JP2017167326A - Method for manufacturing optical imaging device - Google Patents

Method for manufacturing optical imaging device Download PDF

Info

Publication number
JP2017167326A
JP2017167326A JP2016052347A JP2016052347A JP2017167326A JP 2017167326 A JP2017167326 A JP 2017167326A JP 2016052347 A JP2016052347 A JP 2016052347A JP 2016052347 A JP2016052347 A JP 2016052347A JP 2017167326 A JP2017167326 A JP 2017167326A
Authority
JP
Japan
Prior art keywords
optical imaging
manufacturing
imaging device
light
light control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016052347A
Other languages
Japanese (ja)
Other versions
JP6202546B2 (en
Inventor
治郎 和田
Jiro Wada
治郎 和田
一晃 西村
Kazuaki Nishimura
一晃 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Technical Arts Co Ltd
Original Assignee
Chiyoda Technical Arts Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Technical Arts Co Ltd filed Critical Chiyoda Technical Arts Co Ltd
Priority to JP2016052347A priority Critical patent/JP6202546B2/en
Publication of JP2017167326A publication Critical patent/JP2017167326A/en
Application granted granted Critical
Publication of JP6202546B2 publication Critical patent/JP6202546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stereoscopic And Panoramic Photography (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an optical imaging device 1 which prevents cracking of a light control panel 2 during manufacturing without requiring polishing and imparts good visibility to the light control panel 2.SOLUTION: A method for manufacturing an optical imaging device 1 includes: a laminate 50 manufacturing step of layering a large number of substances obtained by forming a light reflection layer 6 on one surface or both surfaces of a film base material 5 formed of a light transmission material to manufacture a laminate 50; a cutting step of cutting the laminate 50 in a direction perpendicular to the light reflection layer 6 to cut a light control panel 2 where the light reflection layer 6 becomes a flat light reflection section 3; a surface treatment step of uniformly applying a transparent resin 8 onto a cut surface of the cut light control panel 2 to smoothen the cut surface; and an arrangement step of facing surfaces of the two surface-treated light control panels 2 each other of which the flat light reflection sections 3 cross each other.SELECTED DRAWING: Figure 4

Description

本発明は、物体を見る観察者側の空中に立体像を形成する光学結像装置の製造方法に関する。   The present invention relates to a method for manufacturing an optical imaging apparatus that forms a stereoscopic image in the air on the side of an observer viewing an object.

空間に画像を表示する方法としては、昔から遊園地などで見かけるホログラムと称されている技法があるが、スケール感を出す事は難しく、ディスプレイ用途としては不向きであった。その後も様々な手法で表示をしようとしているが、その大半は水蒸気、霧や煙、または薄いプラスチック板にプロジェクター投影させる方法で疑似的に空中に浮いて見せる手法に留まっている。   As a method of displaying an image in the space, there is a technique called a hologram that has been seen in amusement parks for a long time, but it is difficult to produce a scale feeling and is unsuitable for display applications. Since then, there have been various attempts to display images, but most of them remain in the way of floating in the air in a pseudo manner by projector projection onto water vapor, fog, smoke, or a thin plastic plate.

そこで、物体を見る観察者側の空中にその物体の立体像を簡便に形成することが可能な光学結像装置が提案されている(特許文献1)。この光学結像装置は、透明平板の内部に、該透明平板の平面に対して垂直に帯状の平面光反射部を一定のピッチで多数並べて形成した2枚の光制御パネルを用い、2枚の光制御パネルをそれぞれの平面光反射部を直交させて重ね合わせたものであり、物体から入射した光が直交した各平面光反射部で連続して反射し、光学結像装置を挟んで物体と対称位置にその物体の立体像を空中に結像させる。   In view of this, an optical imaging apparatus that can easily form a three-dimensional image of an object in the air on the side of an observer viewing the object has been proposed (Patent Document 1). This optical imaging apparatus uses two light control panels formed by arranging a number of strip-shaped planar light reflecting portions arranged at a constant pitch perpendicular to the plane of the transparent flat plate inside the transparent flat plate. The light control panel is made by superimposing the planar light reflecting parts orthogonal to each other, and the light incident from the object is continuously reflected by the orthogonal planar light reflecting parts, and the object is sandwiched between the optical imaging device and the object. A three-dimensional image of the object is formed in the air at a symmetrical position.

特開2012−155345号公報JP 2012-155345 A

前記光学結像装置の製造方法は、概ね以下のとおりである。すなわち、光反射層が形成された透明平板を一枚ずつ接着し多数枚積層して積層体を作製し、次に、この積層体を前記光反射層に対して垂直方向に切断して多数の平面光反射部を有する光制御パネルを切り出し、次に、切り出した光制御パネルの切断面を精密研磨して表面平滑性を出し、そして、2枚の前記光制御パネルをそれぞれの平面光反射部を直交させるようにして貼り合わせることで前記光学結像装置が製造される。   The manufacturing method of the optical imaging apparatus is generally as follows. That is, a plurality of transparent flat plates on which light reflecting layers are formed are bonded one by one to form a laminated body, and then the laminated body is cut in a direction perpendicular to the light reflecting layer to obtain a number of laminated bodies. A light control panel having a planar light reflecting portion is cut out, and then the cut surface of the cut light control panel is precisely polished to provide surface smoothness, and the two light control panels are separated into the respective planar light reflecting portions. The optical imaging device is manufactured by bonding them so as to be orthogonal to each other.

このように、従来の光学結像装置の製造方法では、光制御パネルの視認性を確保するために、積層体の切断後、光制御パネルの表裏の切断面を精密研磨して表面平滑性を出すようにしていた。この研磨には相当な時間を要し、なおかつ研磨時に応力によって光制御パネルに割れが発生しやすく、特に透明平板間の積層部分から簡単に割れてしまうという問題があった。また、透明平板を一枚ずつ接着して積層体を作製していたため、所定の大きさの積層体とするのに多くの時間と労力を要し、かつコスト的にも高く付いていた。   As described above, in the conventional method for manufacturing an optical imaging device, in order to ensure the visibility of the light control panel, after cutting the laminate, the cut surfaces on the front and back of the light control panel are precisely polished to improve the surface smoothness. I was trying to put it out. This polishing requires a considerable amount of time, and the light control panel is easily cracked by stress during polishing, and in particular, there is a problem that it is easily broken from the laminated portion between the transparent flat plates. Moreover, since the laminated body was produced by bonding the transparent flat plates one by one, it took a lot of time and labor to obtain a laminated body of a predetermined size, and it was expensive.

本発明は、前記問題点に鑑みてなされたものであり、前記研磨を要せずに生産中の光制御パネルの割れを防止するとともに光制御パネルに良好な視認性を持たせることができる光学結像装置の製造方法を提供することを目的とする。
また、多数の基板から積層体とする工程の加工効率を向上することも可能な光学結像装置の製造方法を提供することも目的とする。
The present invention has been made in view of the above-mentioned problems, and it is possible to prevent cracking of the light control panel being produced without requiring the polishing, and to make the light control panel have good visibility. An object of the present invention is to provide a method for manufacturing an imaging apparatus.
It is another object of the present invention to provide a method of manufacturing an optical imaging apparatus that can improve the processing efficiency of a process of forming a laminate from a large number of substrates.

本発明に係る光学結像装置の製造方法は、
光透過材料の内部に帯状の平面光反射部を一定のピッチで多数並べて形成した2枚の光制御パネルを作製し、この2枚の光制御パネルをそれぞれの平面光反射部が交差するように面同士を対向配置させる光学結像装置の製造方法であって、
光透過材料で構成されたフィルム基材の一面又は両面に光反射層を形成したものを多数枚積層して積層体を作製する積層体作製工程と、
前記積層体を光反射層に対して垂直方向に切断して該光反射層が前記平面光反射部となる前記光制御パネルを切出す切出し工程と、
前記切出した光制御パネルの切断面に透明化樹脂を均一に塗布して該切断面を平滑にする表面処理工程と、
前記表面処理した2枚の光制御パネルをそれぞれの平面光反射部が交差するように面同士を対向させる配置工程とを含むものである。
A method for manufacturing an optical imaging device according to the present invention includes:
Two light control panels are produced in which a large number of strip-shaped planar light reflecting portions are arranged at a constant pitch inside the light transmitting material, and the two light control panels are crossed with each other. A method of manufacturing an optical imaging device in which surfaces are arranged to face each other,
Laminate production process for producing a laminate by laminating a large number of ones having a light reflecting layer formed on one or both surfaces of a film substrate made of a light transmitting material;
Cutting out the light control panel in which the laminated body is cut in a direction perpendicular to the light reflecting layer and the light reflecting layer becomes the planar light reflecting portion; and
A surface treatment step of smoothing the cut surface by uniformly applying a transparent resin to the cut surface of the cut light control panel;
And arranging the two surface-treated light control panels to face each other so that the respective planar light reflecting portions intersect each other.

前記積層体作製工程は、ホットメルト接着剤層を予め形成した前記フィルム基材を多数枚積み重ねた後、これを加熱して各フィルム基材を一度に接着することにより、前記積層体を作製することができる。   In the laminate production step, after stacking a large number of the film base materials on which a hot melt adhesive layer has been formed in advance, the laminate is produced by heating and adhering the film base materials at a time. be able to.

前記表面処理工程で使用する前記透明化樹脂は、全光線透過率が70%以上の樹脂からなることが好ましく、また、屈折率が1.25〜2.40の範囲内にあり且つ前記フィルム基材の屈折率との差が±0.5である樹脂からなることが好ましい。   The transparent resin used in the surface treatment step is preferably made of a resin having a total light transmittance of 70% or more, and has a refractive index in the range of 1.25 to 2.40 and the film base. It is preferable that the resin is made of a resin having a difference from the refractive index of the material of ± 0.5.

前記表面処理工程は、光制御パネルの切断面に前記透明化樹脂を5〜150μmの厚みに均一に塗布することが好ましく、また、平滑度5秒以上のフィルム又はプラスチック板により、光制御パネルの切断面に塗布した透明化樹脂の塗布表面を均一に押さえて表面平滑性を付与するようにしてもよい。   In the surface treatment step, it is preferable that the transparent resin is uniformly applied to the cut surface of the light control panel in a thickness of 5 to 150 μm, and the light control panel is made of a film or plastic plate having a smoothness of 5 seconds or more. You may make it provide the surface smoothness by uniformly pressing the application surface of the transparent resin applied to the cut surface.

前記積層体作製工程で使用する前記フィルム基材は、厚み0.05〜1.0mmの範囲内の樹脂又はガラスからなることが好ましい。   It is preferable that the film base material used in the laminate manufacturing step is made of a resin or glass having a thickness in the range of 0.05 to 1.0 mm.

本発明によれば、積層体から切出した光制御パネルに対して従来はその切断面を研磨していたが、この研磨工程に代えて、光制御パネルの切断面に透明化樹脂を均一に塗布する表面処理工程を行う。これにより、研磨を要せずに光制御パネルに良好な視認性を付与することができ且つ光制御パネルに優れた強度を持たせて割れを防ぐことができる。従って、光制御パネルの生産の歩留まりが大幅に向上する。   According to the present invention, the cut surface of the light control panel cut out from the laminate has been conventionally polished. Instead of this polishing step, a transparent resin is uniformly applied to the cut surface of the light control panel. A surface treatment process is performed. Thereby, it is possible to give good visibility to the light control panel without polishing, and to give the light control panel excellent strength and prevent cracking. Therefore, the production yield of the light control panel is greatly improved.

また、積層体作製工程では、ホットメルト接着剤層により積み重ねた多数のフィルム基材を加熱して一度に接着させることにより、積層体を作製する生産効率を著しく向上することができる。従って、全体として光学結像装置の生産性を大幅に向上することができる。   Moreover, in a laminated body production process, the production efficiency which produces a laminated body can be improved significantly by heating many film base materials laminated | stacked by the hot-melt-adhesive agent layer, and making it adhere | attach at once. Therefore, the productivity of the optical imaging apparatus can be greatly improved as a whole.

実施形態による光学結像装置の構成を示す斜視図である。It is a perspective view which shows the structure of the optical imaging device by embodiment. 光学結像装置により空中結像する作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action which carries out an aerial image formation with an optical imaging device. 光学結像装置を製造するためのフィルム基材の構成を示す断面図である。It is sectional drawing which shows the structure of the film base material for manufacturing an optical imaging device. 光学結像装置の製造工程の概略を示す説明図である。It is explanatory drawing which shows the outline of the manufacturing process of an optical imaging device.

以下に、本発明の実施形態について図面を参照しながら説明する。
まず、光学結像装置1について説明する。
図1に示すように、光学結像装置1は、2枚の光制御パネル2により構成されている。光制御パネル2は、光透過材料の内部に厚み方向にわたって形成された帯状の平面光反射部3を一定のピッチで多数並べて形成されている。そして、光学結像装置1は、この2枚の光制御パネル2をそれぞれの平面光反射部3が交差(例えば、90度位置に直交)するように互いの面側を向かい合わせに重ね合わせて構成されている。また、この光学結像装置1は、2枚の光制御パネル2を貼り合わせた貼り合わせ物の表裏面にそれぞれ保護板4が貼り付けられている。この保護板4は、透明な樹脂又はガラスからなり、全光線透過率が90%以上であり、ヘイズが2以下のものが好ましく使用される。この保護板4の材料として、例えば、透明な樹脂であり、ポリエチレンテレフタレート、ポリカーボネート、アクリル、ポリプロピレン、塩化ビニル、ポリスチレン、酢酸セルロース、ポリウレタン、アリルエステル、ポリイミド、ポリアミド、及びこれらの複合材料等が例示される。
Embodiments of the present invention will be described below with reference to the drawings.
First, the optical imaging apparatus 1 will be described.
As shown in FIG. 1, the optical imaging apparatus 1 includes two light control panels 2. The light control panel 2 is formed by arranging a large number of strip-like planar light reflecting portions 3 formed in the thickness direction inside the light transmitting material at a constant pitch. Then, the optical imaging apparatus 1 superimposes the two light control panels 2 so that the plane light reflecting portions 3 intersect each other (for example, orthogonal to the 90-degree position) face to face with each other. It is configured. In the optical imaging apparatus 1, protective plates 4 are respectively attached to the front and back surfaces of a bonded product obtained by bonding two light control panels 2 together. The protective plate 4 is preferably made of a transparent resin or glass, having a total light transmittance of 90% or more and a haze of 2 or less. Examples of the material of the protective plate 4 include transparent resins such as polyethylene terephthalate, polycarbonate, acrylic, polypropylene, vinyl chloride, polystyrene, cellulose acetate, polyurethane, allyl ester, polyimide, polyamide, and composite materials thereof. Is done.

図2に示すように、光学結像装置1は、物体Nのaからの光線が、第1の光制御パネル2の平面光反射部3のc点で正反射し、次に、第2の光制御パネル2の平面光反射部3のc’点で反射してa’点に集まる。また、物体Nのbからの光線は、第1の光制御パネル2の平面光反射部3のd点で反射し、その光は更に第2の光制御パネル2の平面光反射部3のd’点で反射してb’点に集まる。従って、この光学結像装置1によれば、物体Nは、光学結像装置1を中心としてその対称位置に立体像N’を結像することになる。   As shown in FIG. 2, in the optical imaging apparatus 1, the light beam from the object a of the object N is specularly reflected at the point c of the planar light reflecting portion 3 of the first light control panel 2, and then the second light The light is reflected at the point c ′ of the planar light reflecting portion 3 of the light control panel 2 and gathers at the point a ′. In addition, the light beam from b of the object N is reflected at the point d of the planar light reflecting portion 3 of the first light control panel 2, and the light is further d of the planar light reflecting portion 3 of the second light control panel 2. Reflect at 'point and gather at point b'. Therefore, according to the optical imaging apparatus 1, the object N forms the stereoscopic image N ′ at the symmetrical position with the optical imaging apparatus 1 as the center.

次に、光学結像装置1の製造方法について説明する。
(1)まず、図3に示すような、フィルム基材5に光反射層6と接着剤層7を形成したものを必要枚数用意する。
フィルム基材5は、光(可視光)を透過する材料であり、全光線透過率は80%以上、好ましくは90%以上の樹脂又はガラスが使用される。また、フィルム基材5は、光制御パネル2の良好な視認性を得るために、屈折率が1.4〜1.8の範囲内のものが使用される。このフィルム基材5の光透過材料として、例えば、透明な樹脂であり、ポリエチレンテレフタレート、ポリカーボネート、アクリル、ポリプロピレン、塩化ビニル、ポリスチレン、酢酸セルロース、ポリウレタン、アリルエステル、ポリイミド、ポリアミド、及びこれらの複合材料等が例示される。
Next, a method for manufacturing the optical imaging apparatus 1 will be described.
(1) First, as shown in FIG. 3, a required number of film base materials 5 on which a light reflection layer 6 and an adhesive layer 7 are formed is prepared.
The film base 5 is a material that transmits light (visible light), and a resin or glass having a total light transmittance of 80% or more, preferably 90% or more is used. Moreover, in order for the film base material 5 to obtain the favorable visibility of the light control panel 2, the thing in the range whose refractive index is 1.4-1.8 is used. Examples of the light transmissive material of the film base 5 are transparent resins such as polyethylene terephthalate, polycarbonate, acrylic, polypropylene, vinyl chloride, polystyrene, cellulose acetate, polyurethane, allyl ester, polyimide, polyamide, and composite materials thereof. Etc. are exemplified.

フィルム基材5は、その厚みにより光制御パネル2の視認部を構成するものであり、光制御パネル2にあっては、フィルム基材5の部分は、そのフィルム面側からの視認性ではなく、フィルム端面からの視認性が求められる。すなわち、フィルム基材5の厚みは、光制御パネル2の視認性領域を形成する。これより、フィルム基材5の厚みが厚い場合は、光学結像装置1の視認性が高くなるが、物体の結像自体が大きくなるためディスプレイ等の用途では画像の鮮明性が低下する。逆に、フィルム基材5の厚みが薄い場合は、光学結像装置1による物体の詳細な結像が可能となるが、フィルム基材5の取扱いが悪く製造時の作業性が低下するとともに光学結像装置1での全体的な視認性が低くなる傾向となり、また、製造時(積層体50からの切出し時等)に割れが生じやすく、また光制御パネル2としたときのフィルム基材5間の積層面での接着面積が非常に狭くなるため十分な接着力が保てない。   The film base material 5 constitutes a visual recognition part of the light control panel 2 by its thickness. In the light control panel 2, the film base material 5 is not visible from the film surface side. The visibility from the film end surface is required. That is, the thickness of the film base 5 forms a visibility region of the light control panel 2. As a result, when the film substrate 5 is thick, the optical imaging device 1 is highly visible. However, since the imaging of the object itself is large, the sharpness of the image is reduced in applications such as a display. On the contrary, when the film substrate 5 is thin, detailed imaging of an object by the optical imaging device 1 is possible, but the film substrate 5 is poorly handled and the workability at the time of manufacture is reduced and optical The overall visibility in the imaging device 1 tends to be low, and cracks are likely to occur during manufacture (such as when cutting out from the laminate 50), and the film base 5 when the light control panel 2 is formed. Since the adhesion area on the laminated surface between them becomes very narrow, sufficient adhesion cannot be maintained.

以上より、フィルム基材5の厚みは、0.05〜1.0mmの範囲内とするのが適しており、好ましくは0.1〜0.5mmの範囲内とする。   From the above, the thickness of the film substrate 5 is suitably in the range of 0.05 to 1.0 mm, and preferably in the range of 0.1 to 0.5 mm.

光反射層6は、アルミニウム、銀、チタン、錫、クロム、インジウム等のような光反射性を有する金属蒸着膜により形成される。この光反射層6は、光制御パネル2の平面光反射部3となる。光反射層6は、フィルム基材5の一面側にだけ形成するようにしてもよいが、フィルム基材5の両面に形成するのが好ましく、フィルム基材5の両面に形成することで接着剤層7の影響を受け難くなり、光学結像装置1においてはより鮮明な結像を得ることができる。   The light reflecting layer 6 is formed of a metal deposited film having light reflectivity such as aluminum, silver, titanium, tin, chromium, indium and the like. The light reflecting layer 6 becomes the planar light reflecting portion 3 of the light control panel 2. The light reflecting layer 6 may be formed only on one surface side of the film substrate 5, but is preferably formed on both surfaces of the film substrate 5, and the adhesive is formed on both surfaces of the film substrate 5. It becomes difficult to be affected by the layer 7, and a clearer image can be obtained in the optical imaging apparatus 1.

接着剤層7は、フィルム基材5の一面側に形成される。この接着剤層7は、透明なホットメルト接着剤が使用される。ホットメルト接着剤は、好ましくは、ガラス転移点が−10〜150℃のものが使用され、例えば、ポリエステル系樹脂、エチレン酢酸ビニル系樹脂、ポリウレタン系樹脂、アクリル系樹脂、これらの共重合体等が例示される。   The adhesive layer 7 is formed on one side of the film substrate 5. For this adhesive layer 7, a transparent hot melt adhesive is used. As the hot melt adhesive, those having a glass transition point of −10 to 150 ° C. are preferably used. For example, polyester resins, ethylene vinyl acetate resins, polyurethane resins, acrylic resins, copolymers thereof, etc. Is exemplified.

(2)そして、図4(a)に示すように、用意したフィルム基材5を多数枚積み重ね、フィルム基材5同士を接着剤層7により接着させて積層体50を作製する。
この場合、フィルム基材5は、その一面側に形成する接着剤層7を同一方向に向けて多数枚のフィルム基材5を積層させる。また、フィルム基材5において光反射層6が一面側にだけ形成するものである場合は、光反射層6を同一方向に向けて多数枚のフィルム基材5を積層させる。フィルム基材5同士の接着は、必要枚数のフィルム基材5を積み重ねた後、この積み重ね状態で全体を加熱する。これにより、フィルム基材5に形成した接着剤層7であるホットメルト接着剤により、すべてのフィルム基材5同士を一度に接着させることができ、従来のように一枚ずつ接着させていた場合と比べて手間なく簡易に且つ短時間に、また低コストに積層体50を作製することができる。
(2) And as shown to Fig.4 (a), many sheets of the prepared film base materials 5 are piled up, and the film base materials 5 are adhere | attached with the adhesive bond layer 7, and the laminated body 50 is produced.
In this case, the film base material 5 is formed by laminating a large number of film base materials 5 with the adhesive layer 7 formed on the one surface side directed in the same direction. In the case where the light reflecting layer 6 is formed only on one surface side in the film base material 5, a large number of film base materials 5 are laminated with the light reflecting layer 6 directed in the same direction. The adhesion between the film bases 5 is performed by heating the whole in this stacked state after the necessary number of film bases 5 are stacked. Thereby, all the film base materials 5 can be adhere | attached at once with the hot-melt-adhesive agent which is the adhesive bond layer 7 formed in the film base material 5, When it was made to adhere one by one like before Compared to the above, the laminate 50 can be produced easily and in a short time and at a low cost.

(3)次に、図4(b)に示すように、積層体50を切断手段により光反射層6に対して垂直方向に切断することにより光制御パネル2として切出す。
この光制御パネル2は、光透過材料からなるフィルム基材5が視認部となり、光反射層6が平面光反射部3となり、光透過材料の内部に帯状の平面光反射部3が一定のピッチ(フィルム基材5の厚み相当)で多数並んだ構成となる。切断手段による切断幅は、光制御パネル2の帯状の平面光反射部3の帯幅を規定することとなり、また、フィルム基材5の厚みが平面光反射部3間のピッチに相当する。従って、この切断幅としては、光制御パネル2における反射効率からしてフィルム基材5の厚み(0.05〜1.0mm)の3倍程度(0.15〜3.0mm)とするのが好ましく、フィルム基材5の厚みの3倍よりも厚くなると光制御パネル2での反射回数が多くなり光学結像装置1による画像の鮮明性が劣化するおそれがあり、また、フィルム基材5の厚みの3倍よりも薄くなると光制御パネル2での反射が広角となり光学結像装置1による結像画像が見え難い状態となるおそれがある。
(3) Next, as shown in FIG. 4B, the laminated body 50 is cut out as the light control panel 2 by cutting in a direction perpendicular to the light reflecting layer 6 by a cutting means.
In this light control panel 2, a film base 5 made of a light transmitting material serves as a visual recognition part, a light reflecting layer 6 serves as a flat light reflecting part 3, and a band-like flat light reflecting part 3 is formed at a constant pitch inside the light transmitting material. It becomes the structure which arranged many by (equivalent to thickness of the film base material 5). The cutting width by the cutting means defines the band width of the band-shaped planar light reflecting portion 3 of the light control panel 2, and the thickness of the film substrate 5 corresponds to the pitch between the planar light reflecting portions 3. Therefore, the cutting width is set to about three times (0.15 to 3.0 mm) of the thickness (0.05 to 1.0 mm) of the film base 5 from the reflection efficiency in the light control panel 2. Preferably, if the thickness of the film base 5 is greater than 3 times, the number of reflections on the light control panel 2 increases, and the sharpness of the image by the optical imaging device 1 may be deteriorated. If the thickness is less than three times the thickness, the reflection on the light control panel 2 becomes a wide angle, and the image formed by the optical image forming apparatus 1 may be difficult to see.

(4)次に、図4(c)に示すように、積層体50から切出した光制御パネル2の切断面の表面処理として、光制御パネル2の表裏両面の切断面に透明化樹脂8を均一に塗布する。これにより、光制御パネル2の切断面は、透明化樹脂8により切断による表面の凹凸が埋められて平滑となって良好な視認性が付与される。 (4) Next, as shown in FIG. 4 (c), as the surface treatment of the cut surface of the light control panel 2 cut out from the laminate 50, the transparent resin 8 is applied to the cut surfaces on both the front and back surfaces of the light control panel 2. Apply evenly. As a result, the cut surface of the light control panel 2 is smoothed by filling the unevenness of the surface by cutting with the transparent resin 8, and good visibility is imparted.

従来の方法では、この光制御パネル2の切断面を精密研磨して平滑化し視認性を付与していたため、研磨に相当な時間を要し、また厚みが薄く且つ主面の延在方向に積層構造を持つ光制御パネル2が研磨時の応力により簡単に割れる等の問題があった。これに対して、本方法によれば、研磨を行わず、光制御パネル2の切断面に透明化樹脂8を均一に塗布することで切断面の表面平滑性を確保し、光制御パネル2において良好な視認性を簡単に付与することができ、且つ透明化樹脂8により強度を持たせて割れを確実に防止することができる。従って、高品質で、歩留まりも高く生産性を大幅に向上することができ、生産コストも低減することが可能となる。   In the conventional method, the cut surface of the light control panel 2 is precisely polished and smoothed to provide visibility. Therefore, it takes a considerable amount of time for polishing and is thin and laminated in the extending direction of the main surface. There is a problem that the light control panel 2 having a structure is easily cracked by the stress during polishing. On the other hand, according to the present method, the surface smoothness of the cut surface is ensured by uniformly applying the transparent resin 8 to the cut surface of the light control panel 2 without polishing. Good visibility can be easily imparted, and the transparent resin 8 can provide strength and prevent cracking with certainty. Therefore, high quality, high yield and high productivity can be greatly improved, and production costs can be reduced.

透明化樹脂8は、光制御パネル2の良好な視認性を得るために、屈折率が1.25〜2.40の範囲内の樹脂が選ばれる。すなわち、透明化樹脂8は、屈折率がフィルム基材5の屈折率と大きく異なると光制御パネル2において鮮明な視認性が得られないおそれがあるので、上記屈折率の範囲内で使用されるフィルム基材5と屈折率が近い樹脂、例えば、フィルム基材5との屈折率の差が±0.5以内、より好ましくは±0.2以内の樹脂が選定される。   For the transparent resin 8, a resin having a refractive index in the range of 1.25 to 2.40 is selected in order to obtain good visibility of the light control panel 2. That is, the transparent resin 8 is used within the range of the above refractive index because there is a possibility that a clear visibility cannot be obtained in the light control panel 2 when the refractive index is greatly different from the refractive index of the film substrate 5. A resin having a refractive index close to that of the film base 5, for example, a resin having a refractive index difference of ± 0.5 or less, more preferably ± 0.2 or less, is selected.

また、透明化樹脂8は、全光線透過率が70%より低いと光制御パネル2の視認性を低下させるおそれがあるので、全光線透過率は70%以上、好ましくは90%以上のものが適当である。この透明化樹脂8として、例えば、透明な樹脂であり、アクリレートモノマー、ビニルエーテルモノマー、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレート、アクリルアクリレート、ビニルエーテルオリゴマー、脂環式エポキシ樹脂、グリシジルエーテルエポキシ等の樹脂が例示される。   Moreover, since the transparency resin 8 may reduce the visibility of the light control panel 2 when the total light transmittance is lower than 70%, the total light transmittance is 70% or more, preferably 90% or more. Is appropriate. Examples of the transparent resin 8 include transparent resins such as acrylate monomer, vinyl ether monomer, urethane acrylate, epoxy acrylate, polyester acrylate, acrylic acrylate, vinyl ether oligomer, alicyclic epoxy resin, and glycidyl ether epoxy. Is done.

また、光制御パネル2の切断面に対する透明化樹脂8の塗工厚みは、5〜150μm、好ましくは20〜100μmの厚みに塗布する。すなわち、透明化樹脂8の塗工厚みが5μmより薄くなると切断面の粗さを補えず光制御パネル2の十分な透過性が得られないおそれがあり、一方、塗工厚みが150μmより厚くなると透過した画像にゆがみが発生するおそれがあり、さらには塗工量も増えてコスト高となる。   The coating thickness of the transparent resin 8 on the cut surface of the light control panel 2 is 5 to 150 μm, preferably 20 to 100 μm. That is, when the coating thickness of the transparent resin 8 is less than 5 μm, the roughness of the cut surface may not be compensated and sufficient light control panel 2 may not be obtained. On the other hand, when the coating thickness is greater than 150 μm. The transmitted image may be distorted, and the coating amount is increased, resulting in an increase in cost.

また、光制御パネル2の切断面に透明化樹脂8を塗布すると、この透明化樹脂8の塗工面に対して、平滑度5秒以上のフィルム又はプラスチック板で表面を均一に押圧する。これにより、塗布した透明化樹脂8の厚みを均一に施すことができ、視認性の良好な光制御パネル2を得ることができる。この場合、押圧部材として用いたフィルム又はプラスチック板は、剥離して取り除くが、透明なフィルム又はプラスチック板であれば取り除かずに透明化樹脂8上に貼付した状態に保持して使用してもよい。   Further, when the transparent resin 8 is applied to the cut surface of the light control panel 2, the surface is uniformly pressed against the coated surface of the transparent resin 8 with a film or plastic plate having a smoothness of 5 seconds or more. Thereby, the thickness of the applied transparent resin 8 can be uniformly applied, and the light control panel 2 with good visibility can be obtained. In this case, the film or plastic plate used as the pressing member is peeled off and removed. However, if it is a transparent film or plastic plate, it may be used by being held on the transparent resin 8 without being removed. .

(5)次に、図4(d)に示すように、表面処理後の2枚の光制御パネル2をそれぞれの平面光反射部3が直交する90度位置に配置させ、互いのパネル平面同士を対向させて透明接着剤で貼り合わせる。そして、この貼り合わせ物の表裏面にそれぞれ透明な樹脂又はガラスからなる保護板4を貼り付けると、図1に示す光学結像装置1が完成する。なお、2枚の光制御パネル2の貼り合わせ位置は、それぞれの平面光反射部3が直交する90度位置に限らず、90度よりも大きく又は小さく交差する位置に配置して貼り合わせるようにしてもよく、この交差角度を調整することにより光学結像装置1による画像の結像位置を調整することができる。 (5) Next, as shown in FIG. 4 (d), the two light control panels 2 after the surface treatment are arranged at 90-degree positions where the respective planar light reflecting portions 3 are orthogonal to each other, and the panel planes are mutually aligned. Adhere with a transparent adhesive. Then, when the protective plates 4 made of transparent resin or glass are attached to the front and back surfaces of the bonded product, the optical imaging apparatus 1 shown in FIG. 1 is completed. Note that the bonding position of the two light control panels 2 is not limited to the 90-degree position where the respective planar light reflecting portions 3 are orthogonal to each other, and is arranged and bonded at a position where the plane light reflecting section 3 intersects larger or smaller than 90 degrees. The image forming position of the image by the optical image forming apparatus 1 can be adjusted by adjusting the crossing angle.

以上のとおり、実施形態による光学結像装置1の製造方法を説明したが、本発明は、上述の実施形態に限られず、特許請求の範囲から導き出される技術思想の範囲内で様々な変更を施すことが可能である。   As described above, the method for manufacturing the optical imaging apparatus 1 according to the embodiment has been described. However, the present invention is not limited to the above-described embodiment, and various modifications are made within the scope of the technical idea derived from the claims. It is possible.

1 光学結像装置
2 光制御パネル
3 平面光反射部
4 保護板
5 フィルム基材
6 光反射層
7 接着剤層
8 透明化樹脂
50 積層体

DESCRIPTION OF SYMBOLS 1 Optical imaging apparatus 2 Light control panel 3 Planar light reflection part 4 Protection board 5 Film base material 6 Light reflection layer 7 Adhesive layer 8 Transparent resin 50 Laminate

Claims (7)

光透過材料の内部に帯状の平面光反射部を一定のピッチで多数並べて形成した2枚の光制御パネルを作製し、この2枚の光制御パネルをそれぞれの平面光反射部が交差するように面同士を対向配置させる光学結像装置の製造方法であって、
光透過材料で構成されたフィルム基材の一面又は両面に光反射層を形成したものを多数枚積層して積層体を作製する積層体作製工程と、
前記積層体を光反射層に対して垂直方向に切断して該光反射層が前記平面光反射部となる前記光制御パネルを切出す切出し工程と、
前記切出した光制御パネルの切断面に透明化樹脂を均一に塗布して該切断面を平滑にする表面処理工程と、
前記表面処理した2枚の光制御パネルをそれぞれの平面光反射部が交差するように面同士を対向させる配置工程とを含む光学結像装置の製造方法。
Two light control panels are produced in which a large number of strip-shaped planar light reflecting portions are arranged at a constant pitch inside the light transmitting material, and the two light control panels are crossed with each other. A method of manufacturing an optical imaging device in which surfaces are arranged to face each other,
Laminate production process for producing a laminate by laminating a large number of ones having a light reflecting layer formed on one or both surfaces of a film substrate made of a light transmitting material;
Cutting out the light control panel in which the laminated body is cut in a direction perpendicular to the light reflecting layer and the light reflecting layer becomes the planar light reflecting portion; and
A surface treatment step of smoothing the cut surface by uniformly applying a transparent resin to the cut surface of the cut light control panel;
A method of manufacturing an optical imaging apparatus, comprising: a step of arranging the two light-control panels subjected to the surface treatment to face each other so that the respective planar light reflecting portions intersect each other.
請求項1に記載の光学結像装置の製造方法において、
前記積層体作製工程は、ホットメルト接着剤層を予め形成した前記フィルム基材を多数枚積み重ねた後、これを加熱して各フィルム基材を一度に接着する光学結像装置の製造方法。
In the manufacturing method of the optical imaging device according to claim 1,
The laminate manufacturing step is a method of manufacturing an optical imaging apparatus in which a large number of the film bases on which a hot melt adhesive layer is formed in advance are stacked, and then heated to bond the film bases at a time.
請求項1又は2に記載の光学結像装置の製造方法において、
前記表面処理工程で使用する前記透明化樹脂は、全光線透過率が70%以上の樹脂からなる光学結像装置の製造方法。
In the manufacturing method of the optical imaging device according to claim 1 or 2,
The said transparent resin used at the said surface treatment process is a manufacturing method of the optical imaging device which consists of resin whose total light transmittance is 70% or more.
請求項1〜3のいずれか1項に記載の光学結像装置の製造方法において、
前記表面処理工程で使用する前記透明化樹脂は、屈折率が1.25〜2.40の範囲内にあり且つ前記フィルム基材の屈折率との差が±0.5である樹脂からなる光学結像装置の製造方法。
In the manufacturing method of the optical imaging device according to any one of claims 1 to 3,
The transparent resin used in the surface treatment step is an optical made of a resin having a refractive index in the range of 1.25 to 2.40 and a difference from the refractive index of the film substrate of ± 0.5. Manufacturing method of imaging apparatus.
請求項1〜4のいずれか1項に記載の光学結像装置の製造方法において、
前記表面処理工程は、光制御パネルの切断面に前記透明化樹脂を5〜150μmの厚みに均一に塗布する光学結像装置の製造方法。
In the manufacturing method of the optical imaging device according to any one of claims 1 to 4,
The surface treatment step is a method of manufacturing an optical imaging apparatus in which the transparent resin is uniformly applied to a thickness of 5 to 150 μm on the cut surface of the light control panel.
請求項1〜5のいずれか1項に記載の光学結像装置の製造方法において、
前記表面処理工程は、平滑度5秒以上のフィルム又はプラスチック板により、光制御パネルの切断面に塗布した透明化樹脂の塗布表面を均一に押さえて表面平滑性を付与する光学結像装置の製造方法。
In the manufacturing method of the optical imaging device according to any one of claims 1 to 5,
The surface treatment step is to manufacture an optical imaging device that imparts surface smoothness by uniformly pressing the coated surface of the transparent resin applied to the cut surface of the light control panel with a film or plastic plate having a smoothness of 5 seconds or more. Method.
請求項1〜6のいずれか1項に記載の光学結像装置の製造方法において、
前記積層体作製工程で使用する前記フィルム基材は、厚み0.05〜1.0mmの範囲内の樹脂又はガラスからなる光学結像装置の製造方法。
In the manufacturing method of the optical imaging device according to any one of claims 1 to 6,
The said film base material used at the said laminated body preparation process is a manufacturing method of the optical imaging device which consists of resin or glass in the range of thickness 0.05-1.0mm.
JP2016052347A 2016-03-16 2016-03-16 Method for manufacturing optical imaging apparatus Active JP6202546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016052347A JP6202546B2 (en) 2016-03-16 2016-03-16 Method for manufacturing optical imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016052347A JP6202546B2 (en) 2016-03-16 2016-03-16 Method for manufacturing optical imaging apparatus

Publications (2)

Publication Number Publication Date
JP2017167326A true JP2017167326A (en) 2017-09-21
JP6202546B2 JP6202546B2 (en) 2017-09-27

Family

ID=59913240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016052347A Active JP6202546B2 (en) 2016-03-16 2016-03-16 Method for manufacturing optical imaging apparatus

Country Status (1)

Country Link
JP (1) JP6202546B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318948A (en) * 2018-02-23 2018-07-24 像航(上海)科技有限公司 A kind of manufacturing method of optical imaging element and optical imaging element
JP2019058516A (en) * 2017-09-27 2019-04-18 株式会社ソフイア Game machine
JP2019058504A (en) * 2017-09-27 2019-04-18 株式会社ソフイア Game machine
CN114624797A (en) * 2020-12-09 2022-06-14 亚斯卡奈特股份有限公司 Method for manufacturing optical imaging device and light reflection element formed body
CN114624797B (en) * 2020-12-09 2024-05-28 亚斯卡奈特股份有限公司 Method for manufacturing optical imaging device and light reflection element forming body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273402A (en) * 1992-03-27 1993-10-22 Mitsubishi Rayon Co Ltd Manufacture of light transmission body array
JPH1123812A (en) * 1997-06-30 1999-01-29 Dainippon Printing Co Ltd Optical function material and its manufacture
WO2014129454A1 (en) * 2013-02-19 2014-08-28 日本電気硝子株式会社 Glass laminate, optical imaging member, method for manufacturing glass laminate, and method for manufacturing optical imaging member
WO2014167904A1 (en) * 2013-04-12 2014-10-16 シャープ株式会社 Reflective type image forming element and method for manufacturing reflective type image forming element
JP2015090387A (en) * 2013-11-05 2015-05-11 日本電気硝子株式会社 Optical image forming member, glass laminate for the same, and manufacturing methods for both
JP2015172782A (en) * 2012-11-08 2015-10-01 株式会社アスカネット Manufacturing method for optical control panels
JP2016014735A (en) * 2014-07-01 2016-01-28 旭硝子株式会社 Method for manufacturing optical sheet and method for manufacturing optical panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273402A (en) * 1992-03-27 1993-10-22 Mitsubishi Rayon Co Ltd Manufacture of light transmission body array
JPH1123812A (en) * 1997-06-30 1999-01-29 Dainippon Printing Co Ltd Optical function material and its manufacture
JP2015172782A (en) * 2012-11-08 2015-10-01 株式会社アスカネット Manufacturing method for optical control panels
WO2014129454A1 (en) * 2013-02-19 2014-08-28 日本電気硝子株式会社 Glass laminate, optical imaging member, method for manufacturing glass laminate, and method for manufacturing optical imaging member
JP2015083527A (en) * 2013-02-19 2015-04-30 日本電気硝子株式会社 Glass laminate, optical imaging member, method for manufacturing glass laminate, and method for manufacturing optical imaging member
WO2014167904A1 (en) * 2013-04-12 2014-10-16 シャープ株式会社 Reflective type image forming element and method for manufacturing reflective type image forming element
JP2015090387A (en) * 2013-11-05 2015-05-11 日本電気硝子株式会社 Optical image forming member, glass laminate for the same, and manufacturing methods for both
JP2016014735A (en) * 2014-07-01 2016-01-28 旭硝子株式会社 Method for manufacturing optical sheet and method for manufacturing optical panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019058516A (en) * 2017-09-27 2019-04-18 株式会社ソフイア Game machine
JP2019058504A (en) * 2017-09-27 2019-04-18 株式会社ソフイア Game machine
CN108318948A (en) * 2018-02-23 2018-07-24 像航(上海)科技有限公司 A kind of manufacturing method of optical imaging element and optical imaging element
CN114624797A (en) * 2020-12-09 2022-06-14 亚斯卡奈特股份有限公司 Method for manufacturing optical imaging device and light reflection element formed body
CN114624797B (en) * 2020-12-09 2024-05-28 亚斯卡奈特股份有限公司 Method for manufacturing optical imaging device and light reflection element forming body

Also Published As

Publication number Publication date
JP6202546B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
CN105637393B (en) Polarizer group and the one-piece type liquid crystal display panel of foreboard
JP6109879B2 (en) Manufacturing method of light control panel
JP5143963B2 (en) Spatial image display device
JP6104904B2 (en) Method for manufacturing reflection-type plane-symmetric imaging element, reflection-type plane-symmetric imaging element, and spatial image display device including the reflection-type plane-symmetric imaging element
US10365489B2 (en) Semi-transmissive reflection sheet, light guide plate and display device
JP6165206B2 (en) Manufacturing method of light control panel, light control panel, optical imaging apparatus, and aerial image forming system
JP6202546B2 (en) Method for manufacturing optical imaging apparatus
JP5696264B1 (en) Manufacturing method of light control panel provided with light reflecting portions arranged in parallel
JP2016024294A (en) Optical member
JP2017134151A (en) Aerial image display device and aerial image display apparatus
JP2015194615A (en) Optical member and manufacturing method thereof
KR20180048646A (en) Transparent screen, transparent screen assembly, method of manufacturing transparent screen, and method of manufacturing transparent screen assembly
JP6988069B2 (en) Reflective screen, video display device
JP2017173527A (en) Aerial video display device
JP2021081451A (en) Method for manufacturing light control panel and method for manufacturing stereoscopic image forming device
JP2016004206A (en) Retroreflective body and stereoscopic image display device using the same
CN104808850B (en) Contactor control device and preparation method thereof
WO2017163287A1 (en) Mirror panel, mirror film and display system
JP2021144083A (en) Light control panel manufacturing method using optical image formation device
JP6851715B2 (en) Manufacturing method of optical member
TWI741604B (en) Production method for aerial-image-forming device
JP7092347B2 (en) Aerial imaging device
JP2017194538A (en) Optical coupled device and method for manufacturing optical coupled device
KR101352055B1 (en) Method for manufacturing one body type optical film and one body type optical film
JP7293731B2 (en) Method for manufacturing optical member

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170822

R150 Certificate of patent or registration of utility model

Ref document number: 6202546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250