JP2017166797A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2017166797A
JP2017166797A JP2016055291A JP2016055291A JP2017166797A JP 2017166797 A JP2017166797 A JP 2017166797A JP 2016055291 A JP2016055291 A JP 2016055291A JP 2016055291 A JP2016055291 A JP 2016055291A JP 2017166797 A JP2017166797 A JP 2017166797A
Authority
JP
Japan
Prior art keywords
heat medium
heat
pipe
heat exchanger
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016055291A
Other languages
Japanese (ja)
Inventor
啓輔 ▲高▼山
啓輔 ▲高▼山
Keisuke Takayama
徹 小出
Toru Koide
徹 小出
佑介 中西
Yusuke Nakanishi
佑介 中西
幸大 宮川
Yukihiro Miyagawa
幸大 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016055291A priority Critical patent/JP2017166797A/en
Publication of JP2017166797A publication Critical patent/JP2017166797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger which can improve a heat transfer performance per weight.SOLUTION: A heat exchanger 1 includes: a heat medium pipe 2 having, on its outer face, a plurality of parallel and helical groove parts 2a and a ridge part 2b between adjacent groove parts 2a; and a refrigerant pipe 3 provided along each of the groove part 2a. A distance L2 from the center of the heat medium pipe 2 to the center of the thickness of a pipe wall of a heat medium pipe 2 in the top of the ridge part 2b is shorter than a distance L1 from the center of the heat medium pipe 2 to the center of the refrigerant pipe 3.SELECTED DRAWING: Figure 5

Description

本発明は、熱交換器に関する。   The present invention relates to a heat exchanger.

特許文献1に開示された熱交換器は、外周に複数条の山谷底部を各条毎に連続して螺旋状に設けた第1流体配管と、この第1流体配管外周の山谷底部の形状に沿って螺旋状に巻きつけた第2流体配管とを備える。第2流体配管は、第1流体配管の山谷底部に、はめ込まれている。   The heat exchanger disclosed in Patent Document 1 has a shape of a first fluid pipe in which a plurality of mountain valley bottom portions are continuously provided in a spiral shape on the outer circumference, and a mountain valley bottom portion on the outer periphery of the first fluid pipe. And a second fluid pipe wound spirally along. The second fluid pipe is fitted in the bottom of the first fluid pipe.

特開2006−090697号公報JP 2006-090697 A

上記のような熱交換器は、例えば銅のような金属を主な材料として作られる。熱交換器の重量が重くなるほど、銅などの高価な金属材料が多く必要になり、製造コストが高くなる。製造コストが高くならないようにするために、重量当たりの伝熱性能を向上することが求められている。この観点において、従来の技術には改善の余地がある。   The heat exchanger as described above is made mainly of a metal such as copper. The heavier the heat exchanger, the more expensive metal material such as copper is required, and the manufacturing cost increases. In order not to increase the manufacturing cost, it is required to improve the heat transfer performance per weight. In this respect, there is room for improvement in the conventional technique.

本発明は、上述のような課題を解決するためになされたもので、重量当たりの伝熱性能を向上できる熱交換器を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat exchanger that can improve heat transfer performance per weight.

本発明の熱交換器は、並行する複数条のつるまき線状の溝部と、隣り合う溝部の間の尾根部とを外面に有する熱媒体管と、各々の溝部に沿って設置された冷媒管と、を備え、熱媒体管の中心から尾根部の頂きでの熱媒体管の管壁の厚さの中心までの距離が、熱媒体管の中心から冷媒管の中心までの距離より短いものである。   The heat exchanger of the present invention includes a heat medium pipe having a plurality of parallel spiral winding groove portions and a ridge portion between adjacent groove portions on the outer surface, and a refrigerant pipe installed along each groove portion. The distance from the center of the heat medium tube to the center of the thickness of the tube wall of the heat medium tube at the top of the ridge is shorter than the distance from the center of the heat medium tube to the center of the refrigerant tube. is there.

本発明の熱交換器によれば、重量当たりの伝熱性能を向上することが可能となる。   According to the heat exchanger of the present invention, heat transfer performance per weight can be improved.

実施の形態1の熱交換器の一部を示す縦断面図である。2 is a longitudinal sectional view showing a part of the heat exchanger according to Embodiment 1. FIG. 実施の形態1の熱交換器の一部を示す外観図である。2 is an external view showing a part of the heat exchanger according to Embodiment 1. FIG. 実施の形態1の熱交換器が備える熱媒体管の横断面図である。2 is a cross-sectional view of a heat medium pipe provided in the heat exchanger according to Embodiment 1. FIG. 実施の形態1の変形例の熱交換器が備える熱媒体管の横断面図である。FIG. 6 is a cross-sectional view of a heat medium tube provided in the heat exchanger according to the modification of the first embodiment. 実施の形態1の熱交換器の一部を示す縦断面図である。2 is a longitudinal sectional view showing a part of the heat exchanger according to Embodiment 1. FIG. 熱媒体管内の熱媒体の流れを説明するための図である。It is a figure for demonstrating the flow of the heat medium in a heat medium pipe | tube. 実施の形態1の熱交換器の一部を示す縦断面図である。2 is a longitudinal sectional view showing a part of the heat exchanger according to Embodiment 1. FIG. 熱交換器の重量当たりの相対AK値と接触割合との関係を示す図である。It is a figure which shows the relationship between the relative AK value per weight of a heat exchanger, and a contact ratio. 熱媒体管のフィン効率と接触割合との関係を示す図である。It is a figure which shows the relationship between the fin efficiency of a heat-medium pipe | tube, and a contact ratio. 実施の形態1の変形例の熱交換器が備える熱媒体管の横断面図である。FIG. 6 is a cross-sectional view of a heat medium tube provided in the heat exchanger according to the modification of the first embodiment.

以下、図面を参照して実施の形態について説明する。各図において共通する要素には、同一の符号を付して、重複する説明を簡略化または省略する。本開示は、以下の実施の形態で説明する構成のうち、組合わせ可能な構成のあらゆる組合わせを含み得る。   Hereinafter, embodiments will be described with reference to the drawings. Elements common to the drawings are denoted by the same reference numerals, and redundant description is simplified or omitted. The present disclosure may include any combination of configurations that can be combined among the configurations described in the following embodiments.

実施の形態1.
図1は、実施の形態1の熱交換器1の一部を示す縦断面図である。図2は、実施の形態1の熱交換器1の一部を示す外観図である。図1に示すように、本実施の形態1の熱交換器1は、熱媒体管2と、複数の冷媒管3とを備える。図1は、熱媒体管2の軸線を含む平面で切断した断面図である。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view showing a part of the heat exchanger 1 of the first embodiment. FIG. 2 is an external view showing a part of the heat exchanger 1 of the first embodiment. As shown in FIG. 1, the heat exchanger 1 of Embodiment 1 includes a heat medium pipe 2 and a plurality of refrigerant pipes 3. FIG. 1 is a cross-sectional view taken along a plane including the axis of the heat medium pipe 2.

熱交換器1は、熱媒体管2内を通る熱媒体と、冷媒管3内を通る冷媒との間で熱を交換させる。熱媒体は、水でもよい。熱媒体は、例えば塩化カルシウム水溶液、エチレングリコール水溶液、アルコール、などの、水以外の液状熱媒体でもよい。冷媒は、特に限定されないが、例えば、CO、HFC、HC、HFOのいずれかでもよい。 The heat exchanger 1 exchanges heat between the heat medium passing through the heat medium pipe 2 and the refrigerant passing through the refrigerant pipe 3. The heat medium may be water. The heat medium may be a liquid heat medium other than water, such as an aqueous calcium chloride solution, an aqueous ethylene glycol solution, or alcohol. The refrigerant is not particularly limited, but may be any of CO 2 , HFC, HC, and HFO, for example.

冷媒管3内を通る冷媒は、圧縮機(図示せず)で圧縮された高温高圧の冷媒でもよい。熱交換器1の熱媒体管2内を通る間に加熱された熱媒体は、例えば、給湯に用いられたり、室内の暖房に用いられたりしてもよい。   The refrigerant passing through the refrigerant pipe 3 may be a high-temperature and high-pressure refrigerant compressed by a compressor (not shown). The heat medium heated while passing through the heat medium pipe 2 of the heat exchanger 1 may be used for, for example, hot water supply or indoor heating.

熱媒体管2の外面には、並行する複数条の溝部2a、及び並行する複数条の尾根部2bがある。各々の尾根部2bは、隣り合う二つの溝部2aの間にある。溝部2aの条数は、尾根部2bの条数に等しい。各々の溝部2aは、熱媒体管2の軸線を中心とするつるまき線状に延びる。各々の尾根部2bは、熱媒体管2の軸線を中心とするつるまき線状に延びる。各々の冷媒管3は、各々の溝部2aに沿って設置されている。冷媒管3の数は、溝部2aの条数に等しい。溝部2aの条数、尾根部2bの条数、及び冷媒管3の数は、互いに等しい。以下の説明では、溝部2aの条数、尾根部2bの条数、及び冷媒管3の数を単に「条数」という。   On the outer surface of the heat medium pipe 2, there are a plurality of parallel groove portions 2a and a plurality of parallel ridge portions 2b. Each ridge 2b is located between two adjacent grooves 2a. The number of grooves 2a is equal to the number of ridges 2b. Each groove 2a extends in the shape of a helical line with the axis of the heat medium pipe 2 as the center. Each ridge portion 2 b extends in the shape of a helical line centering on the axis of the heat medium pipe 2. Each refrigerant pipe 3 is installed along each groove 2a. The number of refrigerant tubes 3 is equal to the number of grooves 2a. The number of grooves 2a, the number of ridges 2b, and the number of refrigerant tubes 3 are equal to each other. In the following description, the number of grooves 2a, the number of ridges 2b, and the number of refrigerant tubes 3 are simply referred to as “number of stripes”.

熱媒体管2の外周に巻き付ける前の冷媒管3は、冷媒管3の軸線に対して垂直な平面で切断したときの切断面が円形のものでもよい。熱媒体管2の外周に冷媒管3を巻き付けることで、通常、冷媒管3は多少潰れるように変形する。このため、熱媒体管2の外周に巻き付けた後の冷媒管3は、冷媒管3の軸線に対して垂直な平面で切断したときの切断面が楕円形になる。冷媒管3は、熱媒体管2に対して伝熱材料4を介して接合されている。伝熱材料4は、ハンダまたはロウ材でもよい。   The refrigerant pipe 3 before being wound around the outer periphery of the heat medium pipe 2 may have a circular cut surface when cut along a plane perpendicular to the axis of the refrigerant pipe 3. By winding the refrigerant pipe 3 around the outer periphery of the heat medium pipe 2, the refrigerant pipe 3 is usually deformed so as to be somewhat crushed. For this reason, the refrigerant pipe 3 after being wound around the outer periphery of the heat medium pipe 2 has an elliptical cut surface when cut along a plane perpendicular to the axis of the refrigerant pipe 3. The refrigerant pipe 3 is joined to the heat medium pipe 2 via a heat transfer material 4. The heat transfer material 4 may be solder or brazing material.

冷媒管3の管壁の厚さは、高圧冷媒の圧力に耐えられるような厚さが必要になる。冷媒管3の内径が大きいほど、冷媒管3の管壁の厚さを厚くする必要がある。条数が多い場合には、条数が少ない場合に比べて、冷媒管3の内径が小さくなる。   The thickness of the pipe wall of the refrigerant pipe 3 is required to withstand the pressure of the high-pressure refrigerant. As the inner diameter of the refrigerant pipe 3 is larger, it is necessary to increase the thickness of the pipe wall of the refrigerant pipe 3. When the number of strips is large, the inner diameter of the refrigerant pipe 3 is smaller than when the number of strips is small.

図2では、複数の冷媒管3の区別を容易にするため、便宜上、冷媒管3毎に異なるハッチングを付す。すなわち、図2中のハッチングは、断面を意味するものではない。図2は、条数が4条の熱交換器1を示す。図2に示すように、各々の冷媒管3は、熱媒体管2の軸線を中心とするつるまき線状に延びる。熱交換器1の上流側で冷媒の流れは複数の流れに分かれ、その分かれた各々の冷媒の流れが各々の冷媒管3内を通る。すなわち、冷媒は、複数の冷媒管3内を並行して流れる。熱交換器1において冷媒の流れと熱媒体の流れとが対向流になってもよい。   In FIG. 2, for the sake of convenience, different hatching is given to each refrigerant tube 3 in order to facilitate the distinction between the plurality of refrigerant tubes 3. That is, the hatching in FIG. 2 does not mean a cross section. FIG. 2 shows the heat exchanger 1 having four strips. As shown in FIG. 2, each refrigerant tube 3 extends in a helical line shape with the axis of the heat medium tube 2 as the center. The refrigerant flow is divided into a plurality of flows on the upstream side of the heat exchanger 1, and the divided refrigerant flows pass through the refrigerant pipes 3. That is, the refrigerant flows in parallel in the plurality of refrigerant tubes 3. In the heat exchanger 1, the flow of the refrigerant and the flow of the heat medium may be counterflows.

図3は、実施の形態1の熱交換器1が備える熱媒体管2の横断面図である。図3は、熱媒体管2の軸線に対して垂直な平面で切断した断面図である。図3の熱媒体管2は、4条のものである。図3の熱媒体管2の軸線に対して垂直な平面で熱媒体管2を切断した切り口は、正方形の角が丸みを帯びた形状を有する。この丸みを帯びた四つの角の各々が、熱媒体管2の軸線を中心とするつるまき状に連なることで、各々の尾根部2bが形成される。この丸みを帯びた角の曲率直径dcは、例えば、熱媒体管2の内径diのおよそ0.23倍でもよい。熱媒体管2の内径diとは、熱媒体管2に内接する円柱の直径を指すものとする。   FIG. 3 is a cross-sectional view of the heat medium pipe 2 provided in the heat exchanger 1 of the first embodiment. FIG. 3 is a cross-sectional view taken along a plane perpendicular to the axis of the heat medium pipe 2. The heat medium pipe 2 in FIG. The cut surface obtained by cutting the heat medium pipe 2 along a plane perpendicular to the axis of the heat medium pipe 2 in FIG. 3 has a shape in which square corners are rounded. Each of the four rounded corners is connected in a spiral shape with the axis of the heat medium pipe 2 as the center, so that each ridge portion 2b is formed. The rounded corner curvature diameter dc may be, for example, approximately 0.23 times the inner diameter di of the heat medium pipe 2. The inner diameter di of the heat medium pipe 2 refers to the diameter of a cylinder inscribed in the heat medium pipe 2.

図4は、実施の形態1の変形例の熱交換器1が備える熱媒体管2の横断面図である。図4は、熱媒体管2の軸線に対して垂直な平面で切断した断面図である。図4の熱媒体管2は、条数が5条のものである。図4の熱媒体管2の軸線に対して垂直な平面で熱媒体管2を切断した切り口は、正五角形の角が丸みを帯びた形状を有する。この丸みを帯びた五つの角の各々が、熱媒体管2の軸線を中心とするつるまき状に連なることで、各々の尾根部2bが形成される。   FIG. 4 is a cross-sectional view of the heat medium pipe 2 provided in the heat exchanger 1 according to the modification of the first embodiment. FIG. 4 is a cross-sectional view taken along a plane perpendicular to the axis of the heat medium pipe 2. The heat medium pipe 2 in FIG. 4 has five lines. The cut surface obtained by cutting the heat medium tube 2 along a plane perpendicular to the axis of the heat medium tube 2 in FIG. 4 has a shape in which regular pentagonal corners are rounded. Each of the five rounded corners is connected in a spiral shape with the axis of the heat transfer medium tube 2 as the center, whereby each ridge portion 2b is formed.

図5は、実施の形態1の熱交換器1の一部を示す縦断面図である。図5は、熱媒体管2の軸線を含む平面で切断した断面図である。図5は、図1の一部をさらに拡大した図に相当する。   FIG. 5 is a longitudinal sectional view showing a part of the heat exchanger 1 of the first embodiment. FIG. 5 is a cross-sectional view taken along a plane including the axis of the heat medium pipe 2. FIG. 5 corresponds to an enlarged view of a part of FIG.

図5中のL1は、熱媒体管2の中心から冷媒管3の中心までの距離を示す。L2は、熱媒体管2の中心から、尾根部2bの頂きでの熱媒体管2の管壁の厚さの中心までの距離を示す。距離L2は、距離L1より短い。   L1 in FIG. 5 indicates a distance from the center of the heat medium pipe 2 to the center of the refrigerant pipe 3. L2 indicates the distance from the center of the heat medium pipe 2 to the center of the thickness of the tube wall of the heat medium pipe 2 at the top of the ridge 2b. The distance L2 is shorter than the distance L1.

図6は、熱媒体管2内の熱媒体の流れを説明するための図である。図6は、熱媒体管2の軸線を含む平面で切断した断面図である。図6では、冷媒管3の図示を省略する。   FIG. 6 is a view for explaining the flow of the heat medium in the heat medium pipe 2. FIG. 6 is a cross-sectional view taken along a plane including the axis of the heat medium pipe 2. In FIG. 6, illustration of the refrigerant pipe 3 is omitted.

図6に示すように、熱媒体管2内の熱媒体の流れには、熱媒体管2の長手方向に流れる主流と、尾根部2bが熱媒体管2の内面に形成する凹部2c内に流れ込む副流とがある。尾根部2bの高さが高いほど、凹部2cの深さが深くなる。凹部2cの深さが深いほど、凹部2c内に熱媒体が流れ込みにくくなり、副流の流速が低くなる。副流の流速が低いほど、凹部2cでの熱伝達率が低くなる。凹部2cでの熱伝達率が低くなると、熱媒体管2全体としての熱媒体の熱伝達率が低くなる。以上のことから、尾根部2bの高さが高いほど、熱媒体管2内の熱媒体の熱伝達率が低くなる傾向がある。逆に言えば、尾根部2bの高さが低いほど、熱媒体管2内の熱媒体の熱伝達率が高くなる傾向がある。   As shown in FIG. 6, the flow of the heat medium in the heat medium pipe 2 flows into the main flow that flows in the longitudinal direction of the heat medium pipe 2 and the recess 2 c that the ridge portion 2 b forms on the inner surface of the heat medium pipe 2. There is a sidestream. The higher the height of the ridge 2b, the deeper the recess 2c. As the depth of the recess 2c is increased, the heat medium is less likely to flow into the recess 2c, and the flow velocity of the side flow is reduced. The lower the flow rate of the side flow, the lower the heat transfer coefficient in the recess 2c. When the heat transfer coefficient in the recess 2c is lowered, the heat transfer coefficient of the heat medium as the entire heat medium pipe 2 is lowered. From the above, the higher the height of the ridge 2b, the lower the heat transfer coefficient of the heat medium in the heat medium pipe 2 tends to be. In other words, the heat transfer coefficient of the heat medium in the heat medium pipe 2 tends to be higher as the height of the ridge 2b is lower.

本実施の形態であれば、図5中の距離L2が距離L1より短いことで、以下の効果が得られる。尾根部2bの高さが低くなるので、熱媒体管2内の熱媒体の熱伝達率を高くできる。尾根部2bの高さが低いことで、熱媒体管2の外面の凹凸が比較的小さいため、熱媒体管2の表面積が比較的小さい。このため、熱媒体管2の長さ当たりの重量を軽くできる。これらのことから、熱交換器1の重量当たりの伝熱性能を向上できる。熱交換器1は、例えば銅のような金属を主な材料として作られる。銅のような金属は高価であるため、製造コストを低くするためには、熱交換器1の重量当たりの伝熱性能を向上することが極めて重要である。本実施の形態であれば、熱交換器1の重量当たりの伝熱性能が向上することで、高価な金属材料の使用量を低減でき、製造コストを低くできる。   In the present embodiment, the following effects are obtained when the distance L2 in FIG. 5 is shorter than the distance L1. Since the height of the ridge 2b is reduced, the heat transfer coefficient of the heat medium in the heat medium pipe 2 can be increased. Since the unevenness of the outer surface of the heat medium pipe 2 is relatively small because the height of the ridge portion 2b is low, the surface area of the heat medium pipe 2 is relatively small. For this reason, the weight per length of the heat-medium pipe | tube 2 can be lightened. From these things, the heat transfer performance per weight of the heat exchanger 1 can be improved. The heat exchanger 1 is made using a metal such as copper as a main material. Since metals such as copper are expensive, it is extremely important to improve the heat transfer performance per weight of the heat exchanger 1 in order to reduce the manufacturing cost. If it is this Embodiment, the usage-amount of an expensive metal material can be reduced and manufacturing cost can be lowered | hung by the heat-transfer performance per weight of the heat exchanger 1 improving.

図7は、実施の形態1の熱交換器1の一部を示す縦断面図である。   FIG. 7 is a longitudinal sectional view showing a part of the heat exchanger 1 of the first embodiment.

図7に示すように、熱媒体管2は、接触領域2d及び非接触領域2eを有する。接触領域2dは、冷媒管3と直接接触するか、または伝熱材料4を介して冷媒管3と接触する領域である。非接触領域2eは、接触領域2d以外の領域である。非接触領域2eは、尾根部2bの頂きを含む領域である。図7中の曲線2fは、熱媒体管2の軸線を含む平面で切断した切断面において、熱媒体管2の管壁の厚さの中心を通る曲線である。以下の説明では、曲線2fのうち、接触領域2dを通る部分の長さの、曲線2fの全長に対する割合を「接触割合」として定義する。接触割合は、図7中の(L3+L5)/(L3+L4+L5)の値として計算できる。   As shown in FIG. 7, the heat medium pipe 2 has a contact area 2d and a non-contact area 2e. The contact region 2 d is a region that is in direct contact with the refrigerant tube 3 or in contact with the refrigerant tube 3 through the heat transfer material 4. The non-contact area 2e is an area other than the contact area 2d. The non-contact area 2e is an area including the top of the ridge portion 2b. A curve 2f in FIG. 7 is a curve that passes through the center of the thickness of the tube wall of the heat transfer medium tube 2 in a cut surface cut by a plane including the axis of the heat transfer medium tube 2. In the following description, the ratio of the length of the portion passing through the contact region 2d in the curve 2f to the total length of the curve 2f is defined as “contact ratio”. The contact ratio can be calculated as a value of (L3 + L5) / (L3 + L4 + L5) in FIG.

熱媒体管2、冷媒管3、及び伝熱材料4を構成する金属の熱伝導は、冷媒または熱媒体の熱伝達に比べて非常に大きい。接触領域2dは、冷媒管3によって直接的に加熱されると考えることができる。このため、接触領域2dの内面の温度は、冷媒管3の温度にほぼ等しい。   The heat conduction of the metal constituting the heat medium pipe 2, the refrigerant pipe 3, and the heat transfer material 4 is much larger than the heat transfer of the refrigerant or the heat medium. It can be considered that the contact region 2 d is directly heated by the refrigerant pipe 3. For this reason, the temperature of the inner surface of the contact region 2 d is substantially equal to the temperature of the refrigerant pipe 3.

非接触領域2eは、接触領域2dからの熱伝導によって間接的に加熱されると考えることができる。一つの非接触領域2eの両側にある接触領域2dから、尾根部2bの頂きに向かって、熱伝導が生じる。一つの非接触領域2eを横断する方向の長さL4は、熱媒体管2の管壁の厚さに比べて大きい。非接触領域2eの温度は、尾根部2bの頂きに近いほど、低くなる。   It can be considered that the non-contact region 2e is indirectly heated by heat conduction from the contact region 2d. Thermal conduction occurs from the contact area 2d on both sides of one non-contact area 2e toward the top of the ridge 2b. The length L4 in the direction crossing one non-contact region 2e is larger than the thickness of the tube wall of the heat medium tube 2. The temperature of the non-contact area 2e becomes lower as it approaches the top of the ridge 2b.

上記の理由から、非接触領域2eの内面の温度は、接触領域2dの内面の温度より低くなる。このため、実際の熱媒体管2の内面の面積平均温度は、接触領域2dのみの内面の面積平均温度に比べて低くなる。以下の説明では、実際の熱媒体管2の内面の面積平均温度の、接触領域2dのみの内面の面積平均温度に対する比を、「フィン効率」として定義する。   For the above reason, the temperature of the inner surface of the non-contact region 2e is lower than the temperature of the inner surface of the contact region 2d. For this reason, the area average temperature of the inner surface of the actual heat medium pipe 2 is lower than the area average temperature of the inner surface of only the contact region 2d. In the following description, the ratio of the area average temperature of the inner surface of the actual heat medium pipe 2 to the area average temperature of the inner surface of only the contact region 2d is defined as “fin efficiency”.

図8は、熱交換器1の重量当たりの相対AK値と接触割合との関係を示す図である。AK値は、伝熱面積A[m]に熱通過率K[kW/(mK)]を乗じた値である。重量当たりのAK値は、熱交換器1の重量当たりの伝熱性能の指標になる。図8は、4条の熱交換器1についての関係と、5条の熱交換器1についての関係とを示す。熱交換器1の冷媒の圧力損失は、冷媒管3の内径及び条数によって変化する。4条の熱交換器1の冷媒の圧力損失と、5条の熱交換器1の冷媒の圧力損失とが等しくなるように冷媒管3の内径を定めた上で図8の関係を計算した。図8に示す相対AK値は、冷媒の圧力損失が4条の熱交換器1及び5条の熱交換器1と等しくなるように冷媒管3の内径を定めた3条の熱交換器1のAK値の最大値を1とした場合の相対的なAK値である。 FIG. 8 is a diagram showing the relationship between the relative AK value per weight of the heat exchanger 1 and the contact ratio. The AK value is a value obtained by multiplying the heat transfer area A [m 2 ] by the heat transmission rate K [kW / (m 2 K)]. The AK value per weight is an index of the heat transfer performance per weight of the heat exchanger 1. FIG. 8 shows the relationship regarding the four-row heat exchanger 1 and the relationship regarding the five-row heat exchanger 1. The pressure loss of the refrigerant in the heat exchanger 1 varies depending on the inner diameter and the number of stripes of the refrigerant pipe 3. The relationship of FIG. 8 was calculated after the inner diameter of the refrigerant tube 3 was determined so that the pressure loss of the refrigerant in the four-row heat exchanger 1 and the pressure loss of the refrigerant in the five-row heat exchanger 1 were equal. The relative AK value shown in FIG. 8 is that of the three-row heat exchanger 1 in which the inner diameter of the refrigerant pipe 3 is determined so that the refrigerant pressure loss is equal to the four-row heat exchanger 1 and the five-row heat exchanger 1. This is a relative AK value when the maximum value of the AK value is 1.

接触割合は、0.74以下であることが望ましい。図8に示すように、4条及び5条の熱交換器1では、重量当たりの相対AK値は、接触割合が0.7〜0.73の辺りで、ピークになる。その一方で、接触割合が0.74を超えると、重量当たりの相対AK値は急激に低下する。よって、接触割合を0.74以下にすることで、熱交換器1の重量当たりの伝熱性能をより確実に向上できる。   The contact ratio is desirably 0.74 or less. As shown in FIG. 8, in the four and five heat exchangers 1, the relative AK value per weight peaks when the contact ratio is around 0.7 to 0.73. On the other hand, when the contact ratio exceeds 0.74, the relative AK value per weight rapidly decreases. Therefore, the heat transfer performance per weight of the heat exchanger 1 can be improved more reliably by setting the contact ratio to 0.74 or less.

接触割合は、0.6以上であることが望ましい。図8に示すように、接触割合が0.6以上であれば、重量当たりの相対AK値を十分に高くできるので、熱交換器1の重量当たりの伝熱性能をより確実に向上できる。   The contact ratio is desirably 0.6 or more. As shown in FIG. 8, when the contact ratio is 0.6 or more, the relative AK value per weight can be sufficiently increased, so that the heat transfer performance per weight of the heat exchanger 1 can be improved more reliably.

接触割合が0.74を超えると重量当たりの相対AK値が急激に低下する理由について、以下に説明する。図9は、熱媒体管2のフィン効率と接触割合との関係を示す図である。図9に示す関係は、図8と同じ熱交換器1について計算したものである。熱通過率Kの値は、主として、熱媒体管2の熱媒体の熱伝達率とフィン効率とによって定まる。接触割合を高くするには、非接触領域2eの幅を小さくする必要があるため、熱媒体管2の単位長さ当たりの冷媒管3の巻き密度を高くする必要がある。このため、接触割合が高くなると、冷媒管3の重量が増加するため、熱交換器1の重量が増加する。図9に示すように、接触割合が高くなるにつれてフィン効率も高くなるが、接触割合が0.74の辺りで、ほぼ1に近くなる。すなわち、接触割合が0.74の辺りで、フィン効率の値が飽和する。したがって、接触割合を0.74より大きくしても、フィン効率の上昇による伝熱性能の向上がほとんど得られず、熱交換器1の重量を増加させるだけになる。そのため、接触割合が0.74を超えると重量当たりの相対AK値が急激に低下することとなる。   The reason why the relative AK value per weight rapidly decreases when the contact ratio exceeds 0.74 will be described below. FIG. 9 is a diagram showing the relationship between the fin efficiency of the heat medium pipe 2 and the contact ratio. The relationship shown in FIG. 9 is calculated for the same heat exchanger 1 as in FIG. The value of the heat transfer rate K is mainly determined by the heat transfer coefficient of the heat medium of the heat medium pipe 2 and the fin efficiency. In order to increase the contact ratio, it is necessary to reduce the width of the non-contact region 2e. Therefore, it is necessary to increase the winding density of the refrigerant tube 3 per unit length of the heat medium tube 2. For this reason, since the weight of the refrigerant | coolant pipe | tube 3 will increase when a contact ratio becomes high, the weight of the heat exchanger 1 will increase. As shown in FIG. 9, the fin efficiency increases as the contact ratio increases, but is close to 1 near the contact ratio of 0.74. That is, the value of fin efficiency is saturated when the contact ratio is around 0.74. Therefore, even if the contact ratio is greater than 0.74, almost no improvement in heat transfer performance due to an increase in fin efficiency is obtained, and only the weight of the heat exchanger 1 is increased. For this reason, if the contact ratio exceeds 0.74, the relative AK value per weight will rapidly decrease.

図3及び図4から分かるように、5条の場合の熱媒体管2の尾根部2bの高さは、4条の場合の熱媒体管2の尾根部2bの高さに比べて低くなる。このため、図6で説明した副流の流速は、5条の場合の方が4条の場合よりも高くなる。その一方で、5条の場合には、尾根部2bの高さが低いことで、熱媒体管2の内側の表面積すなわち伝熱面積が、4条の場合よりも小さくなる。そのため、図8に示すように、重量当たりのAK値は、4条の場合の方が5条の場合よりも高くなる。   As can be seen from FIGS. 3 and 4, the height of the ridge 2 b of the heat medium pipe 2 in the case of five is lower than the height of the ridge 2 b of the heat medium pipe 2 in the case of four. For this reason, the flow velocity of the side flow described in FIG. 6 is higher in the case of 5 strips than in the case of 4 strips. On the other hand, in the case of 5 ridges, the surface area inside the heat medium pipe 2, that is, the heat transfer area, becomes smaller than in the case of 4 ridges because the height of the ridge 2b is low. Therefore, as shown in FIG. 8, the AK value per weight is higher in the case of 4 strips than in the case of 5 strips.

図10は、実施の形態1の変形例の熱交換器1が備える熱媒体管2の横断面図である。図10は、熱媒体管2の軸線に対して垂直な平面で切断した断面図である。図10の熱媒体管2は、4条のものである。   FIG. 10 is a cross-sectional view of the heat medium pipe 2 provided in the heat exchanger 1 according to the modification of the first embodiment. FIG. 10 is a cross-sectional view taken along a plane perpendicular to the axis of the heat medium pipe 2. The heat medium pipe 2 in FIG.

図10に示す熱媒体管2は、以下のように構成されている。仮想直線100は、熱媒体管2の軸線に対して垂直な平面で熱媒体管2を切断した切断面すなわち切り口の外縁の2箇所に接する直線である。L6は、熱媒体管2の中心と仮想直線100との間の距離を示す。L7は、熱媒体管2の中心から熱媒体管2の外面までの最短距離を示す。距離L6は、距離L7より長い。   The heat medium pipe 2 shown in FIG. 10 is configured as follows. The imaginary straight line 100 is a straight line that is in contact with two portions of the cut surface obtained by cutting the heat medium tube 2 along a plane perpendicular to the axis of the heat medium tube 2, that is, the outer edge of the cut surface. L6 indicates the distance between the center of the heat medium pipe 2 and the virtual straight line 100. L7 indicates the shortest distance from the center of the heat medium pipe 2 to the outer surface of the heat medium pipe 2. The distance L6 is longer than the distance L7.

図10に示す熱媒体管2を備えた熱交換器1によれば、図3に示す熱媒体管2を備えた熱交換器1に比べて、以下のような効果が得られる。尾根部2bが膨らんだ形状になるので、尾根部2bが熱媒体管2の内面に形成する凹部2cの形状がなだらかになる。その結果、図6で説明した副流の流速が高くなり、熱媒体の熱伝達率がさらに向上する。熱媒体管2の表面積、すなわち伝熱面積が大きくなる。これらのことから、伝熱性能がさらに向上する。   According to the heat exchanger 1 provided with the heat medium pipe 2 shown in FIG. 10, the following effects can be obtained as compared with the heat exchanger 1 provided with the heat medium pipe 2 shown in FIG. Since the ridge portion 2b has a swelled shape, the shape of the recess 2c formed on the inner surface of the heat medium pipe 2 by the ridge portion 2b becomes gentle. As a result, the flow velocity of the side flow described in FIG. 6 is increased, and the heat transfer coefficient of the heat medium is further improved. The surface area of the heat medium pipe 2, that is, the heat transfer area is increased. For these reasons, the heat transfer performance is further improved.

上述した実施の形態では、4条及び5条の熱交換器1を中心に説明したが、本発明の熱交換器は、図5で説明した条件、すなわちL2<L1という条件を満足するものであれば、3条のものでもよいし、6条またはそれ以上の条数のものでもよい。   In the above-described embodiment, the heat exchangers 1 and 4 have been mainly described. However, the heat exchanger according to the present invention satisfies the condition described in FIG. 5, that is, the condition L2 <L1. If it exists, the number of articles may be 3 or 6 or more.

1 熱交換器、 2 熱媒体管、 2a 溝部、 2b 尾根部、 2c 凹部、 2d 接触領域、 2e 非接触領域、 2f 曲線、 3 冷媒管、 4 伝熱材料、 100 仮想直線 DESCRIPTION OF SYMBOLS 1 Heat exchanger, 2 Heat transfer medium pipe, 2a Groove part, 2b Ridge part, 2c Recessed part, 2d Contact area, 2e Non-contact area, 2f Curve, 3 Refrigerant pipe, 4 Heat transfer material, 100 Virtual straight line

Claims (5)

並行する複数条のつるまき線状の溝部と、隣り合う前記溝部の間の尾根部とを外面に有する熱媒体管と、
各々の前記溝部に沿って設置された冷媒管と、
を備え、
前記熱媒体管の中心から前記尾根部の頂きでの前記熱媒体管の管壁の厚さの中心までの距離が、前記熱媒体管の中心から前記冷媒管の中心までの距離より短い熱交換器。
A heat medium pipe having, on the outer surface, a plurality of parallel spiral winding groove portions and a ridge portion between the adjacent groove portions,
A refrigerant pipe installed along each of the grooves,
With
Heat exchange in which the distance from the center of the heat medium pipe to the center of the thickness of the pipe wall of the heat medium pipe at the top of the ridge is shorter than the distance from the center of the heat medium pipe to the center of the refrigerant pipe vessel.
前記溝部の条数が4条または5条である請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the number of the grooves is four or five. 前記熱媒体管と前記冷媒管とを接合する伝熱材料を備え、
前記熱媒体管は、前記冷媒管と直接接触するかまたは前記伝熱材料を介して前記冷媒管と接触する接触領域と、前記接触領域以外の領域である非接触領域とを有し、
前記熱媒体管の軸線を含む平面で切断した切断面において、前記熱媒体管の管壁の厚さの中心を通る曲線のうち、前記接触領域を通る部分の長さの、前記曲線の全長に対する割合である接触割合が、0.74以下である請求項1または請求項2に記載の熱交換器。
A heat transfer material for joining the heat medium pipe and the refrigerant pipe;
The heat medium pipe has a contact area that is in direct contact with the refrigerant pipe or in contact with the refrigerant pipe via the heat transfer material, and a non-contact area that is an area other than the contact area,
Of the curve passing through the center of the thickness of the tube wall of the heat transfer medium tube in the cut surface cut along the plane including the axis of the heat transfer medium tube, the length of the portion passing through the contact area is the total length of the curve The heat exchanger according to claim 1 or 2, wherein a contact ratio as a ratio is 0.74 or less.
前記接触割合が0.6以上である請求項3に記載の熱交換器。   The heat exchanger according to claim 3, wherein the contact ratio is 0.6 or more. 前記熱媒体管の軸線に対して垂直な平面で前記熱媒体管を切断した切断面の外縁の2箇所に接する仮想直線と、前記熱媒体管の中心との距離は、前記熱媒体管の中心から前記熱媒体管の外面までの最短距離より長い請求項1から請求項4のいずれか一項に記載の熱交換器。   The distance between the imaginary straight line in contact with two locations on the outer edge of the cut surface obtained by cutting the heat medium tube on a plane perpendicular to the axis of the heat medium tube and the center of the heat medium tube is the center of the heat medium tube The heat exchanger according to any one of claims 1 to 4, wherein the heat exchanger is longer than a shortest distance from an outer surface of the heat medium pipe to the heat medium pipe.
JP2016055291A 2016-03-18 2016-03-18 Heat exchanger Pending JP2017166797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016055291A JP2017166797A (en) 2016-03-18 2016-03-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055291A JP2017166797A (en) 2016-03-18 2016-03-18 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2017166797A true JP2017166797A (en) 2017-09-21

Family

ID=59913177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055291A Pending JP2017166797A (en) 2016-03-18 2016-03-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2017166797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194426A1 (en) * 2019-03-25 2020-10-01 三菱電機株式会社 Water refrigerant heat-exchanger and heat pump device provided with water refrigerant heat-exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076915A (en) * 2003-08-28 2005-03-24 Kobe Steel Ltd Composite heat exchanger tube
JP2009041880A (en) * 2007-08-10 2009-02-26 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2009216309A (en) * 2008-03-11 2009-09-24 Panasonic Corp Heat exchanger
JP2015158339A (en) * 2014-02-25 2015-09-03 三菱電機株式会社 Manufacturing method of torsion pipe type heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076915A (en) * 2003-08-28 2005-03-24 Kobe Steel Ltd Composite heat exchanger tube
JP2009041880A (en) * 2007-08-10 2009-02-26 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2009216309A (en) * 2008-03-11 2009-09-24 Panasonic Corp Heat exchanger
JP2015158339A (en) * 2014-02-25 2015-09-03 三菱電機株式会社 Manufacturing method of torsion pipe type heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194426A1 (en) * 2019-03-25 2020-10-01 三菱電機株式会社 Water refrigerant heat-exchanger and heat pump device provided with water refrigerant heat-exchanger
JPWO2020194426A1 (en) * 2019-03-25 2021-10-14 三菱電機株式会社 Heat pump device equipped with water refrigerant heat exchanger and water refrigerant heat exchanger

Similar Documents

Publication Publication Date Title
JP5106453B2 (en) Plate heat exchanger and refrigeration air conditioner
CN109737793B (en) Bionic wave type fin for air conditioner heat exchanger
JP5945806B2 (en) Finned tube heat exchanger
JP2005516176A (en) HEAT EXCHANGER TUBE HAVING TAMA TYPE PATH AND HEAT EXCHANGER USING THE SAME
WO2018099086A1 (en) Heat exchange tube and heat exchanger having same
CN104089517B (en) Fin and the heat exchanger with this fin for heat exchanger
CN202485527U (en) H-shaped finned tube
ES2944546T3 (en) Shell and tube heat exchanger, finned tubes for said heat exchanger and corresponding method
JP2011106746A (en) Heat transfer tube, heat exchanger, and processed product of heat transfer tube
JP2016524122A (en) Heat transfer tube
JP2017166797A (en) Heat exchanger
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP2005083667A (en) Heat exchanger
JP2012077917A (en) Inner grooved corrugated tube, and heat exchanger
JP5289088B2 (en) Heat exchanger and heat transfer tube
JP2009264644A (en) Heat exchanger
CN206222993U (en) Deformation directional induction formula female screw heat-transfer pipe
JP5958917B2 (en) Finned tube heat exchanger
JP2008249163A (en) Heat exchanger for supplying hot water
JP4713562B2 (en) Heat exchanger and heat pump water heater using the same
WO2015114015A1 (en) Sectional uneven inner grooved tube
JP5073074B2 (en) Heat exchanger and heat pump water heater using the same
JP6418354B2 (en) Plate heat exchanger, heat pump device, and heat pump heating / hot water system
CN216245778U (en) Heat transfer pipe for enhancing boiling
CN215114141U (en) Heat exchange tube with inner fins

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180821