JP2017169273A - Method of controlling ultrasonic motor and surveying instrument for the same - Google Patents

Method of controlling ultrasonic motor and surveying instrument for the same Download PDF

Info

Publication number
JP2017169273A
JP2017169273A JP2016049884A JP2016049884A JP2017169273A JP 2017169273 A JP2017169273 A JP 2017169273A JP 2016049884 A JP2016049884 A JP 2016049884A JP 2016049884 A JP2016049884 A JP 2016049884A JP 2017169273 A JP2017169273 A JP 2017169273A
Authority
JP
Japan
Prior art keywords
ultrasonic motor
rotor
surveying instrument
stator metal
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016049884A
Other languages
Japanese (ja)
Other versions
JP6608743B2 (en
Inventor
熊谷 薫
Kaoru Kumagai
薫 熊谷
聡 弥延
Satoshi Yanobe
聡 弥延
徹太郎 糀
Tetsutaro Koji
徹太郎 糀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2016049884A priority Critical patent/JP6608743B2/en
Publication of JP2017169273A publication Critical patent/JP2017169273A/en
Application granted granted Critical
Publication of JP6608743B2 publication Critical patent/JP6608743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of controlling an ultrasonic motor for reducing abrasion of a rotor and a surveying instrument equipped with the ultrasonic motor.SOLUTION: The method of controlling an ultrasonic motor is a control method of ultrasonic motors (5, 12) in which, by a piezoelectric element (42) caused to vibrate by driving signals (S1, S2) of AC voltages of two different phases, a traveling wave is generated in a stator metal (43) to cause the stator metal (43) and a rotor (46) to relatively rotate. An initial phase φ of drive signals (S, S) is changed each time the drive is started.SELECTED DRAWING: Figure 3

Description

本発明は、測量機の回転軸に設けられた超音波モータの制御方法及びそのための測量機に関する。   The present invention relates to a method for controlling an ultrasonic motor provided on a rotating shaft of a surveying instrument and a surveying instrument therefor.

測量機、例えばトータルステーションは、測定点を視準する望遠鏡と、上記望遠鏡を鉛直方向に回転可能に支持する托架部と、上記托架部を水平方向に回転可能に支持する基盤部とを備えている。上記望遠鏡は鉛直回転モータによって、上記托架部は水平回転モータによって駆動される。特許文献1には、上記鉛直回転モータ及び水平回転モータに超音波モータを採用した測量機が開示されている。   A surveying instrument, for example, a total station, includes a telescope that collimates a measurement point, a rack that supports the telescope so as to be rotatable in a vertical direction, and a base that supports the rack so as to be rotatable in a horizontal direction. ing. The telescope is driven by a vertical rotation motor, and the rack is driven by a horizontal rotation motor. Patent Document 1 discloses a surveying instrument that employs an ultrasonic motor for the vertical rotation motor and the horizontal rotation motor.

図5は超音波モータの簡略構成図である。図5に示すように、超音波モータ5は、ベース部39から順に、振動を発生する圧電セラミック(圧電素子)42、振動を増幅させるステータ金属43、ステータ金属43と干渉するロータ46、ロータ46をステータ金属43側へ押圧するウェーブワッシャ(弾性体)48を、リング状に備える。圧電セラミック42は、周方向に沿って分極方向を交互に変えて複数添付されている。+分極方向で貼付された圧電セラミック42(A相)は、+電圧及び−電圧が印加されると圧縮及び伸張する。−分極方向で貼付された圧電セラミック42(B相)は、−電圧及び+電圧が印加されると圧縮及び伸張する。このA相及びB相の圧電セラミック42に、所要の駆動周波数及び振幅で位相が90度異なるA相駆動信号S及びB相駆動信号Sがそれぞれ供給されることによって、ステータ金属43に波状の進行波が形成され、ウェーブワッシャ48の押圧による摩擦によってステータ金属43とロータ46が相対回転する。A相駆動信号S,B相駆動信号Sはそれぞれ式(1),式(2)で表せる。
(t)=α sin(2πft) ・・・(1)
(t)=α cos(2πft) ・・・(2)
但し、α:駆動信号の振幅、f:駆動周波数、t:時間である。
FIG. 5 is a simplified configuration diagram of the ultrasonic motor. As shown in FIG. 5, the ultrasonic motor 5 includes a piezoelectric ceramic (piezoelectric element) 42 that generates vibration, a stator metal 43 that amplifies vibration, a rotor 46 that interferes with the stator metal 43, and a rotor 46. A wave washer (elastic body) 48 that presses the stator toward the stator metal 43 side is provided in a ring shape. A plurality of piezoelectric ceramics 42 are attached by changing the polarization direction alternately along the circumferential direction. The piezoelectric ceramic 42 (A phase) attached in the + polarization direction is compressed and expanded when a + voltage and a −voltage are applied. The piezoelectric ceramic 42 (phase B) applied in the polarization direction is compressed and expanded when a negative voltage and a positive voltage are applied. The A-phase and B-phase piezoelectric ceramics 42 are respectively supplied with an A-phase drive signal S 1 and a B-phase drive signal S 2 that are 90 degrees out of phase with the required drive frequency and amplitude, so that the stator metal 43 has a wave shape. , And the stator metal 43 and the rotor 46 are rotated relative to each other by friction caused by the pressure of the wave washer 48. The A-phase drive signal S 1 and the B-phase drive signal S 2 can be expressed by equations (1) and (2), respectively.
S 1 (t) = α sin (2πft) (1)
S 2 (t) = α cos (2πft) (2)
Where α is the amplitude of the drive signal, f is the drive frequency, and t is the time.

特開2014−137299号公報JP 2014-137299 A

測量機の回転軸に超音波モータを採用すると、電動モータと比べ旋回性能が高く、静粛性に優れ、無通電時の軸保持力が高まるという利点がある。一方で、測量機には自動視準機能を有するものがある。図6は自動視準におけるある測定イメージ図である。符号1が測量機であり、図6に示すように、自動視準では、測量機1をある測点T1とある測点T2に繰り返し振り向ける測定を行うことがある。このような測定が行われた場合、超音波モータ5では、A相駆動信号S及びB相駆動信号Sに基づいてステータ金属43の波形が決まるので、ステータ金属43の波形(隆起する位置)が毎回同じとなり、ロータ46のうち上記隆起する位置に対向する部分が削れて磨耗してしまうという問題があった。 Employing an ultrasonic motor for the rotating shaft of a surveying instrument has the advantages of higher turning performance, better quietness, and higher shaft holding power when no current is applied compared to an electric motor. On the other hand, some surveying instruments have an automatic collimation function. FIG. 6 is a measurement image diagram in automatic collimation. Reference numeral 1 denotes a surveying instrument. As shown in FIG. 6, in automatic collimation, measurement may be performed by repeatedly directing the surveying instrument 1 to a certain point T1 and a certain point T2. When such a measurement is performed, the ultrasonic motor 5 determines the waveform of the stator metal 43 based on the A-phase drive signal S 1 and the B-phase drive signal S 2. ) Is the same each time, and there is a problem that the portion of the rotor 46 that faces the raised position is shaved and worn.

本発明は、前記問題を解決するため、ロータの磨耗を低減するための超音波モータの制御方法及びそのための測量機を提供することを目的とする。   In order to solve the above problems, an object of the present invention is to provide an ultrasonic motor control method for reducing the wear of a rotor and a surveying instrument therefor.

上記課題を解決するために、本発明のある態様の超音波モータの制御方法は、二種類の位相の異なる交流電圧の駆動信号により振動する圧電素子によってステータ金属に進行波を生じさせ前記ステータ金属とロータを相対回転させる超音波モータの制御方法であって、前記駆動信号の初期位相φを、駆動開始毎に変更することを特徴とする。   In order to solve the above-described problem, a method for controlling an ultrasonic motor according to an aspect of the present invention is the method of generating a traveling wave in a stator metal by a piezoelectric element that vibrates by driving signals of two types of alternating voltages having different phases. And an ultrasonic motor for rotating the rotor relative to each other, wherein the initial phase φ of the drive signal is changed every time the drive is started.

上記態様において、前記初期位相φを、駆動開始毎にランダムに設定することも好ましい。   In the above aspect, it is also preferable that the initial phase φ is set at random every time driving is started.

上記態様において、前記初期位相φを、φ=2π{(θ/λ)−(i/N)}但し、θ:ロータの回転位置、λ:進行波の波長、N:2以上の整数、i=0,1,2,・・・,N−1である、で設定し、駆動開始毎にiを1ずつ増加することも好ましい。 In the above aspect, the initial phase φ is φ = 2π {(θ R / λ) − (i / N)}, where θ R is the rotational position of the rotor, λ is the wavelength of the traveling wave, and N is an integer greater than or equal to 2. , I = 0, 1, 2,..., N−1, and it is also preferable to increase i by 1 each time driving is started.

上記課題を解決するために、本発明のある態様の測量機は、ベース部から順に、二種類の位相の異なる交流電圧の駆動信号により振動する圧電素子、前記振動を受け進行波が生じるステータ金属、前記ステータ金属と干渉するロータ、前記ロータを前記ステータ金属へ押圧する弾性体を備えた超音波モータと、前記圧電素子に与える駆動信号の初期位相φを、駆動開始毎に変更する制御部と、を有することを特徴とする。   In order to solve the above-described problems, a surveying instrument according to an aspect of the present invention includes a piezoelectric element that vibrates in accordance with drive signals of two types of alternating voltages having different phases, and a stator metal that generates a traveling wave in response to the vibration, in order from the base portion. A rotor that interferes with the stator metal, an ultrasonic motor that includes an elastic body that presses the rotor against the stator metal, and a controller that changes the initial phase φ of the drive signal applied to the piezoelectric element each time driving is started. It is characterized by having.

本発明によれば、ロータの磨耗を低減することのできる超音波モータの制御方法及びそのための測量機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the control method of the ultrasonic motor which can reduce wear of a rotor, and the surveying instrument for it can be provided.

本形態に係る測量機の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the surveying instrument which concerns on this form. 図1の超音波モータを含む部分の断面斜視図である。It is a cross-sectional perspective view of the part containing the ultrasonic motor of FIG. 本形態に係る測量機のブロック図である。It is a block diagram of the surveying instrument concerning this form. 超音波モータの回転を示すイメージ図である。It is an image figure which shows rotation of an ultrasonic motor. 超音波モータの簡略構成図である。It is a simplified block diagram of an ultrasonic motor. 自動視準におけるある測定イメージ図である。It is a certain measurement image figure in automatic collimation.

次に、本発明の好適な実施の形態について、図面を参照して説明する。   Next, preferred embodiments of the present invention will be described with reference to the drawings.

図1は本形態に係る測量機の測量機の概略縦断面図、図2は図1の超音波モータを含む部分の断面斜視図である。測量機1は、整準部3の上に設けられた基盤部4と、基盤部4上を水平回転軸6周りに水平回転する托架部7と、托架部7に鉛直回転軸11周りに鉛直回転する望遠鏡9と、を有する。測量機1は、自動視準機能、自動追尾機能を備えており、望遠鏡9には、図示しない測距光学系、追尾光学系が収容されている。測距光学系、追尾光学系の構成は従来技術の構成と同等で良いため記載を省略する。測量機1では、托架部7の水平回転と望遠鏡9の鉛直回転の協働により測距光及び追尾光がターゲットに照射される。   FIG. 1 is a schematic longitudinal sectional view of a surveying instrument of the surveying instrument according to the present embodiment, and FIG. 2 is a sectional perspective view of a portion including the ultrasonic motor of FIG. The surveying instrument 1 includes a base part 4 provided on the leveling part 3, a rack part 7 that horizontally rotates on the base part 4 around the horizontal rotation axis 6, and a vertical rotation axis 11 around the rack part 7. And a telescope 9 that rotates vertically. The surveying instrument 1 has an automatic collimation function and an automatic tracking function, and the telescope 9 houses a distance measuring optical system and a tracking optical system (not shown). The configuration of the distance measuring optical system and the tracking optical system may be the same as the configuration of the prior art, and the description is omitted. In the surveying instrument 1, the distance measuring light and the tracking light are irradiated to the target by the cooperation of the horizontal rotation of the rack 7 and the vertical rotation of the telescope 9.

水平回転軸6の下端部には水平回転用の超音波モータ5が設けられ、上端部には水平角検出用のロータリエンコーダ21が設けられている。鉛直回転軸11の一方の端部には鉛直回転用の超音波モータ12が設けられ、他方の端部には鉛直角検出用のロータリエンコーダ22が設けられている。ロータリエンコーダ21,22は、回転円盤、スリット、発光ダイオード、イメージセンサを有するアブソリュートエンコーダである。この他、インクリメンタルエンコーダが用いられてもよい。   An ultrasonic motor 5 for horizontal rotation is provided at the lower end portion of the horizontal rotation shaft 6, and a rotary encoder 21 for horizontal angle detection is provided at the upper end portion. An ultrasonic motor 12 for vertical rotation is provided at one end of the vertical rotation shaft 11, and a rotary encoder 22 for detecting a vertical angle is provided at the other end. The rotary encoders 21 and 22 are absolute encoders having a rotating disk, a slit, a light emitting diode, and an image sensor. In addition, an incremental encoder may be used.

測量機1における超音波モータ5,12の構成について、鉛直方向と水平方向の構成は同等であるので、水平方向の構成を用いて説明する。超音波モータ5は、前述したベース部39、圧電セラミック42、ステータ金属43、ロータ46、ウェーブワッシャ48を備えており、本形態では、モータケース25が基盤部4に固定され、ロータ46はモータケース25に固定されているので、ステータ金属43が回転し、ベース部39を介して水平回転軸6がステータ金属43と一体に回転する。   About the structure of the ultrasonic motors 5 and 12 in the surveying instrument 1, since the structure of a perpendicular direction and a horizontal direction is equivalent, it demonstrates using a structure of a horizontal direction. The ultrasonic motor 5 includes the base portion 39, the piezoelectric ceramic 42, the stator metal 43, the rotor 46, and the wave washer 48 described above. In this embodiment, the motor case 25 is fixed to the base portion 4, and the rotor 46 is a motor. Since it is fixed to the case 25, the stator metal 43 rotates, and the horizontal rotating shaft 6 rotates integrally with the stator metal 43 via the base portion 39.

図3は本形態に係る測量機のブロック図である。鉛直用と水平用のブロック図は同等であるので、水平回転用の超音波モータ5と水平角検出用のロータリエンコーダ21に関して示し、鉛直回転用の超音波モータ12と鉛直角検出用のロータリエンコーダ22は説明を省略する。測量機1は、制御部23と、ロータリエンコーダ21と、測距部61と、追尾部62と、クロック信号発振部63と、駆動回路73と、超音波モータ5を有する。   FIG. 3 is a block diagram of the surveying instrument according to the present embodiment. Since the vertical block diagram and the horizontal block diagram are the same, only the ultrasonic motor 5 for horizontal rotation and the rotary encoder 21 for horizontal angle detection are shown. The ultrasonic motor 12 for vertical rotation and the rotary encoder for vertical angle detection are shown. The description of 22 is omitted. The surveying instrument 1 includes a control unit 23, a rotary encoder 21, a distance measurement unit 61, a tracking unit 62, a clock signal oscillation unit 63, a drive circuit 73, and the ultrasonic motor 5.

制御部23は、CPU,ROM,RAM等を集積回路に実装したマイクロコントローラによって構成されている。制御部23は、図示を略する外部パーソナルコンピュータからソフトウェアを変更可能である。   The control unit 23 is configured by a microcontroller in which a CPU, a ROM, a RAM, and the like are mounted on an integrated circuit. The control unit 23 can change software from an external personal computer (not shown).

測距部61は、制御部23に制御されて、上記測距光学系を用いて測距光をターゲットに照射してその反射光を受光して測距を行う。追尾部62は、制御部23に制御されて、上記追尾光学系を用いて追尾光をターゲットに照射してその反射光を受光し、ターゲットが移動した場合は追尾を行う。   The distance measuring unit 61 is controlled by the control unit 23 to irradiate distance measuring light onto the target using the distance measuring optical system, and receive the reflected light to perform distance measurement. The tracking unit 62 is controlled by the control unit 23 to irradiate the target with tracking light using the tracking optical system and receive the reflected light, and performs tracking when the target moves.

駆動回路73は、FPGA(Field Programmable Gate Array)731とアナログ回路732によって構成されている。FPGA731は、制御部23もしくは図示を略する外部機器によって内部論理回路を定義変更可能である。FPGA731は、可変の駆動周波数(駆動信号の周波数)及び可変の振幅で制御信号を発生させることができ、上記駆動周波数及び上記振幅を動的に変化させることができる。アナログ回路732は、トランス等で構成されており、上記制御信号を増幅させる。駆動回路73は、制御部23に制御されて、FPGA731から上記制御信号を出力し、アナログ回路732で増幅して、A相の圧電セラミック42に対してA相駆動信号Sを、B相の圧電セラミック42に対してB相駆動信号Sを出力する。なお、駆動回路73は、ASIC(Application Specific Integrated Circuit)などの他のPLD(Programmable Logic Device)が用いられてもよい。 The drive circuit 73 includes an FPGA (Field Programmable Gate Array) 731 and an analog circuit 732. The FPGA 731 can change the definition of the internal logic circuit by the control unit 23 or an external device (not shown). The FPGA 731 can generate a control signal with a variable driving frequency (frequency of the driving signal) and a variable amplitude, and can dynamically change the driving frequency and the amplitude. The analog circuit 732 is composed of a transformer or the like, and amplifies the control signal. The drive circuit 73 is controlled by the control unit 23 to output the control signal from the FPGA 731, amplifies the analog circuit 732, and outputs the A-phase drive signal S 1 to the A-phase piezoelectric ceramic 42. and it outputs the B-phase driving signal S 2 to the piezoelectric ceramic 42. The drive circuit 73 may be another programmable logic device (PLD) such as an ASIC (Application Specific Integrated Circuit).

クロック信号発振部63は、クロック信号を制御部23及び駆動回路73に出力する。FPGA731は、クロック信号に基づき、駆動信号の振幅,駆動周波数,制御周期TMを制御する。制御部23は、クロック信号に基づき、ロータリエンコーダ21の発光周期TR等を制御する。   The clock signal oscillating unit 63 outputs a clock signal to the control unit 23 and the drive circuit 73. The FPGA 731 controls the amplitude of the drive signal, the drive frequency, and the control cycle TM based on the clock signal. The control unit 23 controls the light emission cycle TR and the like of the rotary encoder 21 based on the clock signal.

ここで、本形態では、制御部23は、駆動回路73で発生させるA相駆動信号S及びB相駆動信号Sを以下のように設定する。 In the present embodiment, the control unit 23, the A-phase driving signals S 1 and B-phase driving signal S 2 to be generated by the drive circuit 73 is set as follows.

(第1の実施形態)
制御部23は、A相駆動信号S及びB相駆動信号Sを、それぞれ式(3),式(4)で設定する。
(t)=α sin(2πft+φ) ・・・(3)
(t)=α cos(2πft+φ) ・・・(4)
但し、α:駆動信号の振幅、f:駆動周波数、t:時間、φ:初期位相である。
(First embodiment)
Control unit 23, the A-phase driving signals S 1 and the B-phase driving signals S 2, respectively formula (3) is set by equation (4).
S 1 (t) = α sin (2πft + φ) (3)
S 2 (t) = α cos (2πft + φ) (4)
Where α is the amplitude of the drive signal, f is the drive frequency, t is the time, and φ is the initial phase.

制御部23は、超音波モータ5の駆動開始毎に、式(3)及び式(4)の初期位相φを0〜2πまでの数値の中からランダムに設定する。これにより、A相駆動信号S及びB相駆動信号Sは駆動開始時に毎回異なる位相が設定されるので、ステータ金属43の波形(隆起する位置)がその都度異なるようになる。従って、ロータ46の一部分だけが削れて磨耗するのを防ぐことができる。 The control unit 23 randomly sets the initial phase φ in the equations (3) and (4) from numerical values ranging from 0 to 2π every time the ultrasonic motor 5 starts to be driven. Thus, the A-phase driving signals S 1 and B-phase driving signal S 2 is a phase that is different each time the drive start is set, the waveform of the stator metal 43 (raised position) is in each case different. Therefore, it is possible to prevent only a part of the rotor 46 from being scraped and worn.

(第2の実施形態)
制御部23は、A相駆動信号S及びB相駆動信号Sを、それぞれ式(3),式(4)で設定する。このとき、ステータ金属43上の進行波は式(5)、ロータ46上の進行波は式(6)で表せる。
(t,θ)=A sin{2π(ft+θ/λ)+φ} ・・・(5)
(t,θ)=A sin〔2π{ft+(θ+θ)/λ)+φ} ・・・(6)
但し、A:進行波の振幅、λ:進行波の波長、θ:回転位置、θ:ロータの回転位置である。
進行波の振幅A及び波長λは図5にも示されている。回転位置θは、図4に示すように、A点を基準とした進行波の位置を表す角度である。ロータ46の回転位置θは、A点を基準としたロータ46の回転角を表す。
(Second Embodiment)
Control unit 23, the A-phase driving signals S 1 and the B-phase driving signals S 2, respectively formula (3) is set by equation (4). At this time, the traveling wave on the stator metal 43 can be expressed by Expression (5), and the traveling wave on the rotor 46 can be expressed by Expression (6).
W S (t, θ) = A sin {2π (ft + θ / λ) + φ} (5)
W R (t, θ) = A sin [2π {ft + (θ + θ R ) / λ) + φ} (6)
Where A is the amplitude of the traveling wave, λ is the wavelength of the traveling wave, θ is the rotational position, and θ R is the rotational position of the rotor.
The amplitude A and wavelength λ of the traveling wave are also shown in FIG. As shown in FIG. 4, the rotational position θ is an angle that represents the position of the traveling wave with respect to point A. Rotational position theta R of the rotor 46, represents the rotation angle of the rotor 46 relative to the point A.

この上で、駆動開始時(t=0)にロータ46上の任意の回転位置で少しずつ初期位相φをずらす信号を与えることを考える。例えば任意の回転位置をθ=0とすると、ロータ46上の進行波は式(7)で表せる。
(0,0)=A sin{2π(θ/λ)+φ} ・・・(7)
ここで、初期位相φを少しずつずらすための関数φ´は、式(8)で表せる。
Considering this, it is considered to give a signal for gradually shifting the initial phase φ at an arbitrary rotational position on the rotor 46 at the start of driving (t = 0). For example, if an arbitrary rotational position is θ = 0, the traveling wave on the rotor 46 can be expressed by Expression (7).
W R (0,0) = A sin {2π (θ R / λ) + φ} (7)
Here, a function φ ′ for shifting the initial phase φ little by little can be expressed by Expression (8).

φ´=2π(θ/λ)+φ=2π(i/N) ・・・(8)
但し、N:2以上の整数、i=0,1,2,・・・,N−1の正の整数値である。式(8)から、初期位相φは式(9)として表せる。
φ=2π{(θ/λ)−(i/N)} ・・・(9)
ロータの回転位置θRは,ロータリエンコーダ21,22の回転角から得られる。進行波の波長λは、超音波モータ5,12における正負一組の圧電セラミック42の円周方向の長さと同じであるので、モータの設計値から得られる。
φ ′ = 2π (θ R / λ) + φ = 2π (i / N) (8)
However, N is an integer equal to or greater than 2, i = 0, 1, 2,..., N−1. From Equation (8), the initial phase φ can be expressed as Equation (9).
φ = 2π {(θ R / λ) − (i / N)} (9)
The rotational position θ R of the rotor is obtained from the rotational angle of the rotary encoders 21 and 22. Since the wavelength λ of the traveling wave is the same as the circumferential length of the pair of positive and negative piezoelectric ceramics 42 in the ultrasonic motors 5 and 12, it is obtained from the design value of the motor.

制御部23は、超音波モータ5のA相駆動信号S及びB相駆動信号Sの初期位相φを式(9)で与え、駆動開始毎に、iを0からN−1まで1ずつ増加させる。これにより、ステータ金属43の波形(隆起する位置)を毎回均等にずらすことができる。即ち、ロータ46の削れる位置が周方向に均等にずれていくので、ロータ46の磨耗をより遅らせることができる。 The control unit 23 gives the initial phase φ of the A-phase drive signal S 1 and the B-phase drive signal S 2 of the ultrasonic motor 5 by the equation (9), and i is incremented by 1 from 0 to N−1 every time driving is started. increase. Thereby, the waveform (position which protrudes) of the stator metal 43 can be shifted equally every time. That is, since the position where the rotor 46 can be shaved is shifted evenly in the circumferential direction, the wear of the rotor 46 can be further delayed.

以上、好ましい実施の形態について述べたが、例えばロータ46の磨耗量の偏りが検出できたら磨耗の少ないところにφを設定する、回転トルクの偏りが検出できたらトルクの大きいところにφを設定することも考えられる。この他にも、当業者の知識に基づく改変は本発明の範囲に含まれる。   The preferred embodiment has been described above. For example, if a deviation in the amount of wear of the rotor 46 can be detected, φ is set where there is little wear. If a deviation in the rotational torque can be detected, φ is set where the torque is large. It is also possible. In addition, modifications based on the knowledge of those skilled in the art are included in the scope of the present invention.

1 測量機
5,12 超音波モータ
23 制御部
39 ベース部
42 圧電セラミック(圧電素子)
43 ステータ金属
46 ロータ
48 ウェーブワッシャ(弾性体)
DESCRIPTION OF SYMBOLS 1 Surveying instrument 5,12 Ultrasonic motor 23 Control part 39 Base part 42 Piezoelectric ceramic (piezoelectric element)
43 Stator metal 46 Rotor 48 Wave washer (elastic body)

Claims (4)

二種類の位相の異なる交流電圧の駆動信号により振動する圧電素子によってステータ金属に進行波を生じさせ前記ステータ金属とロータを相対回転させる超音波モータの制御方法であって、
前記駆動信号の初期位相φを、駆動開始毎に変更することを特徴とする超音波モータの制御方法。
A method for controlling an ultrasonic motor in which a traveling wave is generated in a stator metal by a piezoelectric element that vibrates by driving signals of two types of alternating voltages having different phases, and the stator metal and the rotor are rotated relative to each other.
The method of controlling an ultrasonic motor, wherein the initial phase φ of the drive signal is changed every time driving is started.
前記初期位相φを、駆動開始毎にランダムに設定することを特徴とする請求項1に記載の超音波モータの制御方法。
The method for controlling an ultrasonic motor according to claim 1, wherein the initial phase φ is randomly set every time driving is started.
前記初期位相φを、
φ=2π{(θ/λ)−(i/N)}
但し、θ:ロータの回転位置、λ:進行波の波長、N:2以上の整数、i=0,1,2,・・・,N−1である、
で設定し、駆動開始毎にiを1ずつ増加することを特徴とする請求項1に記載の超音波モータの制御方法。
The initial phase φ is
φ = 2π {(θ R / λ) − (i / N)}
Where θ R is the rotational position of the rotor, λ is the wavelength of the traveling wave, N is an integer of 2 or more, and i = 0, 1, 2,..., N−1.
2. The method of controlling an ultrasonic motor according to claim 1, wherein i is incremented by 1 each time driving is started.
ベース部から順に、二種類の位相の異なる交流電圧の駆動信号により振動する圧電素子、前記振動を受け進行波が生じるステータ金属、前記ステータ金属と干渉するロータ、前記ロータを前記ステータ金属へ押圧する弾性体を備えた超音波モータと、
前記圧電素子に与える駆動信号の初期位相φを、駆動開始毎に変更する制御部と、を有することを特徴とする測量機。
In order from the base part, a piezoelectric element that vibrates in response to drive signals of two types of alternating voltages having different phases, a stator metal that generates a traveling wave due to the vibration, a rotor that interferes with the stator metal, and presses the rotor against the stator metal An ultrasonic motor with an elastic body;
A surveying instrument comprising: a control unit that changes an initial phase φ of a driving signal applied to the piezoelectric element each time driving is started.
JP2016049884A 2016-03-14 2016-03-14 Ultrasonic motor control method and surveying instrument therefor Active JP6608743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016049884A JP6608743B2 (en) 2016-03-14 2016-03-14 Ultrasonic motor control method and surveying instrument therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016049884A JP6608743B2 (en) 2016-03-14 2016-03-14 Ultrasonic motor control method and surveying instrument therefor

Publications (2)

Publication Number Publication Date
JP2017169273A true JP2017169273A (en) 2017-09-21
JP6608743B2 JP6608743B2 (en) 2019-11-20

Family

ID=59909242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049884A Active JP6608743B2 (en) 2016-03-14 2016-03-14 Ultrasonic motor control method and surveying instrument therefor

Country Status (1)

Country Link
JP (1) JP6608743B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060001332A1 (en) * 2004-07-02 2006-01-05 Nokia Corporation Class DE driving amplifier for piezoelectric actuators
JP2008154304A (en) * 2006-12-14 2008-07-03 Pentax Corp Ultrasonic motor
CN101719733A (en) * 2010-01-14 2010-06-02 马海英 piezoelectric ceramic motor
JP2014137299A (en) * 2013-01-17 2014-07-28 Topcon Corp Rotary drive section of survey instrument, and survey instrument
JP2015223109A (en) * 2014-05-27 2015-12-14 株式会社Mu研究所 Ultrasonic irradiation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060001332A1 (en) * 2004-07-02 2006-01-05 Nokia Corporation Class DE driving amplifier for piezoelectric actuators
JP2008154304A (en) * 2006-12-14 2008-07-03 Pentax Corp Ultrasonic motor
CN101719733A (en) * 2010-01-14 2010-06-02 马海英 piezoelectric ceramic motor
JP2014137299A (en) * 2013-01-17 2014-07-28 Topcon Corp Rotary drive section of survey instrument, and survey instrument
JP2015223109A (en) * 2014-05-27 2015-12-14 株式会社Mu研究所 Ultrasonic irradiation device

Also Published As

Publication number Publication date
JP6608743B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
KR100954529B1 (en) A ring type piezoelectric ultrasonic resonator and a piezoelectric ultrasonic rotary motor using thereof
JP5264225B2 (en) Multi-degree-of-freedom drive device and imaging device including the same
JP5679781B2 (en) Control device for vibration actuator
US10211387B2 (en) Method for controlling ultrasonic motor and surveying instrument for the same
US8035275B2 (en) Vibration actuator, lens barrel, camera system and vibrating element
JP5322431B2 (en) Vibration wave driving apparatus and apparatus using the same
JP6608743B2 (en) Ultrasonic motor control method and surveying instrument therefor
JP5429895B2 (en) Spherical ultrasonic motor and control method of spherical ultrasonic motor
WO2015059911A1 (en) Rotation speed detection device
JP2008154304A (en) Ultrasonic motor
JP2003014495A (en) Electronic equipment equipped with position detection means
JP6441757B2 (en) Eccentric direction detection device and variable gap motor
JP6669538B2 (en) Control method of ultrasonic motor provided in surveying instrument and surveying instrument therefor
JP2010124603A (en) Drive unit and drive method
JP6615653B2 (en) Surveying instrument
JP4208753B2 (en) Control device for vibration type drive device, control method for vibration type drive device, control program for vibration type drive device
RU2631332C2 (en) Device and method of self-sensitive ultrasonic motor control
Kanda et al. A micro ultrasonic motor controlled by using a built-in micro magnetic encoder
JP2821807B2 (en) Ultrasonic motor drive controller
Kanda et al. Design and testing of rotors for a cylindrical micro-machined micro ultrasonic motor
JPH03243180A (en) Oscillation wave motor
JP2003033052A (en) Ultrasonic motor device
ES2201912B1 (en) ULTRASONIC ENGINE WITH VARIABLE CHARACTERISTICS STATOR THROUGH SEGMENTED ELECTRODES AND ITS MANUFACTURING PROCESS.
JP2014176274A (en) Standing wave type ultrasonic motor, and lens unit and camera having the motor
JP3150730B2 (en) Ultrasonic motor rotation control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191024

R150 Certificate of patent or registration of utility model

Ref document number: 6608743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250