover, you may output the signal which specifies both during communication or power receiving. For example, a signal indicating that communication is being performed is output in the wireless communication mode, and a signal indicating that power is being received is output in the non-contact power transmission mode. The signal from the detection circuit 240 may be continuously output while the state is maintained, or may be output only once after the state is changed. In addition, any output may be detected as long as it is an output for determining whether or not power is being received and whether or not communication is being performed.
 無線通信アンテナ231及び非接触受電アンテナ232はここではコイルアンテナとする。しかし、これらはループアンテナであってもよいし、無線通信受信及び非接触電力受電ができる構成であればどのような構成でもよいことは当業者には明らかである。 Here, the wireless communication antenna 231 and the non-contact power receiving antenna 232 are coil antennas. However, those skilled in the art will appreciate that these may be loop antennas, or any configuration that can receive wireless communication and receive non-contact power.
 本実施形態の動作を以下に説明する。無線通信時は、給電台等の通信相手側装置から信号が無線送信される。無線通信アンテナ231のための共振周波数切替部250は、検出回路240から受電したとの信号を受信しないので、無線通信アンテナ231の共振周波数を無線通信に使用される周波数に切り替える。無線送信信号により誘導起電力が生じ、無線通信アンテナ231は無線通信に使用される周波数で共振する。一方、非接触受電アンテナ232のための共振周波数切替部260は、検出回路240から受電したとの出力信号を受信しないので、非接触受電アンテナ232が無線通信に使用される周波数で共振するように共振周波数を切り替える。共振周波数切替部250及び260は、検出回路240から通信中であるとの信号を受信したときに、共振周波数を無線通信に使用される周波数に切り替えてもよい。 The operation of this embodiment will be described below. During wireless communication, a signal is wirelessly transmitted from a communication counterpart device such as a power supply stand. Since the resonance frequency switching unit 250 for the wireless communication antenna 231 does not receive a signal indicating that the power is received from the detection circuit 240, the resonance frequency of the wireless communication antenna 231 is switched to a frequency used for wireless communication. An induced electromotive force is generated by the wireless transmission signal, and the wireless communication antenna 231 resonates at a frequency used for wireless communication. On the other hand, since the resonance frequency switching unit 260 for the non-contact power receiving antenna 232 does not receive an output signal indicating that power is received from the detection circuit 240, the non-contact power receiving antenna 232 resonates at a frequency used for wireless communication. Switches the resonance frequency. The resonance frequency switching units 250 and 260 may switch the resonance frequency to a frequency used for wireless communication when receiving a signal indicating that communication is being performed from the detection circuit 240.
 非接触受電時は、給電台110から無線電力伝送により電力伝送される。無線通信アンテナ231のための共振周波数切替部250は、検出回路240から受電したとの信号を受信し、無線通信アンテナ231の共振周波数を無線電力伝送に使用される周波数に切り替える。一方、非接触受電アンテナ232のための共振周波数切替部260は、検出回路240から受電したとの出力を受信し、非接触受電アンテナ232が無線電力伝送に使用される周波数で共振するように共振周波数を切り替える。無線通信アンテナ231及び非接触受電アンテナ232は無線電力伝送に使用される周波数で共振する。共振周波数切替部250及び260は、検出回路240から通信中であるとの信号を受信しないときに、共振周波数を無線電力伝送に使用される周波数に切り替えてもよい。 During non-contact power reception, power is transmitted from the power supply stand 110 by wireless power transmission. The resonance frequency switching unit 250 for the wireless communication antenna 231 receives a signal indicating that power has been received from the detection circuit 240, and switches the resonance frequency of the wireless communication antenna 231 to a frequency used for wireless power transmission. On the other hand, the resonance frequency switching unit 260 for the non-contact power receiving antenna 232 receives an output indicating that power is received from the detection circuit 240 and resonates so that the non-contact power receiving antenna 232 resonates at a frequency used for wireless power transmission. Switch the frequency. The wireless communication antenna 231 and the non-contact power receiving antenna 232 resonate at a frequency used for wireless power transmission. The resonance frequency switching units 250 and 260 may switch the resonance frequency to a frequency used for wireless power transmission when not receiving a signal indicating that communication is being performed from the detection circuit 240.
 このような構成を採用することにより、無線通信アンテナと非接触受電アンテナが無線通信エリアと充電エリアが一致するように接近して配置された場合でも、無線通信時においては、非接触受電アンテナが無線電力伝送に使用される周波数で共振せず、無線通信の共振周波数で共振するから、非接触受電アンテナによる干渉が低減され、感度劣化の少ない通信が可能となる。また、非接触受電時においては、無線通信アンテナが、無線通信に使用される周波数で共振せず、無線電力伝送に使用される周波数で共振するから、効率の良い非接触受電を行うことができる。 By adopting such a configuration, even when the wireless communication antenna and the non-contact power receiving antenna are arranged close to each other so that the wireless communication area and the charging area coincide, the non-contact power receiving antenna is Since it does not resonate at the frequency used for wireless power transmission but resonates at the resonance frequency of wireless communication, interference by the non-contact power receiving antenna is reduced, and communication with little deterioration in sensitivity becomes possible. Further, at the time of non-contact power reception, since the wireless communication antenna does not resonate at the frequency used for wireless communication, but resonates at the frequency used for wireless power transmission, efficient non-contact power reception can be performed. .
 共振周波数の切り替えは例えば、無線通信アンテナ231ないし非接触受電アンテナ232のインピーダンスを変更することによって切り替えることができる。インピーダンスの変更は各アンテナ231、232に接続されるコンデンサの容量やインダクタンスを変更することによって行ってもよい。 The switching of the resonance frequency can be performed by changing the impedance of the wireless communication antenna 231 or the non-contact power receiving antenna 232, for example. The impedance may be changed by changing the capacitance or inductance of a capacitor connected to each of the antennas 231 and 232.
 本実施形態においては、無線アンテナ及び非接触受電アンテナのいずれもが共振周波数切替部を有しているものとしたが、いずれか一方のみであっても動作可能であることは明らかである。すなわち、非接触受電アンテナ232のみに共振周波数切替部が接続されている場合には、受電中であるとの検出結果を検出回路240が出力する場合には、非接触受電アンテナ232に接続された共振周波数切替部260が非接触受電アンテナの共振周波数を無線電力伝送に使用される周波数に切り替え、それ以外の場合には、無線通信に使用される周波数に共振周波数を切り替える。無線通信アンテナ231は直接または他の要素を介して通信回路210に接続することができる。無線通信アンテナの共振周波数は無線通信に使用される周波数で固定される。これにより、受電中における無線通信アンテナ231による干渉はあるものの、無線通信中における非接触受電アンテナ232による干渉を低減することができる。 In the present embodiment, both the wireless antenna and the non-contact power receiving antenna have the resonance frequency switching unit, but it is obvious that only one of them can operate. That is, when the resonance frequency switching unit is connected only to the non-contact power receiving antenna 232, when the detection circuit 240 outputs the detection result that power is being received, the non-contact power receiving antenna 232 is connected. The resonance frequency switching unit 260 switches the resonance frequency of the non-contact power receiving antenna to a frequency used for wireless power transmission, and otherwise switches the resonance frequency to a frequency used for wireless communication. The wireless communication antenna 231 can be connected to the communication circuit 210 directly or through other elements. The resonance frequency of the wireless communication antenna is fixed at a frequency used for wireless communication. Thereby, although there is interference by the wireless communication antenna 231 during power reception, interference by the non-contact power reception antenna 232 during wireless communication can be reduced.
 一方、無線通信アンテナ231のための共振周波数切替部のみを設けることもできる。この場合には、受電中であるとの検出結果を検出回路240が出力する場合には、無線通信アンテナ231に接続された共振周波数切替部250が無線通信アンテナ231の共振周波数を無線電力伝送に使用される周波数に切り替え、それ以外の場合には、無線通信に使用される周波数に共振周波数を切り替える。非接触受電アンテナ232は直接または他の要素を介して電源回路220に接続することができる。非接触受電アンテナ232は非接触電力伝送に使用される周波数で共振するように設定されている。これにより、無線通信中における受電アンテナ232による干渉はあるものの、受電中における無線通信アンテナ231による干渉を低減することができる。 On the other hand, only the resonance frequency switching unit for the wireless communication antenna 231 can be provided. In this case, when the detection circuit 240 outputs a detection result indicating that power is being received, the resonance frequency switching unit 250 connected to the wireless communication antenna 231 changes the resonance frequency of the wireless communication antenna 231 to wireless power transmission. Switch to the frequency used, otherwise switch the resonance frequency to the frequency used for wireless communication. The non-contact power receiving antenna 232 can be connected to the power supply circuit 220 directly or through other elements. The non-contact power receiving antenna 232 is set to resonate at a frequency used for non-contact power transmission. Thereby, although there is interference by the power receiving antenna 232 during wireless communication, interference by the wireless communication antenna 231 during power reception can be reduced.
 また、図2においては、共振周波数切替部は、無線通信アンテナ231及び非接触受電アンテナ232のそれぞれに一つずつ設ける構成としたが、一つの共振周波数切替部が両アンテナの共振周波数を切り替える構成としてもよい。 In FIG. 2, one resonance frequency switching unit is provided for each of the wireless communication antenna 231 and the non-contact power receiving antenna 232, but one resonance frequency switching unit switches the resonance frequency of both antennas. It is good.
 さらにまた、図2においては、共振周波数切替部250及び260は無線通信アンテナ231及び通信回路210ないし非接触受電アンテナ232及び給電回路220に接続される構成とした。しかし、図3Aに示すように共振周波数切替部350及び360はこれらに接続されていなくともよい。例えば、共振周波数切替部350及び360はそれぞれ各アンテナに磁界または電界と結合されることによって共振周波数を切り替えることも可能である。また例えば、共振周波数切替部350及び360を共鳴コイルとし、共振周波数切替部350と無線通信アンテナ231、及び、共振周波数切替部360と非接触受電アンテナ232を磁界または電界で結合させておき、共振周波数切替部350及び360の共鳴コイルの共振周波数を切り替える構成とすることも可能である。 Furthermore, in FIG. 2, the resonance frequency switching units 250 and 260 are connected to the wireless communication antenna 231 and the communication circuit 210 or the non-contact power receiving antenna 232 and the power feeding circuit 220. However, as shown in FIG. 3A, the resonance frequency switching units 350 and 360 may not be connected to them. For example, the resonance frequency switching units 350 and 360 can switch the resonance frequency by being coupled to each antenna with a magnetic field or an electric field. Further, for example, the resonance frequency switching units 350 and 360 are resonance coils, the resonance frequency switching unit 350 and the wireless communication antenna 231, and the resonance frequency switching unit 360 and the non-contact power receiving antenna 232 are coupled by a magnetic field or an electric field. It is also possible to adopt a configuration in which the resonance frequency of the resonance coil of the frequency switching units 350 and 360 is switched.
 図3Bに示すように、共振周波数切替部250、260、無線通信アンテナ231及び非接触受電アンテナ232が、通信回路210ないし給電回路220に接続されていなくともよい。例えば、共振周波数切替部380及び390は無線通信アンテナ371及び非接触受電アンテナ372にそれぞれ接続されて、共振周波数を切り替える。そして、無線通信アンテナ371及び非接触受電アンテナ372を共鳴コイルとし、無線通信信号受信ないし非接触受電を行う。無線通信アンテナ371及び非接触受電アンテナ372は、無線通信用の受信コイル373、及び、非接触受電用の受電コイル374に磁界または電界で結合されることによって通信回路210ないし電源回路220に信号ないし電力を供給することができる。 As illustrated in FIG. 3B, the resonance frequency switching units 250 and 260, the wireless communication antenna 231, and the non-contact power receiving antenna 232 may not be connected to the communication circuit 210 or the power feeding circuit 220. For example, the resonant frequency switching units 380 and 390 are connected to the wireless communication antenna 371 and the non-contact power receiving antenna 372, respectively, and switch the resonant frequency. The wireless communication antenna 371 and the non-contact power receiving antenna 372 are used as resonance coils to receive a wireless communication signal or perform non-contact power reception. The wireless communication antenna 371 and the non-contact power reception antenna 372 are coupled to the reception coil 373 for wireless communication and the power reception coil 374 for non-contact power reception by a magnetic field or an electric field, thereby transmitting signals to the communication circuit 210 or the power supply circuit 220. Electric power can be supplied.
[第2の実施形態]
 図4に本発明の第2の実施形態を示す。本実施形態においては、第1の実施形態に加えてさらに無線通信アンテナ231と通信回路210との間に接続されるシャント回路470を備える。そのほかの構成は第1の実施形態と同じである。以下の説明においては、第1の実施形態と同じ構成要素については同じ参照番号で参照するとともに、説明は適宜省略する。
[Second Embodiment]
FIG. 4 shows a second embodiment of the present invention. In this embodiment, a shunt circuit 470 connected between the wireless communication antenna 231 and the communication circuit 210 is further provided in addition to the first embodiment. Other configurations are the same as those of the first embodiment. In the following description, the same constituent elements as those of the first embodiment are referred to by the same reference numerals, and the description thereof is omitted as appropriate.
 本実施形態において無線通信アンテナ231は通信回路210と接続するための2つの信号線に接続され、無線通信アンテナ231と通信回路210との間にはこの2つの信号線を介して無線通信アンテナ231側から共振周波数切替部250とシャント回路470が接続される。シャント回路470はこの2つの信号線間を短絡または開放する。 In this embodiment, the wireless communication antenna 231 is connected to two signal lines for connecting to the communication circuit 210, and the wireless communication antenna 231 is connected between the wireless communication antenna 231 and the communication circuit 210 via these two signal lines. The resonance frequency switching unit 250 and the shunt circuit 470 are connected from the side. The shunt circuit 470 shorts or opens the two signal lines.
 非接触受電アンテナ232が受電中であるとの検出結果を検出回路240が出力しない場合は、シャント回路470は2つの信号線間の接続を開放する。これにより、無線アンテナ231において受信された信号は迂回されることなく通信回路210へ送信され、無線通信を行うことができる。一方、非接触受電アンテナ232が受電中であるとの検出結果を検出回路240が出力する場合は、シャント回路470は2つの信号線間を短絡する。これにより、無線通信アンテナ231において受電された電力の大部分がシャント回路470によって迂回されて無線通信アンテナ231へ戻り、通信回路210へ流入しない。これにより、大電流が通信回路210へ流入して通信回路が破壊されることを防止することができる。シャント回路470は、通信中であるとの出力信号を検出回路240から得た場合に信号線を開放し、通信中であるとの信号を受信しないときに短絡してもよい。また、通信中であるとの信号を受信したときに信号線を開放し、受電中であるとの信号を受信したときに短絡してもよい。 When the detection circuit 240 does not output the detection result that the non-contact power receiving antenna 232 is receiving power, the shunt circuit 470 opens the connection between the two signal lines. Thereby, the signal received by the wireless antenna 231 is transmitted to the communication circuit 210 without being detoured, and wireless communication can be performed. On the other hand, when the detection circuit 240 outputs a detection result that the non-contact power receiving antenna 232 is receiving power, the shunt circuit 470 short-circuits the two signal lines. As a result, most of the power received by the wireless communication antenna 231 is bypassed by the shunt circuit 470 and returned to the wireless communication antenna 231 and does not flow into the communication circuit 210. As a result, it is possible to prevent a large current from flowing into the communication circuit 210 and destroying the communication circuit. The shunt circuit 470 may open the signal line when an output signal indicating that communication is in progress is obtained from the detection circuit 240, and may be short-circuited when a signal indicating that communication is being performed is not received. Alternatively, the signal line may be opened when a signal indicating that communication is being performed, and may be short-circuited when a signal indicating that power is being received.
[第3の実施形態]
 図5に第3の実施形態を示す。本実施形態においては、第2の実施形態と異なり、無線通信アンテナ231及び非接触受電アンテナ232のいずれもが周波数切替部を有しない。それ以外については、第2の実施形態と同じである。かかる構成によれば、アンテナ同士の干渉を低減することはできないものの、受電による通信回路210の破壊を防止することができる。
[Third Embodiment]
FIG. 5 shows a third embodiment. In the present embodiment, unlike the second embodiment, neither the wireless communication antenna 231 nor the non-contact power receiving antenna 232 has a frequency switching unit. The rest is the same as in the second embodiment. According to such a configuration, although interference between antennas cannot be reduced, destruction of the communication circuit 210 due to power reception can be prevented.
[実施例1]
 次に、図6にもとづいて本発明における実施例1を説明する。本実施例においては、非接触受電装置120は、非接触受電回路200、通信回路210及び電源回路220を備える。非接触受電回路200は、アンテナ部630を備え、このアンテナ部630は無線通信アンテナ631及び非接触受電アンテナ632を備える。さらに非接触受電回路200は、受電中であるか否かを検出しその結果を出力する検出回路240及び非接触受電アンテナ632のための共振周波数切替部660を備える。各アンテナはコイルアンテナである。本実施例においては、無線通信アンテナ用の共振周波数切替部は備えない。無線通信アンテナの共振周波数は、無線通信に使用される周波数で固定されている。無線電力伝送に使用される周波数は6.78MHzとし、無線通信に使用される周波数は13.56MHzとする。他の実施例においても特に記載のない限り同じ周波数を使用する。
[Example 1]
Next, a first embodiment of the present invention will be described with reference to FIG. In the present embodiment, the contactless power receiving device 120 includes a contactless power receiving circuit 200, a communication circuit 210, and a power supply circuit 220. The non-contact power receiving circuit 200 includes an antenna unit 630, and the antenna unit 630 includes a wireless communication antenna 631 and a non-contact power receiving antenna 632. Further, the non-contact power receiving circuit 200 includes a detection circuit 240 that detects whether or not power is being received and outputs the result, and a resonance frequency switching unit 660 for the non-contact power receiving antenna 632. Each antenna is a coil antenna. In this embodiment, the resonance frequency switching unit for the wireless communication antenna is not provided. The resonance frequency of the wireless communication antenna is fixed at a frequency used for wireless communication. The frequency used for wireless power transmission is 6.78 MHz, and the frequency used for wireless communication is 13.56 MHz. In the other embodiments, the same frequency is used unless otherwise specified.
 また、本実施例においては、無線通信アンテナ631と通信回路210との間にシャント回路670を備える。無線通信アンテナ631は通信回路210と接続するための2つの信号線に接続され、無線通信アンテナ631と通信回路210との間にはこの2つの信号線を介してシャント回路670が接続される。シャント回路670は2つの信号線間を短絡または開放するスイッチ671によってシャント回路を実現するが、これに制限されるものではない。シャント回路は2つの信号線間を短絡または開放するものであればいかなる構成であっても構わない。 In this embodiment, a shunt circuit 670 is provided between the wireless communication antenna 631 and the communication circuit 210. The wireless communication antenna 631 is connected to two signal lines for connection to the communication circuit 210, and a shunt circuit 670 is connected between the wireless communication antenna 631 and the communication circuit 210 via these two signal lines. The shunt circuit 670 implements a shunt circuit by a switch 671 that shorts or opens two signal lines, but is not limited thereto. The shunt circuit may have any configuration as long as the two signal lines are short-circuited or opened.
 非接触受電アンテナ632用の共振周波数切替部660は、1つのコンデンサ661とコンデンサ661に並列に接続されたもう一つのコンデンサ662及びスイッチ663を備える。スイッチ663が開放(オフ)されると、コンデンサ661のみが非接触受電アンテナ632に接続され、非接触受電アンテナ632の共振周波数が無線通信に使用される周波数となる。一方、スイッチ663が閉じられて(オン)、コンデンサ661及びコンデンサ662が並列接続されて、非接触受電アンテナ632に接続されると、非接触受電アンテナ632の共振周波数が非接触電力伝送に使用される周波数となる。ここでコンデンサ661のみが非接触受電アンテナ632に接続されるとは、コンデンサ662が接続されないことを意味するだけであって、その他の要素がなんら接続されないことを意味するものではない。本明細書の他の記載においても同様である。 The resonance frequency switching unit 660 for the non-contact power receiving antenna 632 includes one capacitor 661 and another capacitor 662 and a switch 663 connected in parallel to the capacitor 661. When the switch 663 is opened (off), only the capacitor 661 is connected to the non-contact power receiving antenna 632, and the resonance frequency of the non-contact power receiving antenna 632 becomes a frequency used for wireless communication. On the other hand, when the switch 663 is closed (ON) and the capacitor 661 and the capacitor 662 are connected in parallel and connected to the non-contact power receiving antenna 632, the resonance frequency of the non-contact power receiving antenna 632 is used for non-contact power transmission. Frequency. Here, the fact that only the capacitor 661 is connected to the non-contact power receiving antenna 632 only means that the capacitor 662 is not connected, and does not mean that no other elements are connected. The same applies to other descriptions in this specification.
 本実施例における非接触受電回路200の無線通信アンテナ631及び非接触受電アンテナ632の配置及び磁束の向きの一例が、図7及び図8に示されている。図7及び図8のそれぞれは、図6に示したアンテナ部630の断面A-Aを示した図面である。非接触受電アンテナ632は、同一平面上で、無線通信アンテナ631の外側に設けられている。特に制限されないが、それぞれのコイルは、数ターンの巻き配線で構成されている。図7には無線通信時の磁束が矢印で示されており、図8には電力伝送時の磁束が矢印で示されている。磁束の向きとしては、送電装置側から受電装置側に向かっている。 7 and 8 show examples of the arrangement of the wireless communication antenna 631 and the non-contact power receiving antenna 632 and the direction of magnetic flux of the non-contact power receiving circuit 200 in the present embodiment. 7 and 8 are cross-sectional views of the antenna unit 630 shown in FIG. The non-contact power receiving antenna 632 is provided outside the wireless communication antenna 631 on the same plane. Although not particularly limited, each coil is composed of several turns of winding wiring. In FIG. 7, the magnetic flux during wireless communication is indicated by an arrow, and in FIG. 8, the magnetic flux during power transmission is indicated by an arrow. The direction of the magnetic flux is from the power transmission device side to the power reception device side.
 次に、本実施例における非接触受電装置120の動作を説明する。給電台110から無線通信に使用される周波数13.56MHzによって信号が送信されている場合、検出回路240は受電したとの検出結果を出力しない。そのため、共振周波数切替部660は、スイッチ663をオフにし、コンデンサ662を切断状態にして、コンデンサ661を介して非接触受電アンテナ632と電源回路220とを導通させる。そして、非接触受電アンテナ632は、無線通信に使用される周波数で共振する。シャント回路670は、スイッチ671をオフにすることにより無線通信のアンテナコイル631の端子間を開放する。そして、無線通信受信アンテナ631の内部で誘導起電力により信号に基づいた電流が流れ、これが通信回路210に伝送され、通信回路と相手方通信装置との通信が実行される。 Next, the operation of the non-contact power receiving apparatus 120 in this embodiment will be described. When a signal is transmitted from the power supply stand 110 at a frequency of 13.56 MHz used for wireless communication, the detection circuit 240 does not output a detection result indicating that power is received. Therefore, the resonance frequency switching unit 660 turns off the switch 663, disconnects the capacitor 662, and makes the non-contact power receiving antenna 632 and the power supply circuit 220 conductive through the capacitor 661. The non-contact power receiving antenna 632 resonates at a frequency used for wireless communication. The shunt circuit 670 opens the terminal of the antenna coil 631 for wireless communication by turning off the switch 671. Then, a current based on the signal flows by the induced electromotive force inside the radio communication receiving antenna 631, which is transmitted to the communication circuit 210, and communication between the communication circuit and the counterpart communication device is executed.
 非接触受電アンテナ632が無線電力伝送の共振周波数で共振せず、無線通信の共振周波数で共振するから、非接触受電アンテナによる干渉が低減され、感度劣化の少ない通信が可能となる。また、図7に示されているとおり、無線通信時の磁束は、送電装置側から無線通信アンテナ用コイル631を通る磁束に加え、非接触受電アンテナ用コイル632を介する磁束も考えられる。これにより、非接触受電アンテナ用コイル632を介した無線通信も行われるため、感度の劣化のない通信が可能となる。 Since the non-contact power receiving antenna 632 does not resonate at the wireless power transmission resonance frequency but resonates at the wireless communication resonance frequency, the interference by the non-contact power receiving antenna is reduced, and communication with less deterioration in sensitivity becomes possible. Further, as shown in FIG. 7, the magnetic flux at the time of wireless communication may be a magnetic flux that passes through the coil for wireless communication antenna 631 from the power transmission device side and also passes through the coil for non-contact power receiving antenna 632. As a result, wireless communication via the non-contact power receiving antenna coil 632 is also performed, so that communication without deterioration in sensitivity is possible.
 一方、給電台110から周波数6.78MHzによって無線電力伝送がされている場合、検出回路240は、受電したとの検出結果を出力する。そのため、共振周波数切替部660はスイッチ663をオンにして、並列に接続されたコンデンサ661及びコンデンサ662を介して非接触受電アンテナ632と電源回路220とを導通させる。そして、非接触受電アンテナ632は、無線電力伝送に使用される周波数で共振する。シャント回路670は、スイッチ671をオンにする(閉じる)ことにより無線通信アンテナ631のコイルの端子間を短絡する。これにより、無線通信アンテナコイル611の内部では誘導起電力により電流が流れるが、スイッチ671によって短絡されて形成されたループ経路に大きな電流が流れ、通信回路210への電流供給を抑制し、通信回路210が過剰電圧により破壊されるのを防ぐことができる。本実施例においては、無線通信アンテナのための共振周波数切替部が設けられていないため、無線通信アンテナ631による非接触受電アンテナ632への干渉が生じうるが、非接触受電アンテナ632が無線通信時に無線通信アンテナ631に与える影響に比べると比較的小さい。 On the other hand, when wireless power transmission is performed from the power supply base 110 at a frequency of 6.78 MHz, the detection circuit 240 outputs a detection result indicating that power is received. Therefore, the resonance frequency switching unit 660 turns on the switch 663 and makes the non-contact power receiving antenna 632 and the power supply circuit 220 conductive through the capacitors 661 and 662 connected in parallel. The non-contact power receiving antenna 632 resonates at a frequency used for wireless power transmission. The shunt circuit 670 shorts between the coil terminals of the wireless communication antenna 631 by turning on (closing) the switch 671. As a result, a current flows due to the induced electromotive force inside the wireless communication antenna coil 611, but a large current flows in a loop path formed by being short-circuited by the switch 671, and the current supply to the communication circuit 210 is suppressed. 210 can be prevented from being destroyed by excessive voltage. In the present embodiment, since the resonance frequency switching unit for the wireless communication antenna is not provided, the wireless communication antenna 631 may interfere with the non-contact power receiving antenna 632. Compared to the influence on the wireless communication antenna 631, it is relatively small.
 なお、スイッチ663が開いているときは共振周波数切替部660が与える容量はコンデンサ661の容量のみである。スイッチ663が閉じているときはコンデンサ661とコンデンサ662の容量を加算した値となる。すなわち、スイッチ663を閉じた方が容量が大きい。容量が大きいほうが共振周波数が低くなるので、スイッチ663を閉じた方が共振周波数の低い方、開けた方が共振周波数の高い方になる。本実施例においては、非接触電力伝送の周波数を6.78MHzとし、無線通信に使用される周波数を13.56MHzとしたため、非接触電力伝送の周波数を選択するときはスイッチ663を閉じ、無線通信を選択するときはスイッチ663を開ける。無線通信及び無線電力伝送に使用される周波数によってこれらのコンデンサの容量及びいかにスイッチを切り替えるかは適宜選択される。 Note that when the switch 663 is open, the capacitance provided by the resonance frequency switching unit 660 is only the capacitance of the capacitor 661. When the switch 663 is closed, a value obtained by adding the capacitances of the capacitors 661 and 662 is obtained. That is, the capacity is larger when the switch 663 is closed. The larger the capacitance, the lower the resonance frequency. Therefore, when the switch 663 is closed, the resonance frequency is lower, and when the switch is opened, the resonance frequency is higher. In this embodiment, the frequency of contactless power transmission is 6.78 MHz and the frequency used for wireless communication is 13.56 MHz. Therefore, when selecting the frequency of contactless power transmission, the switch 663 is closed and the wireless communication is performed. When selecting, the switch 663 is opened. The capacities of these capacitors and how the switches are switched are appropriately selected depending on the frequency used for wireless communication and wireless power transmission.
 本実施例のように、無線通信に使用される周波数よりも非接触電力伝送の周波数が低いときは、非接触電力伝送の効率低下を抑えるために、非接触受電アンテナ用コイルの自己インダクタンス値を大きくする必要がある。非接触受電アンテナ632を無線通信アンテナ631の外側に配置することで、より大きな自己インダクタンス値が得られるから、無線通信に使用される周波数よりも非接触電力伝送の周波数が低いときに、非接触電力伝送の効率低下を抑えることが可能である。 When the frequency of non-contact power transmission is lower than the frequency used for wireless communication as in this embodiment, the self-inductance value of the coil for the non-contact power receiving antenna is set to suppress the decrease in efficiency of non-contact power transmission. It needs to be bigger. Since a larger self-inductance value can be obtained by disposing the non-contact power receiving antenna 632 outside the wireless communication antenna 631, when the frequency of non-contact power transmission is lower than the frequency used for wireless communication, the non-contact It is possible to suppress a decrease in efficiency of power transmission.
[実施例2]
 図9に本発明の実施例2の回路構成を示す。実施例1との相違点は、アンテナ部930における無線通信アンテナ931と非接触受電アンテナ932の配置が実施例1と逆である点である。実施例1では非接触受電アンテナ632が、無線通信アンテナ631の外側に無線通信アンテナ631を囲むように配置されていたのに対して、本実施例においては、無線通信アンテナ931が、非接触受電アンテナ932の外側に非接触受電アンテナ932を囲むように配置される。その他の点においては実施例1と同じである。
[Example 2]
FIG. 9 shows a circuit configuration of the second embodiment of the present invention. The difference from the first embodiment is that the arrangement of the wireless communication antenna 931 and the non-contact power receiving antenna 932 in the antenna unit 930 is opposite to that of the first embodiment. In the first embodiment, the non-contact power receiving antenna 632 is arranged outside the wireless communication antenna 631 so as to surround the wireless communication antenna 631, whereas in the present embodiment, the wireless communication antenna 931 is not contactless power receiving. The non-contact power receiving antenna 932 is disposed outside the antenna 932 so as to surround it. The other points are the same as those of the first embodiment.
 本実施例によれば、無線通信アンテナ931が非接触受電アンテナ932の外側にあるため、通信可能な面積を広くとれる構成とできる効果がある。 According to the present embodiment, since the wireless communication antenna 931 is located outside the non-contact power receiving antenna 932, there is an effect that the communication area can be widened.
 なお、非接触電力伝送の周波数と無線通信に使用される周波数とが反対であった場合、すなわち、非接触電力伝送の周波数が13.56MHz、無線通信に使用される周波数が6.78MHzであった場合、実施例1と異なり、共振周波数切替部960は、非接触電力伝送の周波数を選択するときはスイッチ963をオフにしてコンデンサ961を介して非接触受電アンテナ932を導通し、無線通信に使用される周波数を選択するときはスイッチ963をオンにして、コンデンサ961及びコンデンサ962を介して導通させる。 When the frequency of non-contact power transmission is opposite to the frequency used for wireless communication, that is, the frequency of non-contact power transmission is 13.56 MHz and the frequency used for wireless communication is 6.78 MHz. In this case, unlike the first embodiment, the resonance frequency switching unit 960 turns off the switch 963 and turns on the non-contact power receiving antenna 932 via the capacitor 961 when selecting the frequency of non-contact power transmission. When the frequency to be used is selected, the switch 963 is turned on to conduct through the capacitor 961 and the capacitor 962.
 このように、非接触電力伝送の周波数よりも無線通信に使用される周波数が低いときは、無線通信の効率低下を抑えるために、無線通信アンテナ用コイルの自己インダクタンス値を大きくする必要がある。無線通信アンテナ931を非接触受電アンテナ932の外側に配置することで、より大きな自己インダクタンス値が得られるから、非接触電力伝送の周波数よりも無線通信に使用される周波数が低いときに、無線通信の効率低下を抑えることが可能である。 As described above, when the frequency used for wireless communication is lower than the frequency of non-contact power transmission, it is necessary to increase the self-inductance value of the coil for the wireless communication antenna in order to suppress a decrease in efficiency of the wireless communication. Since a larger self-inductance value can be obtained by disposing the wireless communication antenna 931 outside the non-contact power receiving antenna 932, wireless communication can be performed when the frequency used for wireless communication is lower than the frequency of non-contact power transmission. It is possible to suppress a decrease in efficiency.
 一般的に、無線通信に使用される周波数と非接触電力伝送に使用される周波数とのうち高い方の周波数を使用する無線通信部ないし非接触受電部を外側で囲むように、低い方の周波数を使用する無線通信部ないし非接触受電部を外側に配置することで、効率的な無線通信伝送ないし非接触電力伝送を実現することができる。 Generally, the lower frequency so as to surround the wireless communication unit or non-contact power receiving unit that uses the higher one of the frequency used for wireless communication and the frequency used for non-contact power transmission. By arranging the wireless communication unit or the non-contact power receiving unit using the outside, efficient wireless communication transmission or non-contact power transmission can be realized.
[実施例3]
 次に、共鳴コイル及び受電コイルを使用した実施例3について説明する。実施例3の回路構成を図10に示す。本実施例では実施例1における2つのコンデンサ661、662及びスイッチ663による共振周波数を切り替える回路に替えて、共振周波数切替部1060は、電源回路220に接続されない共鳴コイルとして働く非接触受電アンテナ1064及び当該非接触受電アンテナ1064に接続された2つのコンデンサ1061、1062と、検出回路240からの出力に基づいてコンデンサ1062を導通させるスイッチ1063、共鳴コイルとして働く非接触受電アンテナ1064から電磁誘導により受電する受電コイルとして働く受電アンテナ1065とを備える。受電アンテナ1065は、たとえば無線通信アンテナ631と非接触受電アンテナ632の配置される面の裏面に配置される。ただし、配置面はこれに限るものではない。受電アンテナ1065は電源回路220及び検出回路240に接続される。
[Example 3]
Next, Example 3 using a resonance coil and a power receiving coil will be described. The circuit configuration of the third embodiment is shown in FIG. In this embodiment, in place of the circuit for switching the resonance frequency by the two capacitors 661 and 662 and the switch 663 in the first embodiment, the resonance frequency switching unit 1060 has a non-contact power receiving antenna 1064 that works as a resonance coil not connected to the power supply circuit 220 and Power is received by electromagnetic induction from two capacitors 1061 and 1062 connected to the non-contact power receiving antenna 1064, a switch 1063 that conducts the capacitor 1062 based on an output from the detection circuit 240, and a non-contact power receiving antenna 1064 that functions as a resonance coil. And a power receiving antenna 1065 serving as a power receiving coil. The power receiving antenna 1065 is disposed on the back surface of the surface on which the wireless communication antenna 631 and the non-contact power receiving antenna 632 are disposed, for example. However, the arrangement surface is not limited to this. The power receiving antenna 1065 is connected to the power supply circuit 220 and the detection circuit 240.
 コンデンサ1061及びコンデンサ1062は並列に接続される。コンデンサ1061は、共鳴コイルとして働く非接触受電アンテナ1064が無線通信に使用される周波数で共振する容量を有し、並列に接続されたコンデンサ1061及びコンデンサ1062の容量を加算したコンデンサ容量は、共鳴コイルとして働く非接触受電アンテナ1064が非接触電力伝送に使用される周波数で共振する容量である。 The capacitor 1061 and the capacitor 1062 are connected in parallel. Capacitor 1061 has a capacity at which non-contact power receiving antenna 1064 acting as a resonance coil resonates at a frequency used for wireless communication, and a capacitor capacity obtained by adding the capacitances of capacitor 1061 and capacitor 1062 connected in parallel is a resonance coil. The non-contact power receiving antenna 1064 acting as a capacitor resonates at a frequency used for non-contact power transmission.
 共鳴コイルとして働く非接触受電アンテナ1064から電磁誘導により受電する受電アンテナ1065が受電中であるとの検出結果を検出回路240が出力しない場合は、共振周波数切替部1060は、スイッチ1063をオフにし、コンデンサ1062を切断状態にして、コンデンサ1061を介して共鳴コイルとして働く非接触受電アンテナ1064を導通させる。これにより、無線通信アンテナ631及び非接触受電アンテナ1064は無線通信に使用される周波数で共振し、非接触受電アンテナ1064による干渉なく、無線通信を行うことができる。一方、共鳴コイルとして働く非接触受電アンテナ1064から電磁誘導により受電する受電アンテナ1065が受電中であるとの検出結果を検出回路240が出力する場合は、共振周波数切替部1060は、スイッチ1063をオンにして、並列に接続されたコンデンサ1061及びコンデンサ1062を介して共鳴コイル1064を導通させる。これにより、非接触受電アンテナ1064は無線電力伝送に使用される周波数で共振し、非接触受電を行うことができる。 When the detection circuit 240 does not output the detection result that the power receiving antenna 1065 that receives power by electromagnetic induction from the non-contact power receiving antenna 1064 that functions as a resonance coil is receiving power, the resonance frequency switching unit 1060 turns off the switch 1063, The capacitor 1062 is disconnected, and the non-contact power receiving antenna 1064 that functions as a resonance coil is made conductive through the capacitor 1061. Accordingly, the wireless communication antenna 631 and the non-contact power receiving antenna 1064 resonate at a frequency used for wireless communication, and wireless communication can be performed without interference by the non-contact power receiving antenna 1064. On the other hand, when the detection circuit 240 outputs a detection result that the power receiving antenna 1065 that receives power by electromagnetic induction from the non-contact power receiving antenna 1064 that functions as a resonance coil is output, the resonance frequency switching unit 1060 turns on the switch 1063. Thus, the resonance coil 1064 is conducted through the capacitor 1061 and the capacitor 1062 connected in parallel. Accordingly, the non-contact power receiving antenna 1064 can resonate at a frequency used for wireless power transmission and can perform non-contact power reception.
 このような構成を採用することにより、実施例1の効果に加え、受電コイル1065とコイルアンテナである共鳴コイルとして働く非接触受電アンテナ1064との間は磁気誘導方式で結合されており、電源回路220とのインピーダンスマッチングがとりやすくなる。 By adopting such a configuration, in addition to the effects of the first embodiment, the power receiving coil 1065 and the non-contact power receiving antenna 1064 acting as a resonance coil that is a coil antenna are coupled by a magnetic induction method, and the power supply circuit The impedance matching with 220 becomes easy to take.
 なお、本実施例において、無線通信アンテナ631を非接触受電アンテナ632の外側に配置してもよい。 In this embodiment, the wireless communication antenna 631 may be disposed outside the non-contact power receiving antenna 632.
 また、本実施例は無線通信部においても適用できることは明らかである。すなわち、共鳴コイルとして動作し、通信回路210に接続されない無線通信アンテナに共振周波数切替部を接続し、受信コイルを通信回路210に接続する。共振周波数切替部の構成及びその動作は、非接触通信部に適用された場合と同様である。 Also, it is clear that this embodiment can be applied to the wireless communication unit. That is, the resonance frequency switching unit is connected to a wireless communication antenna that operates as a resonance coil and is not connected to the communication circuit 210, and the reception coil is connected to the communication circuit 210. The configuration and operation of the resonance frequency switching unit are the same as those applied to the non-contact communication unit.
[実施例4]
 次に、本発明の実施例4について説明する。図11は実施例4の回路構成図を示す。本実施例においては、実施例1における2つのコンデンサ661、662及びスイッチ663による共振周波数を切り替える回路に替えて、共振周波数切替部1160は、コイルアンテナである非接触受電アンテナ632のコイルの一端に接続された、電源回路220に接続される給電線1161と、アンテナコイル632の他端に接続された給電線1162と、アンテナコイル632の一端と他端の間に接続された給電線1163と、電源回路220に接続される給電線1164と、給電線1162及び給電線1163のいずれかを給電線1164に接続するスイッチ1165とを備える点で実施例1と相違する。給電線1162を介して給電線1164に接続された場合の非接触受電アンテナ632の共振周波数が非接触電力伝送に使用される周波数であり、給電線1163を介して給電線1164に接続された場合の非接触受電アンテナ632の共振周波数が無線通信に使用される周波数となるように設定される。すなわち、アンテナとして作用するコイルの巻き数を変更することによってアンテナコイルのインダクタンスを変更し、アンテナの共振周波数を切り替える。なお、コンデンサ1190は共振用のコンデンサである。
[Example 4]
Next, a fourth embodiment of the present invention will be described. FIG. 11 shows a circuit configuration diagram of the fourth embodiment. In the present embodiment, instead of the circuit for switching the resonance frequency by the two capacitors 661 and 662 and the switch 663 in the first embodiment, the resonance frequency switching unit 1160 is connected to one end of the coil of the non-contact power receiving antenna 632 that is a coil antenna. A feed line 1161 connected to the power supply circuit 220, a feed line 1162 connected to the other end of the antenna coil 632, a feed line 1163 connected between one end and the other end of the antenna coil 632; The present embodiment is different from the first embodiment in that it includes a power supply line 1164 connected to the power supply circuit 220 and a switch 1165 that connects one of the power supply line 1162 and the power supply line 1163 to the power supply line 1164. When the resonance frequency of the non-contact power receiving antenna 632 when connected to the power supply line 1164 via the power supply line 1162 is a frequency used for non-contact power transmission and is connected to the power supply line 1164 via the power supply line 1163 The resonance frequency of the non-contact power receiving antenna 632 is set to be a frequency used for wireless communication. That is, the inductance of the antenna coil is changed by changing the number of turns of the coil acting as an antenna, and the resonance frequency of the antenna is switched. The capacitor 1190 is a resonance capacitor.
 非接触受電アンテナ632が受電中であるとの検出結果を検出回路240が出力しない場合は、共振周波数切替部1160は、給電線1163が給電線1164に接続されるようにスイッチ1165を切り替える。これにより、無線通信アンテナ631及び非接触受電アンテナ632は無線通信に使用される周波数で共振し、非接触受電アンテナ632による干渉なく、無線通信を行うことができる。非接触受電アンテナ632が受電中であるとの検出結果を検出回路240が出力する場合は、共振周波数切替部1160は、給電線1162が給電線1164に接続されるようにスイッチ1165を切り替える。これにより、非接触受電アンテナは無線電力伝送に使用される周波数で共振し、非接触受電を行うことができる。 When the detection circuit 240 does not output the detection result that the non-contact power receiving antenna 632 is receiving power, the resonance frequency switching unit 1160 switches the switch 1165 so that the power supply line 1163 is connected to the power supply line 1164. Accordingly, the wireless communication antenna 631 and the non-contact power receiving antenna 632 resonate at a frequency used for wireless communication, and wireless communication can be performed without interference by the non-contact power receiving antenna 632. When the detection circuit 240 outputs a detection result that the non-contact power receiving antenna 632 is receiving power, the resonance frequency switching unit 1160 switches the switch 1165 so that the feed line 1162 is connected to the feed line 1164. Thereby, the non-contact power receiving antenna resonates at a frequency used for wireless power transmission and can perform non-contact power reception.
 実施例1の効果に加え、非接触電力伝送の周波数と無線通信に使用される周波数の共振周波数の変更をスイッチのみで実現することができるため、実装面積を小さくすることができる。また、非接触受電アンテナと切り替えスイッチを用いて非接触電力伝送の周波数と無線通信用の周波数のそれぞれに対して、最適なコイル長を容易に選択することができるので、非接触電力伝送の周波数や無線通信用の周波数の選択の幅が広くなる。 In addition to the effects of the first embodiment, since the change of the frequency of contactless power transmission and the resonance frequency of the frequency used for wireless communication can be realized only by the switch, the mounting area can be reduced. In addition, the optimal coil length can be easily selected for each of the non-contact power transmission frequency and the wireless communication frequency using the non-contact power receiving antenna and the changeover switch. And the range of selection of frequencies for wireless communication is widened.
 なお、本実施例において、実施例1記載の共振周波数切替部660及び実施例3記載の共振周波数切替部1160をあわせて使用できることは明らかである。また、無線通信アンテナ631を非接触受電アンテナ632の外側に配置してもよい。 In this embodiment, it is clear that the resonance frequency switching unit 660 described in the first embodiment and the resonance frequency switching unit 1160 described in the third embodiment can be used together. Further, the wireless communication antenna 631 may be disposed outside the non-contact power receiving antenna 632.
[実施例5]
 次に、本発明の実施例5について説明する。図12は実施例5の回路構成図を示す。本実施例においては、実施例1における2つのコンデンサ661、662及びスイッチ663による共振周波数を切り替える回路に替えて、無線通信アンテナ631と通信回路210との間に接続されたコンデンサ1271と当該コンデンサ1271を介さずに無線通信アンテナ631と通信回路210とを接続するスイッチ1272とを有する共振周波数切替部1270を備える。コンデンサ1271を介して通信回路210に接続された場合の無線通信アンテナ631の共振周波数が非接触電力伝送に使用される周波数となり、コンデンサ1271を介さないで通信回路210に接続された場合の無線通信アンテナ631の共振周波数が無線通信に使用される周波数となるように設定されている。コンデンサ1290は共振用のコンデンサである。
[Example 5]
Next, a fifth embodiment of the present invention will be described. FIG. 12 shows a circuit configuration diagram of the fifth embodiment. In this embodiment, instead of the circuit for switching the resonance frequency by the two capacitors 661 and 662 and the switch 663 in the first embodiment, a capacitor 1271 connected between the wireless communication antenna 631 and the communication circuit 210 and the capacitor 1271 A resonance frequency switching unit 1270 having a switch 1272 that connects the wireless communication antenna 631 and the communication circuit 210 without using the antenna is provided. The resonance frequency of the wireless communication antenna 631 when connected to the communication circuit 210 via the capacitor 1271 becomes a frequency used for non-contact power transmission, and wireless communication when connected to the communication circuit 210 without passing through the capacitor 1271 The resonance frequency of the antenna 631 is set to be a frequency used for wireless communication. The capacitor 1290 is a resonance capacitor.
 非接触受電アンテナ632が受電中であるとの検出結果を検出回路240が出力しない場合は、共振周波数切替部1270は、コンデンサ1271を介さないで無線通信アンテナ631が通信回路210に導通するようにスイッチ1272を切り替える。これにより、無線通信アンテナ631は無線通信に使用される周波数で共振し、無線通信を行うことができる。非接触受電アンテナ632が受電中であるとの検出結果を検出回路240が出力する場合は、コンデンサ1271を介して無線通信アンテナ631が導通するようにスイッチ1272を切り替える。これにより、無線通信アンテナ631及び非接触受電アンテナ632は無線電力伝送に使用される周波数で共振し、無線通信アンテナ631による干渉なく、非接触受電を行うことができる。 When the detection circuit 240 does not output the detection result that the non-contact power receiving antenna 632 is receiving power, the resonance frequency switching unit 1270 does not pass the capacitor 1271 so that the wireless communication antenna 631 is connected to the communication circuit 210. Switch 1272 is switched. Accordingly, the wireless communication antenna 631 can resonate at a frequency used for wireless communication and perform wireless communication. When the detection circuit 240 outputs a detection result that the non-contact power receiving antenna 632 is receiving power, the switch 1272 is switched so that the wireless communication antenna 631 is turned on via the capacitor 1271. Accordingly, the wireless communication antenna 631 and the non-contact power receiving antenna 632 resonate at a frequency used for wireless power transmission, and can perform non-contact power reception without interference by the wireless communication antenna 631.
 本実施例の構成とすることで、無線通信アンテナ用コイルと非接触受電アンテナ用コイルが無線通信エリアと給電エリアが一致するように接近して配置された場合でも、非接触電力伝送時には、無線通信アンテナ用コイルと非接触受電アンテナ用コイルが結合することで、受電効率の劣化を低減することができる。また、受電時に、スイッチにより、通信回路が破壊されるのを防ぐことが可能となる。 By adopting the configuration of the present embodiment, even when the wireless communication antenna coil and the non-contact power receiving antenna coil are arranged close to each other so that the wireless communication area and the power feeding area coincide with each other, By combining the communication antenna coil and the non-contact power receiving antenna coil, it is possible to reduce deterioration of power receiving efficiency. In addition, it is possible to prevent the communication circuit from being destroyed by the switch during power reception.
[実施例6]
 次に、本発明の実施例6について説明する。図13は実施例6の回路構成図を示す。本実施例においては、実施例5におけるコンデンサ1271及びスイッチ1272に替えて、共振周波数切替部1370は共鳴コイルである無線通信アンテナ631のコイルの一端に接続され、通信回路210に接続される信号線1371と、無線通信アンテナ631のコイルの他端に接続され、コンデンサ1375を直列に接続した信号線1372と、無線通信アンテナ631のコイルの一端と他端の間に接続された信号線1373と、通信回路210に接続される信号線1374と、信号線1372及び信号線1373のいずれか一方を信号線1374に接続するスイッチ1376とを備える。信号線1372及びコンデンサ1375を介して信号線1374に接続された場合の共鳴コイルである無線アンテナ631の共振周波数が非接触電力伝送に使用される周波数となり、信号線1373を介して信号線1374に接続された場合の無線通信アンテナの共振周波数が無線通信に使用される周波数となるように設定される。
[Example 6]
Next, a sixth embodiment of the present invention will be described. FIG. 13 is a circuit configuration diagram of the sixth embodiment. In the present embodiment, in place of the capacitor 1271 and the switch 1272 in the fifth embodiment, the resonance frequency switching unit 1370 is connected to one end of the coil of the wireless communication antenna 631 that is a resonance coil and is connected to the communication circuit 210. 1371, a signal line 1372 connected to the other end of the coil of the wireless communication antenna 631, and a capacitor 1375 connected in series, a signal line 1373 connected between one end and the other end of the coil of the wireless communication antenna 631; A signal line 1374 connected to the communication circuit 210 and a switch 1376 that connects one of the signal line 1372 and the signal line 1373 to the signal line 1374 are provided. The resonance frequency of the wireless antenna 631, which is a resonance coil when connected to the signal line 1374 via the signal line 1372 and the capacitor 1375, becomes a frequency used for non-contact power transmission, and is transmitted to the signal line 1374 via the signal line 1373. The resonance frequency of the wireless communication antenna when connected is set to be a frequency used for wireless communication.
 非接触受電アンテナ632が受電中であるとの検出結果を検出回路240が出力しない場合は、共振周波数切替部1370は、信号線1373を介して信号線1374に接続されるようにスイッチ1376を切り替える。これにより、無線通信アンテナ631は無線通信に使用される周波数で共振し、無線通信を行うことができる。非接触受電アンテナ632が受電中であるとの検出結果を検出回路240が出力する場合は、共振周波数切替部1370は、第2の信号線1372及びコンデンサ1375を介して信号線1374に接続されるようにスイッチ1376を切り替える。これにより、無線通信アンテナ631及び非接触受電アンテナ632は無線電力伝送に使用される周波数で共振し、無線通信アンテナによる干渉なく、非接触受電を行うことができる。 When the detection circuit 240 does not output the detection result that the non-contact power receiving antenna 632 is receiving power, the resonance frequency switching unit 1370 switches the switch 1376 to be connected to the signal line 1374 via the signal line 1373. . Accordingly, the wireless communication antenna 631 can resonate at a frequency used for wireless communication and perform wireless communication. When the detection circuit 240 outputs a detection result that the non-contact power receiving antenna 632 is receiving power, the resonance frequency switching unit 1370 is connected to the signal line 1374 via the second signal line 1372 and the capacitor 1375. Switch 1376 is switched as follows. Accordingly, the wireless communication antenna 631 and the non-contact power receiving antenna 632 resonate at a frequency used for wireless power transmission, and can perform non-contact power reception without interference by the wireless communication antenna.
 このような構成を採用することにより、実施例5の効果に加え、無線通信アンテナ631と共振周波数切替部1370を用いて非接触電力伝送の周波数と無線通信用の周波数のそれぞれに対して、無線通信アンテナ631に接続されるコンデンサ1375との共振において最適なコイル長を選択することができるので、非接触電力伝送の周波数や無線通信用の周波数の選択の幅が広くなる効果がある。 By adopting such a configuration, in addition to the effects of the fifth embodiment, the wireless communication antenna 631 and the resonance frequency switching unit 1370 are used to wirelessly transmit the non-contact power transmission frequency and the wireless communication frequency. Since the optimum coil length can be selected in resonance with the capacitor 1375 connected to the communication antenna 631, there is an effect that the range of selection of the frequency for non-contact power transmission and the frequency for wireless communication is widened.
 なお、本実施例において、実施例5の共振周波数切替部1270をあわせて使用できることは明らかである。 In the present embodiment, it is obvious that the resonance frequency switching unit 1270 of the fifth embodiment can be used together.
[実施例7]
 次に、本発明の実施例7について説明する。図14は実施例7の回路構成図を示す。本実施例は、実施例1の構成に実施例5の無線通信回路に接続された共振周波数切替部1270を追加したものである。
[Example 7]
Next, a seventh embodiment of the present invention will be described. FIG. 14 shows a circuit configuration diagram of the seventh embodiment. In the present embodiment, a resonance frequency switching unit 1270 connected to the wireless communication circuit of the fifth embodiment is added to the configuration of the first embodiment.
 すなわち、非接触受電装置120は、非接触受電回路200、通信回路210及び電源回路220を備える。非接触受電回路200は、アンテナ部630を備え、このアンテナ部630は無線通信アンテナ631及び非接触受電アンテナ632を備える。さらに非接触受電回路200は、受電中であるか否かを検出しその結果を出力する検出回路240及び非接触受電アンテナ632のための共振周波数切替部660を備える。さらに、無線通信アンテナ631と通信回路210との間に接続されたコンデンサ1271と当該コンデンサ1271を介さずに無線通信アンテナ631と通信回路210とを接続するスイッチ1272とを有する共振周波数切替部1270を備える。コンデンサ1271を介して通信回路210に接続された場合の無線通信アンテナ631の共振周波数は非接触電力伝送に使用される周波数となり、コンデンサ1271を介さないで通信回路210に接続された場合の無線通信アンテナ621の共振周波数が無線通信に使用される周波数となるように設定されている。さらに、無線通信アンテナ631と通信回路210との間にシャント回路670を備える。無線通信アンテナ631は通信回路210と接続するための2つの信号線に接続され、無線通信アンテナ631と通信回路210との間にはこの2つの信号線を介してシャント回路670が接続される。 That is, the contactless power receiving device 120 includes a contactless power receiving circuit 200, a communication circuit 210, and a power supply circuit 220. The non-contact power receiving circuit 200 includes an antenna unit 630, and the antenna unit 630 includes a wireless communication antenna 631 and a non-contact power receiving antenna 632. Further, the non-contact power receiving circuit 200 includes a detection circuit 240 that detects whether or not power is being received and outputs the result, and a resonance frequency switching unit 660 for the non-contact power receiving antenna 632. Further, a resonance frequency switching unit 1270 having a capacitor 1271 connected between the wireless communication antenna 631 and the communication circuit 210 and a switch 1272 that connects the wireless communication antenna 631 and the communication circuit 210 without using the capacitor 1271. Prepare. The resonance frequency of the wireless communication antenna 631 when connected to the communication circuit 210 via the capacitor 1271 is a frequency used for non-contact power transmission, and wireless communication when connected to the communication circuit 210 without passing through the capacitor 1271 The resonance frequency of the antenna 621 is set to be a frequency used for wireless communication. Further, a shunt circuit 670 is provided between the wireless communication antenna 631 and the communication circuit 210. The wireless communication antenna 631 is connected to two signal lines for connection to the communication circuit 210, and a shunt circuit 670 is connected between the wireless communication antenna 631 and the communication circuit 210 via these two signal lines.
 非接触受電アンテナ632が受電中であるとの検出結果を検出回路240が出力しない場合は、シャント回路670におけるスイッチ671をオフにすることにより無線通信のアンテナコイル631の端子間を開放する。無線通信アンテナ631のための共振周波数切替部1270は、コンデンサ1271を介さないで無線通信アンテナ631が通信回路210に導通するようにスイッチ1272を切り替える。非接触受電アンテナ632のための共振周波数切替部660は、スイッチ663をオフにし、コンデンサ662を切断状態にして、コンデンサ661を介して非接触受電アンテナ632と電源回路220とを導通させる。そして、非接触受電アンテナ632は、無線通信に使用される周波数で共振する。 When the detection circuit 240 does not output the detection result that the non-contact power receiving antenna 632 is receiving power, the terminal of the wireless communication antenna coil 631 is opened by turning off the switch 671 in the shunt circuit 670. The resonant frequency switching unit 1270 for the wireless communication antenna 631 switches the switch 1272 so that the wireless communication antenna 631 is conducted to the communication circuit 210 without using the capacitor 1271. The resonance frequency switching unit 660 for the non-contact power receiving antenna 632 turns off the switch 663, disconnects the capacitor 662, and makes the non-contact power receiving antenna 632 and the power supply circuit 220 conductive through the capacitor 661. The non-contact power receiving antenna 632 resonates at a frequency used for wireless communication.
 非接触受電アンテナ632が受電中であるとの検出結果を検出回路240が出力する場合は、シャント回路670は、スイッチ671をオンにすることにより無線通信アンテナ631のコイルの端子間を短絡する。無線通信アンテナ631のための共振周波数切替部1270はコンデンサ1271を介して無線通信アンテナ631が導通するようにスイッチ1272を切り替える。非接触受電アンテナ632のための共振周波数切替部660はスイッチ663をオンにして、並列に接続されたコンデンサ661及びコンデンサ662を介して非接触受電アンテナ632と電源回路220とを導通させる。そして、非接触受電アンテナ632は、無線電力伝送に使用される周波数で共振する。 When the detection circuit 240 outputs a detection result that the non-contact power receiving antenna 632 is receiving power, the shunt circuit 670 shorts between the coil terminals of the wireless communication antenna 631 by turning on the switch 671. The resonance frequency switching unit 1270 for the wireless communication antenna 631 switches the switch 1272 so that the wireless communication antenna 631 is conducted via the capacitor 1271. The resonance frequency switching unit 660 for the non-contact power receiving antenna 632 turns on the switch 663 and causes the non-contact power receiving antenna 632 and the power supply circuit 220 to conduct through the capacitor 661 and the capacitor 662 connected in parallel. The non-contact power receiving antenna 632 resonates at a frequency used for wireless power transmission.
 本実施例の構成とすることで、無線通信アンテナと非接触受電アンテナが接近して配置された場合でも、無線通信時には、無線通信アンテナと非接触受電アンテナが結合することで、通信感度の劣化をなくすことが可能となり、非接触電力伝送時には、無線通信アンテナと非接触受電アンテナが結合することで、受電効率の劣化をなくすことが可能となる。また、受電時に、シャント回路により、通信回路が破壊されるのを防ぐことが可能となる。 By adopting the configuration of the present embodiment, even when the wireless communication antenna and the non-contact power receiving antenna are arranged close to each other, the wireless communication antenna and the non-contact power receiving antenna are combined at the time of wireless communication, thereby degrading the communication sensitivity. In the case of non-contact power transmission, the wireless communication antenna and the non-contact power receiving antenna can be combined to eliminate the deterioration of power receiving efficiency. In addition, it is possible to prevent the communication circuit from being destroyed by the shunt circuit when receiving power.
 本実施例は、実施例4の共振周波数切替部1160及び実施例6の共振周波数切替部1370をあわせて使用できることは明らかである。 In this embodiment, it is obvious that the resonance frequency switching unit 1160 of the fourth embodiment and the resonance frequency switching unit 1370 of the sixth embodiment can be used together.
[実施例8]
 次に、本発明の実施例8について説明する。図15は実施例8の回路構成図を示す。本実施例は、実施例1の構成において共振周波数切替部660を含まない構成である。無線アンテナ631及び非接触受電アンテナ632のいずれもが共振周波数切替部を有しない。それ以外については、実施例1と同じである。
[Example 8]
Next, an eighth embodiment of the present invention will be described. FIG. 15 is a circuit diagram of the eighth embodiment. The present embodiment is a configuration that does not include the resonance frequency switching unit 660 in the configuration of the first embodiment. Neither the radio antenna 631 nor the non-contact power receiving antenna 632 has a resonance frequency switching unit. The rest is the same as in the first embodiment.
 すなわち、非接触受電装置120は、非接触受電回路200、通信回路210及び電源回路220を備える。非接触受電回路200は、アンテナ部630を備え、このアンテナ部630は無線通信アンテナ631及び非接触受電アンテナ632を備える。非接触受電回路200はさらに、受電中であるか否かを検出しその結果を出力する検出回路240を備える。無線通信アンテナ631は通信回路210と接続するための2つの信号線に接続され、無線通信アンテナ631と通信回路210との間にはこの2つの信号線を介してシャント回路670が接続される。 That is, the contactless power receiving device 120 includes a contactless power receiving circuit 200, a communication circuit 210, and a power supply circuit 220. The non-contact power receiving circuit 200 includes an antenna unit 630, and the antenna unit 630 includes a wireless communication antenna 631 and a non-contact power receiving antenna 632. The non-contact power receiving circuit 200 further includes a detection circuit 240 that detects whether power is being received and outputs the result. The wireless communication antenna 631 is connected to two signal lines for connection to the communication circuit 210, and a shunt circuit 670 is connected between the wireless communication antenna 631 and the communication circuit 210 via these two signal lines.
 非接触受電アンテナ632が受電中であるとの検出結果を検出回路240が出力しない場合は、シャント回路670におけるスイッチ671をオフにすることにより無線通信のアンテナコイル631の端子間を開放する。非接触受電アンテナ632が受電中であるとの検出結果を検出回路240が出力する場合は、シャント回路670は、スイッチ671をオンにする(閉じる)ことにより無線通信アンテナ631のコイルの端子間を短絡する。これにより、無線通信アンテナコイル611の内部では誘導起電力により電流が流れるが、スイッチ671によって短絡されて形成されたループ経路に大きな電流が流れ、通信回路210への電流供給を抑制し、通信回路210が過剰電圧により破壊されるのを防ぐことができる。 When the detection circuit 240 does not output the detection result that the non-contact power receiving antenna 632 is receiving power, the terminal of the wireless communication antenna coil 631 is opened by turning off the switch 671 in the shunt circuit 670. When the detection circuit 240 outputs a detection result that the non-contact power receiving antenna 632 is receiving power, the shunt circuit 670 turns on (closes) the switch 671 so that the coil terminals of the wireless communication antenna 631 are connected. Short circuit. As a result, a current flows due to the induced electromotive force inside the wireless communication antenna coil 611, but a large current flows in a loop path formed by being short-circuited by the switch 671, and the current supply to the communication circuit 210 is suppressed. 210 can be prevented from being destroyed by excessive voltage.
 かかる構成によれば、アンテナ同士の干渉を低減することはできないものの、受電による通信回路の破壊を防止することができる。 According to such a configuration, although interference between antennas cannot be reduced, it is possible to prevent a communication circuit from being destroyed due to power reception.
 以上に説明してきた各実施形態は、本発明を説明するための例示であり、本発明はこれらの実施形態に限定されるものではない。本発明は、その要旨を逸脱しない限り、種々の形態で実施することができる。 Each embodiment described above is an example for explaining the present invention, and the present invention is not limited to these embodiments. The present invention can be implemented in various forms without departing from the gist thereof.
 また、全ての実施形態、全ての実施例において、無線通信時に非接触受電アンテナの共振周波数を無線通信に使用される周波数に切り替えるときに、完全に無線通信に使用される周波数と一致させる必要はない。無線通信に使用される周波数より少し上の周波数または無線通信に使用される周波数より少し下の周波数とした方が無線通信に使用される周波数としたときよりも無線通信の感度劣化が少ない場合がある。同様に、非接触受電時に無線通信アンテナの共振周波数を非接触電力伝送に使用される周波数に切り替えるときに、完全に非接触電力伝送に使用される周波数と一致させる必要はない。非接触電力伝送に使用される周波数より少し上の周波数または非接触電力伝送に使用される周波数より少し下の周波数とした方が非接触電力伝送に使用される周波数としたときよりも非接触受電の感度劣化が少ない場合がある。これを図17を用いて説明する。 Further, in all the embodiments and all the examples, when switching the resonance frequency of the non-contact power receiving antenna to the frequency used for wireless communication at the time of wireless communication, it is necessary to completely match the frequency used for wireless communication. Absent. In some cases, the sensitivity deterioration of wireless communication is less when the frequency slightly higher than the frequency used for wireless communication or the frequency slightly lower than the frequency used for wireless communication is set as the frequency used for wireless communication. is there. Similarly, when the resonance frequency of the wireless communication antenna is switched to the frequency used for contactless power transmission during contactless power reception, it is not necessary to completely match the frequency used for contactless power transmission. Non-contact power reception with a frequency slightly higher than the frequency used for non-contact power transmission or a frequency slightly lower than the frequency used for non-contact power transmission than with the frequency used for non-contact power transmission There are cases in which there is little sensitivity degradation. This will be described with reference to FIG.
 図17は無線通信または非接触電力伝送の共振状態を示すものである。図17Aは単峰特性、図17Bは双峰特性を示す。 FIG. 17 shows a resonance state of wireless communication or non-contact power transmission. FIG. 17A shows a single peak characteristic, and FIG. 17B shows a double peak characteristic.
 共振している二つ以上の系がある一定距離(臨界結合位置)を境に、遠い距離にあると図17Aの単峰特性を、近い距離にあると双峰特性を示す。このため、図7で示した現象を生じさせる周波数が、完全に無線通信に使用される周波数または非接触電力伝送に使用される周波数とするよりも、上または下に変化させた方が感度劣化が少ない場合がある。 When two or more resonating systems are at a certain distance (critical coupling position) as a boundary, a single peak characteristic of FIG. 17A is shown, and when they are close, a bimodal characteristic is shown. For this reason, sensitivity deterioration occurs when the frequency causing the phenomenon shown in FIG. 7 is changed to the upper or lower side than the frequency used for wireless communication or the frequency used for contactless power transmission. May be less.
 したがって、本発明における非接触受電アンテナの共振周波数を無線通信に使用される周波数への切り替え、及び、非接触受電時に無線通信アンテナの共振周波数を非接触電力伝送に使用される周波数への切り替えは、正確に無線通信ないし非接触電力伝送に使用される周波数へ切り替えるだけでなく、その周波数近傍で共振となる周波数への切り替えを含む。 Therefore, switching the resonance frequency of the non-contact power receiving antenna in the present invention to a frequency used for wireless communication and switching the resonance frequency of the wireless communication antenna to a frequency used for non-contact power transmission at the time of non-contact power reception are In addition to switching to a frequency used for wireless communication or non-contact power transmission accurately, switching to a frequency that resonates near that frequency is included.
 100  非接触送受電装置
 110  非接触給電台
 120  非接触受電装置
 200  非接触受電回路
 210  通信回路
 220  電源回路
 230  アンテナ部
 231  無線通信アンテナ
 232  非接触受電アンテナ
 240  検出回路
 250  共振周波数切替部
 260  共振周波数切替部
 350  共振周波数切替部
 360  共振周波数切替部
 370  アンテナ部
 371  無線通信アンテナ
 372  非接触受電アンテナ
 373  受信コイルアンテナ
 374  受電コイルアンテナ
 380  共振周波数切替部
 390  共振周波数切替部
 470  シャント回路
 630  アンテナ部
 631  無線通信アンテナ
 632  非接触受電アンテナ
 660  共振周波数切替部
 661  コンデンサ
 662  コンデンサ
 663  スイッチ
 670  シャント回路
 671  スイッチ
 680  磁束
 930  アンテナ部
 931  無線通信アンテナ
 932  非接触受電アンテナ
 960  共振周波数切替部
 961  コンデンサ
 962  コンデンサ
 963  スイッチ
 1060 共振周波数切替部
 1061 コンデンサ
 1062 コンデンサ
 1063 スイッチ
 1064 非接触受電アンテナ
 1065 受電コイルアンテナ
 1160 共振周波数切替部
 1161 給電線
 1162 給電線
 1163 給電線
 1164 給電線
 1165 スイッチ
 1190 コンデンサ
 1270 共振周波数切替部
 1271 コンデンサ
 1272 スイッチ
 1290 コンデンサ
 1370 共振周波数切替部
 1371 信号線
 1372 信号線
 1373 信号線
 1374 信号線
 1375 コンデンサ
 1376 スイッチ
 1610a 非接触電力伝送装置
 1620a 電力伝送アンテナ
 1622a 共鳴アンテナ
 1624a 電力授受アンテナ
 1630 受電回路
 1640 通信アンテナ
 1650 遮断回路
 1660 通信回路
 1670 制御回路
DESCRIPTION OF SYMBOLS 100 Contactless power transmission / reception apparatus 110 Contactless power supply stand 120 Contactless power receiving apparatus 200 Contactless power receiving circuit 210 Communication circuit 220 Power supply circuit 230 Antenna part 231 Wireless communication antenna 232 Contactless power receiving antenna 240 Detection circuit 250 Resonance frequency switching part 260 Resonance frequency Switching unit 350 Resonance frequency switching unit 360 Resonance frequency switching unit 370 Antenna unit 371 Wireless communication antenna 372 Non-contact power receiving antenna 373 Reception coil antenna 374 Power receiving coil antenna 380 Resonance frequency switching unit 390 Resonance frequency switching unit 470 Shunt circuit 630 Antenna unit 631 Wireless Communication antenna 632 Non-contact power receiving antenna 660 Resonance frequency switching unit 661 Capacitor 662 Capacitor 663 Switch 670 Shunt circuit 671 Switch 680 Magnetic flux 930 Antenna unit 931 Wireless communication antenna 932 Non-contact power receiving antenna 960 Resonance frequency switching unit 961 Capacitor 962 Capacitor 963 Switch 1060 Resonance frequency switching unit 1061 Capacitor 1062 Capacitor 1063 Switch 1064 Non-contact power receiving antenna 1065 Power receiving coil antenna 1160 Resonance frequency switching unit 1161 Feed line 1162 Feed line 1163 Feed line 1164 Feed line 1165 Switch 1190 Capacitor 1270 Resonance frequency switching unit 1271 Capacitor 1272 Switch 1290 Capacitor 1370 Resonance frequency switching unit 1371 Signal line 1372 Signal line 1373 Signal line 1374 Signal line 1375 Capacitor 1376 Switch 1616 Contact power transmission device 1620a Power transmission Antenna 1622a Resonant antenna 1624a Power transfer antenna 1630 Power reception circuit 1640 Communication antenna 1650 Cutoff circuit 1660 Communication circuit 1670 Control circuit

Claims (17)

  1.  無線通信部と、
     送電側から無線伝送された電力を非接触で受電する非接触受電部と、
     受電中であるか否か及び通信中であるか否かの少なくとも一つを検出し、その結果を出力する検出回路と、
     前記検出回路の出力に基づいて、前記無線通信部の共振周波数及び前記非接触受電部の共振周波数のうち少なくとも一つを切り替える少なくとも一つの共振周波数切替部と、
     を備えることを特徴とする非接触受電回路。
    A wireless communication unit;
    A non-contact power receiving unit that receives power wirelessly transmitted from the power transmission side in a non-contact manner;
    A detection circuit that detects at least one of whether power is being received and whether it is in communication, and outputs the result;
    Based on the output of the detection circuit, at least one resonance frequency switching unit that switches at least one of the resonance frequency of the wireless communication unit and the resonance frequency of the non-contact power reception unit;
    A non-contact power receiving circuit comprising:
  2.  前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記少なくとも一つの共振周波数切替部は、前記非接触受電部の共振周波数及び前記無線通信部の共振周波数のうち少なくとも一つを無線通信に使用され共振となる周波数に切り替え、
     前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記共振周波数切替部は、前記非接触受電部の共振周波数及び前記無線通信部の共振周波数のうち少なくとも一つを非接触電力伝送に使用され共振となる周波数に切り替えることを特徴とする請求項1に記載の非接触受電回路。
    When the detection circuit does not output a detection result that the non-contact power receiving unit is receiving power or when the detection circuit outputs a detection result that the wireless communication unit is communicating, the at least one The resonance frequency switching unit switches at least one of the resonance frequency of the non-contact power receiving unit and the resonance frequency of the wireless communication unit to a frequency that is used for wireless communication and becomes resonant,
    When the detection circuit outputs a detection result that the non-contact power receiving unit is receiving power, or when the detection circuit does not output a detection result that the wireless communication unit is communicating, the resonance frequency switching 2. The non-contact power receiving unit according to claim 1, wherein the unit switches at least one of a resonance frequency of the non-contact power receiving unit and a resonance frequency of the wireless communication unit to a frequency that is used for non-contact power transmission and becomes resonant. Contact power receiving circuit.
  3.  前記少なくとも一つの共振周波数切替部は、前記検出回路からの出力に基づいて前記非接触受電部または前記無線通信部のコンデンサ容量、インダクタンス、磁界、及び電界のうちの少なくとも一つを変更することで共振周波数を切り替えることを特徴とする請求項1または2に記載の非接触受電回路。 The at least one resonance frequency switching unit changes at least one of a capacitor capacity, an inductance, a magnetic field, and an electric field of the non-contact power receiving unit or the wireless communication unit based on an output from the detection circuit. The contactless power receiving circuit according to claim 1, wherein the resonance frequency is switched.
  4.  前記無線通信部は、当該無線通信部を介して相手方通信装置と通信を行う通信回路と接続するための少なくとも二つの信号線に接続され、
     前記非接触受電回路は、さらに前記無線通信部と前記通信回路との間に接続されたシャント回路を備え、
     前記検出回路の出力に基づいて、前記シャント回路は前記少なくとも二つの信号線間を短絡ないし開放することを特徴とする請求項1~3のいずれか一項に記載の非接触受電回路。
    The wireless communication unit is connected to at least two signal lines for connecting to a communication circuit that communicates with the counterpart communication device via the wireless communication unit,
    The non-contact power receiving circuit further includes a shunt circuit connected between the wireless communication unit and the communication circuit,
    The contactless power receiving circuit according to any one of claims 1 to 3, wherein the shunt circuit short-circuits or opens the at least two signal lines based on an output of the detection circuit.
  5.  前記シャント回路は、前記少なくとも二つの信号線間を短絡または開放するための第1のスイッチを備え、
     前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記シャント回路は第1のスイッチをオンにして前記少なくとも二つの信号線間を短絡し、
     前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記シャント回路は第1のスイッチをオフにして前記少なくとも二つの信号線間の接続を開放することを特徴とする請求項4に記載の非接触受電回路。
    The shunt circuit includes a first switch for short-circuiting or opening between the at least two signal lines,
    When the detection circuit outputs a detection result that the non-contact power reception unit is receiving power or when the detection circuit does not output a detection result that the wireless communication unit is communicating, the shunt circuit is A first switch is turned on to short-circuit the at least two signal lines;
    When the detection circuit does not output the detection result that the non-contact power receiving unit is receiving power or when the detection circuit outputs the detection result that the wireless communication unit is communicating, the shunt circuit is The contactless power receiving circuit according to claim 4, wherein the first switch is turned off to open the connection between the at least two signal lines.
  6.  前記少なくとも一つの共振周波数切替部は、前記非接触受電部に接続された第1のコンデンサ及び当該第1のコンデンサに並列に接続された第2のスイッチと第2のコンデンサを含み、
     前記少なくとも一つの共振周波数切替部は、
      第2のスイッチをオンにして、第1のコンデンサ及び並列に接続された第2のコンデンサを介して前記非接触受電部と当該非接触受電部で受電された電力を供給する電源回路とを導通させて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の一方の周波数に前記非接触受電部の共振周波数を切り替え、
      第2のスイッチをオフにして第2のコンデンサを切断状態にして、第1のコンデンサを介して前記非接触受電部と前記電源回路とを導通させて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の他方の周波数に前記非接触受電部の共振周波数を切り替えるものであり、
     前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記少なくとも一つの共振周波数切替部は、無線通信に使用され共振となる周波数となるように前記非接触受電部の共振周波数を切り替え、
     前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記少なくとも一つの共振周波数切替部は、非接触電力伝送に使用され共振となる周波数となるように前記非接触受電部の共振周波数を切り替えることを特徴とする請求項1~5のいずれか一項に記載の非接触受電回路。
    The at least one resonance frequency switching unit includes a first capacitor connected to the non-contact power receiving unit, a second switch connected in parallel to the first capacitor, and a second capacitor,
    The at least one resonance frequency switching unit is
    The second switch is turned on, and the non-contact power receiving unit and the power supply circuit that supplies the power received by the non-contact power receiving unit through the first capacitor and the second capacitor connected in parallel are electrically connected Let the resonant frequency of the non-contact power receiving unit be switched to one of the frequency used for wireless communication and the frequency used for non-contact power transmission,
    The second switch is turned off, the second capacitor is disconnected, and the non-contact power receiving unit and the power supply circuit are made conductive through the first capacitor, and the frequency and non-contact used for wireless communication The resonance frequency of the non-contact power receiving unit is switched to the other frequency used for power transmission,
    When the detection circuit does not output a detection result that the non-contact power receiving unit is receiving power or when the detection circuit outputs a detection result that the wireless communication unit is communicating, the at least one The resonant frequency switching unit switches the resonant frequency of the non-contact power receiving unit so that the resonant frequency is used for wireless communication and becomes resonant.
    When the detection circuit outputs a detection result that the non-contact power receiving unit is receiving power or when the detection circuit does not output a detection result that the wireless communication unit is communicating, the at least one 6. The non-resonant frequency switching unit switches the resonant frequency of the non-contact power receiving unit so as to be a resonance frequency used for non-contact power transmission. Contact power receiving circuit.
  7.  無線通信に使用される周波数と非接触電力伝送に使用される周波数とのうち高い方の周波数を使用する無線通信部ないし非接触受電部を外側で囲むように、低い方の周波数を使用する無線通信部ないし非接触受電部を配置することを特徴とする請求項1~6のいずれか一項に記載の非接触受電回路。 Radio using a lower frequency so as to surround a radio communication unit or a non-contact power receiving unit which uses a higher one of a frequency used for radio communication and a frequency used for non-contact power transmission. The contactless power receiving circuit according to any one of claims 1 to 6, wherein a communication unit or a contactless power receiving unit is disposed.
  8.  前記非接触受電部を外側で囲むように前記無線通信部を配置することを特徴とする請求項1~7のいずれか一項に記載の非接触受電回路。 The contactless power receiving circuit according to any one of claims 1 to 7, wherein the wireless communication unit is arranged so as to surround the contactless power receiving unit on the outside.
  9.  前記無線通信部を外側で囲むように前記非接触受電部を配置することを特徴とする請求項1~8のいずれか一項に記載の非接触受電回路。 The contactless power receiving circuit according to any one of claims 1 to 8, wherein the contactless power receiving unit is arranged so as to surround the wireless communication unit on the outside.
  10.  前記非接触受電回路はさらに前記非接触受電部で受電された電力を供給する電源回路に接続される受電コイルを備え、
     前記非接触受電部は共鳴コイルであって、当該非接触受電部で受電された電力を供給する電源回路に接続されておらず、
     前記少なくとも一つの共振周波数切替部は、
      前記共鳴コイルに接続された第3及び第4のコンデンサと、
      第4のコンデンサの接続を開閉する第3のスイッチと、を備え、
     第3及び第4のコンデンサは並列に接続され、
     前記少なくとも一つの共振周波数切替部は、
      第3のスイッチを開いて第4のコンデンサを切断状態にして、第3のコンデンサを介して前記共鳴コイルを導通させて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の一方の周波数に前記非接触受電部の共振周波数を切り替え、
      第3のスイッチを閉じて、前記並列に接続された第3のコンデンサ及び第4のコンデンサを介して前記共鳴コイルを導通させて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の他方の周波数に前記非接触受電部の共振周波数を切り替えるものであり、
     前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記少なくとも一つの共振周波数切替部は、無線通信に使用され共振となる周波数となるように前記非接触受電部の共振周波数を切り替え、
     前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記共振周波数切替部は、非接触電力伝送に使用され共振となる周波数となるように前記非接触受電部の共振周波数を切り替えることを特徴とする請求項1~9のいずれか一項に記載の非接触受電回路。
    The contactless power receiving circuit further includes a power receiving coil connected to a power supply circuit that supplies power received by the contactless power receiving unit,
    The non-contact power reception unit is a resonance coil, and is not connected to a power supply circuit that supplies power received by the non-contact power reception unit,
    The at least one resonance frequency switching unit is
    Third and fourth capacitors connected to the resonant coil;
    A third switch for opening and closing the connection of the fourth capacitor,
    The third and fourth capacitors are connected in parallel,
    The at least one resonance frequency switching unit is
    The third switch is opened to turn off the fourth capacitor, and the resonance coil is conducted through the third capacitor, so that the frequency used for wireless communication and the frequency used for non-contact power transmission can be reduced. Switch the resonance frequency of the non-contact power receiving unit to one frequency,
    The third switch is closed, and the resonance coil is conducted through the third capacitor and the fourth capacitor connected in parallel to be used for frequency and non-contact power transmission used for wireless communication. The resonance frequency of the non-contact power receiving unit is switched to the other frequency.
    When the detection circuit does not output a detection result that the non-contact power receiving unit is receiving power or when the detection circuit outputs a detection result that the wireless communication unit is communicating, the at least one The resonant frequency switching unit switches the resonant frequency of the non-contact power receiving unit so that the resonant frequency is used for wireless communication and becomes resonant.
    When the detection circuit outputs a detection result that the non-contact power receiving unit is receiving power, or when the detection circuit does not output a detection result that the wireless communication unit is communicating, the resonance frequency switching The contactless power receiving circuit according to any one of claims 1 to 9, wherein the unit switches the resonance frequency of the contactless power receiving unit so that the resonance frequency is used for contactless power transmission. .
  11.  前記非接触受電部が共鳴コイルであり、
     前記共振周波数切替部は、
      前記共鳴コイルの一端に接続された、前記非接触受電部で受電された電力を供給する電源回路に接続される第1の給電線と、
      前記共鳴コイルの他端に接続された第2の給電線と、
      前記共鳴コイルの一端と他端の間に接続された第3の給電線と、
      前記電源回路に接続される第4の給電線と、
      第2の給電線及び第3の給電線のいずれかを第4の給電線に接続する第4のスイッチと、を備え、
     前記少なくとも一つの共振周波数切替部は、
      第2の給電線が第4の給電線に接続されるように第4のスイッチを切り替えて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の一方の周波数に前記非接触受電部の共振周波数を切り替え、
      第3の給電線が第4の給電線に接続されるように第4のスイッチを切り替えて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の他方の周波数に前記非接触受電部の共振周波数を切り替えるものであり、
     前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記少なくとも一つの共振周波数切替部は、無線通信に使用され共振となる周波数となるように前記非接触受電部の共振周波数を切り替え、
     前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記少なくとも一つの共振周波数切替部は、非接触電力伝送に使用され共振となる周波数となるように前記非接触受電部の共振周波数を切り替えることを特徴とする請求項1~10のいずれか一項に記載の非接触受電回路。
    The non-contact power reception unit is a resonance coil;
    The resonance frequency switching unit is
    A first power supply line connected to a power circuit connected to one end of the resonance coil and supplying power received by the non-contact power receiving unit;
    A second feeder connected to the other end of the resonance coil;
    A third feed line connected between one end and the other end of the resonance coil;
    A fourth feeder connected to the power circuit;
    A fourth switch that connects either the second feed line or the third feed line to the fourth feed line,
    The at least one resonance frequency switching unit is
    The fourth switch is switched so that the second feeder line is connected to the fourth feeder line, and the contactless frequency is set to one of the frequency used for wireless communication and the frequency used for contactless power transmission. Switch the resonance frequency of the power receiving unit,
    The fourth switch is switched so that the third feeder line is connected to the fourth feeder line, and the contactless frequency is switched to the other one of the frequency used for wireless communication and the frequency used for contactless power transmission. The resonance frequency of the power receiving unit is switched,
    When the detection circuit does not output a detection result that the non-contact power receiving unit is receiving power or when the detection circuit outputs a detection result that the wireless communication unit is communicating, the at least one The resonant frequency switching unit switches the resonant frequency of the non-contact power receiving unit so that the resonant frequency is used for wireless communication and becomes resonant.
    When the detection circuit outputs a detection result that the non-contact power receiving unit is receiving power or when the detection circuit does not output a detection result that the wireless communication unit is communicating, the at least one The resonance frequency switching unit switches a resonance frequency of the non-contact power receiving unit so as to be a resonance frequency used for non-contact power transmission. Contact power receiving circuit.
  12.  前記少なくとも一つの共振周波数切替部は、前記無線通信部に接続された第5のコンデンサと当該第5のコンデンサを介さず前記無線通信部を当該無線通信部を介して相手方通信装置と通信を行う通信回路に接続する第5のスイッチとを備え、
     前記少なくとも一つの共振周波数切替部は、
      第5のコンデンサを介さないで前記無線通信部が導通するように第5のスイッチを切り替えて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の一方の周波数に前記無線通信部の共振周波数を切り替え、
      第5のコンデンサを介して前記無線通信部が導通するように第5のスイッチを切り替え、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の他方の周波数に前記無線通信部の共振周波数を切り替えるものであり、 前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記少なくとも一つの共振周波数切替部は、無線通信に使用され共振となる周波数となるように前記無線通信部の共振周波数を切り替え、
     前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記少なくとも一つの共振周波数切替部は、非接触電力伝送に使用され共振となる周波数となるように前記無線通信部の共振周波数を切り替えることを特徴とする請求項1~11のいずれか一項に記載の非接触受電回路。
    The at least one resonance frequency switching unit communicates the wireless communication unit with the counterpart communication device via the wireless communication unit without passing through the fifth capacitor connected to the wireless communication unit and the fifth capacitor. A fifth switch connected to the communication circuit,
    The at least one resonance frequency switching unit is
    Switch the fifth switch so that the wireless communication unit is conducted without going through the fifth capacitor, and switch the wireless communication to one of the frequency used for wireless communication and the frequency used for non-contact power transmission. Switch the resonance frequency of the
    The fifth switch is switched so that the wireless communication unit is conducted through the fifth capacitor, and the frequency of the wireless communication unit is set to the other one of the frequency used for wireless communication and the frequency used for contactless power transmission. When the detection circuit does not output the detection result that the non-contact power reception unit is receiving power or the detection circuit outputs the detection result that the wireless communication unit is communicating In this case, the at least one resonance frequency switching unit switches the resonance frequency of the wireless communication unit so that the resonance frequency is used for wireless communication and becomes resonance.
    When the detection circuit outputs a detection result that the non-contact power receiving unit is receiving power or when the detection circuit does not output a detection result that the wireless communication unit is communicating, the at least one The contactless frequency switching unit according to any one of claims 1 to 11, wherein the resonance frequency switching unit switches a resonance frequency of the wireless communication unit so as to be a frequency that is used for contactless power transmission and becomes resonant. Power receiving circuit.
  13.  前記無線通信部が共鳴コイルであり、
     前記少なくとも一つの共振周波数切替部は、
      前記共鳴コイルの一端に接続された、前記無線通信部を介して相手方通信装置と通信を行う通信回路に接続される第1の信号線と、
      前記共鳴コイルの他端に接続され、第6のコンデンサを直列に接続した第2の信号線と、
      前記共鳴コイルの一端と他端の間に接続された第3の信号線と、
      前記通信回路に接続される第4の信号線と、
      第2の信号線及び第3の信号線のいずれかを第4の信号線に接続する第6のスイッチと、を備え、
     前記少なくとも一つの共振周波数切替部は、
       第2の信号線を介して第4の信号線に接続されるように第6のスイッチを切り替えて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の一方の周波数に前記無線通信部の共振周波数を切り替え、
       第3の信号線を介して第4の信号線に接続されるように第6のスイッチを切り替えて、無線通信に使用される周波数及び非接触電力伝送に使用される周波数の他方の周波数に前記無線通信部の共振周波数を切り替えるものであり、 前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記少なくとも一つの共振周波数切替部は、無線通信に使用され共振となる周波数となるように前記無線通信部の共振周波数を切り替え、
     前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記少なくとも一つの共振周波数切替部は、非接触電力伝送に使用され共振となる周波数となるように前記無線通信部の共振周波数を切り替えることを特徴とする請求項1~12のいずれか一項に記載の非接触受電回路。
    The wireless communication unit is a resonance coil;
    The at least one resonance frequency switching unit is
    A first signal line connected to one end of the resonance coil and connected to a communication circuit that communicates with the counterpart communication device via the wireless communication unit;
    A second signal line connected to the other end of the resonance coil and having a sixth capacitor connected in series;
    A third signal line connected between one end and the other end of the resonance coil;
    A fourth signal line connected to the communication circuit;
    A sixth switch for connecting any one of the second signal line and the third signal line to the fourth signal line,
    The at least one resonance frequency switching unit is
    The sixth switch is switched so as to be connected to the fourth signal line via the second signal line, and the frequency is used as one of the frequency used for wireless communication and the frequency used for contactless power transmission. Switch the resonance frequency of the wireless communication unit,
    The sixth switch is switched so as to be connected to the fourth signal line via the third signal line, and the frequency is used for the other one of the frequency used for wireless communication and the frequency used for contactless power transmission. The resonance frequency of the wireless communication unit is switched, and when the detection circuit does not output the detection result that the non-contact power receiving unit is receiving power or the detection result that the wireless communication unit is communicating When the detection circuit outputs, the at least one resonance frequency switching unit switches the resonance frequency of the wireless communication unit so that the resonance frequency is used for wireless communication,
    When the detection circuit outputs a detection result that the non-contact power receiving unit is receiving power or when the detection circuit does not output a detection result that the wireless communication unit is communicating, the at least one The contactless frequency switching unit according to any one of claims 1 to 12, wherein the resonance frequency switching unit switches a resonance frequency of the wireless communication unit so as to be a frequency that is used for contactless power transmission and becomes resonant. Power receiving circuit.
  14.  無線通信部と、
     送電側から無線伝送された電力を非接触で受電する非接触受電部と、
     受電中であるか否か及び通信中であるか否かの少なくとも一つを検出し、その結果を出力する検出回路と、
     当該無線通信部を介して相手方通信装置と通信を行う通信回路と前記無線通信部との間に接続されたシャント回路を備え、
     前記無線通信部は、前記通信回路と接続するための少なくとも二つの信号線に接続され、
     前記検出回路の出力に基づいて、前記シャント回路は前記少なくとも二つの信号線間を短絡ないし開放することを特徴とする非接触受電回路。
    A wireless communication unit;
    A non-contact power receiving unit that receives power wirelessly transmitted from the power transmission side in a non-contact manner;
    A detection circuit that detects at least one of whether power is being received and whether it is in communication, and outputs the result;
    A shunt circuit connected between the communication circuit that communicates with the counterpart communication device via the wireless communication unit and the wireless communication unit;
    The wireless communication unit is connected to at least two signal lines for connecting to the communication circuit,
    The contactless power receiving circuit according to claim 1, wherein the shunt circuit short-circuits or opens the at least two signal lines based on an output of the detection circuit.
  15.  前記シャント回路は、前記少なくとも二つの信号線間を短絡または開放するための第1のスイッチを備え、
      前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力した場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力しない場合は、前記シャント回路は第7のスイッチをオンにして前記少なくとも二つの信号線間を短絡し、
      前記非接触受電部が受電中であるとの検出結果を前記検出回路が出力しない場合または前記無線通信部が通信中であるとの検出結果を前記検出回路が出力した場合は、前記シャント回路は第7のスイッチをオフにして前記少なくとも二つの信号線間の接続を開放することを特徴とする請求項14に記載の非接触受電回路。
    The shunt circuit includes a first switch for short-circuiting or opening between the at least two signal lines,
    When the detection circuit outputs a detection result that the non-contact power reception unit is receiving power or when the detection circuit does not output a detection result that the wireless communication unit is communicating, the shunt circuit is A seventh switch is turned on to short-circuit the at least two signal lines;
    When the detection circuit does not output the detection result that the non-contact power receiving unit is receiving power or when the detection circuit outputs the detection result that the wireless communication unit is communicating, the shunt circuit is The contactless power receiving circuit according to claim 14, wherein a connection between the at least two signal lines is released by turning off a seventh switch.
  16.  請求項1~15のいずれか一項に記載の非接触受電回路と、
     前記無線通信部を介して相手方通信装置と通信を行う通信回路と、
     前記非接触受電部で受電された電力を供給する電源回路と、
     を備えることを特徴とする非接触受電装置。
    A non-contact power receiving circuit according to any one of claims 1 to 15,
    A communication circuit for communicating with a counterpart communication device via the wireless communication unit;
    A power supply circuit for supplying power received by the non-contact power receiving unit;
    A non-contact power receiving apparatus comprising:
  17.  請求項16に記載の非接触受電装置と、
     前記非接触受電装置に非接触で電力を送電する非接触送電装置と、を備える非接触送受電装置。
    The non-contact power receiving device according to claim 16,
    A contactless power transmitting and receiving device comprising: a contactless power transmitting device that transmits power to the contactless power receiving device in a contactless manner.
PCT/JP2014/084357 2013-12-27 2014-12-25 Non-contact power reception circuit, non-contact power reception apparatus, and non-contact power transmission/reception apparatus WO2015099065A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015507291A JPWO2015099065A1 (en) 2013-12-27 2014-12-25 Non-contact power receiving circuit, non-contact power receiving device, and non-contact power transmitting / receiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013272785 2013-12-27
JP2013-272785 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015099065A1 true WO2015099065A1 (en) 2015-07-02

Family

ID=53478909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084357 WO2015099065A1 (en) 2013-12-27 2014-12-25 Non-contact power reception circuit, non-contact power reception apparatus, and non-contact power transmission/reception apparatus

Country Status (3)

Country Link
JP (1) JPWO2015099065A1 (en)
TW (1) TW201539922A (en)
WO (1) WO2015099065A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170279495A1 (en) * 2016-03-28 2017-09-28 Samsung Electronics Co., Ltd. Processing method for leakage power and electronic device supporting the same
WO2018139519A1 (en) * 2017-01-27 2018-08-02 株式会社村田製作所 Antenna device, non-contact transmission device, and non-contact transmission system
WO2020002229A1 (en) * 2018-06-29 2020-01-02 Brusa Elektronik Ag Switching device for a coil
EP3664253A1 (en) * 2018-12-05 2020-06-10 Koninklijke Philips N.V. Device and method for wireless power transfer
RU2777966C1 (en) * 2018-12-05 2022-08-12 Конинклейке Филипс Н.В. Apparatus and method for wireless energy transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015221582A1 (en) * 2015-11-04 2017-05-04 Robert Bosch Gmbh Method for inductive energy transmission and apparatus for operating an inductive energy transmission device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119684A (en) * 2008-11-20 2010-06-03 Olympus Corp Power supply device
JP2012055157A (en) * 2010-09-02 2012-03-15 Advantest Corp Wireless power reception device, wireless power feeder, and wireless power feeder system
JP2013081331A (en) * 2011-10-05 2013-05-02 Hitachi Maxell Ltd Non-contact power transmission apparatus
JP2013187579A (en) * 2012-03-06 2013-09-19 Nec Casio Mobile Communications Ltd Electronic apparatus, control method thereof, and program
JP5324008B1 (en) * 2013-03-28 2013-10-23 Necトーキン株式会社 Non-contact power transmission device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128385A (en) * 2011-11-16 2013-06-27 Nec Tokin Corp Non-contact power transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119684A (en) * 2008-11-20 2010-06-03 Olympus Corp Power supply device
JP2012055157A (en) * 2010-09-02 2012-03-15 Advantest Corp Wireless power reception device, wireless power feeder, and wireless power feeder system
JP2013081331A (en) * 2011-10-05 2013-05-02 Hitachi Maxell Ltd Non-contact power transmission apparatus
JP2013187579A (en) * 2012-03-06 2013-09-19 Nec Casio Mobile Communications Ltd Electronic apparatus, control method thereof, and program
JP5324008B1 (en) * 2013-03-28 2013-10-23 Necトーキン株式会社 Non-contact power transmission device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107248786B (en) * 2016-03-28 2020-03-17 三星电子株式会社 Method for processing leakage power and electronic device supporting same
EP3226381A1 (en) * 2016-03-28 2017-10-04 Samsung Electronics Co., Ltd Processing method for leakage power and electronic device supporting the same
KR20170111434A (en) * 2016-03-28 2017-10-12 삼성전자주식회사 Processing method for leakage power and electronic device supporting the same
CN107248786A (en) * 2016-03-28 2017-10-13 三星电子株式会社 The processing method of leakage power and the electronic installation for supporting the processing method
KR102548688B1 (en) * 2016-03-28 2023-06-28 삼성전자주식회사 Processing method for leakage power and electronic device supporting the same
US10056945B2 (en) 2016-03-28 2018-08-21 Samsung Electronics Co., Ltd. Processing method for leakage power and electronic device supporting the same
US20170279495A1 (en) * 2016-03-28 2017-09-28 Samsung Electronics Co., Ltd. Processing method for leakage power and electronic device supporting the same
JP6443608B1 (en) * 2017-01-27 2018-12-26 株式会社村田製作所 Antenna device, non-contact transmission device and non-contact transmission system
WO2018139519A1 (en) * 2017-01-27 2018-08-02 株式会社村田製作所 Antenna device, non-contact transmission device, and non-contact transmission system
WO2020002229A1 (en) * 2018-06-29 2020-01-02 Brusa Elektronik Ag Switching device for a coil
CN112930278B (en) * 2018-06-29 2024-10-15 布鲁萨电子公司 Switching device for coil
US11673480B2 (en) 2018-06-29 2023-06-13 Brusa Elektronik Ag Switching device for a coil
CN112930278A (en) * 2018-06-29 2021-06-08 布鲁萨电子公司 Switching device for coil
US11951851B2 (en) 2018-06-29 2024-04-09 Brusa Elektronik Ag Switching device for a coil
US20210268919A1 (en) * 2018-06-29 2021-09-02 Brusa Elektronik Ag Switching device for a coil
WO2020114926A1 (en) * 2018-12-05 2020-06-11 Koninklijke Philips N.V. Device and method for wireless power transfer
RU2777966C1 (en) * 2018-12-05 2022-08-12 Конинклейке Филипс Н.В. Apparatus and method for wireless energy transmission
EP4040636A1 (en) * 2018-12-05 2022-08-10 Koninklijke Philips N.V. Device and method for wireless power transfer
US11695303B2 (en) 2018-12-05 2023-07-04 Koninklijke Philips N.V. Device and method for wireless power transfer
US11949255B2 (en) 2018-12-05 2024-04-02 Koninklijke Philips N.V. Device and method for wireless power transfer
CN113169586A (en) * 2018-12-05 2021-07-23 皇家飞利浦有限公司 Apparatus and method for wireless power transfer
EP3664253A1 (en) * 2018-12-05 2020-06-10 Koninklijke Philips N.V. Device and method for wireless power transfer

Also Published As

Publication number Publication date
JPWO2015099065A1 (en) 2017-03-23
TW201539922A (en) 2015-10-16

Similar Documents

Publication Publication Date Title
JP5989886B2 (en) Non-contact charger
US10567040B2 (en) Electronic apparatus and transmission system
US9608480B2 (en) Systems and methods for detecting and identifying a wireless power device
US10069346B2 (en) Wireless power receiver and control method thereof
US8934857B2 (en) Controlling field distribution of a wireless power transmitter
US9755460B2 (en) Power reception device, power transmission device and wireless power transmission system
EP2545628B1 (en) Detection and protection of devices within a wireless power system
EP2662807B1 (en) Passive receivers for wireless power transmission
US20160126639A1 (en) Coil structure and wireless power receiving apparatus including the same
WO2015099065A1 (en) Non-contact power reception circuit, non-contact power reception apparatus, and non-contact power transmission/reception apparatus
JP6390812B2 (en) Circuit switching device and switch drive circuit
EP2425514A1 (en) Parasitic devices for wireless power transfer
JP5324008B1 (en) Non-contact power transmission device
JP5587165B2 (en) Non-contact power transmission system and power receiving antenna
US9950637B2 (en) Array coil system
JP2011015005A (en) Antenna device, and portable wireless apparatus provided with the same
WO2013157191A1 (en) Coil device and mobile wireless terminal
JP5485090B2 (en) Contactless charging system, electronic device, and contactless communication circuit protection method
US20180269719A1 (en) Power transmission device
JP2013255381A (en) Array coil system
JP2013143887A (en) Non contact power transmission apparatus and non contact power transmission system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015507291

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875649

Country of ref document: EP

Kind code of ref document: A1