JP2017152337A - Negative electrode for nonaqueous lithium ion secondary battery, manufacturing method thereof, and nonaqueous lithium ion secondary battery - Google Patents

Negative electrode for nonaqueous lithium ion secondary battery, manufacturing method thereof, and nonaqueous lithium ion secondary battery Download PDF

Info

Publication number
JP2017152337A
JP2017152337A JP2016036167A JP2016036167A JP2017152337A JP 2017152337 A JP2017152337 A JP 2017152337A JP 2016036167 A JP2016036167 A JP 2016036167A JP 2016036167 A JP2016036167 A JP 2016036167A JP 2017152337 A JP2017152337 A JP 2017152337A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
carbon black
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016036167A
Other languages
Japanese (ja)
Other versions
JP6808948B2 (en
Inventor
秀亮 岡
Hideaki Oka
秀亮 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2016036167A priority Critical patent/JP6808948B2/en
Publication of JP2017152337A publication Critical patent/JP2017152337A/en
Application granted granted Critical
Publication of JP6808948B2 publication Critical patent/JP6808948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode arranged by use of graphite as a negative electrode active material, which can be manufactured with aqueous materials, and which can improve lithium ion input and output characteristics and the endurance against Li precipitation.SOLUTION: A negative electrode for a nonaqueous lithium ion secondary battery according to the present invention comprises: graphite; a hydrophilic carbon black; and an aqueous binder. Supposing that the average particle diameter of the graphite is r, the specific weight is d, the average particle diameter of the hydrophilic carbon black is r, the specific weight is d, and the percentage of the hydrophilic carbon black added to the graphite is x mass%, a coverage (=x(r/4r)(d/d)), which is a percentage of the hydrophilic carbon black coating the graphite, is 6.1-46.4%.SELECTED DRAWING: None

Description

本発明は、非水系リチウムイオン二次電池用負極、その製法及び非水系リチウムイオン二次電池に関する。   The present invention relates to a negative electrode for a non-aqueous lithium ion secondary battery, a method for producing the same, and a non-aqueous lithium ion secondary battery.

非水系リチウムイオン二次電池は、高電圧・高エネルギー密度が得られるだけでなく、小型・軽量化が図れるため、パソコンや携帯電話等の情報通信機器の関連分野ではすでに実用化されている。また、近年では、資源問題や環境問題から電気自動車やハイブリッド自動車に搭載される電源としても利用されている。こうした非水系リチウムイオン二次電池は、正極活物質としてリチウム遷移金属複合酸化物、負極活物質として炭素材料、電解液として有機溶媒にLi塩を溶かしたもので構成されている。一般的に、正極活物質として層状構造、もしくはスピネル型構造を有するLiCoO2、LiNiO2、LiMn24およびそれらの誘導体が用いられ、負極活物質として黒鉛や非晶質炭素、合金などが使用されている。電解液溶媒には、可燃性の鎖状カーボネートと環状カーボネートを混合したもの、リチウム塩にはその伝導性の高さからLiPF6が用いられていることが多い。 Non-aqueous lithium ion secondary batteries have already been put to practical use in fields related to information communication equipment such as personal computers and mobile phones because they can not only achieve high voltage and high energy density, but also can be reduced in size and weight. In recent years, it is also used as a power source mounted on electric vehicles and hybrid vehicles due to resource issues and environmental issues. Such a non-aqueous lithium ion secondary battery is composed of a lithium transition metal composite oxide as a positive electrode active material, a carbon material as a negative electrode active material, and a Li salt dissolved in an organic solvent as an electrolytic solution. Generally, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and their derivatives having a layered structure or a spinel structure are used as the positive electrode active material, and graphite, amorphous carbon, alloy, etc. are used as the negative electrode active material Has been. In many cases, LiPF 6 is used as the electrolyte solvent, which is a mixture of combustible chain carbonate and cyclic carbonate, and lithium salt because of its high conductivity.

しかし、非水系リチウムイオン二次電池は、特に低温において高い負極反応抵抗を示すため、低温入出力が低いという大きな課題がある。また、Liの電位に近い非常に低い充放電電位を示すことから、低温での入力時に分極増大によるLi析出の懸念がある。そのため、黒鉛粒子表面をピッチ、有機化合物あるいは高分子化合物で被覆し、焼成または黒鉛化することによりリチウムイオン二次電池の入出力を向上させることが提案されている(特許文献1〜4)。   However, since the non-aqueous lithium ion secondary battery exhibits a high negative electrode reaction resistance particularly at low temperatures, there is a big problem that low temperature input / output is low. Moreover, since it shows a very low charge / discharge potential close to the potential of Li, there is a concern of Li precipitation due to an increase in polarization at the time of input at a low temperature. For this reason, it has been proposed to improve the input / output of a lithium ion secondary battery by coating the surface of graphite particles with pitch, an organic compound or a polymer compound and firing or graphitizing (Patent Documents 1 to 4).

一方、黒鉛化ナノ炭素粒子、あるいはカーボンブラックなどの非晶質炭素粒子を黒鉛粒子表面に担持することで、充放電特性が向上することが報告されている。例えば、親水化された黒鉛粒子に炭素質あるいは黒鉛質の粒子を付着させる方法(特許文献5)、黒鉛にカーボンブラックを添加する方法(特許文献6)、黒鉛原料とカーボンブラックを混合し熱処理することで黒鉛表面にカーボンブラックを固着させる方法(特許文献7)などが提案されている。   On the other hand, it has been reported that charge / discharge characteristics are improved by supporting graphitized nanocarbon particles or amorphous carbon particles such as carbon black on the surface of the graphite particles. For example, a method of attaching carbonaceous or graphite particles to hydrophilic graphite particles (Patent Document 5), a method of adding carbon black to graphite (Patent Document 6), a graphite raw material and carbon black are mixed and heat-treated. Thus, a method of fixing carbon black on the graphite surface (Patent Document 7) has been proposed.

特開平5−307959号公報JP-A-5-307959 特許第5061437号公報Japanese Patent No. 5061437 特許第5153055号公報Japanese Patent No. 5153055 特許第5772939号公報Japanese Patent No. 5772939 特開2005−243447公報JP 2005-243447 A 特開2004−171901公報JP 2004-171901 A 特開2003−346804公報JP 2003-346804 A

しかしながら、特許文献1〜4では、負極を作製する際の結着材の分散媒が水系溶媒の場合、粒子間の導電性が十分でないため、充放電特性を十分に発揮できない場合がある。また、負極塗工時の安全面、環境面への配慮から、水系溶媒・結着材の使用が望まれており、水系溶媒・結着材を用いた場合にも優れた充放電特性を示す黒鉛粒子表面改質が求められている。   However, in Patent Documents 1 to 4, when the dispersion medium of the binder used to produce the negative electrode is an aqueous solvent, the conductivity between the particles is not sufficient, and thus the charge / discharge characteristics may not be sufficiently exhibited. In addition, the use of aqueous solvents and binders is desired for safety and environmental considerations when coating negative electrodes, and excellent charge / discharge characteristics are exhibited even when aqueous solvents and binders are used. There is a need for surface modification of graphite particles.

また、特許文献5〜7では、粒子間の導電性は改善されるが、特に低温における負極反応抵抗の増大に対しては、根本的な改善とはなっていない。また、カーボンブラックを黒鉛粒子表面に担持することにより、黒鉛粒子表面が疎水性となることから、水系溶媒・結着材を用いた負極塗工時に凝集が起こりやすくなり、均一な塗布膜を得ることが困難となる。   Moreover, in patent documents 5-7, although the electrical conductivity between particle | grains is improved, it is not fundamental improvement with respect to the increase in the negative electrode reaction resistance especially in low temperature. Also, by supporting carbon black on the surface of the graphite particles, the surface of the graphite particles becomes hydrophobic, so that aggregation is likely to occur during negative electrode coating using an aqueous solvent / binder, and a uniform coating film is obtained. It becomes difficult.

本発明はこのような課題を解決するためになされたものであり、黒鉛を負極活物質とする負極において、水系で製造可能であり、リチウムイオンの入出力特性及びLi析出耐性を向上させることを主目的とする。   The present invention has been made to solve such problems, and in a negative electrode using graphite as a negative electrode active material, it can be manufactured in an aqueous system, and improves the input / output characteristics of lithium ions and Li precipitation resistance. Main purpose.

上述した目的を達成するために鋭意研究したところ、本発明者らは、負極活物質である黒鉛に親水性カーボンブラックを適量添加すると、その目的を達成できることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-mentioned object, the present inventors have found that the object can be achieved by adding an appropriate amount of hydrophilic carbon black to graphite as a negative electrode active material, and the present invention has been completed. It was.

即ち、本発明の非水系リチウムイオン二次電池用負極は、負極活物質である黒鉛と、親水性カーボンブラックと、水系バインダーとを含み、(1)前記黒鉛の平均粒径をr1、比重をd1、前記親水性カーボンブラックの平均粒径をr2、比重をd2、前記親水性カーボンブラックの前記黒鉛に対する添加割合をx質量%としたとき、前記親水性カーボンブラックが前記黒鉛を被覆している割合である被覆率(=x(r1/4r2)(d1/d2))が6.1%以上46.4%以下であるか、(2)前記親水性カーボンブラックの前記黒鉛に対する添加割合が0.2質量%以上1.5質量%以下のものである。なお、r1とr2の単位、d1とd2の単位は揃えるものとする(以下同じ)。 That is, the negative electrode for a non-aqueous lithium ion secondary battery according to the present invention includes graphite as a negative electrode active material, hydrophilic carbon black, and an aqueous binder. (1) The average particle diameter of the graphite is r 1 , and the specific gravity. Is d 1 , the average particle diameter of the hydrophilic carbon black is r 2 , the specific gravity is d 2 , and the addition ratio of the hydrophilic carbon black to the graphite is x mass%, the hydrophilic carbon black contains the graphite. Whether the covering ratio (= x (r 1 / 4r 2 ) (d 1 / d 2 )), which is the covering ratio, is 6.1% to 46.4%, or (2) the hydrophilic carbon black Is added to the graphite in an amount of 0.2% by mass or more and 1.5% by mass or less. Note that the units of r 1 and r 2 and the units of d 1 and d 2 are the same (the same applies hereinafter).

本発明の非水系リチウムイオン二次電池は、上述した非水系リチウムイオン二次電池用負極と、正極と、非水電解液とを含むものである。   The non-aqueous lithium ion secondary battery of the present invention includes the above-described negative electrode for a non-aqueous lithium ion secondary battery, a positive electrode, and a non-aqueous electrolyte.

本発明の非水系リチウムイオン二次電池用負極の製法は、黒鉛と水系バインダーとを含んだ負極塗料に、(1)被覆率が6.1%以上46.4%以下となるように、又は(2)親水性カーボンブラックの前記黒鉛に対する添加割合が0.2質量%以上1.5質量%以下となるように、前記親水性カーボンブラックの水系分散液を添加して混合した後、得られた混合液を負極集電体上に塗布して乾燥し、その後に圧延処理を施して負極とするものである。   The method for producing a negative electrode for a non-aqueous lithium ion secondary battery according to the present invention includes: (1) a covering ratio of 6.1% to 46.4% in a negative electrode paint containing graphite and an aqueous binder, or (2) Obtained after adding and mixing an aqueous dispersion of the hydrophilic carbon black such that the ratio of the hydrophilic carbon black to the graphite is 0.2% by mass or more and 1.5% by mass or less. The mixed liquid is applied onto a negative electrode current collector and dried, and then subjected to a rolling treatment to form a negative electrode.

本発明の非水系リチウムイオン二次電池用負極は、負極活物質である黒鉛粒子表面に親水性カーボンブラックが適量担持されている。これにより、水系で製造することが可能となる。また、リチウムイオンの入出力特性及びLi析出耐性が向上する。その理由は、以下のように推測される。リチウムイオンは非水電解液中では溶媒が配位した構造、つまり溶媒和した状態となって安定化している。この溶媒和したリチウムイオンが負極活物質である黒鉛に挿入する際には、SEI被膜の作用により脱溶媒和してリチウムイオンが黒鉛に挿入する。リチウムイオンが挿入する過程において、特にリチウムイオンが脱溶媒和する過程の活性障壁が大きく、律速となることが報告されている(J. Electochem. Soc., 152, A2151 (2005))。上述したリチウムイオンの入出力特性及びLi析出耐性が向上するという効果は、黒鉛表面に適量の親水性カーボンブラックを担持することで、リチウムイオンの脱溶媒和過程の活性障壁を低減し、負極反応抵抗を低減したために得られたものと推測される。   In the negative electrode for a non-aqueous lithium ion secondary battery of the present invention, an appropriate amount of hydrophilic carbon black is supported on the surface of graphite particles as a negative electrode active material. Thereby, it becomes possible to manufacture by an aqueous system. In addition, input / output characteristics of lithium ions and Li precipitation resistance are improved. The reason is presumed as follows. Lithium ions are stabilized in a non-aqueous electrolyte in a structure in which a solvent is coordinated, that is, in a solvated state. When this solvated lithium ion is inserted into the graphite as the negative electrode active material, it is desolvated by the action of the SEI coating and the lithium ion is inserted into the graphite. In the process of inserting lithium ions, it has been reported that the activity barrier in the process of desolvation of lithium ions is particularly large and rate limiting (J. Electochem. Soc., 152, A2151 (2005)). The effect of improving the lithium ion input / output characteristics and Li precipitation resistance described above is to support an appropriate amount of hydrophilic carbon black on the graphite surface, thereby reducing the active barrier of the lithium ion desolvation process and reducing the negative electrode reaction. It is presumed that it was obtained because the resistance was reduced.

本発明の非水系リチウムイオン二次電池20の一例を示す模式図。The schematic diagram which shows an example of the non-aqueous lithium ion secondary battery 20 of this invention. 親水性カーボンブラックの黒鉛に対する添加割合(質量%)と親水性カーボンブラックの被覆率とLi析出限界電流値との関係を示すグラフ。The graph which shows the relationship between the addition ratio (mass%) with respect to graphite of hydrophilic carbon black, the coverage of hydrophilic carbon black, and Li precipitation limit electric current value. 親水性カーボンブラック添加なしの負極シートのSEM写真。The SEM photograph of the negative electrode sheet | seat without hydrophilic carbon black addition. 親水性カーボンブラックを1質量%添加した負極シートのSEM写真。The SEM photograph of the negative electrode sheet which added 1 mass% of hydrophilic carbon black. 親水性カーボンブラックを5質量%添加した負極シートのSEM写真。The SEM photograph of the negative electrode sheet which added 5 mass% of hydrophilic carbon black.

本発明の非水系リチウムイオン二次電池は、非水系リチウムイオン二次電池用負極と、正極と、非水電解液とを含むものである。このうち、非水系リチウムイオン二次電池用負極は、負極活物質である黒鉛と、親水性カーボンブラックと、水系バインダーとを含み、(1)黒鉛の平均粒径をr1、比重をd1、親水性カーボンブラックの平均粒径をr2、比重をd2、親水性カーボンブラックの黒鉛に対する添加割合をx質量%としたとき、親水性カーボンブラックが黒鉛を被覆している割合である下記式の被覆率が6.1%以上46.4%以下であるか、(2)親水性カーボンブラックの黒鉛に対する添加割合が0.2質量%以上1.5質量%以下のものである。
被覆率(%)=x(πr2 2/4πr1 2)(r1 3/r2 3)(d1/d2
=x(r1/4r2 )(d1/d2
The non-aqueous lithium ion secondary battery of the present invention includes a negative electrode for a non-aqueous lithium ion secondary battery, a positive electrode, and a non-aqueous electrolyte. Among these, the negative electrode for non-aqueous lithium ion secondary batteries includes graphite as a negative electrode active material, hydrophilic carbon black, and an aqueous binder. (1) The average particle diameter of graphite is r 1 and the specific gravity is d 1. , When the average particle diameter of hydrophilic carbon black is r 2 , the specific gravity is d 2 , and the addition ratio of hydrophilic carbon black to graphite is x mass%, The coverage of the formula is 6.1% or more and 46.4% or less, or (2) the addition ratio of hydrophilic carbon black to graphite is 0.2% by mass or more and 1.5% by mass or less.
Coverage (%) = x (πr 2 2 / 4πr 1 2 ) (r 1 3 / r 2 3 ) (d 1 / d 2 )
= X (r 1 / 4r 2 ) (d 1 / d 2 )

(負極)
非水系リチウムイオン二次電池用負極は、負極活物質である黒鉛と、親水性カーボンブラックと、水系バインダーとを含んでいる。
(Negative electrode)
The negative electrode for non-aqueous lithium ion secondary batteries includes graphite as a negative electrode active material, hydrophilic carbon black, and an aqueous binder.

黒鉛としては、例えば、鱗片状黒鉛や鱗片黒鉛などの天然黒鉛のほか、人造黒鉛、熱分解黒鉛などが挙げられる。   Examples of graphite include artificial graphite, pyrolytic graphite and the like, in addition to natural graphite such as flaky graphite and flaky graphite.

親水性カーボンブラックは、界面活性剤などを添加することなく、水系溶媒(水を主体とする溶媒、特に水)中で分散状態を維持することが可能なカーボンブラックであり、顔料インクなどで用いられている。親水性カーボンブラックは、粒子表面にカルボキシル基やヒドロキシル基などの官能基を有することで、水系溶媒中での粒子同士の凝集を防ぎ、高い分散性を示すという特徴がある。親水性カーボンブラックでは、一般的にカーボンブラック表面にこれらの官能基が50μmol/g以上存在することで高い分散性を発揮することが可能となる。親水性カーボンブラックが黒鉛を被覆する割合(被覆率)は、6.1%以上46.4%以下であることが好ましく、14.7%以上36.7%以下であることがより好ましい。被覆率が6.1%未満だと、リチウムイオンの入出力特性及びLi析出耐性が十分向上しないため好ましくない。被覆率が46.4%を超えると、Li析出耐性や初回充放電効率が低下するため好ましくない。Li析出耐性が低下するのは、黒鉛粒子表面に親水性カーボンブラックが複数層被覆してしまい、リチウムイオンの伝導過程が妨げられるためと考えられる。また、親水性カーボンブラックの黒鉛に対する添加割合は、0.2質量%以上1.5質量%以下が好ましく、0.5質量%以上1.2質量%以下がより好ましい。この添加割合が0.2質量%未満だと、リチウムイオンの入出力特性及びLi析出耐性が十分向上しないため好ましくない。また、添加割合が1.5質量%を超えると、Li析出耐性や初回充放電効率が低下するため好ましくない。Li析出耐性が低下するのは、黒鉛粒子表面に親水性カーボンブラックが複数層被覆してしまい、リチウムイオンの伝導過程が妨げられるためと考えられる。   Hydrophilic carbon black is a carbon black that can maintain a dispersed state in an aqueous solvent (a solvent mainly composed of water, particularly water) without adding a surfactant or the like. It has been. Hydrophilic carbon black is characterized by having a functional group such as a carboxyl group or a hydroxyl group on the particle surface, thereby preventing aggregation of particles in an aqueous solvent and exhibiting high dispersibility. In the case of hydrophilic carbon black, generally, these functional groups are present on the surface of carbon black in an amount of 50 μmol / g or more, so that high dispersibility can be exhibited. The ratio (coverage) of the hydrophilic carbon black covering graphite is preferably 6.1% or more and 46.4% or less, and more preferably 14.7% or more and 36.7% or less. If the coverage is less than 6.1%, the input / output characteristics of lithium ions and the resistance to Li precipitation are not sufficiently improved, which is not preferable. If the coverage exceeds 46.4%, the Li deposition resistance and the initial charge / discharge efficiency decrease, which is not preferable. The reason why the Li precipitation resistance is lowered is considered to be that the graphite particle surface is coated with a plurality of layers of hydrophilic carbon black and the conduction process of lithium ions is hindered. Moreover, the addition ratio of hydrophilic carbon black to graphite is preferably 0.2% by mass or more and 1.5% by mass or less, and more preferably 0.5% by mass or more and 1.2% by mass or less. When the addition ratio is less than 0.2% by mass, the input / output characteristics of lithium ions and the resistance to Li precipitation are not sufficiently improved, which is not preferable. On the other hand, when the addition ratio exceeds 1.5% by mass, the Li precipitation resistance and the initial charge / discharge efficiency decrease, which is not preferable. The reason why the Li precipitation resistance is lowered is considered to be that the graphite particle surface is coated with a plurality of layers of hydrophilic carbon black and the conduction process of lithium ions is hindered.

水系バインダーとは、水を溶媒もしくは分散媒体とするバインダーをいう。水系バインダーとしては、熱可塑性樹脂、ゴム弾性を有するポリマー、多糖類などが挙げられるが、これらの混合物を用いてもよい。具体的には、例えば、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、スチレンブタジエンゴム、ポリブタジエン、ブチルゴム、フッ素ゴム、ポリエチレンオキシド、ポリビニルピロリドン、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリスチレン、エチレン−プロピレン−ジエン共重合体、ポリビニルピリジン、クロロスルホン化ポリエチレン、ラテックス、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂、ポリビニルアルコール、セルロース樹脂(カルボキシメチルセルロース、ヒドロキシプロピルセルロースなど)が挙げられる。このうち、スチレン−ブタジエンゴムとカルボキシメチルセルロースの混合バインダーが、結着力が大きいため好ましい。   An aqueous binder refers to a binder using water as a solvent or dispersion medium. Examples of the water-based binder include thermoplastic resins, polymers having rubber elasticity, polysaccharides, and the like, and a mixture thereof may be used. Specifically, for example, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene copolymer, styrene butadiene rubber, polybutadiene, butyl rubber, fluororubber, polyethylene oxide, polyvinyl pyrrolidone, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, Examples include polystyrene, ethylene-propylene-diene copolymer, polyvinyl pyridine, chlorosulfonated polyethylene, latex, polyester resin, acrylic resin, phenol resin, epoxy resin, polyvinyl alcohol, and cellulose resin (carboxymethyl cellulose, hydroxypropyl cellulose, etc.). . Among these, a mixed binder of styrene-butadiene rubber and carboxymethyl cellulose is preferable because of its high binding force.

負極は、黒鉛と水系バインダーとを含んだ負極塗料に、(1)被覆率が6.1%以上46.4%以下となるように、又は(2)親水性カーボンブラックの黒鉛に対する添加割合が0.2質量%以上1.5質量%以下となるように、親水性カーボンブラックの水系分散液を添加して混合した後、得られた混合液を負極集電体上に塗布して乾燥し、その後に圧延処理を施すことにより製造してもよい。親水性カーボンブラックの水系分散液としては、例えば東海カーボン(株)のAqua−Black162やAqua−Black001などが挙げられる。負極集電体としては、導電性材料で形成されたものであれば特に限定されないが、例えば、銅やステンレス鋼、ニッケルメッキ鋼などの金属で形成されている箔やメッシュを用いることができる。負極集電体の厚さは、例えば1〜500μmのものが用いられる。この製法によれば、負極塗料に親水性カーボンブラックの水系分散液を添加した混合した混合液を負極集電体に塗布する場合、混合液中で凝集が全く起こらず、均一な塗布膜を得ることが可能となる。   The negative electrode is a negative electrode paint containing graphite and a water-based binder, and (1) the coverage is 6.1% or more and 46.4% or less, or (2) the ratio of addition of hydrophilic carbon black to graphite is After adding and mixing an aqueous dispersion of hydrophilic carbon black so that the content is 0.2% by mass or more and 1.5% by mass or less, the obtained mixed solution is applied onto the negative electrode current collector and dried. Then, it may be produced by rolling. Examples of the aqueous dispersion of hydrophilic carbon black include Aqua-Black 162 and Aqua-Black 001 manufactured by Tokai Carbon Co., Ltd. The negative electrode current collector is not particularly limited as long as it is formed of a conductive material. For example, a foil or mesh formed of a metal such as copper, stainless steel, or nickel-plated steel can be used. The thickness of the negative electrode current collector is, for example, 1 to 500 μm. According to this manufacturing method, when a mixed liquid obtained by adding an aqueous dispersion of hydrophilic carbon black to a negative electrode coating is applied to the negative electrode current collector, no aggregation occurs in the mixed liquid and a uniform coating film is obtained. It becomes possible.

(正極)
正極は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極合材としたものを、正極集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。
(Positive electrode)
For the positive electrode, for example, a positive electrode active material, a conductive material, and a binder are mixed, and an appropriate solvent is added to form a paste-like positive electrode mixture, which is applied to the surface of the positive electrode current collector and dried. The electrode may be compressed to increase the electrode density.

正極活物質としては、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、LiMnO2やLiMn24などのリチウムマンガン複合酸化物、LiCoO2などのリチウムコバルト複合酸化物、LiNiO2やLiNix1-x2(xは0<x<1,Mは、Li、Ni以外の金属元素であり、Co、Mn、Fe、Mg及びAlからなる群より選ばれる1以上であることが好ましい)などのリチウムニッケル複合酸化物、LiV23などのリチウムバナジウム複合酸化物などを用いることができる。 As the positive electrode active material, an oxide containing lithium and a transition metal element can be used. Specifically, lithium manganese composite oxides such as LiMnO 2 and LiMn 2 O 4 , lithium cobalt composite oxides such as LiCoO 2 , LiNiO 2 and LiNi x M 1-x O 2 (x is 0 <x <1, M is a metal element other than Li and Ni, and is preferably one or more selected from the group consisting of Co, Mn, Fe, Mg, and Al), LiV 2 O 3 and the like A lithium vanadium composite oxide or the like can be used.

導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック(AB)、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。   The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. For example, graphite such as natural graphite (scale-like graphite, scale-like graphite) or artificial graphite, acetylene black (AB), A mixture of one or more of carbon black, ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) can be used. Among these, as the conductive material, carbon black and acetylene black are preferable from the viewpoints of electron conductivity and coatability.

結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。   The binder serves to bind the active material particles and the conductive material particles. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluorine-containing resin such as fluorine rubber, or polypropylene, Thermoplastic resins such as polyethylene, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. In addition, an aqueous dispersion of cellulose or styrene butadiene rubber (SBR), which is an aqueous binder, can also be used.

正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。   Examples of the solvent for dispersing the positive electrode active material, the conductive material, and the binder include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethylenetriamine, N, N-dimethyl. Organic solvents such as aminopropylamine, ethylene oxide, and tetrahydrofuran can be used. Moreover, a dispersing agent, a thickener, etc. may be added to water, and an active material may be slurried with latex, such as SBR. As the thickener, for example, polysaccharides such as carboxymethyl cellulose and methyl cellulose can be used alone or as a mixture of two or more.

塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。   Examples of the application method include roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, and the like, and any of these can be used to obtain an arbitrary thickness and shape.

正極集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。正極集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。正極集電体の厚さは、例えば1〜500μmのものが用いられる。   The positive electrode current collector includes aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, etc., as well as aluminum and copper for the purpose of improving adhesion, conductivity and oxidation resistance. A surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. Examples of the shape of the positive electrode current collector include foil, film, sheet, net, punched or expanded, lath, porous, foam, and fiber group formed body. The thickness of the positive electrode current collector is, for example, 1 to 500 μm.

(非水電解液)
非水電解液としては、非水溶媒に支持塩(リチウム塩)を溶解させたものである。非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネート(EC)やプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。
(Nonaqueous electrolyte)
As the non-aqueous electrolyte, a supporting salt (lithium salt) is dissolved in a non-aqueous solvent. Examples of the non-aqueous solvent include carbonates, esters, ethers, nitriles, furans, sulfolanes and dioxolanes, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, vinylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate (DEC), ethyl methyl carbonate (EMC), diethyl carbonate, ethyl Chain carbonates such as n-butyl carbonate, methyl-t-butyl carbonate, di-i-propyl carbonate and t-butyl-i-propyl carbonate, cyclic esters such as γ-butyllactone and γ-valerolactone, Chain esters such as methyl formate, methyl acetate, ethyl acetate, methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxyethane, diethoxyethane, acetonitrile, benzonitrile, etc. Nitriles, tetrahydrofurans such as tetrahydrofuran and methyltetrahydrofuran, sulfolanes such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolane. Among these, the combination of cyclic carbonates and chain carbonates is preferable.

支持塩としては、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiAsF6、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、非水電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。支持塩の濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。また、この非水電解液には、リン系、ハロゲン系などの難燃剤を添加してもよい。 Examples of the supporting salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, Examples include LiClO 4 , LiCl, LiF, LiBr, LiI, and LiAlCl 4 . Among these, from the group consisting of inorganic salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3. It is preferable from the viewpoint of electrical characteristics to use a combination of one or two or more selected salts. The supporting salt preferably has a concentration in the non-aqueous electrolyte of 0.1 mol / L or more and 5 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less. If the concentration of the supporting salt is 0.1 mol / L or more, a sufficient current density can be obtained, and if it is 5 mol / L or less, the electrolytic solution can be made more stable. Moreover, you may add flame retardants, such as a phosphorus type and a halogen type, to this non-aqueous electrolyte.

(二次電池)
本発明の非水系リチウムイオン二次電池は、正極と負極との間にセパレータを備えていてもよい。セパレータとしては、非水電解液の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。本発明の非水系リチウムイオン二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。図1は、本発明の非水系リチウムイオン二次電池20の一例を示す模式図である。この非水系リチウムイオン二次電池20は、カップ形状の金属製の電池ケース21と、正極活物質を有しこの電池ケース21の下部に設けられた正極22と、負極活物質を有し正極22に対してセパレータ24を介して対向する位置に設けられた負極23と、絶縁材により形成されたガスケット25と、電池ケース21の開口部に配設されガスケット25を介して電池ケース21を密封する金属製の封口板26と、を備えている。この非水系リチウムイオン二次電池20は、正極22と負極23との間に非水電解液27が満たされている。また、この負極23は、上述したように、負極活物質である黒鉛と、親水性カーボンブラックと、水系バインダーとを含み、(1)被覆率が6.1%以上46.4%以下であるか、(2)親水性カーボンブラックの黒鉛に対する添加割合が0.2質量%以上1.5質量%以下のものである。
(Secondary battery)
The non-aqueous lithium ion secondary battery of the present invention may include a separator between the positive electrode and the negative electrode. The separator is not particularly limited as long as it has a composition that can withstand the range of use of the non-aqueous electrolyte. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a thin fine olefin resin such as polyethylene or polypropylene is used. A porous membrane is mentioned. These may be used alone or in combination. The shape of the nonaqueous lithium ion secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a rectangular type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc. FIG. 1 is a schematic view showing an example of a non-aqueous lithium ion secondary battery 20 of the present invention. The non-aqueous lithium ion secondary battery 20 includes a cup-shaped metal battery case 21, a positive electrode 22 having a positive electrode active material, and a negative electrode active material having a negative electrode active material. A negative electrode 23 provided at a position facing the separator 24 via a separator 24, a gasket 25 formed of an insulating material, and a battery case 21 disposed in the opening of the battery case 21 and sealing the battery case 21 via the gasket 25. And a metal sealing plate 26. In this non-aqueous lithium ion secondary battery 20, a non-aqueous electrolyte solution 27 is filled between a positive electrode 22 and a negative electrode 23. Further, as described above, the negative electrode 23 includes graphite as a negative electrode active material, hydrophilic carbon black, and an aqueous binder, and (1) the coverage is 6.1% or more and 46.4% or less. (2) The addition ratio of hydrophilic carbon black to graphite is 0.2% by mass or more and 1.5% by mass or less.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

[実験例1]
(電池作製)
負極活物質として球形化天然黒鉛粒子(平均粒径10μm)、水系バインダーとしてスチレン−ブタジエンゴム及びカルボキシメチルセルロースの混合物を用意した。球形化天然黒鉛粒子とスチレン−ブタジエンゴムとカルボキシメチルセルロースとを、質量比98:1:1となるように秤量し、これらの材料を水に分散させた。これに親水性カーボンブラック分散液(東海カーボン(株)製、Aqua−Black162、平均粒径100nm、以下同じ)を添加し、混練することで負極合材層形成用組成物を調製した。黒鉛の平均粒径をr1、比重をd1、親水性カーボンブラックの平均粒径をr2、比重をd2、親水性カーボンブラックの黒鉛に対する添加割合をx質量%としたときの、親水性カーボンブラックが黒鉛を被覆している割合である被覆率(=x(r1/4r2)(d1/d2))が30.6%となるように、親水性カーボンブラックの黒鉛に対する添加割合を1質量%として、黒鉛と親水性カーボンブラックの合計質量が上述の98:1:1の98質量%となるように調整した。これを厚さ10μmの負極集電体(銅箔)に合材目付け量が5mg/cm2となるように塗布した。その後、120℃の真空中で6時間乾燥させて、ロールプレス機を用いて圧延処理を施すことによって、負極集電体上に合材密度1.1g/cm3の負極合材層が形成された負極シートを作製した。なお、比重d1を2.2g/cm3、比重d2を1.8g/cm3とした。
[Experimental Example 1]
(Battery production)
Spherical natural graphite particles (average particle size 10 μm) were prepared as the negative electrode active material, and a mixture of styrene-butadiene rubber and carboxymethyl cellulose was prepared as the aqueous binder. Spherical natural graphite particles, styrene-butadiene rubber, and carboxymethyl cellulose were weighed so as to have a mass ratio of 98: 1: 1, and these materials were dispersed in water. To this, a hydrophilic carbon black dispersion (manufactured by Tokai Carbon Co., Ltd., Aqua-Black 162, average particle size 100 nm, the same applies hereinafter) was added and kneaded to prepare a composition for forming a negative electrode mixture layer. When the average particle diameter of graphite is r 1 , the specific gravity is d 1 , the average particle diameter of hydrophilic carbon black is r 2 , the specific gravity is d 2 , and the addition ratio of hydrophilic carbon black to graphite is x mass%. The ratio of hydrophilic carbon black to graphite so that the covering ratio (= x (r 1 / 4r 2 ) (d 1 / d 2 )), which is the ratio in which carbon black covers graphite, is 30.6%. The addition ratio was set to 1% by mass, and the total mass of graphite and hydrophilic carbon black was adjusted to be 98% by mass of the above-mentioned 98: 1: 1. This was applied to a negative electrode current collector (copper foil) having a thickness of 10 μm so that the basis weight of the composite material was 5 mg / cm 2 . Then, it is dried in a vacuum at 120 ° C. for 6 hours, and is subjected to a rolling process using a roll press, thereby forming a negative electrode mixture layer having a mixture density of 1.1 g / cm 3 on the negative electrode current collector. A negative electrode sheet was prepared. The specific gravity d 1 was 2.2 g / cm 3 and the specific gravity d 2 was 1.8 g / cm 3 .

作製した負極シートにおける黒鉛粒子表面の親水性カーボンブラック分散度を確認するためにSEM観察を実施した。SEM観察は、日立ハイテクノロジーズ製のS−3600Nを用い、加速電圧10kV、観察倍率10000倍で実施した。   SEM observation was performed in order to confirm the hydrophilic carbon black dispersion degree of the graphite particle surface in the produced negative electrode sheet. SEM observation was performed using Hitachi High-Technologies S-3600N at an acceleration voltage of 10 kV and an observation magnification of 10,000 times.

正極活物質であるLiNi0.8Co0.15Al0.052と、導電材であるアセチレンブラック(AB)、結着材であるPVDFとを、質量比85:10:5となるように秤量し、これらの材料をNMPに分散させてペースト状の正極合材層形成用組成物を調製した。これを厚さ15μmの正極集電体(アルミニウム箔)に合材目付け量が7mg/cm2となるように塗布した。その後、120℃の真空中で6時間乾燥させて、ロールプレス機を用いて圧延処理を施すことによって、正極集電体上に合材密度2.1g/cm3の正極合材層が形成された正極シートを作製した。 LiNi 0.8 Co 0.15 Al 0.05 O 2 that is a positive electrode active material, acetylene black (AB) that is a conductive material, and PVDF that is a binder are weighed so as to have a mass ratio of 85: 10: 5. The material was dispersed in NMP to prepare a paste-like composition for forming a positive electrode mixture layer. This was applied to a positive electrode current collector (aluminum foil) having a thickness of 15 μm so that the basis weight of the composite material was 7 mg / cm 2 . Then, it is dried in a vacuum at 120 ° C. for 6 hours, and subjected to a rolling process using a roll press machine, whereby a positive electrode mixture layer having a mixture density of 2.1 g / cm 3 is formed on the positive electrode current collector. A positive electrode sheet was prepared.

上記正極シートの合材を一部剥離しアルミニウム製の正極端子を超音波溶接して取り付けた。同様に、上記負極シートの合材を一部剥離しニッケル製の負極端子を超音波溶接して取り付けた。各端子を取り付けた正極シートと負極シートを、ポリエチレン製の単層構造のセパレータを介してアルミラミネートセルを作製した。非水電解液としてECとDMCとEMCとの体積比が3:4:3の非水溶媒に1MのLiPF6を溶解させたものを使用した。このようにして作製した10mAh級のアルミラミネートセルを用いて、以下の評価を行った。 A part of the mixture of the positive electrode sheet was peeled off and an aluminum positive electrode terminal was attached by ultrasonic welding. Similarly, a part of the mixture of the negative electrode sheet was peeled off, and a nickel negative electrode terminal was attached by ultrasonic welding. An aluminum laminate cell was manufactured by using a single-layer separator made of polyethylene for the positive electrode sheet and the negative electrode sheet to which each terminal was attached. As the non-aqueous electrolyte, a solution in which 1M LiPF 6 was dissolved in a non-aqueous solvent having a volume ratio of EC, DMC, and EMC of 3: 4: 3 was used. The following evaluation was performed using the 10 mAh-class aluminum laminate cell thus produced.

(電池評価)
アルミラミネートセルを20℃の環境下において、充放電を実施した。充放電条件は、2mAの定電流充電によって4.1Vに到達後、2mAの定電流によって3.0Vまで放電を実施した。この充電容量と放電容量より、初回充放電効率を算出した。初回充放電後の電池に対して、SOC50%(電池電圧3.7V)に調整した後、電池を−10℃の環境下に保持して、交流インピーダンス測定を実施した(振幅電圧5mV、周波数範囲100kHz〜0.002Hz)。得られたインピーダンススペクトルを等価回路フィッティングすることにより、高周波数側円弧の抵抗を算出し、これを負極反応抵抗とした(J. Power Sources., 174, 1131 (2007))。
(Battery evaluation)
The aluminum laminate cell was charged and discharged in an environment of 20 ° C. The charging / discharging conditions reached 4.1V by constant current charging of 2 mA, and then discharged to 3.0 V by constant current of 2 mA. The initial charge / discharge efficiency was calculated from the charge capacity and discharge capacity. The battery after the first charge / discharge was adjusted to SOC 50% (battery voltage 3.7V), and then the battery was kept in an environment of −10 ° C., and AC impedance measurement was performed (amplitude voltage 5 mV, frequency range). 100 kHz to 0.002 Hz). The resistance of the high frequency side arc was calculated by fitting the obtained impedance spectrum to an equivalent circuit, and this was used as the negative electrode reaction resistance (J. Power Sources., 174, 1131 (2007)).

Li析出耐久評価は以下のように実施した。まず耐久試験前の電池容量評価を行うため、20℃環境下で4.1Vに定電流充電(2mA)した後、4.1Vで1時間定電圧充電を実施した。その後、3Vに定電流放電(2mA)した後、3Vで1時間定電圧放電を実施した。このようにして算出した放電容量を耐久前容量とした。Li析出耐久試験は以下のように実施した。SOC50%(電池電圧3.7V)に調整した電池を−10℃の環境下に保持した後、100mAで20秒間充電を行い、5分間休止をした後、100mAで20秒間放電を行い、5分間の休止を設けた。このサイクルを50回繰り返したのち、耐久前と同様の手順で容量評価を行い、耐久前後の容量維持率を算出した。120mA、140mA、160mA、180mA、200mAで同様の耐久試験を実施し、容量維持率が95%を割り込む電流値を外挿して算出し、負極合材質量当たりの電流値を算出してLi析出限界電流値と定義した。   Li precipitation durability evaluation was performed as follows. First, in order to evaluate the battery capacity before the durability test, the battery was subjected to constant current charging (2 mA) to 4.1 V in a 20 ° C. environment, and then constant voltage charging was performed at 4.1 V for 1 hour. Then, after carrying out a constant current discharge (2mA) to 3V, the constant voltage discharge was implemented at 3V for 1 hour. The discharge capacity calculated in this way was defined as the capacity before durability. The Li precipitation durability test was performed as follows. After maintaining the battery adjusted to SOC 50% (battery voltage 3.7V) in an environment of −10 ° C., charge at 100 mA for 20 seconds, pause for 5 minutes, and then discharge at 100 mA for 20 seconds. A pause was established. After repeating this cycle 50 times, the capacity was evaluated in the same procedure as before the endurance, and the capacity retention ratio before and after the endurance was calculated. Perform the same durability test at 120 mA, 140 mA, 160 mA, 180 mA, and 200 mA, extrapolate the current value with a capacity retention rate of 95%, calculate the current value per mass of the negative electrode mixture, and determine the Li precipitation limit It was defined as the current value.

[実験例2]
被覆率が15.3%となるように、親水性カーボンブラックの黒鉛に対する添加割合を0.5質量%として負極シートを作製した以外は、実験例1と同様にして電池作製および電池評価を行った。
[Experiment 2]
Battery preparation and battery evaluation were performed in the same manner as in Experimental Example 1, except that the negative electrode sheet was prepared with the addition ratio of hydrophilic carbon black to graphite so that the coverage was 15.3%. It was.

[実験例3]
親水性カーボンブラックを添加せずに負極シートを作製した以外は、実験例1と同様にして電池作製および電池評価を行った。
[Experiment 3]
Battery preparation and battery evaluation were performed in the same manner as in Experimental Example 1 except that the negative electrode sheet was prepared without adding hydrophilic carbon black.

[実験例4]
被覆率が3.1%となるように、親水性カーボンブラックの黒鉛に対する添加割合を0.1質量%として負極シートを作製した以外は、実験例1と同様にして電池作製および電池評価を行った。
[Experimental Example 4]
Battery preparation and battery evaluation were performed in the same manner as in Experimental Example 1 except that the negative electrode sheet was prepared with the addition ratio of hydrophilic carbon black to graphite being 0.1% by mass so that the coverage was 3.1%. It was.

[実験例5]
被覆率が61.1%となるように、親水性カーボンブラックの黒鉛に対する添加割合を2質量%として負極シートを作製した以外は、実験例1と同様にして電池作製および電池評価を行った。
[Experimental Example 5]
Battery preparation and battery evaluation were performed in the same manner as in Experimental Example 1, except that the negative electrode sheet was prepared by setting the addition ratio of hydrophilic carbon black to graphite so that the coverage was 61.1%.

[実験例6]
被覆率が91.7%となるように、親水性カーボンブラックの黒鉛に対する添加割合を3質量%として負極シートを作製した以外は、実験例1と同様にして電池作製および電池評価を行った。
[Experimental Example 6]
Battery preparation and battery evaluation were performed in the same manner as in Experimental Example 1, except that the negative electrode sheet was prepared by setting the addition ratio of hydrophilic carbon black to graphite so that the coverage was 91.7%.

[実験例7]
被覆率が152.8%となるように、親水性カーボンブラックの黒鉛に対する添加割合を5質量%として負極シートを作製した以外は、実験例1と同様にして電池作製および電池評価を行った。
[Experimental Example 7]
Battery preparation and battery evaluation were performed in the same manner as in Experimental Example 1 except that the negative electrode sheet was prepared by setting the addition ratio of hydrophilic carbon black to graphite so that the coverage was 152.8%.

[実験例8]
親水性処理を施していないカーボンブラック(東海カーボン(株)製、トーカブラック#5500、平均粒径25nm、以下同じ)を黒鉛に対して0.5質量%添加して負極シートを作製した以外は、実験例1と同様にして電池作製および電池評価を行った。
[Experimental Example 8]
Except for producing a negative electrode sheet by adding 0.5% by mass of carbon black (Tokai Carbon Co., Ltd., Talker Black # 5500, average particle size 25 nm, the same applies hereinafter) not subjected to hydrophilic treatment to graphite. In the same manner as in Experimental Example 1, battery preparation and battery evaluation were performed.

[実験例9]
親水性処理を施していないカーボンブラックを黒鉛に対して0.25質量%添加して負極シートを作製した以外は、実験例1と同様にして電池作製および電池評価を行った。
[Experimental Example 9]
Battery preparation and battery evaluation were performed in the same manner as in Experimental Example 1, except that a negative electrode sheet was prepared by adding 0.25 mass% of carbon black not subjected to hydrophilic treatment to graphite.

[実験結果]
実験例1〜9の添加種、添加割合、被覆率、初回充放電効率、負極反応抵抗、Li析出限界電流値を表1に示す。
[Experimental result]
Table 1 shows the additive species, the addition ratio, the coverage, the initial charge / discharge efficiency, the negative electrode reaction resistance, and the Li precipitation limit current value of Experimental Examples 1 to 9.

表1より分かるように、親水性カーボンブラックを黒鉛表面に担持した場合、被覆率が増加するにしたがって、あるいは親水性カーボンブラックの添加割合が増加するにしたがって、負極反応抵抗が低下することが明らかとなった。一方、Li析出限界電流値は被覆率が15.3%や30.6%、あるいは親水性カーボンブラックの添加割合が0.5質量%や1質量%の場合にほぼ極大値となり、被覆率が3.1%以下あるいは添加割合が0.1質量%以下の場合や被覆率が61.1%以上あるいは添加割合が2質量%以上の場合には、Li析出限界電流値が低下することが分かった。被覆率が3.1%以下あるいは添加割合が0.1質量%以下では添加量が少なすぎ、負極反応抵抗の低減効果が小さいためにLi析出限界電流値が向上しなかったと考えられる。また、被覆率が61.1%以上あるいは添加割合が2質量%以上では負極反応抵抗は低減するが、実際の電池入力の際には黒鉛表面に存在する親水性カーボンブラックがリチウムイオンの挿入脱離に対して障壁となるためにLi析出限界電流値は低下したと推測される。   As can be seen from Table 1, when hydrophilic carbon black is supported on the graphite surface, it is clear that the negative electrode reaction resistance decreases as the coverage increases or as the addition ratio of hydrophilic carbon black increases. It became. On the other hand, the Li precipitation limit current value is almost the maximum when the coverage is 15.3% or 30.6%, or the addition ratio of hydrophilic carbon black is 0.5% by mass or 1% by mass, and the coverage is It is found that the Li deposition limit current value decreases when 3.1% or less or the addition ratio is 0.1 mass% or less, or when the coverage is 61.1% or more or the addition ratio is 2 mass% or more. It was. When the coverage is 3.1% or less or the addition ratio is 0.1% by mass or less, it is considered that the amount of addition is too small and the effect of reducing the negative electrode reaction resistance is small, so that the Li deposition limit current value is not improved. In addition, when the coverage is 61.1% or more or the addition ratio is 2% by mass or more, the negative electrode reaction resistance is reduced, but the hydrophilic carbon black present on the graphite surface is inserted into and removed from lithium ions during actual battery input. It is presumed that the Li deposition limit current value has decreased due to a barrier against separation.

親水性カーボンブラックの黒鉛に対する添加割合と親水性カーボンブラックの被覆率とLi析出限界電流値との関係を図2のグラフに示す。図2中、CBはカーボンブラックの略である。このグラフにおいて、Li析出限界電流値が親水性カーボンブラックを添加しなかった実験例3の値よりも5%向上したラインをボーダーラインとし、Li析出限界電流値がこのボーダーライン以上となる被覆率及び親水性カーボンブラックの添加割合を求めたところ、前者が6.1%以上46.4%以下、後者が0.2質量%以上1.5質量%以下であった。一方、実験例2と同等以上のLi析出限界電流値となる被覆率及び親水性カーボンブラックの添加割合を求めたところ、前者が14.7%以上36.7%以下、後者が0.5質量%以上1.2質量%以下であった。   The relationship between the ratio of hydrophilic carbon black to graphite, the coverage of hydrophilic carbon black, and the Li precipitation limit current value is shown in the graph of FIG. In FIG. 2, CB is an abbreviation for carbon black. In this graph, the line where the Li precipitation limit current value is 5% higher than the value of Experimental Example 3 in which hydrophilic carbon black was not added is taken as the border line, and the coverage at which the Li precipitation limit current value exceeds this border line. When the addition ratio of hydrophilic carbon black was determined, the former was 6.1% to 46.4% and the latter was 0.2% to 1.5% by mass. On the other hand, when the covering ratio and the addition ratio of hydrophilic carbon black, which are equal to or higher than those of Experimental Example 2, were determined, the former was 14.7% to 36.7% and the latter was 0.5 mass. % To 1.2% by mass.

負極シートのSEM観察を行った結果、実験例3の親水性カーボンブラック添加なしの場合には、図3に示すように黒鉛粒子のみが観察された。実験例1の被覆率30.6%(親水性カーボンブラック1質量%)の負極シートでは、図4に示すようにほぼ均一に分散して黒鉛表面を親水性カーボンブラック(図4中、白くて細かい点)が被覆していた。これに対して、実験例7の被覆率152.8%(親水性カーボンブラック5質量%)の負極シートでは、図5に示すように親水性カーボンブラックが重なり合って被覆している様子が確認された。実験例7では、黒鉛表面に水系バインダーであるスチレン−ブタジエンゴムやカルボキシメチルセルロースが存在しており、これらと親水性カーボンブラックが密着することで、Li挿入経路が塞がれたのではないかと推測される。初回充放電効率についても、被覆率61.1%以上(親水性カーボンブラックを2質量%以上)の実験例5〜7では親水性カーボンブラック添加なしの実験例3に比べて明らかに低下していた。親水性処理を施していないカーボンブラックを用いて同様の検討を行った実験例8,9では、負極反応抵抗低減効果、およびLi析出限界電流値の向上効果は確認されなかった。このことから、黒鉛表面に担持するカーボンブラックとしては、親水性を有するカーボンブラックであることが必要であることが示された。   As a result of SEM observation of the negative electrode sheet, only graphite particles were observed as shown in FIG. In the negative electrode sheet having a covering rate of 30.6% (hydrophilic carbon black 1% by mass) in Experimental Example 1, the graphite surface was dispersed almost uniformly as shown in FIG. A fine point) was covered. On the other hand, in the negative electrode sheet having a covering rate of 152.8% (hydrophilic carbon black 5 mass%) in Experimental Example 7, it was confirmed that hydrophilic carbon black was overlapped and covered as shown in FIG. It was. In Experimental Example 7, styrene-butadiene rubber and carboxymethyl cellulose, which are water-based binders, are present on the graphite surface, and it is assumed that the Li insertion path is blocked by the close contact between these and hydrophilic carbon black. Is done. The initial charge / discharge efficiency is also clearly lower in Experimental Examples 5 to 7 with a coverage of 61.1% or more (2% by mass or more of hydrophilic carbon black) compared to Experimental Example 3 without the addition of hydrophilic carbon black. It was. In Experimental Examples 8 and 9 in which the same investigation was performed using carbon black not subjected to hydrophilic treatment, the negative electrode reaction resistance reduction effect and the Li precipitation limit current value improvement effect were not confirmed. From this, it was shown that the carbon black supported on the graphite surface needs to be a carbon black having hydrophilicity.

以上の実験例1〜9のうち、実験例1,2が本発明の実施例に相当し、実験例3〜9が比較例に相当する。なお、これらの実験例は本発明を何ら限定するものではない。   Among the above experimental examples 1 to 9, experimental examples 1 and 2 correspond to the examples of the present invention, and experimental examples 3 to 9 correspond to comparative examples. These experimental examples do not limit the present invention.

20 非水系電池、21 電池ケース、22 正極、23 負極、24 セパレータ、25 ガスケット、26 封口板、27 非水電解液。 20 nonaqueous battery, 21 battery case, 22 positive electrode, 23 negative electrode, 24 separator, 25 gasket, 26 sealing plate, 27 nonaqueous electrolyte.

Claims (9)

負極活物質である黒鉛と、
親水性カーボンブラックと、
水系バインダーと
を含み、
前記黒鉛の平均粒径をr1、比重をd1、前記親水性カーボンブラックの平均粒径をr2、比重をd2、前記親水性カーボンブラックの前記黒鉛に対する添加割合をx質量%としたとき、前記親水性カーボンブラックが前記黒鉛を被覆している割合である下記式の被覆率が6.1%以上46.4%以下である、
非水系リチウムイオン二次電池用負極。
被覆率(%)=x(r1/4r2 )(d1/d2
Graphite, which is a negative electrode active material,
Hydrophilic carbon black,
An aqueous binder and
The average particle diameter of the graphite is r 1 , the specific gravity is d 1 , the average particle diameter of the hydrophilic carbon black is r 2 , the specific gravity is d 2 , and the addition ratio of the hydrophilic carbon black to the graphite is x mass%. When the ratio of the following formula, which is the ratio of the hydrophilic carbon black covering the graphite, is 6.1% or more and 46.4% or less,
Negative electrode for non-aqueous lithium ion secondary battery.
Coverage (%) = x (r 1 / 4r 2 ) (d 1 / d 2 )
前記被覆率が14.7%以上36.7%以下である、
請求項1に記載の非水系リチウムイオン二次電池用負極。
The coverage is 14.7% or more and 36.7% or less.
The negative electrode for non-aqueous lithium ion secondary batteries according to claim 1.
負極活物質である黒鉛と、
親水性カーボンブラックと、
水系バインダーと
を含み、
前記親水性カーボンブラックの前記黒鉛に対する添加割合が0.2質量%以上1.5質量%以下である、
非水系リチウムイオン二次電池用負極。
Graphite, which is a negative electrode active material,
Hydrophilic carbon black,
An aqueous binder and
The addition ratio of the hydrophilic carbon black to the graphite is 0.2% by mass or more and 1.5% by mass or less.
Negative electrode for non-aqueous lithium ion secondary battery.
前記添加割合が0.5質量%以上1.2質量%以下である、
請求項3に記載の非水系リチウムイオン二次電池用負極。
The addition ratio is 0.5 mass% or more and 1.2 mass% or less,
The negative electrode for non-aqueous lithium ion secondary batteries according to claim 3.
請求項1〜4のいずれか1項に記載の非水系リチウムイオン二次電池用負極と、
正極と、
非水電解液と、
を含む非水系リチウムイオン二次電池。
A negative electrode for a non-aqueous lithium ion secondary battery according to any one of claims 1 to 4,
A positive electrode;
A non-aqueous electrolyte,
A non-aqueous lithium ion secondary battery.
黒鉛と水系バインダーとを含んだ負極塗料に、下記式の被覆率が6.1%以上46.4%以下となるように前記親水性カーボンブラックの水系分散液を添加して混合した後、得られた混合液を負極集電体上に塗布して乾燥し、その後に圧延処理を施して負極とする、
非水系リチウムイオン二次電池用負極の製法。
被覆率(%)=x(r1/4r2 )(d1/d2
(式中、r1は前記黒鉛の平均粒径、d1は前記黒鉛の比重、r2は前記親水性カーボンブラックの平均粒径、d2は前記親水性カーボンブラックの比重、xは前記親水性カーボンブラックの前記黒鉛に対する添加割合(質量%)である)
An aqueous dispersion of the hydrophilic carbon black was added to and mixed with a negative electrode paint containing graphite and an aqueous binder so that the coverage of the following formula was 6.1% or more and 46.4% or less. The resulting mixed liquid was applied onto a negative electrode current collector and dried, and then subjected to a rolling treatment to obtain a negative electrode.
A method for producing a negative electrode for a non-aqueous lithium ion secondary battery.
Coverage (%) = x (r 1 / 4r 2 ) (d 1 / d 2 )
Wherein r 1 is the average particle diameter of the graphite, d 1 is the specific gravity of the graphite, r 2 is the average particle diameter of the hydrophilic carbon black, d 2 is the specific gravity of the hydrophilic carbon black, and x is the hydrophilic (Addition ratio (mass%) of the functional carbon black to the graphite)
前記被覆率が14.7%以上36.7%以下となるようにする、
請求項6に記載の非水系リチウムイオン二次電池用負極の製法。
The coverage is 14.7% or more and 36.7% or less.
The manufacturing method of the negative electrode for non-aqueous lithium ion secondary batteries of Claim 6.
黒鉛と水系バインダーとを含んだ負極塗料に、親水性カーボンブラックの前記黒鉛に対する添加割合が0.2質量%以上1.5質量%以下となるように前記親水性カーボンブラックの水系分散液を添加して混合した後、得られた混合液を負極集電体上に塗布して乾燥し、その後に圧延処理を施して負極とする、
非水系リチウムイオン二次電池用負極の製法。
To the negative electrode paint containing graphite and an aqueous binder, the aqueous dispersion of the hydrophilic carbon black is added so that the addition ratio of the hydrophilic carbon black to the graphite is 0.2% by mass or more and 1.5% by mass or less. After mixing, the obtained mixed solution is applied on the negative electrode current collector and dried, and then subjected to a rolling treatment to obtain a negative electrode.
A method for producing a negative electrode for a non-aqueous lithium ion secondary battery.
前記添加割合が0.5質量%以上1.2質量%以下となるようにする、
請求項8に記載の非水系リチウムイオン二次電池用負極の製法。
The addition ratio is 0.5% by mass or more and 1.2% by mass or less.
The manufacturing method of the negative electrode for non-aqueous lithium ion secondary batteries of Claim 8.
JP2016036167A 2016-02-26 2016-02-26 Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery Active JP6808948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016036167A JP6808948B2 (en) 2016-02-26 2016-02-26 Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016036167A JP6808948B2 (en) 2016-02-26 2016-02-26 Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery

Publications (2)

Publication Number Publication Date
JP2017152337A true JP2017152337A (en) 2017-08-31
JP6808948B2 JP6808948B2 (en) 2021-01-06

Family

ID=59739323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016036167A Active JP6808948B2 (en) 2016-02-26 2016-02-26 Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP6808948B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190501A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 Lithium ion secondary battery
JP2020144978A (en) * 2019-03-04 2020-09-10 トヨタ自動車株式会社 Negative electrode for nonaqueous lithium ion secondary battery and nonaqueous lithium ion secondary battery using the same
JP2021523520A (en) * 2019-01-17 2021-09-02 エルジー・ケム・リミテッド Electrodes for secondary batteries, their manufacturing methods, and secondary batteries including them
JP2021524129A (en) * 2018-05-15 2021-09-09 ハイドロ−ケベック Cellulose-based self-supporting film for use in Li-ion batteries
CN114430037A (en) * 2022-04-06 2022-05-03 比亚迪股份有限公司 Cathode material and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323144A (en) * 1999-05-13 2000-11-24 Denki Kagaku Kogyo Kk Conductive agent of nonaqueous secondary battery electrode, electrode and nonaqueous secondary battery
JP2003109599A (en) * 2000-12-27 2003-04-11 Toshiba Corp Positive electrode active material, and nonaqueous electrolyte secondary battery using the same
JP2008204758A (en) * 2007-02-20 2008-09-04 Tokai Carbon Co Ltd Negative electrode material for lithium ion secondary battery, and its manufacturing method
JP2011086378A (en) * 2008-02-08 2011-04-28 Asahi Glass Co Ltd Aqueous paste for forming electrode of electrical storage device
JP2012099361A (en) * 2010-11-02 2012-05-24 Tdk Corp Method of manufacturing active material, and lithium ion secondary battery
JP2012252824A (en) * 2011-06-01 2012-12-20 Asahi Glass Co Ltd Method for manufacturing electrode for power storage device, and power storage device
JP2013175322A (en) * 2012-02-24 2013-09-05 Asahi Glass Co Ltd Method for manufacturing electrode for storage element, and storage element
WO2014141930A1 (en) * 2013-03-14 2014-09-18 Necエナジーデバイス株式会社 Lithium ion secondary battery and charging method therefor
JP2015228290A (en) * 2014-05-30 2015-12-17 エス・イー・アイ株式会社 Method for manufacturing electrode material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323144A (en) * 1999-05-13 2000-11-24 Denki Kagaku Kogyo Kk Conductive agent of nonaqueous secondary battery electrode, electrode and nonaqueous secondary battery
JP2003109599A (en) * 2000-12-27 2003-04-11 Toshiba Corp Positive electrode active material, and nonaqueous electrolyte secondary battery using the same
JP2008204758A (en) * 2007-02-20 2008-09-04 Tokai Carbon Co Ltd Negative electrode material for lithium ion secondary battery, and its manufacturing method
JP2011086378A (en) * 2008-02-08 2011-04-28 Asahi Glass Co Ltd Aqueous paste for forming electrode of electrical storage device
JP2012099361A (en) * 2010-11-02 2012-05-24 Tdk Corp Method of manufacturing active material, and lithium ion secondary battery
JP2012252824A (en) * 2011-06-01 2012-12-20 Asahi Glass Co Ltd Method for manufacturing electrode for power storage device, and power storage device
JP2013175322A (en) * 2012-02-24 2013-09-05 Asahi Glass Co Ltd Method for manufacturing electrode for storage element, and storage element
WO2014141930A1 (en) * 2013-03-14 2014-09-18 Necエナジーデバイス株式会社 Lithium ion secondary battery and charging method therefor
JP2015228290A (en) * 2014-05-30 2015-12-17 エス・イー・アイ株式会社 Method for manufacturing electrode material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190501A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 Lithium ion secondary battery
JP2021524129A (en) * 2018-05-15 2021-09-09 ハイドロ−ケベック Cellulose-based self-supporting film for use in Li-ion batteries
US11811068B2 (en) 2018-05-15 2023-11-07 HYDRO-QUéBEC Cellulose-based self-standing films for use in Li-ion batteries
JP7431175B2 (en) 2018-05-15 2024-02-14 ハイドロ-ケベック Cellulose-based free-standing film for use in Li-ion batteries
JP2021523520A (en) * 2019-01-17 2021-09-02 エルジー・ケム・リミテッド Electrodes for secondary batteries, their manufacturing methods, and secondary batteries including them
JP7222586B2 (en) 2019-01-17 2023-02-15 エルジー・ケム・リミテッド SECONDARY BATTERY ELECTRODE, METHOD FOR MANUFACTURING SAME, AND SECONDARY BATTERY INCLUDING THE SAME
JP2020144978A (en) * 2019-03-04 2020-09-10 トヨタ自動車株式会社 Negative electrode for nonaqueous lithium ion secondary battery and nonaqueous lithium ion secondary battery using the same
US11302905B2 (en) 2019-03-04 2022-04-12 Toyota Jidosha Kabushiki Kaisha Negative electrode of nonaqueous lithium-ion secondary battery and nonaqueous lithium-ion secondary battery using same
JP7121912B2 (en) 2019-03-04 2022-08-19 トヨタ自動車株式会社 Negative electrode for non-aqueous lithium-ion secondary battery, and non-aqueous lithium-ion secondary battery using the same
CN114430037A (en) * 2022-04-06 2022-05-03 比亚迪股份有限公司 Cathode material and application thereof
CN114430037B (en) * 2022-04-06 2022-07-15 比亚迪股份有限公司 Cathode material and application thereof

Also Published As

Publication number Publication date
JP6808948B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
US9843045B2 (en) Negative electrode active material and method for producing the same
KR101325555B1 (en) Lithium Secondary Battery Comprising Spherical Graphite as Anode Active Material
CN111771300A (en) Multi-layer anode comprising silicon-based compound and lithium secondary battery comprising the same
KR20130094366A (en) Negative active material and lithium battery containing the material
KR101658510B1 (en) The Cathode Electrodes For Secondary Battery and the Secondary Battery Comprising the Same
JP6808948B2 (en) Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
KR101590678B1 (en) Anode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
KR20170051315A (en) Positive electrode for secondary battery, preparation method thereof, and lithium secondary battery comprising the same
KR20170092121A (en) Anode Coated with Primer Layer Comprising CNT and Method of Manufacturing the Same
KR20130106687A (en) Negative active material and lithium battery containing the material
KR20150014397A (en) Anode Mixture for Secondary Battery Having Improved Structural Safety and Secondary Battery Having the Same
KR101588624B1 (en) Electrode of Improved Electrode Conductivity and Method For Manufacturing The Same
JP5929183B2 (en) Electrode, lithium secondary battery, and electrode manufacturing method
US8877380B2 (en) Positive active material, method of preparing the same, and lithium battery including the positive active material
KR101772420B1 (en) Anode Comprising Anode Active Material having Large Specific Surface Area and Method of Manufacturing the Same
TWI600195B (en) Nonaqueous electrolyte secondary battery and battery module using the same
KR20130117351A (en) The electrodes for secondary battery and the secondary battery comprising the same
KR20130107927A (en) Composite cathode active material, electrode for lithium secondary battery comprising the same and lithium secondary battery
JP6844236B2 (en) Manufacturing method of carbonaceous material
WO2017057134A1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
US20230170480A1 (en) Positive Electrode for Lithium Secondary Battery with Primer Layer Comprising Lithium Iron Phosphate
KR20070020759A (en) Lithium Secondary Battery Containing Oxide of Inorganic Material
KR101595605B1 (en) Slurry comprising graphene for secondary battery and secondary battery comprising the same
KR101466397B1 (en) Anode for lithium secondary battery, method for manufacturing thereof, and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200909

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200916

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R150 Certificate of patent or registration of utility model

Ref document number: 6808948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150