JP2017168373A - Nonaqueous electrolyte for nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2017168373A
JP2017168373A JP2016054266A JP2016054266A JP2017168373A JP 2017168373 A JP2017168373 A JP 2017168373A JP 2016054266 A JP2016054266 A JP 2016054266A JP 2016054266 A JP2016054266 A JP 2016054266A JP 2017168373 A JP2017168373 A JP 2017168373A
Authority
JP
Japan
Prior art keywords
nonaqueous electrolyte
secondary battery
electrolyte secondary
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016054266A
Other languages
Japanese (ja)
Other versions
JP6699267B2 (en
Inventor
秀美 山本
Hidemi Yamamoto
秀美 山本
中川 裕江
Hiroe Nakagawa
裕江 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2016054266A priority Critical patent/JP6699267B2/en
Publication of JP2017168373A publication Critical patent/JP2017168373A/en
Application granted granted Critical
Publication of JP6699267B2 publication Critical patent/JP6699267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte for a nonaqueous electrolyte secondary battery, which makes possible to form a nonaqueous electrolyte secondary battery arranged so that the reduction in capacity-keeping rate owing to charge and discharge cycles can be suppressed.SOLUTION: A nonaqueous electrolyte with a magnesium pyrophosphate added thereto is used. The nonaqueous electrolyte contains a pyrophosphoric acid anion and a magnesium cation.SELECTED DRAWING: None

Description

本発明は、非水電解質二次電池用非水電解質に関する。   The present invention relates to a nonaqueous electrolyte for a nonaqueous electrolyte secondary battery.

リチウム二次電池に代表される非水電解質二次電池は、ノートパソコンや携帯電話などのモバイル機器の電源として用いられてきた。近年、非水電解質二次電池は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)などの自動車用電源としても用いられている。   Nonaqueous electrolyte secondary batteries represented by lithium secondary batteries have been used as power sources for mobile devices such as notebook computers and mobile phones. In recent years, non-aqueous electrolyte secondary batteries are also used as power sources for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), plug-in hybrid vehicles (PHEV) and the like.

非水電解質二次電池を構成する正極活物質としてはリチウム含有遷移金属酸化物が、負極活物質としてはグラファイトに代表される炭素材料が、非水電解質としては、エチレンカーボネート等の環状カーボネートとジエチルカーボネート等の鎖状カーボネートを主構成成分とする非水溶媒に六フッ化リン酸リチウム(LiPF)等の電解質を溶解したものが広く知られている。 The positive electrode active material constituting the nonaqueous electrolyte secondary battery is a lithium-containing transition metal oxide, the negative electrode active material is a carbon material typified by graphite, and the nonaqueous electrolyte is a cyclic carbonate such as ethylene carbonate and diethyl. A solution in which an electrolyte such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a nonaqueous solvent containing a chain carbonate such as carbonate as a main constituent is widely known.

特許文献1には、Mgを負極活物質として用いた非水電解質二次電池(表51)が記載されている。 Patent Document 1 describes a nonaqueous electrolyte secondary battery (Table 51) using Mg 2 P 2 O 7 as a negative electrode active material.

特許文献2には、ピロ燐酸カリウムを添加した電解液を用いた非水電解質電池(実施例12)が記載されている。   Patent Document 2 describes a nonaqueous electrolyte battery (Example 12) using an electrolytic solution to which potassium pyrophosphate is added.

特開平10−233208号公報Japanese Patent Laid-Open No. 10-233208 特開2001−357874号公報JP 2001-357874 A

非水電解質二次電池は、充放電サイクルによる容量維持率の低下が問題であった。   The non-aqueous electrolyte secondary battery has a problem of a decrease in capacity maintenance rate due to a charge / discharge cycle.

本発明の一側面は、ピロリン酸マグネシウムを含有している、非水電解質二次電池用非水電解質である。   One aspect of the present invention is a nonaqueous electrolyte for a nonaqueous electrolyte secondary battery containing magnesium pyrophosphate.

本発明の一側面によれば、充放電サイクルによる容量維持率の低下が抑制された非水電解質二次電池とすることのできる非水電解質二次電池用非水電解質を提供できる。   According to one aspect of the present invention, it is possible to provide a nonaqueous electrolyte for a nonaqueous electrolyte secondary battery that can be a nonaqueous electrolyte secondary battery in which a decrease in capacity retention rate due to charge / discharge cycles is suppressed.

本発明の一実施形態に係る非水電解質二次電池を示す外観斜視図1 is an external perspective view showing a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. 本発明の一実施形態に係る非水電解質二次電池を複数個集合して構成した蓄電装置を示す概略図1 is a schematic diagram showing a power storage device configured by assembling a plurality of nonaqueous electrolyte secondary batteries according to an embodiment of the present invention.

本発明の一側面は、ピロリン酸マグネシウムを含有している、非水電解質二次電池用非水電解質である。   One aspect of the present invention is a nonaqueous electrolyte for a nonaqueous electrolyte secondary battery containing magnesium pyrophosphate.

本発明の一側面によれば、充放電サイクルによる容量維持率の低下が抑制された非水電解質二次電池とすることのできる非水電解質二次電池用非水電解質を提供できる。   According to one aspect of the present invention, it is possible to provide a nonaqueous electrolyte for a nonaqueous electrolyte secondary battery that can be a nonaqueous electrolyte secondary battery in which a decrease in capacity retention rate due to charge / discharge cycles is suppressed.

本発明の他の一側面は、前記非水電解質を備えた非水電解質二次電池である。   Another aspect of the present invention is a nonaqueous electrolyte secondary battery including the nonaqueous electrolyte.

本発明の他の一側面によれば、充放電サイクルによる容量維持率の低下が抑制された非水電解質二次電池を提供できる。   According to another aspect of the present invention, it is possible to provide a nonaqueous electrolyte secondary battery in which a decrease in capacity maintenance rate due to charge / discharge cycles is suppressed.

本発明の他の一側面は、前記非水電解質二次電池の製造方法である。   Another aspect of the present invention is a method for producing the nonaqueous electrolyte secondary battery.

本発明の他の一側面によれば、充放電サイクルによる容量維持率の低下が抑制された非水電解質二次電池の製造方法を提供できる。   According to another aspect of the present invention, it is possible to provide a method for manufacturing a nonaqueous electrolyte secondary battery in which a decrease in capacity retention rate due to charge / discharge cycles is suppressed.

本発明の一側面に係る構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施の形態若しくは実験例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。   A configuration and operational effects according to one aspect of the present invention will be described with a technical idea. However, the action mechanism includes estimation, and the correctness does not limit the present invention. It should be noted that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the following embodiments or experimental examples are merely examples in all respects and should not be interpreted in a limited manner. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本実施態様に係る非水電解質二次電池用非水電解質を製造する方法については限定されない。例えば、非水溶媒、又は、非水溶媒に電解質塩が溶解している溶液に、ピロリン酸マグネシウムを例えば0.01〜2質量%程度添加し、撹拌する工程を採用できる。ピロリン酸マグネシウムは、非水溶媒への溶解度が小さいから、未溶解のピロリン酸マグネシウムが前記非水溶媒または前記溶液中に残存する。残存したピロリン酸マグネシウムは、ろ過等により取り除いてもよく、このまま非水電解質中に分散又は沈降させておいてもよい。この方法により得られる非水電解質には、飽和溶解量のピロリン酸マグネシウムが存在し、その存在量は微量である。このようにして、ピロリン酸マグネシウムが添加されてなる非水電解質を製造できる。ピロリン酸マグネシウムが添加されてなる非水電解質は、ピロリン酸アニオン(P 4−)とマグネシウムカチオン(Mg2+)を含有する。 It does not limit about the method of manufacturing the nonaqueous electrolyte for nonaqueous electrolyte secondary batteries which concerns on this embodiment. For example, a step of adding and stirring, for example, about 0.01 to 2% by mass of magnesium pyrophosphate to a nonaqueous solvent or a solution in which an electrolyte salt is dissolved in a nonaqueous solvent can be employed. Since magnesium pyrophosphate has low solubility in a non-aqueous solvent, undissolved magnesium pyrophosphate remains in the non-aqueous solvent or the solution. The remaining magnesium pyrophosphate may be removed by filtration or the like, or may be dispersed or settled in the nonaqueous electrolyte as it is. The non-aqueous electrolyte obtained by this method contains a saturated dissolution amount of magnesium pyrophosphate, and the amount thereof is very small. In this way, a non-aqueous electrolyte to which magnesium pyrophosphate is added can be produced. A non-aqueous electrolyte to which magnesium pyrophosphate is added contains pyrophosphate anion (P 2 O 7 4− ) and magnesium cation (Mg 2+ ).

また、ピロリン酸マグネシウムを添加する代わりに、ピロリン酸アニオン(P 4−)を解離しうる化合物とマグネシウムカチオン(Mg2+)を解離しうる化合物とを添加しても、ピロリン酸アニオン(P 4−)とマグネシウムカチオン(Mg2+)を含有している非水電解質を製造できる。このようにして製造された非水電解質も、本明細書にいう「ピロリン酸マグネシウムを含有している、非水電解質二次電池用非水電解質」に相当し、本発明の技術的範囲に属する。ここで、ピロリン酸アニオン(P 4−)を解離しうる化合物またはマグネシウムカチオン(Mg2+)を解離しうる化合物として、カルシウムカチオンやカリウムカチオンを解離しうる化合物を用いないことにより、本発明の効果が抑制される虞が低減できるため、好ましい。 Further, instead of adding magnesium pyrophosphate, a compound capable of dissociating pyrophosphate anion (P 2 O 7 4− ) and a compound capable of dissociating magnesium cation (Mg 2+ ) may be added. A non-aqueous electrolyte containing P 2 O 7 4− ) and a magnesium cation (Mg 2+ ) can be produced. The non-aqueous electrolyte thus produced also corresponds to the “non-aqueous electrolyte for non-aqueous electrolyte secondary battery containing magnesium pyrophosphate” referred to in the present specification, and belongs to the technical scope of the present invention. . Here, by not using a compound that can dissociate calcium cation or potassium cation as a compound that can dissociate pyrophosphate anion (P 2 O 7 4− ) or a compound that can dissociate magnesium cation (Mg 2+ ), Since the possibility that the effect of the invention is suppressed can be reduced, it is preferable.

本実施態様に係る非水電解質二次電池用非水電解質は、特に、充電時に正極電位が4.4V(vs.Li/Li)以上となる非水電解質二次電池に適用した場合に優れた効果が発揮される。 The nonaqueous electrolyte for a nonaqueous electrolyte secondary battery according to this embodiment is particularly excellent when applied to a nonaqueous electrolyte secondary battery having a positive electrode potential of 4.4 V (vs. Li / Li + ) or more during charging. The effect is demonstrated.

本実施態様に係る非水電解質二次電池用非水電解質が含有する非水溶媒は、限定されず、一般にリチウム電池等への使用が提案されている非水溶媒が使用可能である。例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、フルオロエチレンカーボネート、ビニレンカーボネート等の環状カーボネート類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されない。   The non-aqueous solvent contained in the non-aqueous electrolyte for a non-aqueous electrolyte secondary battery according to this embodiment is not limited, and non-aqueous solvents that are generally proposed for use in lithium batteries and the like can be used. For example, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, fluoroethylene carbonate, vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate Chain carbonates such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4- Ethers such as dibutoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfolane, sultone or the like Examples thereof include, but are not limited to, derivatives alone or a mixture of two or more thereof.

後述するように、前記環状カーボネートとして、例えば、フルオロエチレンカーボネート等のフッ素置換環状カーボネートを用いると、ピロリン酸マグネシウムとの相乗効果により、充放電サイクル性能に優れた非水電解質二次電池を提供できるため、好ましい。   As will be described later, when a fluorine-substituted cyclic carbonate such as fluoroethylene carbonate is used as the cyclic carbonate, for example, a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle performance can be provided due to a synergistic effect with magnesium pyrophosphate. Therefore, it is preferable.

前記非水溶媒が、エチレンカーボネート等の環状カーボネートと、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートとを含有する場合、環状カーボネートと鎖状カーボネートとの合計体積中に占める環状カーボネートの体積比率は、5体積%以上が好ましく、10体積%以上がより好ましい。また、50体積%以下が好ましく、30体積%以下がより好ましい。   When the non-aqueous solvent contains a cyclic carbonate such as ethylene carbonate and a chain carbonate such as ethyl methyl carbonate and diethyl carbonate, the volume ratio of the cyclic carbonate in the total volume of the cyclic carbonate and the chain carbonate is 5 volume% or more is preferable and 10 volume% or more is more preferable. Moreover, 50 volume% or less is preferable and 30 volume% or less is more preferable.

前記非水電解質に用いる電解質塩としては、例えば、LiClO,LiBF,LiAsF,LiPF,LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−C、NClO,(n−CNI,(CN−maleate,(CN−benzoate,(CN−phtalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, Inorganic ion salts containing one of lithium (Li), sodium (Na) or potassium (K) such as NaBr, KClO 4 , KSCN, LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , (CH 3) 4 NBr, ( C 2 H 5) 4 NClO 4, (C 2 H 5) 4 NI, (C 3 H 7) 4 NBr, (n-C H 9) 4, NClO 4, (n-C 4 H 9) 4 NI, (C 2 H 5) 4 N-maleate, (C 2 H 5) 4 N-benzoate, (C 2 H 5) 4 N- Examples thereof include organic ionic salts such as phthalate, lithium stearyl sulfonate, lithium octyl sulfonate, and lithium dodecylbenzene sulfonate, and these ionic compounds can be used alone or in admixture of two or more.

本実施態様に係る非水電解質二次電池の正極に用いる正極活物質としては特に制限はなく、種々の材料を適宜使用できる。なかでも、電気化学的にリチウムイオンを挿入・脱離可能であり、正極電位が4.4V(vs.Li/Li)以上となるものが好ましく、一般に非水電解質二次電池の正極活物質に使用されるリチウム遷移金属複合酸化物、ポリアニオン化合物等が使用できる。リチウム遷移金属複合酸化物としては、リチウムニッケルマンガン複合酸化物、リチウムニッケルコバルトマンガン複合酸化物等が挙げられる。リチウムニッケルマンガン複合酸化物としては、例えば、LiNi0.5Mn1.5等のスピネル構造を有するLiNiMn2−y4−δ(0<x<1.1、0.45<y<0.55、0≦δ<0.4)、LiNi1/2Mn1/2等のα−NaFeO型結晶構造を有するLiMeO(MeはNi、及びMnを含む遷移金属)や、Li1.11Ni0.29Mn0.60(Li/Me=1.25)等のα−NaFeO型結晶構造を有するLi1+αMe1−α(0<α、MeはNi、及びMnを含む遷移金属)、リチウムニッケルコバルトマンガン複合酸化物としては、例えば、LiNi1/3Co1/3Mn1/3等の同じくα−NaFeO型結晶構造を有するLiMeO(MeはNi、Co及びMnを含む遷移金属)や、Li1.09Co0.11Ni0.18Mn0.62(Li/Me=1.2)、Li1.11Co0.11Ni0.18Mn0.60(Li/Me=1.25)等のα−NaFeO型結晶構造を有するLi1+αMe1−α(0<α、MeはNi、Co及びMnを含む遷移金属)を使用することができる。ポリアニオン化合物としては、例えば、LiNiPO、LiCoPO、LiCoPOF、LiMnSiO等を使用することができる。 There is no restriction | limiting in particular as a positive electrode active material used for the positive electrode of the nonaqueous electrolyte secondary battery which concerns on this embodiment, A various material can be used suitably. Among them, those capable of electrochemically inserting and removing lithium ions and having a positive electrode potential of 4.4 V (vs. Li / Li + ) or more are preferable, and are generally positive electrode active materials for non-aqueous electrolyte secondary batteries. Lithium transition metal composite oxide, polyanion compound, etc. used in the above can be used. Examples of the lithium transition metal composite oxide include lithium nickel manganese composite oxide and lithium nickel cobalt manganese composite oxide. The lithium-nickel-manganese composite oxide, for example, Li x Ni y Mn 2- y O 4-δ (0 <x having a spinel structure such as LiNi 0.5 Mn 1.5 O 4 <1.1,0 . 45 <transition y <0.55,0 ≦ δ <0.4) , the LiMeO 2 (Me having alpha-NaFeO 2 type crystal structure such as LiNi 1/2 Mn 1/2 O 2 containing Ni, and Mn Metal) and Li 1 + α Me 1-α O 2 (0 <α) having an α-NaFeO 2 type crystal structure such as Li 1.11 Ni 0.29 Mn 0.60 O 2 (Li / Me = 1.25). , Me is a transition metal containing Ni and Mn), and as the lithium nickel cobalt manganese composite oxide, for example, the same α-NaFeO 2 type crystal structure such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 is used. LiMeO 2 with (Me is a transition metal containing Ni, Co and Mn), Li 1.09 Co 0.11 Ni 0.18 Mn 0.62 O 2 (Li / Me = 1.2), Li 1.11 Co 0. 11 Ni 0.18 Mn 0.60 O 2 (Li / Me = 1.25) and other Li 1 + α Me 1-α O 2 having an α-NaFeO 2 type crystal structure (0 <α, Me is Ni, Co and Transition metals including Mn) can be used. As the polyanion compound, for example, LiNiPO 4 , LiCoPO 4 , Li 2 CoPO 4 F, Li 2 MnSiO 4, or the like can be used.

本実施態様に係る非水電解質二次電池を構成する負極に使用する負極活物質は、電気化学的にリチウムイオンを挿入・脱離可能なものであり、正極電位が4.4V(vs.Li/Li+)以上となる正極と組み合わせて高電圧で使用できるものが好ましく、一般に非水電解質二次電池の負極活物質に使用される炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、SnやSi等のリチウムと合金形成可能な金属等が使用できる。炭素質材料としては、天然黒鉛、人造黒鉛、コークス類、難黒鉛化性炭素、低温焼成易黒鉛化性炭素、フラーレン、カーボンナノチューブ、カーボンブラック、活性炭等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。中でも炭素質材料が安全性の点から好ましく、特に黒鉛が好ましい。 The negative electrode active material used for the negative electrode constituting the non-aqueous electrolyte secondary battery according to this embodiment is one that can electrochemically insert and desorb lithium ions, and has a positive electrode potential of 4.4 V (vs. Li). / Li + ) that can be used at a high voltage in combination with a positive electrode that is more than or equal to, a carbonaceous material generally used as a negative electrode active material of a non-aqueous electrolyte secondary battery, a metal oxide such as tin oxide or silicon oxide, Metal composite oxides, lithium alloys such as lithium alone and lithium aluminum alloys, metals that can form alloys with lithium such as Sn and Si, and the like can be used. Examples of the carbonaceous material include natural graphite, artificial graphite, coke, non-graphitizable carbon, low-temperature calcinable graphitizable carbon, fullerene, carbon nanotube, carbon black, activated carbon and the like. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. Of these, carbonaceous materials are preferable from the viewpoint of safety, and graphite is particularly preferable.

前記正極活物質の粉体および負極活物質の粉体は、平均粒子サイズ100μm以下であることが望ましい。特に、正極活物質の粉体は、非水電解質二次電池の高出力特性を向上する目的で10μm以下であることが望ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミル又は篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。   The positive electrode active material powder and the negative electrode active material powder preferably have an average particle size of 100 μm or less. In particular, the positive electrode active material powder is desirably 10 μm or less for the purpose of improving the high output characteristics of the non-aqueous electrolyte secondary battery. In order to obtain the powder in a predetermined shape, a pulverizer or a classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill or a sieve is used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as hexane may be used. There is no particular limitation on the classification method, and a sieve, an air classifier, or the like is used as needed for both dry and wet methods.

以上、正極及び負極の主要構成成分である正極活物質及び負極活物質について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。   As described above, the positive electrode active material and the negative electrode active material which are main components of the positive electrode and the negative electrode have been described in detail. In addition to the main component, the positive electrode and the negative electrode include a conductive agent, a binder, a thickener, A filler etc. may be contained as another structural component.

前記導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、鱗状黒鉛,鱗片状黒鉛,塊状黒鉛等の天然黒鉛;人造黒鉛;カーボンブラック;アセチレンブラック;ケッチェンブラック;カーボンウイスカー;炭素繊維;銅,ニッケル,アルミニウム,銀,金等の金属粉;金属繊維;導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect battery performance. Usually, natural graphite such as scaly graphite, flake graphite, and lump graphite; artificial graphite; carbon black; acetylene black; Carbon black; Carbon fiber; Metal powder such as copper, nickel, aluminum, silver, and gold; Metal fiber; Conductive material such as conductive ceramic material may be included as one kind or a mixture thereof.

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。導電剤の添加量は、正極または負極の総重量に対して0.1重量%〜50重量%が好ましく、特に0.5重量%〜30重量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要量を削減できるため望ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。   Among these, as the conductive agent, acetylene black is desirable from the viewpoints of electron conductivity and coatability. The addition amount of the conductive agent is preferably 0.1% by weight to 50% by weight, and particularly preferably 0.5% by weight to 30% by weight with respect to the total weight of the positive electrode or the negative electrode. In particular, it is desirable to use acetylene black by pulverizing it into ultrafine particles of 0.1 to 0.5 μm because the required amount can be reduced. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, powder mixers such as V-type mixers, S-type mixers, crackers, ball mills, and planetary ball mills can be mixed dry or wet.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVdF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂;エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して1〜50重量%が好ましく、特に2〜30重量%が好ましい。   Examples of the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyethylene, and polypropylene; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene butadiene. Polymers having rubber elasticity such as rubber (SBR) and fluororubber can be used as one kind or a mixture of two or more kinds. The addition amount of the binder is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight, based on the total weight of the positive electrode or the negative electrode.

前記フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総重量に対して30重量%以下が好ましい。   The filler may be any material as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 30% by weight or less based on the total weight of the positive electrode or the negative electrode.

前記正極及び前記負極は、前記主要構成成分(正極においては正極活物質、負極においては負極活物質)、およびその他の材料を混練して合剤とし、N−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布または圧着して、50℃〜250℃程度の温度で2時間程度加熱処理することにより、好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されない。   The positive electrode and the negative electrode are prepared by mixing the main constituent components (positive electrode active material in the positive electrode, negative electrode active material in the negative electrode) and other materials into a mixture, an organic solvent such as N-methylpyrrolidone and toluene, After mixing with water, the obtained mixed solution is applied or pressure-bonded onto a current collector described in detail below, and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. Produced. About the application method, for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.

前記セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質二次電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂;ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂;ポリフッ化ビニリデン;フッ化ビニリデン−ヘキサフルオロプロピレン共重合体;フッ化ビニリデン−パーフルオロビニルエーテル共重合体;フッ化ビニリデン−テトラフルオロエチレン共重合体;フッ化ビニリデン−トリフルオロエチレン共重合体;フッ化ビニリデン−フルオロエチレン共重合体;フッ化ビニリデン−ヘキサフルオロアセトン共重合体;フッ化ビニリデン−エチレン共重合体;フッ化ビニリデン−プロピレン共重合体;フッ化ビニリデン−トリフルオロプロピレン共重合体;フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体;フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。   As the separator, it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the material constituting the separator for a non-aqueous electrolyte secondary battery include polyolefin resins typified by polyethylene, polypropylene, etc .; polyester resins typified by polyethylene terephthalate, polybutylene terephthalate, etc .; polyvinylidene fluoride; -Hexafluoropropylene copolymer; vinylidene fluoride-perfluorovinyl ether copolymer; vinylidene fluoride-tetrafluoroethylene copolymer; vinylidene fluoride-trifluoroethylene copolymer; vinylidene fluoride-fluoroethylene copolymer Vinylidene fluoride-hexafluoroacetone copolymer; vinylidene fluoride-ethylene copolymer; vinylidene fluoride-propylene copolymer; vinylidene fluoride-trifluoropropylene copolymer; Den - tetrafluoroethylene - hexafluoropropylene copolymer; a vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.

前記セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。   The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.

また、前記セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。   The separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, and polyvinylidene fluoride and a non-aqueous electrolyte. Use of the non-aqueous electrolyte in the gel state as described above is preferable in that it has an effect of preventing leakage.

さらに、前記セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため望ましい。例えば、ポリエチレン製多孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーからなる微孔性フィルムを形成し、前記フィルムの微孔内に非水電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。   Furthermore, when the separator is used in combination with the above-described porous film, nonwoven fabric or the like and a polymer gel, it is desirable because the liquid retention of the electrolyte is improved. For example, by forming a microporous film made of a solvophilic polymer having a thickness of several μm or less on the surface of the polyethylene porous membrane and the microporous wall, and holding the nonaqueous electrolyte in the micropores of the film, The solvophilic polymer gels.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、電子線(EB)照射、又は、ラジカル開始剤を添加して加熱若しくは紫外線(UV)照射を行うこと等により、架橋反応を行わせることが可能である。   Examples of the solvophilic polymer include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked. The monomer can be subjected to a crosslinking reaction by irradiation with an electron beam (EB) or heating or ultraviolet (UV) irradiation with a radical initiator added.

図1に、本発明の一実施形態に係る非水電解質二次電池である矩形状の非水電解質二次電池1の概略図を示す。なお、同図は、容器内部を透視した図としている。図1に示す非水電解質二次電池1は、電極群2が電池容器3に収納されている。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。   FIG. 1 shows a schematic diagram of a rectangular nonaqueous electrolyte secondary battery 1 which is a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. In the figure, the inside of the container is seen through. In the nonaqueous electrolyte secondary battery 1 shown in FIG. 1, an electrode group 2 is housed in a battery container 3. The electrode group 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material via a separator. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ′, and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5 ′.

前記非水電解質二次電池の構成については特に限定されず、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池、扁平型電池等が一例として挙げられる。本発明の一実施形態は、上記の非水電解質二次電池を複数備える蓄電装置としても実現することができる。蓄電装置の一実施形態を図2に示す。図2において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。   The configuration of the non-aqueous electrolyte secondary battery is not particularly limited, and examples thereof include a cylindrical battery having a positive electrode, a negative electrode, and a roll separator, a square battery, and a flat battery. One embodiment of the present invention can also be realized as a power storage device including a plurality of the above nonaqueous electrolyte secondary batteries. One embodiment of a power storage device is shown in FIG. In FIG. 2, the power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of nonaqueous electrolyte secondary batteries 1. The power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).

<初期性能試験>
本明細書において、非水電解質二次電池の初期性能試験は、次の条件にて行う。非水電解質二次電池は、まず、25℃にて、2サイクルの初期充放電工程に供される。電圧制御は、全て、正負極端子間電圧に対して行う。充電は、電流0.2CmA、電圧4.35V、8時間の定電流定電圧充電とし、放電は、電流0.2CmA、終止電圧2.75Vの定電流放電とする。充電後及び放電後に、それぞれ10分の休止時間を設定する。なお、本明細書において、実施例に係る非水電解質二次電池は、負極活物質に黒鉛が用いられている。この場合、充電末期の正極電位の値は電池電圧の値に対して約0.05V大きいものとなることがわかっている。従って、充電末期の正極電位は約4.4V(vs. Li/Li)となる。2サイクル目の放電容量を「初期放電容量(mAh)」とする。再び上記と同じ条件で充電した後、インピーダンスメーターを用いて交流(AC)1kHzを印加することにより「初期内部抵抗(mΩ)」を測定する。また、電池厚みをノギスで測定し、「初期電池厚み(mm)」とする。
<Initial performance test>
In this specification, the initial performance test of the nonaqueous electrolyte secondary battery is performed under the following conditions. The nonaqueous electrolyte secondary battery is first subjected to an initial charge / discharge process of two cycles at 25 ° C. All voltage control is performed on the voltage between the positive and negative terminals. The charging is a constant current / constant voltage charging with a current of 0.2 CmA and a voltage of 4.35 V for 8 hours, and the discharging is a constant current discharging with a current of 0.2 CmA and a final voltage of 2.75 V. After charging and discharging, a pause time of 10 minutes is set. In the present specification, graphite is used for the negative electrode active material in the nonaqueous electrolyte secondary batteries according to the examples. In this case, it is known that the value of the positive electrode potential at the end of charging is approximately 0.05 V larger than the value of the battery voltage. Therefore, the positive electrode potential at the end of charging is about 4.4 V (vs. Li / Li + ). The discharge capacity at the second cycle is defined as “initial discharge capacity (mAh)”. After charging again under the same conditions as described above, an “initial internal resistance (mΩ)” is measured by applying an alternating current (AC) of 1 kHz using an impedance meter. Further, the battery thickness is measured with a caliper and is set as “initial battery thickness (mm)”.

<充放電サイクル試験>
本明細書において、非水電解質二次電池の充放電サイクル試験は、次の条件にて行う。非水電解質二次電池は、上記初期性能試験の後、45℃にて、充放電を行う。電圧制御は、全て、正負極端子間電圧に対して行う。充電は、電流1.0CmA、電圧4.35V、3時間の定電流定電圧充電とし、放電は、電流1.0CmA、終止電圧2.75Vの定電流放電とする。充電後及び放電後に、それぞれ10分の休止時間を設定する。
<Charge / discharge cycle test>
In this specification, the charge / discharge cycle test of the nonaqueous electrolyte secondary battery is performed under the following conditions. The nonaqueous electrolyte secondary battery is charged and discharged at 45 ° C. after the initial performance test. All voltage control is performed on the voltage between the positive and negative terminals. The charging is a constant current / constant voltage charging with a current of 1.0 CmA and a voltage of 4.35 V for 3 hours, and the discharging is a constant current discharging with a current of 1.0 CmA and a final voltage of 2.75 V. After charging and discharging, a pause time of 10 minutes is set.

上記充放電を75サイクル行った後、25℃にて、上記初期性能試験と同じ条件で1サイクル充放電を行い、「75サイクル目放電容量(mAh)」を求める。次に、上記と同じ条件で充電した後、インピーダンスメーターを用いて交流(AC)1kHzを印加することにより「75サイクル目内部抵抗(mΩ)」を測定する。また、電池厚みをノギスで測定し、「75サイクル目電池厚み(mm)」とする。前記「初期放電容量(mAh)」に対する前記「75サイクル目放電容量(mAh)」の百分率を「放電容量維持率(%)」とする。「初期内部抵抗(Ω)」に対する「75サイクル目内部抵抗(Ω)」の百分率を「内部抵抗増加率(%)」とする。「初期電池厚み(mm)」に対する「75サイクル目電池厚み(mm)」の百分率を「電池厚み増加率(%)」とする。   After 75 cycles of charge / discharge, 1 cycle charge / discharge is performed at 25 ° C. under the same conditions as in the initial performance test, and the “75th cycle discharge capacity (mAh)” is obtained. Next, after charging under the same conditions as described above, an “75th cycle internal resistance (mΩ)” is measured by applying an alternating current (AC) of 1 kHz using an impedance meter. Further, the battery thickness is measured with a caliper and is defined as “75th cycle battery thickness (mm)”. The percentage of the “75th cycle discharge capacity (mAh)” with respect to the “initial discharge capacity (mAh)” is defined as “discharge capacity maintenance ratio (%)”. The percentage of the “75th cycle internal resistance (Ω)” relative to the “initial internal resistance (Ω)” is defined as “internal resistance increase rate (%)”. The percentage of “75th cycle battery thickness (mm)” with respect to “initial battery thickness (mm)” is defined as “battery thickness increase rate (%)”.

<サイクル寿命試験>
本明細書において、非水電解質二次電池のサイクル寿命試験は、次の条件にて行う。上記充放電サイクル試験の条件にて充放電を継続し、放電容量(mAh)が、「初期放電容量(mAh)」の60%に低下するまでに充放電されたサイクル数を計測し、「サイクル寿命」とする。
<Cycle life test>
In this specification, the cycle life test of the nonaqueous electrolyte secondary battery is performed under the following conditions. Charging / discharging is continued under the above charging / discharging cycle test conditions, and the number of cycles charged / discharged until the discharge capacity (mAh) decreases to 60% of the “initial discharge capacity (mAh)” is measured. "Life".

(比較例1)
エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)を体積比3:7の割合で混合した混合溶媒に、LiPFを1.0mol/lの濃度で溶解させた電解液を比較例1に係る非水電解質とする。
(Comparative Example 1)
An electrolyte solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / l in a mixed solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 3: 7 was used. Use water electrolyte.

(実施例1)
上記比較例1に係る非水電解質に対して、1.0質量%のピロリン酸マグネシウム(Mg、和光純薬社製)を添加し、十分に撹拌した後静置し、上澄みを採取した。従って、この非水電解質中には、ピロリン酸マグネシウムが飽和しており、溶解しているピロリン酸マグネシウムの量は1.0質量%未満である。このようにして、ピロリン酸マグネシウムが添加された非水電解質を作製した。これを実施例1に係る非水電解質とする。
Example 1
1.0% by mass of magnesium pyrophosphate (Mg 2 P 2 O 7 , manufactured by Wako Pure Chemical Industries, Ltd.) was added to the non-aqueous electrolyte according to Comparative Example 1, and the mixture was sufficiently stirred and allowed to stand. Were collected. Therefore, in this non-aqueous electrolyte, magnesium pyrophosphate is saturated, and the amount of dissolved magnesium pyrophosphate is less than 1.0% by mass. In this way, a nonaqueous electrolyte to which magnesium pyrophosphate was added was produced. This is the nonaqueous electrolyte according to Example 1.

(比較例2)
上記比較例1に係る非水電解質に対して、1.0質量%のピロリン酸カルシウム(Ca、Strem Chemicals社製)を添加し、十分に撹拌した後静置し、上澄みを採取した。これを比較例2に係る非水電解質とする。
(Comparative Example 2)
1.0% by mass of calcium pyrophosphate (Ca 2 P 2 O 7 , manufactured by Strem Chemicals) is added to the nonaqueous electrolyte according to Comparative Example 1, and the mixture is sufficiently stirred and allowed to stand, and the supernatant is collected. did. This is the nonaqueous electrolyte according to Comparative Example 2.

(比較例3)
上記比較例1に係る非水電解質に対して、1.0質量%のピロリン酸カリウム(K、和光純薬社製)を添加し、十分に撹拌した後静置し、上澄みを採取した。これを比較例3に係る非水電解質とする。
(Comparative Example 3)
1.0% by mass of potassium pyrophosphate (K 4 P 2 O 7 , manufactured by Wako Pure Chemical Industries, Ltd.) was added to the non-aqueous electrolyte according to Comparative Example 1, and the mixture was sufficiently stirred and allowed to stand. Were collected. This is the nonaqueous electrolyte according to Comparative Example 3.

(非水電解質二次電池の作製)
これらの非水電解質をそれぞれ用いて、次の手順にて非水電解質二次電池を作製した。以下の実施例では、α−NaFeO型結晶構造を有しLiNi1/3Mn1/3Co1/3で表されるリチウム遷移金属複合酸化物を正極活物質として用いた。
(Preparation of non-aqueous electrolyte secondary battery)
Using each of these non-aqueous electrolytes, non-aqueous electrolyte secondary batteries were produced by the following procedure. In the following examples, a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure and represented by LiNi 1/3 Mn 1/3 Co 1/3 O 2 was used as a positive electrode active material.

前記正極活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)を質量比94:3:3の割合(固形分換算)で含有し、N−メチルピロリドン(NMP)を溶剤とする正極ペーストを作製し、厚さ20μmの帯状のアルミニウム箔集電体の両面に塗布した後、NMPを揮発させた。該正極をローラープレス機により加圧成型して正極活物質層を成型した後、100℃で14時間真空乾燥して、極板中の水分を揮発させた。このようにして正極板を作製した。   A positive electrode paste containing the positive electrode active material, acetylene black (AB) and polyvinylidene fluoride (PVdF) in a mass ratio of 94: 3: 3 (in terms of solid content) and N-methylpyrrolidone (NMP) as a solvent. After making and apply | coating to both surfaces of a 20-micrometer-thick strip | belt-shaped aluminum foil electrical power collector, NMP was volatilized. The positive electrode was pressure-molded with a roller press to form a positive electrode active material layer, and then vacuum-dried at 100 ° C. for 14 hours to volatilize water in the electrode plate. In this way, a positive electrode plate was produced.

黒鉛、スチレン−ブタジエン・ゴム(SBR)及びカルボキシメチルセルロース(CMC)を質量比97:2:1の割合(固形分換算)で混合し、水を溶剤とする負極ペーストを作製し、厚さ10μmの帯状の銅箔集電体の両面に塗布した後、水を揮発させた。該負極をローラープレス機により加圧成型して負極活物質層を成型した後、100℃で12時間真空乾燥して、極板中の水分を揮発させた。このようにして負極板を作製した。   Graphite, styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were mixed at a mass ratio of 97: 2: 1 (in terms of solid content) to prepare a negative electrode paste using water as a solvent, and having a thickness of 10 μm. After coating on both sides of the strip-shaped copper foil current collector, water was volatilized. The negative electrode was pressure-molded with a roller press to form a negative electrode active material layer, and then vacuum-dried at 100 ° C. for 12 hours to volatilize moisture in the electrode plate. In this way, a negative electrode plate was produced.

ポリエチレン製の多孔膜からなるセパレータを介して正極板と負極板を積層し、扁平形状に巻回して発電要素を作製し、アルミニウム製の角型電槽缶に収納し、正負極端子を取り付けた。この容器内部に非水電解質を注入したのちに封口した。このようにして、実施例1及び比較例1〜4に係る設計容量800mAh(1CmA=800mAh)の非水電解質二次電池を作製した。   A positive electrode plate and a negative electrode plate are laminated through a separator made of a polyethylene porous membrane, wound in a flat shape to produce a power generation element, housed in an aluminum square battery case, and attached with positive and negative electrode terminals . The container was sealed after injecting a nonaqueous electrolyte into the container. In this manner, a nonaqueous electrolyte secondary battery having a design capacity of 800 mAh (1 CmA = 800 mAh) according to Example 1 and Comparative Examples 1 to 4 was produced.

上記手順に従って、初期性能試験、及び充放電サイクル試験を行い、「放電容量維持率(%)」、「内部抵抗増加率(%)」、及び「電池厚み増加率(%)」を求めた。結果を表1に示す。   According to the above procedure, an initial performance test and a charge / discharge cycle test were performed, and “discharge capacity maintenance rate (%)”, “internal resistance increase rate (%)”, and “battery thickness increase rate (%)” were obtained. The results are shown in Table 1.

表1から、添加剤としてピロリン酸マグネシウムを含有している非水電解質を用いた実施例1の非水電解質二次電池は、添加剤を含有しない比較例1の非水電解質や、他のピロリン酸化合物を用いた比較例2、及び3の非水電解質を用いた非水電解質二次電池に比べて、充放電サイクルによる容量維持率の低下が抑制されていることがわかった。また、充放電サイクルによる内部抵抗の増加が抑制されていることがわかった。また、充放電サイクルによる電池厚みの増加が抑制されていることがわかった。   From Table 1, the non-aqueous electrolyte secondary battery of Example 1 using a non-aqueous electrolyte containing magnesium pyrophosphate as an additive is the non-aqueous electrolyte of Comparative Example 1 containing no additive or other pyrroline. It turned out that the fall of the capacity | capacitance maintenance factor by a charging / discharging cycle is suppressed compared with the nonaqueous electrolyte secondary battery using the nonaqueous electrolyte of the comparative examples 2 and 3 using an acid compound. Moreover, it turned out that the increase in internal resistance by a charging / discharging cycle is suppressed. Moreover, it turned out that the increase in the battery thickness by a charging / discharging cycle is suppressed.

(比較例4)
フルオロエチレンカーボネート(FEC)及びエチルメチルカーボネート(EMC)を体積比1:9の割合で混合した混合溶媒に、LiPFを1.0mol/lの濃度で溶解させた電解液を比較例4に係る非水電解質とする。
(Comparative Example 4)
According to Comparative Example 4, an electrolytic solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / l in a mixed solvent in which fluoroethylene carbonate (FEC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 9 was used. A non-aqueous electrolyte is used.

(実施例2)
上記比較例4に係る非水電解質に対して、1.0質量%のピロリン酸マグネシウム(Mg、和光純薬社製)を添加し、十分に撹拌した後静置し、上澄みを採取した。これを実施例2に係る非水電解質とする。
(Example 2)
1.0% by mass of magnesium pyrophosphate (Mg 2 P 2 O 7 , manufactured by Wako Pure Chemical Industries, Ltd.) was added to the nonaqueous electrolyte according to Comparative Example 4 and the mixture was sufficiently stirred and allowed to stand, and the supernatant Were collected. This is designated as the nonaqueous electrolyte according to Example 2.

実施例1、2、及び比較例1、4の非水電解質を用いて、上記した実施例1の非水電解質二次電池と同じ材料を用い、同じ手順にて、非水電解質二次電池を作製した。但し、設計容量は850mAh(1CmA=850mAh)とした。   Using the nonaqueous electrolytes of Examples 1 and 2 and Comparative Examples 1 and 4, using the same material as the nonaqueous electrolyte secondary battery of Example 1 described above, the nonaqueous electrolyte secondary battery was manufactured in the same procedure. Produced. However, the design capacity was 850 mAh (1 CmA = 850 mAh).

上記手順に従って、初期性能試験、及び充放電サイクル試験を行い、「サイクル寿命」を求めた。結果を表2に示す。   According to the above procedure, an initial performance test and a charge / discharge cycle test were performed to obtain a “cycle life”. The results are shown in Table 2.

表2から、本実施形態に係る非水電解質二次電池用非水電解質は、含有する非水溶媒の種類が異なっていても、本発明の効果が奏されることにより、サイクル寿命が優れていることがわかる。特に、添加剤としてピロリン酸マグネシウムを、環状カーボネートとしてフッ素置換環状カーボネートであるフルオロエチレンカーボネート(FEC)を、それぞれ含有する実施例2の非水電解質を用いた非水電解質二次電池を、ピロリン酸マグネシウムを含有しない比較例4の非水電解質を用いた非水電解質二次電池と比較すると、フルオロエチレンカーボネート(FEC)とピロリン酸マグネシウムとの相乗効果により、サイクル寿命が大幅に優れていることがわかる。   From Table 2, the non-aqueous electrolyte for a non-aqueous electrolyte secondary battery according to this embodiment has excellent cycle life due to the effects of the present invention even if the type of non-aqueous solvent contained is different. I understand that. In particular, a nonaqueous electrolyte secondary battery using the nonaqueous electrolyte of Example 2 containing magnesium pyrophosphate as an additive and fluoroethylene carbonate (FEC), which is a fluorine-substituted cyclic carbonate, as a cyclic carbonate, Compared with the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte of Comparative Example 4 that does not contain magnesium, the cycle life is significantly superior due to the synergistic effect of fluoroethylene carbonate (FEC) and magnesium pyrophosphate. Recognize.

近年、自動車用電源として用いられる非水電解質二次電池においても、高エネルギー密度化が求められている。このため、従来よりも高い電圧で充電する使用方法が採用された場合であっても、優れた性能が発揮できる非水電解質二次電池が求められていた。本実施態様に係る非水電解質二次電池用非水電解質は、特に、充電時に正極電位が4.4V(vs.Li/Li)以上となる非水電解質二次電池に適用した場合に優れた効果が発揮されるから、産業用の利用可能性が高い。 In recent years, high energy density is also required for non-aqueous electrolyte secondary batteries used as power sources for automobiles. For this reason, there has been a demand for a non-aqueous electrolyte secondary battery that can exhibit excellent performance even when a method of use for charging at a higher voltage than before is employed. The nonaqueous electrolyte for a nonaqueous electrolyte secondary battery according to this embodiment is particularly excellent when applied to a nonaqueous electrolyte secondary battery having a positive electrode potential of 4.4 V (vs. Li / Li + ) or more during charging. Therefore, the industrial applicability is high.

(符号の説明)
1 非水電解質二次電池
2 電極群
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
20 蓄電ユニット
30 蓄電装置
(Explanation of symbols)
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Electrode group 3 Battery container 4 Positive electrode terminal 4 'Positive electrode lead 5 Negative electrode terminal 5' Negative electrode lead 20 Power storage unit 30 Power storage device

Claims (4)

ピロリン酸マグネシウムを含有している、非水電解質二次電池用非水電解質。   A non-aqueous electrolyte for a non-aqueous electrolyte secondary battery, containing magnesium pyrophosphate. フッ素置換環状カーボネートを含有している、請求項1記載の非水電解質二次電池用非水電解質。   The nonaqueous electrolyte for a nonaqueous electrolyte secondary battery according to claim 1, comprising a fluorine-substituted cyclic carbonate. 請求項1又は2に記載の非水電解質二次電池用非水電解質を用いた非水電解質二次電池。   A nonaqueous electrolyte secondary battery using the nonaqueous electrolyte for a nonaqueous electrolyte secondary battery according to claim 1. 請求項1又は2に記載の非水電解質二次電池用非水電解質を用いて、非水電解質二次電池を製造することを特徴とする、非水電解質二次電池の製造方法。 A nonaqueous electrolyte secondary battery is produced using the nonaqueous electrolyte for a nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the nonaqueous electrolyte secondary battery is produced.
JP2016054266A 2016-03-17 2016-03-17 Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries Active JP6699267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016054266A JP6699267B2 (en) 2016-03-17 2016-03-17 Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016054266A JP6699267B2 (en) 2016-03-17 2016-03-17 Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries

Publications (2)

Publication Number Publication Date
JP2017168373A true JP2017168373A (en) 2017-09-21
JP6699267B2 JP6699267B2 (en) 2020-05-27

Family

ID=59909008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016054266A Active JP6699267B2 (en) 2016-03-17 2016-03-17 Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries

Country Status (1)

Country Link
JP (1) JP6699267B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250424A (en) * 2006-03-17 2007-09-27 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
WO2013100000A1 (en) * 2011-12-28 2013-07-04 株式会社 村田製作所 All-solid-state battery, and manufacturing method therefor
JP2017027656A (en) * 2015-07-15 2017-02-02 トヨタ自動車株式会社 Lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250424A (en) * 2006-03-17 2007-09-27 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
WO2013100000A1 (en) * 2011-12-28 2013-07-04 株式会社 村田製作所 All-solid-state battery, and manufacturing method therefor
JP2017027656A (en) * 2015-07-15 2017-02-02 トヨタ自動車株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP6699267B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6660581B2 (en) Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7015447B2 (en) Non-aqueous electrolyte secondary battery
JP2015018713A (en) Nonaqueous electrolytic solution and lithium-ion secondary battery using the same
JP5619645B2 (en) Nonaqueous electrolyte secondary battery
WO2017056734A1 (en) Lithium secondary battery
JP2016119180A (en) Non-aqueous lithium secondary battery
JP2017152337A (en) Negative electrode for nonaqueous lithium ion secondary battery, manufacturing method thereof, and nonaqueous lithium ion secondary battery
JP7003664B2 (en) Power storage element
JP6656623B2 (en) Non-aqueous electrolyte for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JP6658744B2 (en) Negative electrode for non-aqueous electrolyte storage element
JP6763144B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary batteries
TWI674699B (en) Electrode for nonaqueous electrolyte secondary battery
JP6244623B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
JP6839380B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2016072116A (en) Nonaqueous electrolyte secondary battery
JP6699267B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries
JP2016192272A (en) Negative electrode for power storage element, power storage element and power storage device
JP6699268B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries
JP2020167000A (en) Electrode and nonaqueous electrolyte secondary battery
JP2014160552A (en) Nonaqueous electrolyte secondary battery
JP5375482B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6766359B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary batteries
JP7048345B2 (en) Lithium ion secondary battery
JP2016149328A (en) Negative electrode active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP2017004817A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6699267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150