JP2017166563A - Superconductive bearing - Google Patents

Superconductive bearing Download PDF

Info

Publication number
JP2017166563A
JP2017166563A JP2016052063A JP2016052063A JP2017166563A JP 2017166563 A JP2017166563 A JP 2017166563A JP 2016052063 A JP2016052063 A JP 2016052063A JP 2016052063 A JP2016052063 A JP 2016052063A JP 2017166563 A JP2017166563 A JP 2017166563A
Authority
JP
Japan
Prior art keywords
superconducting
bulk body
superconducting bulk
bearing
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016052063A
Other languages
Japanese (ja)
Other versions
JP6746981B2 (en
Inventor
手嶋 英一
Hidekazu Tejima
英一 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016052063A priority Critical patent/JP6746981B2/en
Publication of JP2017166563A publication Critical patent/JP2017166563A/en
Application granted granted Critical
Publication of JP6746981B2 publication Critical patent/JP6746981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a large-sized superconductive bearing excellent in floating stability and capable of being simply manufactured.SOLUTION: A superconductive bearing is configured such that a magnet part comprising a permanent magnet or electromagnet and a superconductive bulk body are opposite to each other. The superconductive bulk body includes a multicrystal superconductive bulk body, and a monocrystal superconductive bulk body fixed to a side surface of the multicrystal superconductive bulk body. The multicrystal superconductive bulk body is arranged on a surface opposite to the magnet part in the superconductive bulk body.SELECTED DRAWING: Figure 2

Description

本発明は、超電導バルク体を利用した超電導軸受に関する。   The present invention relates to a superconducting bearing using a superconducting bulk body.

塊状(バルク状)の超電導体は、磁束のピン止め効果を利用することによって、永久磁石や電磁石等の磁石と組み合わせると、複雑なフィードバック制御システムなしでも磁石上での安定浮上が実現可能になることから、非接触な軸受としての応用が期待されている。以下、このようなバルク状の超電導体を利用した軸受を超電導軸受と呼ぶ。超電導軸受は、非接触な安定浮上が可能なことから、クリーンルームなどでの塵挨の出ないクリーンな軸受やフライホイール式電力貯蔵装置用の超低損失な軸受、宇宙衛星に搭載される極低温で動作する検出機器用の軸受などへの適用が提案されている。   By using the pinning effect of magnetic flux, bulk superconductors can be combined with permanent magnets and electromagnets to achieve stable levitation on magnets without a complicated feedback control system. Therefore, application as a non-contact bearing is expected. Hereinafter, a bearing using such a bulk superconductor is referred to as a superconducting bearing. Superconducting bearings allow stable and non-contact levitation, so clean bearings that do not generate dust in clean rooms, ultra-low-loss bearings for flywheel power storage devices, and cryogenic temperatures mounted on space satellites It has been proposed to apply to bearings for detection devices that operate in the above.

超電導軸受に用いられる超電導バルク体には、臨界温度(T)が高く、磁場中での臨界電流密度(J)が高い超電導バルク体が望ましい。RE−Ba−Cu−O系酸化物超電導体(REはY又は希土類元素から選ばれる1種又は2種以上の元素)の臨界温度Tは90K程度と高いが、酸化物の一般的な製法である焼結法で作製されるバルク体は多数の結晶粒からなる多結晶状の超電導バルク体である。超電導バルク体が多結晶である場合には、結晶粒界が超電導電流を阻害するため、臨界電流密度Jは77Kで1.0×10A/cm以下であり、低い値である。 A superconducting bulk body used for a superconducting bearing is preferably a superconducting bulk body having a high critical temperature (T c ) and a high critical current density (J c ) in a magnetic field. RE-Ba-Cu-O based oxide superconductor (RE is one or more elements selected from Y or a rare earth element) is the critical temperature T c of but high as about 90K, the general preparation of oxides The bulk body produced by the sintering method is a polycrystalline superconducting bulk body composed of a large number of crystal grains. If superconductive bulk body is a polycrystal, the crystal grain boundaries to inhibit superconducting current, the critical current density J c is a 1.0 × 10 3 A / cm 2 or less at 77K, which is a low value.

一方、Bi−Sr−Ca−Cu−O系酸化物超電導体の臨界温度Tは110K程度と高いが、酸化物の一般的な製法である焼結法で作製されるバルク体は、同様に多結晶状の超電導バルク体である。したがって、超電導バルク体が多結晶である場合、結晶粒界が超電導電流を阻害するため、臨界電流密度Jは77Kで1.0×10A/cm以下であり、低い値である。また、Mg−B系の金属超電導体は酸化物超電導体に比べると結晶粒界が超電導電流を阻害する程度は小さいが、臨界温度Tが40K程度と低い値である。 On the other hand, Bi-Sr-Ca-Cu- O based oxide superconductor critical temperature T c of the high order of 110K, bulk body made by sintering method is a general preparation of oxides can likewise It is a polycrystalline superconducting bulk material. Therefore, if the superconducting bulk body is a polycrystalline, since the grain boundaries to inhibit superconducting current, the critical current density J c is a 1.0 × 10 3 A / cm 2 or less at 77K, which is a low value. In addition, the Mg—B-based metal superconductor has a low critical temperature Tc of about 40 K, although the degree of crystal grain boundaries hindering the superconducting current is smaller than that of the oxide superconductor.

これらの超電導体で結晶粒界がない単結晶状のバルク体を作製することは難しいが、例えば特許文献1で開示されているように、溶融結晶成長プロセスを適用することにより、単結晶状のREBaCu(yは酸素量で、6.8≦y≦7.1)中にREBaCuOが微細分散した組織を有する超電導バルク体を得ることができる。かかる超電導バルク体は、77K、1Tにおいて臨界電流密度Jが1.0×10A/cm以上という磁場中でも高い特性を示す。臨界電流密度Jが高いと、磁束に対するピン止め力も強く、超電導軸受の最大の特長である安定浮上が実現し易い。したがって、超電導軸受には、臨界温度Tと臨界電流密度Jとが高い単結晶状のRE−Ba−Cu−O系酸化物超電導バルク体が適していると考えられ、それを用いた応用開発が進んでいる。応用開発の進展と共に、より大きな超電導軸受が求められるようになってきている。 Although it is difficult to produce a single-crystal bulk body having no grain boundary using these superconductors, for example, as disclosed in Patent Document 1, a single crystal-like bulk body is obtained by applying a melt crystal growth process. A superconducting bulk body having a structure in which RE 2 BaCuO 5 is finely dispersed in RE 1 Ba 2 Cu 3 O y (y is the amount of oxygen, 6.8 ≦ y ≦ 7.1) can be obtained. Such superconducting bulk body, 77K, exhibits high characteristics even in a magnetic field of the critical current density J c is 1.0 × 10 4 A / cm 2 or more at 1T. When the critical current density Jc is high, the pinning force with respect to the magnetic flux is strong, and stable levitation, which is the greatest feature of the superconducting bearing, is easily realized. Therefore, the superconducting bearing, considered critical temperature T c and the critical current and density J c is higher single crystalline RE-Ba-Cu-O-based oxide superconductive bulk body is suitable, applications using the same Development is progressing. As application development progresses, larger superconducting bearings have been demanded.

ピン止め力の強い酸化物超電導バルク体は、上述したように単結晶状であるが、単結晶状試料は大型化が難しく、例えば、現在のところ、単結晶化可能な超電導バルク体の最大長は150mm程度である。したがって、単結晶化可能な最大長を超える大型の超電導軸受を製作する場合には、複数個の超電導バルク体を組み合せて1つの軸受を構成することになる。複数個の超電導バルク体を用いても非接触な支持は可能であるため、接触式の機械的な軸受に比べると、超電導軸受の軸受損失は十分に小さい。しかし、フライホイール式電力貯蔵装置のように非常に低い軸受損失を要求される応用には、個々の超電導バルク体間の継ぎ目部での極僅かな磁場の乱れも軸受損失要因となり、軸受損失の一層の低減が求められる   As described above, the oxide superconducting bulk body having a strong pinning force is in a single crystal form, but it is difficult to increase the size of a single crystal sample. For example, the maximum length of a superconducting bulk body that can be single-crystallized is currently available. Is about 150 mm. Therefore, when producing a large superconducting bearing exceeding the maximum length that can be crystallized, a single bearing is formed by combining a plurality of superconducting bulk bodies. Since non-contact support is possible even if a plurality of superconducting bulk bodies are used, the bearing loss of the superconducting bearing is sufficiently small compared to a contact-type mechanical bearing. However, for applications that require very low bearing loss, such as flywheel power storage devices, even slight magnetic field disturbances at the joints between individual superconducting bulk bodies can cause bearing loss. Further reduction is required

そこで、特許文献2では、個々の要素部材としての超電導バルク体が積層構造を形成し、かつ隣り合う層ごとに要素部材間の境界面の位置がずれている軸受構造が提案されている。すなわち、軸受を構成する超電導バルク体をいわゆる煉瓦積みすることによって、個々の超電導バルク体間の継ぎ目部での極僅かな磁場の乱れを低減し、軸受損失の更なる低減を図ることができる。さらに特許文献3では、個々の超電導バルク体の接合面が、接合面に接する面のうちいずれかの面と直交しないように構成された軸受構造が提案されている。すなわち、軸受を構成する超電導バルク体の接合面を斜めにすることによって、個々の超電導バルク体間の継ぎ目部での極僅かな磁場の乱れを低減し、軸受損失の更なる低減を図ることができる。   Therefore, Patent Document 2 proposes a bearing structure in which superconducting bulk bodies as individual element members form a laminated structure, and the position of the boundary surface between the element members is shifted for each adjacent layer. That is, by superposing the superconducting bulk bodies constituting the bearings so-called bricks, it is possible to reduce the slight magnetic field disturbance at the joints between the individual superconducting bulk bodies and to further reduce the bearing loss. Further, Patent Document 3 proposes a bearing structure configured such that the joint surface of each superconducting bulk body is not orthogonal to any one of the surfaces in contact with the joint surface. That is, by making the joint surfaces of the superconducting bulk bodies constituting the bearings oblique, it is possible to reduce the slight magnetic field disturbance at the joints between the individual superconducting bulk bodies and to further reduce the bearing loss. it can.

特公平4−40289号公報Japanese Examined Patent Publication No. 4-40289 特開2001−248642号公報JP 2001-248642 A 特開2004−039949号公報Japanese Patent Laid-Open No. 2004-039949

上述したように、個々の超電導バルク体を煉瓦積みにしたり、接合面を斜めにしたりすることは、大型で軸受損失が小さい超電導軸受を実現する有効な手段である。しかしながら、個々の超電導バルク体を煉瓦積みにしたり、接合面を斜めにしたりすることは、個々の超電導バルク体の製作・加工を精度よく行う必要があるだけなく、個々の超電導バルク体を用いて軸受を組み立てる際にも精度よく行う必要があり、非常に手間がかかるという課題があった。   As described above, making individual superconducting bulk bodies brickwork or slanting the joint surfaces are effective means for realizing a superconducting bearing that is large and has a small bearing loss. However, building individual superconducting bulk bodies into brickwork or slanting the joint surface requires not only the production and processing of individual superconducting bulk bodies with high accuracy, but also the use of individual superconducting bulk bodies. When assembling the bearing, it is necessary to carry out with high accuracy, and there is a problem that it takes much time and effort.

ここで、多結晶状の超電導バルク体を用いれば、大型軸受用の超電導バルク体も比較的簡便に製造可能である。上述したように、多結晶状の超電導バルク体の臨界電流密度Jは低く、磁束に対するピン止め力も弱いため、浮上支持できる重量を小さいものに限定すれば、多結晶状の超電導バルク体でも超電導軸受に適用可能と考えられる。しかしながら、ピン止め力が弱いということは、超電導バルク体の浮上方向に対して直交する横方向の安定支持力も弱いことを意味する。すなわち、単に多結晶状の超電導バルク体だけを用いて超電導軸受を構成したとしても、横方向の安定浮上が得られないという課題があった。 Here, if a polycrystalline superconducting bulk body is used, a superconducting bulk body for a large bearing can be manufactured relatively easily. As described above, the multi-critical current density J c of crystalline bulk superconductor is low, since the pinning force also weak against the magnetic flux, if limited to small weight that can be floatingly supported, superconducting be polycrystalline shaped superconducting bulk It is considered applicable to bearings. However, the weak pinning force means that the stable supporting force in the lateral direction perpendicular to the flying direction of the superconducting bulk body is also weak. That is, even if a superconducting bearing is configured using only a polycrystalline superconducting bulk material, there is a problem that stable floating in the lateral direction cannot be obtained.

一方、単結晶状のREBaCuのような酸化物超電導体は、比重が6.5〜7g/cm程度と大きいため、大型の軸受の場合には、格段に重くなるという課題もあった。 On the other hand, an oxide superconductor such as single crystal RE 1 Ba 2 Cu 3 O y has a large specific gravity of about 6.5 to 7 g / cm 3, so that it is much heavier in the case of a large bearing. There was also a problem.

そこで、本発明では、上記問題に鑑みてなされたものであり、本発明の目的とするところは、浮上安定性に優れ、簡便に製造可能な、新規かつ改良された大型の超電導軸受を提供することを目的とする。   Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a new and improved large superconducting bearing that is excellent in floating stability and can be easily manufactured. For the purpose.

また、本発明の別の目的としては、本発明の一形態において、従来よりも軽量化することができる超電導軸受を提供することを目的とする。   Another object of the present invention is to provide a superconducting bearing that can be made lighter than before in one embodiment of the present invention.

本発明の超電導バルク体を利用した超電導軸受は、以下のとおりである。
(1)永久磁石又は電磁石からなる磁石部と超電導バルク体とが対向されて構成される超電導軸受において、前記超電導バルク体は、多結晶状の超電導バルク体と、前記多結晶状の超電導バルク体の側面に固定された単結晶状の超電導バルク体と、を備え、前記多結晶状の超電導バルク体は、前記超電導バルク体のうち前記磁石部に対向する面に配置されていることを特徴とする、超電導軸受。
(2)前記単結晶状の超電導バルク体は、さらに前記多結晶状の超電導バルク体の底面に固定されていることを特徴とする、(1)に記載の超電導軸受。
(3)前記単結晶状の超電導バルク体は、REBaCu(REはY及び希土類元素からなる群から選ばれる1種又は2種以上の元素であり、yは酸素量で、6.8≦y≦7.1)中にREBaCuOが分散した酸化物超電導バルク体からなることを特徴とする、(1)又は(2)に記載の超電導軸受。
(4)前記多結晶状超電導バルク体は、RE、Ba、Cu、Oからなる多結晶状の酸化物超電導バルク体、Bi、Sr、Ca、Cu、Oからなる多結晶状の酸化物超電導バルク体、あるいはMg及びBからなる多結晶状の金属超電導バルク体のいずれかであることを特徴とする、(1)〜(3)のいずれか1つに記載の超電導軸受。
(5)前記多結晶状の超電導バルク体の最大長は、150mm以上であることを特徴とする、(1)〜(4)のいずれか1つに記載の超電導軸受。
Superconducting bearings using the superconducting bulk material of the present invention are as follows.
(1) In a superconducting bearing configured such that a magnet portion made of a permanent magnet or an electromagnet and a superconducting bulk body are opposed to each other, the superconducting bulk body includes a polycrystalline superconducting bulk body and the polycrystalline superconducting bulk body. A single-crystal superconducting bulk body fixed to a side surface of the superconducting bulk body, wherein the polycrystalline superconducting bulk body is disposed on a surface of the superconducting bulk body facing the magnet portion. Superconducting bearing.
(2) The superconducting bearing according to (1), wherein the single-crystal superconducting bulk body is further fixed to a bottom surface of the polycrystalline superconducting bulk body.
(3) The single-crystal superconducting bulk body is RE 1 Ba 2 Cu 3 O y (RE is one or more elements selected from the group consisting of Y and rare earth elements, and y is the amount of oxygen. The superconducting bearing according to (1) or (2), comprising an oxide superconducting bulk body in which RE 2 BaCuO 5 is dispersed in 6.8 ≦ y ≦ 7.1).
(4) The polycrystalline superconducting bulk is a polycrystalline oxide superconducting bulk made of RE, Ba, Cu, or O, or a polycrystalline oxide superconducting bulk made of Bi, Sr, Ca, Cu, or O. The superconducting bearing according to any one of (1) to (3), wherein the superconducting bearing is any one of a body and a polycrystalline metal bulk superconductor composed of Mg and B.
(5) The superconducting bearing according to any one of (1) to (4), wherein the maximum length of the polycrystalline superconducting bulk body is 150 mm or more.

以上説明したように本発明によれば、浮上安定性に優れ、簡便に製造できる大型の超電導軸受を提供することができる。また、本発明の別の目的として、本発明の一形態においては、従来よりも軽量化することができる超電導軸受を提供することができる。   As described above, according to the present invention, it is possible to provide a large superconducting bearing that is excellent in floating stability and can be easily manufactured. Further, as another object of the present invention, in one embodiment of the present invention, a superconducting bearing that can be made lighter than before can be provided.

超電導軸受を用いた回転体の一般的な構造の一例を示す説明図である。It is explanatory drawing which shows an example of the general structure of the rotary body using a superconducting bearing. 超電導軸受を用いた回転体の一般的な構造の他の例を示す説明図である。It is explanatory drawing which shows the other example of the general structure of the rotary body using a superconducting bearing. 超電導軸受の一般的な構造を示す概念図である。It is a conceptual diagram which shows the general structure of a superconducting bearing. 本発明の第1の実施形態に係る超電導軸受の構成を示す概念図である。It is a conceptual diagram which shows the structure of the superconducting bearing which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る超電導軸受の構成を示す概念図である。It is a conceptual diagram which shows the structure of the superconducting bearing which concerns on the 2nd Embodiment of this invention. 同実施形態に係る超電導バルク体の別の態様を示す概略平面図である。It is a schematic plan view which shows another aspect of the superconducting bulk body which concerns on the same embodiment. 本発明の第3の実施形態に係る超電導軸受の超電導バルク体の態様を示す概略平面図である。It is a schematic plan view which shows the aspect of the superconducting bulk body of the superconducting bearing which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る超電導軸受の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the superconducting bearing which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る超電導軸受の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the superconducting bearing which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る超電導軸受の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the superconducting bearing which concerns on the 6th Embodiment of this invention.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

まず、図1A〜図1Cに基づいて、一般的な超電導軸受の構造について説明する。図1A及び図1Bには、超電導軸受を用いた回転体の一般的な構造を示している。図1Aの上図は側面であり、下図は底面図である。図1Bの上図は、下図のA−A切断線における断面図であり、下図は底面図である。なお、以下の説明は、一般的な超電導軸受の構造に関するものであるが、後述する本発明に係る超電導バルク体もこのような軸受構造に適用することができる。   First, the structure of a general superconducting bearing will be described with reference to FIGS. 1A to 1C. 1A and 1B show a general structure of a rotating body using a superconducting bearing. The upper view of FIG. 1A is a side view, and the lower view is a bottom view. The upper view of FIG. 1B is a cross-sectional view taken along the line AA in the lower view, and the lower view is a bottom view. In addition, although the following description is related with the structure of a general superconducting bearing, the superconducting bulk body which concerns on this invention mentioned later can also be applied to such a bearing structure.

図1Aに示す構造体10は、回転体12の回転軸14の両端に超電導軸受11、15が設けられている。構造体10においては、両端の超電導軸受11、15によって回転体12が浮上支持されている。なお、図1Aでは、超電導軸受11、15が回転軸14の両端に取り付けられているが、回転体12の重量や安定性によっては、超電導軸受11、15は回転軸14の上端または下端のどちらか一方に取り付けられてもよい。一般に、上端に取り付けられた超電導軸受11は磁束のピン止め効果による吸引浮上、下端に取り付けられた超電導軸受15は磁束のピン止め効果による反発浮上を利用することが多い。   In the structure 10 shown in FIG. 1A, superconducting bearings 11 and 15 are provided at both ends of the rotating shaft 14 of the rotating body 12. In the structure 10, the rotating body 12 is levitated and supported by superconducting bearings 11 and 15 at both ends. In FIG. 1A, the superconducting bearings 11 and 15 are attached to both ends of the rotating shaft 14, but depending on the weight and stability of the rotating body 12, the superconducting bearings 11 and 15 are either the upper end or the lower end of the rotating shaft 14. It may be attached to either one. In general, the superconducting bearing 11 attached to the upper end often uses suction levitation due to the pinning effect of magnetic flux, and the superconducting bearing 15 attached to the lower end often uses repulsive levitation due to the pinning effect of magnetic flux.

また、図1Bに示す構造体20は、回転体22に取り付けられた超電導軸受21によって回転体22が浮上支持される構成となっている。図1Bの構造体20は、円板状の回転体22の一面にリング状の超電導軸受21が設けられている。回転体22が扁平な構造の場合には、図1Bのように回転体22に直接超電導軸受21を取り付けた方が浮上支持し易い。図1Aのような構造体10は、軸受部とは独立に回転体12の部分を大きくできるため、フライホイール式電力貯蔵装置などに適していると考えられる。図1Bのような構造の超電導軸受21は、回転体22の部分の上にウェハーや観測機器を載せることができるため、クリーンルームでのスピンコータのような機器や宇宙衛星に搭載される観測機器などに適していると考えられる。   In addition, the structure 20 shown in FIG. 1B has a configuration in which the rotating body 22 is supported by levitation by a superconducting bearing 21 attached to the rotating body 22. In the structure 20 of FIG. 1B, a ring-shaped superconducting bearing 21 is provided on one surface of a disk-shaped rotating body 22. When the rotating body 22 has a flat structure, the superconducting bearing 21 is directly attached to the rotating body 22 as shown in FIG. The structure 10 as shown in FIG. 1A can be considered to be suitable for a flywheel power storage device and the like because the rotating body 12 can be enlarged independently of the bearing portion. Since the superconducting bearing 21 having the structure as shown in FIG. 1B can mount a wafer and an observation device on the rotating body 22, it can be used for a device such as a spin coater in a clean room or an observation device mounted on a space satellite. It is considered suitable.

図1Cは、超電導軸受30の構造概念図である。超電導軸受30は、主に磁石部31と超電導バルク体部32とからなる。磁石部31は、磁束源となる永久磁石あるいは電磁石とそれを固定・保持する部分とからなる。磁石部31は永久磁石あるいは電磁石のどちらを用いてもよいが、永久磁石の方が外部電源と接続する必要がないため構造が簡便になる。超電導バルク体部32は、磁石部31から発生した磁束線に対してピン止め効果を発揮する超電導バルク体とそれを固定・保持する冷却容器からなり、超電導バルク体は別途設けた冷却機構によって冷却される。超電導バルク体を固定・保持する冷却容器は冷却効率を高めるため、銅やアルミ等の熱伝導率の高い部材を用いて製作され、超電導バルク体と冷却容器との間に真空グリースやエポキシ系樹脂等を塗布したり、インジウムのシート等を挿入したりして密着性を高めることで、熱接触性を更に高めることができる。   FIG. 1C is a conceptual diagram of the structure of the superconducting bearing 30. The superconducting bearing 30 mainly includes a magnet part 31 and a superconducting bulk body part 32. The magnet unit 31 includes a permanent magnet or an electromagnet serving as a magnetic flux source and a portion for fixing and holding the magnet. The magnet unit 31 may be either a permanent magnet or an electromagnet, but the permanent magnet does not need to be connected to an external power source, so that the structure becomes simple. The superconducting bulk body portion 32 includes a superconducting bulk body that exhibits a pinning effect on the magnetic flux lines generated from the magnet portion 31, and a cooling container that fixes and holds the superconducting bulk body. The superconducting bulk body is cooled by a separately provided cooling mechanism. Is done. The cooling vessel that fixes and holds the superconducting bulk body is manufactured using a material with high thermal conductivity such as copper or aluminum in order to increase cooling efficiency. Vacuum grease or epoxy resin is used between the superconducting bulk body and the cooling vessel. The thermal contact property can be further enhanced by applying a coating or the like or inserting an indium sheet or the like to improve the adhesion.

このような超電導軸受は真空雰囲気中に設置されるが、風損を増大させない程度、例えば10Pa以下の希ヘリウムガス等を導入してもよい。また、図1A及び図1Bでは省略してあるが、冷却前の超電導軸受には浮上支持機能がないので、超電導バルク体が十分に冷却されるまでの間、回転体を保持する機構も別途必要である。さらに、図1A〜図1Cの例では、磁石部と超電導バルク体部とを同一サイズで示してあるが、必ずしも同一サイズである必要はなく、磁石部と超電導バルク体部のそれぞれのサイズは用途・目的により適宜設計によって決めることができる。例えば、磁石部から発生する磁束は広がる傾向にあるので、磁石部からの磁束をより有効に利用したい場合には、磁石部のサイズよりも超電導バルク体部のサイズを大きくすればよい。また、図1Cの例では、磁石部31を上側部に、超電導バルク体部32を下側にして示してあるが、磁束のピン止め効果を利用すれば、その逆の構造も可能である。   Such a superconducting bearing is installed in a vacuum atmosphere. However, a rare helium gas or the like that does not increase the windage loss, for example, 10 Pa or less may be introduced. Although omitted in FIGS. 1A and 1B, since the superconducting bearing before cooling does not have a levitation support function, a separate mechanism for holding the rotating body is required until the superconducting bulk body is sufficiently cooled. It is. Furthermore, in the example of FIGS. 1A to 1C, the magnet portion and the superconducting bulk body portion are shown in the same size, but it is not always necessary to have the same size, and the respective sizes of the magnet portion and the superconducting bulk body portion are used.・ It can be determined by design according to the purpose. For example, since the magnetic flux generated from the magnet portion tends to spread, when the magnetic flux from the magnet portion is to be used more effectively, the size of the superconducting bulk body portion may be made larger than the size of the magnet portion. In the example of FIG. 1C, the magnet portion 31 is shown on the upper side and the superconducting bulk body portion 32 is shown on the lower side. However, if the magnetic pinning effect is used, the reverse structure is also possible.

以下に、本発明の各実施形態について、図2〜図8に沿って説明する。なお、本発明において、磁石部と対向する面に配置されている多結晶状の超電導バルク体の最大長は、例えば、後述する第1〜第5の実施形態のように円板またはリング形状の超電導バルク体の場合には、その外直径が最大長となり、第6の実施形態のようにリニア軸受のような矩形形状の超電導バルク体の場合には、その対角線の長さが最大長になる。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. In the present invention, the maximum length of the polycrystalline superconducting bulk body disposed on the surface facing the magnet portion is, for example, a disk or ring shape as in the first to fifth embodiments described later. In the case of a superconducting bulk body, the outer diameter is the maximum length, and in the case of a rectangular superconducting bulk body such as a linear bearing as in the sixth embodiment, the length of the diagonal line is the maximum length. .

(第1の実施形態)
図2は、本発明の第1の実施形態における超電導軸受100Aの一例を示す概念図である。図2の上図は、下図のB−B切断線における断面図であり、下図は底面図である。図2に示す超電導軸受100Aは、永久磁石あるいは電磁石からなる超電導軸受の磁石部110Aと、磁石部110Aと対向する部分を含むように配置された超電導バルク体120Aとからなる。磁石部110A及び超電導バルク体120Aは、いずれもリング状に形成されている。超電導バルク体120Aは、内周側に配置された多結晶状の超電導バルク体121と、多結晶状の超電導バルク体121の外周に配置された単結晶状の超電導バルク体123とからなる。多結晶状の超電導バルク体121は、磁石部110Aと対向して配置される。
(First embodiment)
FIG. 2 is a conceptual diagram showing an example of the superconducting bearing 100A in the first embodiment of the present invention. The upper view of FIG. 2 is a cross-sectional view taken along the line BB of the lower view, and the lower view is a bottom view. A superconducting bearing 100A shown in FIG. 2 includes a magnet part 110A of a superconducting bearing made of a permanent magnet or an electromagnet, and a superconducting bulk body 120A arranged so as to include a part facing the magnet part 110A. The magnet part 110A and the superconducting bulk body 120A are both formed in a ring shape. The superconducting bulk body 120 </ b> A includes a polycrystalline superconducting bulk body 121 disposed on the inner peripheral side, and a single crystalline superconducting bulk body 123 disposed on the outer periphery of the polycrystalline superconducting bulk body 121. Polycrystalline superconducting bulk body 121 is arranged to face magnet portion 110A.

磁石部110Aに対向する面の超電導バルク体が多結晶状の超電導バルク体121であるため、単結晶状の超電導バルク体123に比べて、大型サイズでも簡便に一体で製造できる。一体の超電導バルク体であれば、要素部材としての超電導バルク体間の継ぎ目がないため、継ぎ目部に起因する磁場の乱れによる軸受損失要因を排除できる。その結果、超電導軸受本来の超低損失な軸受を実現できる。さらに、多結晶状の超電導バルク体121の外周部にピン止め力の強い単結晶状の超電導バルク体123を配置することによって、ピン止め力の弱い多結晶状の超電導バルク体121だけで軸受を構成した場合に比べて、横方向の浮上安定性を格段に強化できる。単結晶状の超電導バルク体123は、浮上安定性を強化するためのものであるため、多結晶状の超電導バルク体121と異なり、一体である必要はない。例えば、図2に示す単結晶状の超電導バルク体123は、円周方向に同一サイズの8つの要素部材から構成されている。さらに、浮上安定性を強化可能であればよいため、単結晶状の超電導バルク体123は、動径方向の厚さが薄くてもよい。   Since the superconducting bulk body on the surface facing the magnet portion 110A is the polycrystalline superconducting bulk body 121, it can be easily and integrally manufactured even in a large size compared to the single-crystal superconducting bulk body 123. In the case of an integral superconducting bulk body, since there is no joint between the superconducting bulk bodies as element members, it is possible to eliminate a bearing loss factor due to magnetic field disturbance caused by the joint portion. As a result, a super-low-loss bearing inherent in a superconducting bearing can be realized. Further, by disposing a single-crystal superconducting bulk body 123 having a strong pinning force on the outer peripheral portion of the polycrystalline superconducting bulk body 121, a bearing can be provided only by the polycrystalline superconducting bulk body 121 having a weak pinning force. Compared to the case where it is configured, the floating stability in the horizontal direction can be remarkably enhanced. The single-crystal superconducting bulk body 123 is for enhancing the levitation stability, and therefore does not need to be integrated unlike the polycrystalline superconducting bulk body 121. For example, the single-crystal superconducting bulk body 123 shown in FIG. 2 is composed of eight element members having the same size in the circumferential direction. Furthermore, since it is sufficient that the levitation stability can be enhanced, the single crystal superconducting bulk body 123 may be thin in the radial direction.

本実施形態で用いる単結晶状の超電導バルク体123は、単結晶状のREBaCu7−x相(123相)中に直径20μm以下のREBaCuO相(211相)等に代表される非超電導相が分散した組織を有するものであればよく、特に、非超電導相が微細分散した組織を有するもの(以下、「QMG材料」ともいう。)が望ましい。ここで、単結晶状というのは、完璧な単結晶でなく、小傾角粒界等の実用に差し支えない欠陥を有するものも包含する。123相及び211相におけるREは、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luからなる希土類元素及びそれらの組み合わせである。La、Nd、Sm、Eu、Gdを含む123相は1:2:3の化学量論組成から外れ、REのサイトにBaが一部置換した状態になることもある。また、非超電導相である211相においても、La、Ndは、Y、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luとは幾分異なり、金属元素の比が非化学量論的組成であったり、結晶構造が異なったりすることが知られている。このような単結晶状の酸化物超電導バルク体123は、セラミックスの一般的な製法である焼結法ではなく、焼結温度よりも高い溶融温度以上に成形体を昇温して半溶融状態にした後、徐冷中に結晶成長させるという溶融結晶成長法で製造される。 The single-crystal superconducting bulk body 123 used in the present embodiment is composed of a RE 2 BaCuO 5 phase (211 phase) having a diameter of 20 μm or less in a single-crystal RE 1 Ba 2 Cu 3 O 7-x phase (123 phase), etc. It is sufficient that the non-superconducting phase represented by (2) has a dispersed structure, and a non-superconducting phase having a finely dispersed structure (hereinafter also referred to as “QMG material”) is preferable. Here, the term “single crystal” includes not only a perfect single crystal but also a defect having a defect that may be practically used such as a low-angle grain boundary. RE in the 123 phase and the 211 phase is a rare earth element composed of Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu, and combinations thereof. The 123 phase containing La, Nd, Sm, Eu, and Gd deviates from the 1: 2: 3 stoichiometric composition, and Ba may be partially substituted at the RE site. In the 211 phase which is a non-superconducting phase, La and Nd are somewhat different from Y, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, and the ratio of metal elements is non-stoichiometric. It is known that it has a theoretical composition or a different crystal structure. Such a single-crystal oxide superconducting bulk body 123 is not a sintering method, which is a general method for producing ceramics, but is heated to a melting temperature higher than a sintering temperature to be in a semi-molten state. After that, it is manufactured by a melt crystal growth method in which crystal growth is performed during slow cooling.

QMG材料中の211相の微細分散は、臨界電流密度(J)向上の観点から極めて重要である。Pt、Rh又はCeの少なくとも一つを微量添加することで、半溶融状態(211相と液相からなる状態)での211相の粒成長を抑制し、結果的に材料中の211相を約1μm程度に微細化する。添加量は、微細化効果が現れる量及び材料コストの観点から、Pt:0.2〜2.0質量%、Rh:0.01〜0.5質量%、Ce:0.5〜2.0質量%であることが望ましい。添加されたPt、Rh、Ceは123相中に一部固溶する。また、固溶できなかった元素は、BaやCuとの複合酸化物を形成し、材料中に点在することになる。123相中の211相の割合は、臨界電流密度J特性及び機械強度の観点から、5〜35体積%が望ましい。また、材料中には、50〜500μm程度のボイド(気泡)を5〜20体積%含むことが一般的であり、さらにAg添加した場合、添加量によって1〜500μm程度のAg又はAg化合物を0体積%超25体積%以下含む。 The fine dispersion of the 211 phase in the QMG material is extremely important from the viewpoint of improving the critical current density (J c ). By adding a trace amount of at least one of Pt, Rh, or Ce, the grain growth of the 211 phase in the semi-molten state (a state composed of the 211 phase and the liquid phase) is suppressed, and as a result, the 211 phase in the material is reduced to about Refine to about 1 μm. The addition amount is Pt: 0.2 to 2.0% by mass, Rh: 0.01 to 0.5% by mass, Ce: 0.5 to 2.0 from the viewpoint of the amount at which the effect of miniaturization appears and the material cost. It is desirable that it is mass%. The added Pt, Rh, and Ce partially dissolve in the 123 phase. In addition, elements that could not be dissolved form a composite oxide with Ba and Cu and are scattered in the material. 211 phase ratio of 123 phase, in view of the critical current density J c properties and mechanical strength, is desirably 5 to 35% by volume. Further, the material generally contains 5 to 20% by volume of voids (bubbles) of about 50 to 500 μm, and when Ag is added, 0 to about 1 to 500 μm of Ag or Ag compound is added depending on the addition amount. More than 25% by volume.

また、結晶成長後の超電導バルク体の酸素欠損量(x)は、0.5〜0.8程度で半導体的あるいは絶縁材料的な抵抗率の温度変化を示す。これを各RE系により350℃〜600℃で100時間程度、酸素雰囲気中においてアニールすることにより酸素が超電導バルク体中に取り込まれ、酸素欠損量(x)は0.2以下となり、良好な超電導特性を示す。このとき、超電導相中には双晶構造ができる。しかしながら、この点を含めここでは単結晶状と呼ぶことにする。酸化物超電導バルク体を超電導軸受として利用するには、結晶成長後の酸化物超電導バルク体を円板形状、四角形状、扇形状、瓦形状等の所定の形状に加工し、加工後に酸化物超電導バルク体の酸素アニールを行うことになる。   Further, the oxygen deficiency (x) of the superconducting bulk body after crystal growth is about 0.5 to 0.8, and shows a temperature change in resistivity like a semiconductor or an insulating material. This is annealed in an oxygen atmosphere at 350 ° C. to 600 ° C. for about 100 hours by each RE system, so that oxygen is taken into the superconducting bulk body and the oxygen deficiency (x) is 0.2 or less, which is a good superconductivity. Show properties. At this time, a twin structure is formed in the superconducting phase. However, including this point, it is referred to as a single crystal here. In order to use an oxide superconducting bulk body as a superconducting bearing, the oxide superconducting bulk body after crystal growth is processed into a predetermined shape such as a disk shape, a square shape, a fan shape, or a tile shape, and the oxide superconductivity after processing. The bulk body is subjected to oxygen annealing.

本実施形態に係る多結晶状の超電導バルク体121は、RE、Ba、Cuからなる多結晶状の酸化物超電導バルク体、Bi、Sr、Ca、Cuからなる多結晶状の酸化物超電導バルク体、あるいはMg、Bからなる多結晶状の金属超電導バルク体のいずれかである。RE、Ba、Cuからなる多結晶状の酸化物超電導バルク体やBi、Sr、Ca、Cuからなる多結晶状の酸化物超電導バルク体は、上述した単結晶状の酸化物超電導バルク体と異なり溶融結晶成長法で製作する必要はなく、構成元素の酸化物あるいは炭酸化物などの初期原料の粉末を所定の比率(例えば、RE系の場合には、RE:Ba:Cu=1:2:3、Bi系の場合には、Bi:Sr:Ca:Cu=2:2:2:3など)で混合、仮焼を行った後、成形体を850℃〜950℃程度の温度で焼結させることで製造される。このように多結晶状の酸化物超電導バルク体は、セラミックスの一般的な製法である焼結法で製造できるので、溶融結晶成長で製造しなければならない単結晶状の酸化物超電導バルク体に比べて簡便に製造できる。   The polycrystalline superconducting bulk body 121 according to the present embodiment includes a polycrystalline oxide superconducting bulk body made of RE, Ba, and Cu, and a polycrystalline oxide superconducting bulk body made of Bi, Sr, Ca, and Cu. Or a polycrystalline metal superconducting bulk body made of Mg or B. The polycrystalline oxide superconducting bulk body made of RE, Ba, Cu and the polycrystalline oxide superconducting bulk body made of Bi, Sr, Ca, Cu are different from the above-described single-crystal oxide superconducting bulk body. There is no need to manufacture by the melt crystal growth method, and powders of initial raw materials such as constituent element oxides or carbonates are in a predetermined ratio (for example, RE: Ba: Cu = 1: 2: 3 in the case of RE system). In the case of Bi type, after mixing and calcination with Bi: Sr: Ca: Cu = 2: 2: 2: 3, etc., the molded body is sintered at a temperature of about 850 ° C. to 950 ° C. It is manufactured by. In this way, a polycrystalline oxide superconducting bulk body can be manufactured by a sintering method, which is a general manufacturing method of ceramics, and therefore, compared with a single crystal oxide superconducting bulk body that must be manufactured by melt crystal growth. And can be easily manufactured.

また、Mg、Bからなる多結晶状の金属超電導バルク体は、Mg粉末とB粉末を1:2の比率で混合して成形したものを焼結して製造すればよいが、Mgの融点が650℃でBの融点が2076℃と大きく異なる。このため、焼結過程でMgが先に気化して散逸することによって組成がずれる可能性があるので、密閉した状態で焼結される。密度の高い焼結体を得るために、焼結過程において、熱間等方圧加圧(HIP;Hot Isostatic Pressing)などの圧力を加える手段を適用してもよい。なお、Mg及びBからなる多結晶状の金属超電導バルク体とは、Mg及びBを主成分とする金属超電導バルク体であって、炭素やSiCなどの炭素化合物、あるいはベンゼンやリンゴ酸などの有機物などのピン止め点となる添加物を含んでいてもよい。また、多結晶状の超電導バルク体として、Mg、Bからなる多結晶状の金属超電導バルク体を用いた場合、Mg、Bからなる多結晶状の金属超電導バルク体の比重は酸化物超電導バルク体の比重の3分の1から4分の1程度と軽量なので、大型の軸受でも軽量化が可能となる。   In addition, a polycrystalline metal superconducting bulk body composed of Mg and B may be manufactured by sintering and molding a mixture of Mg powder and B powder in a ratio of 1: 2, but the melting point of Mg is The melting point of B is greatly different from 2076 ° C. at 650 ° C. For this reason, since Mg may vaporize and dissipate first in the sintering process, the composition may be shifted, so that the sintering is performed in a sealed state. In order to obtain a sintered body having a high density, means such as hot isostatic pressing (HIP) may be applied in the sintering process. The polycrystalline metal superconducting bulk body composed of Mg and B is a metal superconducting bulk body mainly composed of Mg and B, and is a carbon compound such as carbon or SiC, or an organic substance such as benzene or malic acid. An additive which becomes a pinning point such as may be included. Further, when a polycrystalline metal superconducting bulk body composed of Mg and B is used as the polycrystalline superconducting bulk body, the specific gravity of the polycrystalline metal superconducting bulk body composed of Mg and B is the oxide superconducting bulk body. Because it is lightweight with about one third to one fourth of its specific gravity, it is possible to reduce the weight even with large bearings.

これらの多結晶状の超電導バルク体121は、臨界温度T及び臨界電流密度Jが低く、単独で用いた場合に従来は超電導軸受に適さないと考えられていた材料である。実際、超電導軸受を工業的に比較的よく使用されている沸点77Kの液体窒素を冷媒として使用した場合、その温度(77K)での浮上力は非常に小さく実用的でない。しかし、超電導特性は低温化するほど向上するので、40K以下の極低温領域で使用する軸受に対しては、ピン止め力の強い単結晶状の超電導バルク体に比べれば低いものの、実用レベルの数kg程度の浮上力は確保できる。 These polycrystalline shaped bulk superconductor 121, a low critical temperature T c and the critical current density J c, is a material which has been considered to be unsuitable for superconducting bearing conventionally when used alone. In fact, when liquid nitrogen having a boiling point of 77K, which is relatively well used in industry, is used as a refrigerant, the levitation force at that temperature (77K) is very small and impractical. However, since the superconducting properties improve as the temperature decreases, the bearings used in the cryogenic region below 40K are lower than the single-crystal superconducting bulk material with strong pinning force, but the number of practical levels. A levitation force of about kg can be secured.

また、超電導バルク体120Aのうち、磁石部110Aに対向する面に配置された超電導バルク体の最大長が150mm以上である大型の超電導軸受であっても、多結晶状の超電導バルク体121であれば、比較的簡便に継ぎ目なく一体に製造でき、継ぎ目部に起因する磁場の乱れによる軸受損失要因を排除できる。しかし、40K以下の極低温領域で浮上力は確保できても、多結晶状の超電導バルク体121では十分な浮上安定を確保することは難しい。そこで、多結晶状の超電導バルク体121の浮上安定性の低さを補うために、ピン止め力の強い単結晶状の超電導バルク体123が多結晶状の超電導バルク体121の外周に配置される。その際、単結晶状の超電導バルク体123においては、製造可能なサイズで複数個に分けて製造し、分割配置することができる。なお、本実施形態に係る超電導バルク体は、図1Bの軸受構造を本発明に適用した場合にも同様の構成とすることができる。   Further, even if the superconducting bulk body 120A is a large superconducting bearing having a maximum length of 150 mm or more of the superconducting bulk body disposed on the surface facing the magnet portion 110A, the polycrystalline superconducting bulk body 121 may be used. Thus, it can be manufactured relatively easily and integrally without any joint, and the bearing loss factor due to the disturbance of the magnetic field caused by the joint can be eliminated. However, even if the levitation force can be ensured in an extremely low temperature region of 40K or less, it is difficult to ensure sufficient levitation stability with the polycrystalline superconducting bulk body 121. Therefore, in order to compensate for the low floating stability of the polycrystalline superconducting bulk body 121, the single-crystal superconducting bulk body 123 having a strong pinning force is disposed on the outer periphery of the polycrystalline superconducting bulk body 121. . At that time, the single crystal superconducting bulk body 123 can be manufactured in a plurality of sizes that can be manufactured, and can be divided and arranged. In addition, the superconducting bulk body according to the present embodiment can have the same configuration even when the bearing structure of FIG. 1B is applied to the present invention.

(第2の実施形態)
図3は、本発明の第2の実施形態に係る超電導軸受100Bの構成を示す概念図である。図2に示した超電導軸受100Aは、単結晶状の超電導バルク体123は多結晶状の超電導バルク体121の外周側に配置されていたが、本実施形態に係る超電導軸受100Bは、図3に示すように単結晶状の超電導バルク体123が多結晶状の超電導バルク体121の内周側に配置されている。
(Second Embodiment)
FIG. 3 is a conceptual diagram showing a configuration of a superconducting bearing 100B according to the second embodiment of the present invention. In the superconducting bearing 100A shown in FIG. 2, the single-crystal superconducting bulk body 123 is disposed on the outer peripheral side of the polycrystalline superconducting bulk body 121, but the superconducting bearing 100B according to this embodiment is shown in FIG. As shown, a single crystal superconducting bulk body 123 is disposed on the inner peripheral side of the polycrystalline superconducting bulk body 121.

超電導バルク体120B上に浮上している磁石部110Bの横方向(超電導バルク体の浮上方向(Z方向)に対して直交する方向)の安定性のためには、すなわち浮上している磁石部110Aが超電導バルク体120Bの外側に外れないためには、一見すると外周側にピン止め力の強い単結晶状の超電導バルク体123を配置することが有効のように考えられる。しかし、単結晶状の超電導バルク体123を多結晶状の超電導バルク体121の内周側に配置しても、同様に横方向の安定性は確保可能である。単結晶状の超電導バルク体123を多結晶状の超電導バルク体121の内周側に配置することによって、単結晶状の超電導バルク体123を多結晶状の超電導バルク体121の外周側に配置するよりも単結晶状の超電導バルク体123の使用量を少なくすることができる。単結晶状の超電導バルク体123は溶融結晶成長プロセスによって製造する必要があるので、その使用量を少なくできることは製造を簡便にできることになる。   For the stability in the lateral direction of the magnet part 110B levitated on the superconducting bulk body 120B (direction perpendicular to the levitating direction (Z direction) of the superconducting bulk body), that is, the magnet part 110A levitating. In order to prevent it from coming out of the superconducting bulk body 120B, it seems to be effective to dispose a single crystal superconducting bulk body 123 having a strong pinning force on the outer peripheral side. However, even if the single-crystal superconducting bulk body 123 is arranged on the inner peripheral side of the polycrystalline superconducting bulk body 121, the lateral stability can be secured in the same manner. By disposing the single-crystal superconducting bulk body 123 on the inner peripheral side of the polycrystalline superconducting bulk body 121, the single-crystal superconducting bulk body 123 is disposed on the outer peripheral side of the polycrystalline superconducting bulk body 121. As a result, the amount of single-crystal superconducting bulk material 123 used can be reduced. Since it is necessary to manufacture the single-crystal superconducting bulk body 123 by a melt crystal growth process, the fact that the amount used can be reduced can simplify the manufacture.

さらに、単結晶状の超電導バルク体123を多結晶状の超電導バルク体121の内周側に配置することによって、単結晶状の超電導バルク体123のサイズを小さくできる。すなわち、超電導バルク体120Bのうち、磁石部110Bと対向する面に配置された多結晶状の超電導バルク体121の最大長(ここでは外直径)が150mm以上であっても、内周側に配置された単結晶状の超電導バルク体123の最大長(ここでは外直径)が150mm未満であれば、図4に示す超電導バルク体120Cのように、多結晶状の超電導バルク体121の内周側に配置する単結晶状の超電導バルク体123も分割せずに継ぎ目なく一体にすることもできる。   Furthermore, by arranging the single crystal superconducting bulk body 123 on the inner peripheral side of the polycrystalline superconducting bulk body 121, the size of the single crystal superconducting bulk body 123 can be reduced. That is, even if the maximum length (here, the outer diameter) of the polycrystalline superconducting bulk body 121 arranged on the surface facing the magnet portion 110B in the superconducting bulk body 120B is 150 mm or more, it is arranged on the inner peripheral side. If the maximum length of the single-crystal superconducting bulk body 123 (in this case, the outer diameter) is less than 150 mm, the inner peripheral side of the polycrystalline superconducting bulk body 121 as in the superconducting bulk body 120C shown in FIG. The single-crystal superconducting bulk body 123 disposed on the substrate can also be integrated seamlessly without being divided.

(第3の実施形態)
図5は、本発明の第3の実施形態に係る超電導軸受の超電導バルク体120Dの態様を示す概略平面図である。本実施形態に係る超電導軸受は、図2に示した第1の実施形態に係る超電導軸受100Aの超電導バルク体120Aの代わりに図5に示す超電導バルク体120Dを設けたものである。いずれの超電導バルク体120A、120Dも多結晶状の超電導バルク体121の外周側に単結晶状の超電導バルク体123が配置されているが、単結晶状の超電導バルク体123の構成が相違する。すなわち、単結晶状の超電導バルク体123は、第1の実施形態では複数個の要素部材を連続的に配置して構成していたが、本実施形態では要素部材を離散的に配置している。
(Third embodiment)
FIG. 5 is a schematic plan view showing an aspect of the superconducting bulk body 120D of the superconducting bearing according to the third embodiment of the present invention. The superconducting bearing according to the present embodiment is provided with a superconducting bulk body 120D shown in FIG. 5 instead of the superconducting bulk body 120A of the superconducting bearing 100A according to the first embodiment shown in FIG. In any of the superconducting bulk bodies 120A and 120D, the single-crystal superconducting bulk body 123 is arranged on the outer peripheral side of the polycrystalline superconducting bulk body 121, but the configuration of the single-crystal superconducting bulk body 123 is different. That is, the single-crystal superconducting bulk body 123 is configured by continuously arranging a plurality of element members in the first embodiment, but the element members are discretely arranged in the present embodiment. .

磁石部110Aと対向している多結晶状の超電導バルク体121は軸受損失を極限まで低減するために連続的に配置する必要があるが、横方向の安定性の機能を有する単結晶状の超電導バルク体123については必ずしも連続的に配置する必要はない。したがって、本実施形態のように、要素部材を離散的に配置して単結晶状の超電導バルク体123を構成することで、連続的に配置するよりも単結晶状の超電導バルク体123の使用量を少なくすることができる。単結晶状の超電導バルク体123は溶融結晶成長プロセスによって製造する必要があるので、その使用量を少なくできることは製造を簡便にできることになる。なお、単結晶状の超電導バルク体123を離散的に配置する場合の要素部材の数やその配置の仕方は、図5の例に限定されるものではない。   The polycrystalline superconducting bulk body 121 facing the magnet part 110A needs to be continuously arranged in order to reduce the bearing loss to the utmost limit. However, the single crystal superconducting body having the function of lateral stability is required. The bulk body 123 is not necessarily arranged continuously. Therefore, as in the present embodiment, the element member is arranged discretely to form the single-crystal superconducting bulk body 123, so that the amount of the single-crystal superconducting bulk body 123 used is larger than the continuous arrangement. Can be reduced. Since it is necessary to manufacture the single-crystal superconducting bulk body 123 by a melt crystal growth process, the fact that the amount used can be reduced can simplify the manufacture. Note that the number of element members and how to arrange the single-crystal superconducting bulk bodies 123 in a discrete manner are not limited to the example shown in FIG.

(第4の実施形態)
図6は、本発明の第4の実施形態に係る超電導軸受100Eの構成を示す概略断面図である。本実施形態に係る超電導軸受100Eは、図2に示した第1の実施形態に係る超電導軸受100Aの超電導バルク体120Aと比較して、多結晶状の超電導バルク体121の外周側に加え、底面側にも単結晶状の超電導バルク体125を配置した点で相違する。
(Fourth embodiment)
FIG. 6 is a schematic cross-sectional view showing a configuration of a superconducting bearing 100E according to the fourth embodiment of the present invention. Compared with the superconducting bulk body 120A of the superconducting bearing 100A according to the first embodiment shown in FIG. 2, the superconducting bearing 100E according to this embodiment has a bottom surface in addition to the outer peripheral side of the polycrystalline superconducting bulk body 121. The difference is that a single-crystal superconducting bulk body 125 is also arranged on the side.

上述したように、多結晶状の超電導バルク体121はピン止め力が弱いため、実用的な浮上力を得るためには、40K以下の極低温領域まで冷却して使用する必要がある。そこで、さらに浮上力を向上させるため、本実施形態に係る超電導バルク体120Eのように、多結晶状の超電導バルク体121の底面側に単結晶状の超電導バルク体123を配置することが有効になる。この場合、磁石部110Eと対向する上側の多結晶状の超電導バルク体121が厚いと、底面側に配置した単結晶状の超電導バルク体125の効果がなくなるので、多結晶状の超電導バルク体121の厚さは5mm以下が好ましい。   As described above, since the polycrystalline superconducting bulk body 121 has a weak pinning force, it needs to be cooled to an extremely low temperature region of 40K or less in order to obtain a practical levitation force. Therefore, in order to further improve the levitation force, it is effective to dispose the single crystalline superconducting bulk body 123 on the bottom surface side of the polycrystalline superconducting bulk body 121 like the superconducting bulk body 120E according to the present embodiment. Become. In this case, if the upper polycrystalline superconducting bulk body 121 facing the magnet portion 110E is thick, the effect of the single crystalline superconducting bulk body 125 disposed on the bottom surface side is lost, so the polycrystalline superconducting bulk body 121 is removed. The thickness is preferably 5 mm or less.

また、大型の軸受の場合、単結晶状の超電導バルク体を一体で製造することは難しい。このため、多結晶状の超電導バルク体121の底面側に配置される単結晶状の超電導バルク体125は、複数の要素部材を並べて配置し構成され、継ぎ目が存在することになる。しかし、当該単結晶状の超電導バルク体125の要素部材間の継ぎ目部の上には多結晶状の超電導バルク体121が存在している。これにより、単結晶状の超電導バルク体125の要素部材間の継ぎ目部は軸受損失を増大する要因にならず、超電導軸受本来の超低損失な軸受を実現できる。   In the case of a large bearing, it is difficult to integrally manufacture a single crystal superconducting bulk body. For this reason, the single-crystal superconducting bulk body 125 arranged on the bottom surface side of the polycrystalline superconducting bulk body 121 is configured by arranging a plurality of element members side by side, and there is a seam. However, the polycrystalline superconducting bulk body 121 exists on the joint between the element members of the single crystal superconducting bulk body 125. As a result, the joint between the element members of the single-crystal superconducting bulk body 125 does not cause an increase in bearing loss, and a super-low-loss bearing inherent in a superconducting bearing can be realized.

(第5の実施形態)
図7は、本発明の第5の実施形態に係る超電導軸受100Fの構成を示す概略断面図である。本実施形態に係る超電導軸受100Fは、図2に示した第1の実施形態に係る超電導軸受100Aの超電導バルク体120Aと比較して、多結晶状の超電導バルク体121の外周側の単結晶状の超電導バルク体123を浮上方向にずらして配置した点で相違する。
(Fifth embodiment)
FIG. 7 is a schematic cross-sectional view showing the configuration of a superconducting bearing 100F according to the fifth embodiment of the present invention. The superconducting bearing 100F according to the present embodiment has a single crystal shape on the outer peripheral side of the polycrystalline superconducting bulk body 121 as compared with the superconducting bulk body 120A of the superconducting bearing 100A according to the first embodiment shown in FIG. This is different in that the superconducting bulk body 123 is shifted in the flying direction.

すなわち、図2に示したように、第1の実施形態に係る超電導バルク体120Aでは、多結晶状の超電導バルク体121と、その外周側に配置された単結晶状の超電導バルク体123とを、浮上方向(Z方向)において同じ高さに配置していた。これに対して、本実施形態に係る超電導バルク体120Fでは、図7に示すように、単結晶状の超電導バルク体123が多結晶状の超電導バルク体121よりも高い位置、すなわち磁石部110F側に配置されている。このように、ピン止め力の強い単結晶状の超電導バルク体123を多結晶状の超電導バルク体121よりも磁石部110F側に配置することによって、磁石部110Fが軸受から外れるような動きに対して、元の位置に戻そうとする力がより強く働くようになり、浮上安定性がより優れた超電導軸受100Fが実現できる。   That is, as shown in FIG. 2, in the superconducting bulk body 120A according to the first embodiment, a polycrystalline superconducting bulk body 121 and a single-crystal superconducting bulk body 123 disposed on the outer peripheral side are provided. , They were arranged at the same height in the flying direction (Z direction). On the other hand, in the superconducting bulk body 120F according to the present embodiment, as shown in FIG. 7, the single-crystal superconducting bulk body 123 is positioned higher than the polycrystalline superconducting bulk body 121, that is, the magnet part 110F side. Is arranged. In this way, by arranging the single-crystal superconducting bulk body 123 having a strong pinning force on the magnet part 110F side relative to the polycrystalline superconducting bulk body 121, the movement of the magnet part 110F coming off the bearing is prevented. As a result, the force to return to the original position works more strongly, and the superconducting bearing 100F with better floating stability can be realized.

(第6の実施形態)
図8は、本発明の第6の実施形態に係る超電導軸受100Gの構成を示す概略断面図である。上記第1〜第5の実施形態は、回転体を支持する回転軸受に関するものであったが、本実施形態に係る超電導軸受100Gは、図8に示すように、直線方向に移動するものを支持するリニア軸受に関するものである。リニア軸受であっても、基本的な構造は回転軸受と同じである。
(Sixth embodiment)
FIG. 8 is a schematic cross-sectional view showing the configuration of a superconducting bearing 100G according to the sixth embodiment of the present invention. Although the said 1st-5th embodiment was related to the rotary bearing which supports a rotary body, the superconducting bearing 100G which concerns on this embodiment supports what moves to a linear direction, as shown in FIG. The present invention relates to a linear bearing. Even a linear bearing has the same basic structure as a rotary bearing.

すなわち、本実施形態に係る超電導軸受100Gは、直線状の磁石部110Gと、磁石部110Gと対向する部分を含むように配置された直線状の超電導バルク体120Gとからなる。超電導バルク体120Gは、磁石部110Gと対向する位置に配置された多結晶状の超電導バルク体121と、多結晶状の超電導バルク体121の幅方向(X方向)両側に配置された単結晶状の超電導バルク体123、125とからなる。なお、上記第1〜第5の実施形態に示した回転軸受の場合には、単結晶状の超電導バルク体123は多結晶状の超電導バルク体121の外周側または内周側のうち少なくともいずれか一方に配置されていればよいが、本実施形態に係るリニア軸受の場合には、浮上安定性を確保するためには、多結晶状の超電導バルク体121の必ず両側に単結晶状の超電導バルク体123、125を配置する必要がある。単結晶状の超電導バルク体123、125の配置は、回転軸受と同様、連続的配置でも離散的配置でもよく、さらに浮上力を向上させるために、多結晶状の超電導バルク体121の底面側に配置してもよい。   That is, the superconducting bearing 100G according to the present embodiment includes a linear magnet portion 110G and a linear superconducting bulk body 120G arranged so as to include a portion facing the magnet portion 110G. The superconducting bulk body 120G includes a polycrystalline superconducting bulk body 121 disposed at a position facing the magnet part 110G, and a single crystalline state disposed on both sides in the width direction (X direction) of the polycrystalline superconducting bulk body 121. Of the superconducting bulk bodies 123 and 125. In the case of the rotary bearing shown in the first to fifth embodiments, the single crystal superconducting bulk body 123 is at least one of the outer peripheral side and the inner peripheral side of the polycrystalline superconducting bulk body 121. However, in the case of the linear bearing according to the present embodiment, in order to ensure levitation stability, the single crystal superconducting bulk is always provided on both sides of the polycrystalline superconducting bulk body 121. It is necessary to arrange the bodies 123 and 125. The single-crystal superconducting bulk bodies 123 and 125 may be arranged continuously or discretely as in the case of the rotary bearing, and further on the bottom side of the polycrystalline superconducting bulk body 121 in order to improve the levitation force. You may arrange.

なお、将来的に、最大長が150mmを超える単結晶状の超電導バルク体を製造可能となった場合にも、本発明による、簡便に製造可能な大型の超電導軸受を提供でき、また、本発明の一形態においては、従来よりも軽量化された超電導軸受を提供できるという点で、本発明の有用性は変わらない。   In the future, even when a single-crystal superconducting bulk body having a maximum length exceeding 150 mm can be produced, a large superconducting bearing that can be easily produced according to the present invention can be provided. In one embodiment, the usefulness of the present invention remains the same in that a superconducting bearing that is lighter than before can be provided.

(実施例1)
本実施例では、図2に示した多結晶状の超電導バルク体の外周側に単結晶状の超電導バルク体を連続的に配置した超電導軸受について、浮上安定性を検証した。
Example 1
In this example, the levitation stability was verified for a superconducting bearing in which a single-crystal superconducting bulk body was continuously arranged on the outer peripheral side of the polycrystalline superconducting bulk body shown in FIG.

超電導軸受の製作は以下のように行った。まず、市販されている純度99.9質量%のイットリウム(Y)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Y:Ba:Cu=1:2:3のモル比で秤量し、この秤量粉を2時間かけて十分混練してから、大気中にて1173Kで8時間仮焼した。次に、金型を用いて仮焼粉をリング形状に成形し、この成形体を1173Kで8時間焼結させ、外直径150mm、内直径90mm、高さ20mmのリング形状の多結晶状の酸化物超電導バルク体を得た。   The superconducting bearing was manufactured as follows. First, commercially available powders of 99.9% by mass purity of yttrium (Y), barium (Ba), and copper (Cu), respectively, with a molar ratio of Y: Ba: Cu = 1: 2: 3. The weighed powder was sufficiently kneaded over 2 hours and then calcined at 1173K for 8 hours in the air. Next, the calcined powder is formed into a ring shape using a mold, and this formed body is sintered at 1173K for 8 hours, and is a ring-shaped polycrystalline oxide having an outer diameter of 150 mm, an inner diameter of 90 mm, and a height of 20 mm. A bulk superconductor was obtained.

次に、市販されている純度99.9質量%のガドリニウム(Gd)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Gd:Ba:Cu=1.6:2.3:3.3のモル比で秤量し、それに白金を0.5質量%及び銀を10質量%加えた。この秤量粉を2時間かけて十分混練してから、大気中にて1173Kで8時間仮焼した。次に、金型を用いて仮焼粉を円板形状に成形した。この成形体を1423Kまで加熱して溶融状態にし、30分間保持した後、降温途中で種付けを行い、1278K〜1252Kの温度領域を100時間かけて徐冷し結晶成長させ、直径50mm、高さ20mmの単結晶状の超電導バルク体を得た。そして、この直径50mmの単結晶状の超電導バルク体8個を多結晶状の超電導バルク体の外周に接するように扇形状の要素部材に加工し、酸素気流中において723Kで100時間熱処理した。   Next, commercially available powders of gadolinium (Gd), barium (Ba), and copper (Cu) having a purity of 99.9% by mass are respectively converted into Gd: Ba: Cu = 1.6: 2.3. : Weighed at a molar ratio of 3.3, and added 0.5% by mass of platinum and 10% by mass of silver thereto. The weighed powder was sufficiently kneaded over 2 hours and then calcined at 1173 K for 8 hours in the air. Next, the calcined powder was formed into a disk shape using a mold. The molded body was heated to 1423K to be in a molten state, held for 30 minutes, and then seeded in the middle of lowering the temperature, and a temperature region of 1278K to 1252K was gradually cooled over 100 hours to grow a crystal, having a diameter of 50 mm and a height of 20 mm. A single crystalline superconducting bulk body was obtained. The eight single-crystal superconducting bulk bodies having a diameter of 50 mm were processed into fan-shaped element members so as to be in contact with the outer periphery of the polycrystalline superconducting bulk body, and heat-treated at 723 K for 100 hours in an oxygen stream.

その後、外直径150mmのリング形状の多結晶状の酸化物超電導バルク体の外周に、動径方向長さ10mmの扇形状の単結晶状の超電導バルク体の要素部材を周方向に連続的に8個配置し、リング状の超電導バルク体を形成した。そして、当該超電導バルク体を、外直径140mm、内直径100mm、高さ10mmのリング形状で、表面磁束密度が0.4TのNd−Fe−B系永久磁石と組み合わせ、超電導軸受を製作した。こうして製作された超電導軸受に対して回転実験を行った。回転実験では、冷凍機を用いて超電導バルク体を40Kに冷却した状態で、磁石部に設けたエアタービンに圧縮空気を吹き付けることで回転駆動を行った。その結果、本実施例の構成の超電導軸受は1000rpmまで安定的に回転できた。   Thereafter, the element member of the fan-shaped single crystal superconducting bulk body having a radial length of 10 mm is continuously provided in the circumferential direction on the outer periphery of the ring-shaped polycrystalline oxide superconducting bulk body having an outer diameter of 150 mm. A ring-shaped superconducting bulk body was formed. Then, the superconducting bulk body was combined with an Nd—Fe—B permanent magnet having an outer diameter of 140 mm, an inner diameter of 100 mm, and a height of 10 mm and a surface magnetic flux density of 0.4 T to produce a superconducting bearing. A rotation experiment was performed on the superconducting bearing thus manufactured. In the rotation experiment, rotation driving was performed by blowing compressed air to the air turbine provided in the magnet part in a state where the superconducting bulk body was cooled to 40K using a refrigerator. As a result, the superconducting bearing having the configuration of this example was able to rotate stably up to 1000 rpm.

比較のため、まず、外周部に単結晶状の超電導バルク体が配置されていない、多結晶状の超電導バルク体のみからなる超電導バルク体を用いて、同様の回転試験を行った。その結果、回転している途中で磁石部が超電導軸受から外れ、浮上安定性が低いことが確認できた。   For comparison, first, a similar rotation test was performed using a superconducting bulk body composed of only a polycrystalline superconducting bulk body in which no single crystalline superconducting bulk body is disposed on the outer peripheral portion. As a result, it was confirmed that the magnet part was detached from the superconducting bearing during rotation, and the levitation stability was low.

また、別の比較のために、磁石部に対向している面の外直径150mmのリング形状の酸化物超電導バルク体を単結晶状の超電導バルク体で構成して同様の回転試験を行った。その結果、超電導軸受は1000rpmまで安定的に回転できた。しかし、直径150mmの単結晶状の酸化物超電導バルク体を溶融結晶成長法で製作する過程で、1278K〜1252Kの温度領域を300時間かけて徐冷し結晶成長させたので、8時間で焼結させた多結晶状の酸化物超電導バルク体に比べて、製作に要する時間が大幅に長くなった。さらに、多結晶状の超電導バルク体は一度の焼結で製作が可能であったが、直径150mmの単結晶状の酸化物超電導バルク体は、大型サイズのため結晶成長の途中に外周部近傍で種結晶以外からの核生成が起き多結晶化したため一度では製作できなかった。実際には、2度製作を繰り返した後に3度目に単結晶化に成功した。   For another comparison, a ring-shaped oxide superconducting bulk body having an outer diameter of 150 mm on the surface facing the magnet portion was composed of a single crystal superconducting bulk body, and the same rotation test was performed. As a result, the superconducting bearing was able to rotate stably up to 1000 rpm. However, in the process of manufacturing a single-crystal oxide superconducting bulk body with a diameter of 150 mm by the melt crystal growth method, the temperature range of 1278 K to 1252 K was gradually cooled over 300 hours to grow the crystal, so that it sintered in 8 hours. Compared with the polycrystalline oxide superconducting bulk material made, the time required for the production was significantly increased. Furthermore, a polycrystalline superconducting bulk body could be manufactured by one-time sintering, but a single-crystal oxide superconducting bulk body having a diameter of 150 mm was large in size and was near the outer periphery during crystal growth. Nucleation from other than the seed crystal occurred and it was polycrystallized, so it could not be manufactured once. Actually, after the production was repeated twice, the single crystallization was succeeded for the third time.

以上の結果から、本発明の構造を有する超電導軸受とすることで、浮上安定性に優れ、簡便に製造できる大型の超電導軸受を提供することができる。   From the above results, by using the superconducting bearing having the structure of the present invention, it is possible to provide a large superconducting bearing that has excellent levitation stability and can be easily manufactured.

(実施例2)
本実施例では、図4に示した多結晶状の超電導バルク体の内周側に一体の単結晶状の超電導バルク体を配置した超電導軸受について、浮上安定性を検証した。
(Example 2)
In this example, the levitation stability was verified for a superconducting bearing in which an integral single crystal superconducting bulk body is arranged on the inner peripheral side of the polycrystalline superconducting bulk body shown in FIG.

超電導軸受の製作は以下のように行った。まず、市販されている純度99.9質量%のマグネシウム(Mg)及び硼素(B)の粉末をMg:B=1:2のモル比で秤量し、この秤量粉を1時間かけて十分混練した。この混合粉をステンレス製の金型に入れ密閉し、金型ごと電気炉に入れ、1123Kで6時間焼結させ、外直径160mm、内直径110mm、高さ15mmのリング形状の多結晶状の超電導バルク体を得た。ここで得られたMg、Bからなる多結晶状の金属超電導バルク体を、以下「Mg−B系の多結晶状の超電導バルク体」ともいう。   The superconducting bearing was manufactured as follows. First, magnesium (Mg) and boron (B) powders having a purity of 99.9% by mass were weighed at a molar ratio of Mg: B = 1: 2, and the weighed powder was sufficiently kneaded over 1 hour. . This mixed powder is put in a stainless steel mold and sealed, and the whole mold is put in an electric furnace and sintered at 1123 K for 6 hours, and is a ring-shaped polycrystalline superconductor having an outer diameter of 160 mm, an inner diameter of 110 mm, and a height of 15 mm. A bulk body was obtained. The polycrystalline metal superconducting bulk body made of Mg and B obtained here is also referred to as “Mg—B-based polycrystalline superconducting bulk body”.

次に、市販されている純度99.9質量%のガドリニウム(Gd)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Gd:Ba:Cu=2:2.5:3.5のモル比で秤量し、それにCeOを1質量%及び銀を15質量%加えた。この秤量粉を2時間かけて十分混練してから、大気中にて1173Kで8時間仮焼した。次に、金型を用いて仮焼粉を円板形状に成形した。この成形体を1423Kまで加熱して溶融状態にし、30分間保持した後、降温途中で種付けを行い、1278K〜1252Kの温度領域を200時間かけて徐冷し結晶成長させ、直径110mm、高さ15mmの単結晶状の超電導バルク体を得た。そして、この単結晶状の超電導バルク体を、その外周が上述の多結晶状の超電導バルク体の内周に接するようなリング形状に加工し、酸素気流中において723Kで100時間熱処理した。 Next, commercially available powders of gadolinium (Gd), barium (Ba), and copper (Cu) having a purity of 99.9% by mass are respectively converted into Gd: Ba: Cu = 2: 2.5: 3. The mixture was weighed at a molar ratio of 0.5, and 1% by mass of CeO 2 and 15% by mass of silver were added thereto. The weighed powder was sufficiently kneaded over 2 hours and then calcined at 1173 K for 8 hours in the air. Next, the calcined powder was formed into a disk shape using a mold. This molded body was heated to 1423K to be melted and held for 30 minutes, and then seeded in the middle of temperature reduction, and the temperature range of 1278K to 1252K was gradually cooled over 200 hours to grow crystals, with a diameter of 110 mm and a height of 15 mm. A single crystalline superconducting bulk body was obtained. Then, this single-crystal superconducting bulk body was processed into a ring shape whose outer periphery was in contact with the inner periphery of the above-described polycrystalline superconducting bulk body, and was heat-treated at 723 K for 100 hours in an oxygen stream.

その後、外直径160mm、内直径110mmのリング形状の多結晶状の超電導バルク体の内周に、動径方向長さ5mmのリング形状の単結晶状の超電導バルク体を配置し、超電導バルク体を形成した。そして、当該超電導バルク体を、外直径150mm、内直径120mm、高さ15mmのリング形状で、表面磁束密度が0.5TのNd−Fe−B系永久磁石と組み合わせ、超電導軸受を製作した。こうして製作された超電導軸受に対して回転実験を行った。回転実験では、液体ヘリウムの蒸発ガスを用いて超電導バルク体を20Kに冷却した状態で、磁石部の設けたエアタービンに圧縮空気を吹き付けることで回転駆動を行った。その結果、本実施例の構成の超電導軸受は1000rpmまで安定的に回転できた。   Thereafter, a ring-shaped single-crystal superconducting bulk body having a radial length of 5 mm is arranged on the inner circumference of a ring-shaped polycrystalline superconducting bulk body having an outer diameter of 160 mm and an inner diameter of 110 mm. Formed. Then, the superconducting bulk body was combined with an Nd—Fe—B permanent magnet having an outer diameter of 150 mm, an inner diameter of 120 mm, and a height of 15 mm and a surface magnetic flux density of 0.5 T to produce a superconducting bearing. A rotation experiment was performed on the superconducting bearing thus manufactured. In the rotation experiment, rotation driving was performed by blowing compressed air to an air turbine provided with a magnet portion in a state where the superconducting bulk body was cooled to 20 K using an evaporation gas of liquid helium. As a result, the superconducting bearing having the configuration of this example was able to rotate stably up to 1000 rpm.

比較のため、内周部に単結晶状の超電導バルク体が配置されていない、多結晶状の超電導バルク体のみからなる超電導バルク体を用いて、同様の回転試験を行った。その結果、回転している途中で磁石部が超電導軸受から外れた。これより、多結晶状の超電導バルク体のみからなる超電導バルク体を用いた場合には、浮上安定性が低いことが確認された。   For comparison, the same rotation test was performed using a superconducting bulk body composed of only a polycrystalline superconducting bulk body in which no single crystalline superconducting bulk body is disposed on the inner periphery. As a result, the magnet part was detached from the superconducting bearing during the rotation. From this, it was confirmed that when a superconducting bulk body composed only of a polycrystalline superconducting bulk body was used, the levitation stability was low.

磁石部に対向している面の外直径160mmのリング形状の超電導バルク体は大型であるため、単結晶状の超電導バルク体のみでの製造は困難である。しかし、以上の結果から、本発明の実施例のように、容易に製造可能な多結晶状の超電導バルク体の内周側に単結晶状の超電導バルク体を設けるだけで、浮上安定性に優れ、簡便に製造できる大型の超電導軸受を提供することができる。   Since the ring-shaped superconducting bulk body having an outer diameter of 160 mm on the surface facing the magnet portion is large, it is difficult to manufacture only the single-crystal superconducting bulk body. However, from the above results, as shown in the examples of the present invention, the floating stability is excellent simply by providing a single-crystal superconducting bulk body on the inner peripheral side of a polycrystalline superconducting bulk body that can be easily manufactured. A large superconducting bearing that can be easily manufactured can be provided.

さらに、多結晶状の超電導バルク体を、本実施例のように、Mg−B系の多結晶状の超電導バルク体で製造することで、超電導バルク体を軽量化することができる。例えば、本実施例の多結晶状の超電導バルク体を酸化物系超電導バルク体で製造した場合、その重量は1030gであったのに対して、Mg−B系の多結晶状の超電導バルク体で製造した場合にはその重量は230gとなり、超電導軸受における多結晶状の超電導バルク体の部分の重量を約1/4にすることができた。また、超電導バルク体全体の重量でみると、内周側に単結晶状の酸化物超電導体が配置され、外周側に多結晶状の酸化物超電導バルク体が配置された超電導バルク体の重量は1190gであったが、本実施例のように外周側の多結晶状の超電導バルク体をMg−B系の多結晶状の超電導バルク体とすると、超電導バルク体の重量は390gとなった。すなわち、超電導軸受における超電導バルク体の全重量を約1/3にすることができた。本結果より、多結晶状の超電導バルク体として、酸化物超電導バルク体よりも比重の軽いMg−B系の多結晶状の超電導バルク体を用いることで、より軽量で大型の超電導軸受を提供できることも明らかになった。   Furthermore, a superconducting bulk body can be reduced in weight by manufacturing a polycrystalline superconducting bulk body with an Mg—B-based polycrystalline superconducting bulk body as in this embodiment. For example, when the polycrystalline superconducting bulk body of this example was manufactured using an oxide-based superconducting bulk body, the weight was 1030 g, whereas the Mg-B-based polycrystalline superconducting bulk body was When manufactured, the weight was 230 g, and the weight of the portion of the polycrystalline superconducting bulk body in the superconducting bearing could be reduced to about 1/4. In addition, in terms of the weight of the entire superconducting bulk body, the weight of the superconducting bulk body in which the single crystal oxide superconductor is disposed on the inner peripheral side and the polycrystalline oxide superconductor bulk body is disposed on the outer peripheral side is Although it was 1190 g, the weight of the superconducting bulk body was 390 g when the polycrystalline superconducting bulk body on the outer periphery side was a Mg-B-based polycrystalline superconducting bulk body as in this example. That is, the total weight of the superconducting bulk body in the superconducting bearing could be reduced to about 1/3. As a result, it is possible to provide a lighter and larger superconducting bearing by using a Mg-B polycrystalline superconducting bulk material having a specific gravity lighter than that of an oxide superconducting bulk material as a polycrystalline superconducting bulk material. It became clear.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

10、20 構造体
11、15、21、30 超電導軸受
12、22 回転体
14 回転軸
31 磁石部
32 超電導バルク体部
100A、100B、100E、100F、100F 超電導軸受
110A、110B、110E、110F、110G 磁石部
120A、120B、120C、120D、120E、120F、120G 超電導バルク体
121 多結晶状の超電導バルク体
123、125 単結晶状の超電導バルク体
10, 20 Structure 11, 15, 21, 30 Superconducting bearing 12, 22 Rotating body 14 Rotating shaft 31 Magnet part 32 Superconducting bulk body part 100A, 100B, 100E, 100F, 100F Superconducting bearing 110A, 110B, 110E, 110F, 110G Magnet part 120A, 120B, 120C, 120D, 120E, 120F, 120G Superconducting bulk body 121 Polycrystalline superconducting bulk body 123, 125 Single crystalline superconducting bulk body

Claims (5)

永久磁石又は電磁石からなる磁石部と超電導バルク体とが対向されて構成される超電導軸受において、
前記超電導バルク体は、
多結晶状の超電導バルク体と、
前記多結晶状の超電導バルク体の側面に固定された単結晶状の超電導バルク体と、
を備え、
前記多結晶状の超電導バルク体は、前記超電導バルク体のうち前記磁石部に対向する面に配置されていることを特徴とする、超電導軸受。
In a superconducting bearing configured by facing a magnet portion made of a permanent magnet or an electromagnet and a superconducting bulk body,
The superconducting bulk body is:
A polycrystalline superconducting bulk body;
A single-crystal superconducting bulk body fixed to a side surface of the polycrystalline superconducting bulk body;
With
The superconducting bearing according to claim 1, wherein the polycrystalline superconducting bulk body is disposed on a surface of the superconducting bulk body facing the magnet portion.
前記単結晶状の超電導バルク体は、さらに前記多結晶状の超電導バルク体の底面に固定されていることを特徴とする、請求項1に記載の超電導軸受。   The superconducting bearing according to claim 1, wherein the single-crystal superconducting bulk body is further fixed to a bottom surface of the polycrystalline superconducting bulk body. 前記単結晶状の超電導バルク体は、REBaCu(REはY及び希土類元素からなる群から選ばれる1種又は2種以上の元素であり、yは酸素量で、6.8≦y≦7.1)中にREBaCuOが分散した酸化物超電導バルク体からなることを特徴とする、請求項1又は2に記載の超電導軸受。 The single-crystal superconducting bulk material is RE 1 Ba 2 Cu 3 O y (RE is one or more elements selected from the group consisting of Y and rare earth elements, y is the amount of oxygen, and 6. The superconducting bearing according to claim 1 or 2, comprising an oxide superconducting bulk body in which RE 2 BaCuO 5 is dispersed in 8 ≦ y ≦ 7.1). 前記多結晶状の超電導バルク体は、RE、Ba、Cu、Oからなる多結晶状の酸化物超電導バルク体、Bi、Sr、Ca、Cu、Oからなる多結晶状の酸化物超電導バルク体、あるいはMg及びBからなる多結晶状の金属超電導バルク体のいずれかであることを特徴とする、請求項1〜3のいずれか1項に記載の超電導軸受。   The polycrystalline superconducting bulk is a polycrystalline oxide superconducting bulk made of RE, Ba, Cu, O, a polycrystalline oxide superconducting bulk made of Bi, Sr, Ca, Cu, O, The superconducting bearing according to any one of claims 1 to 3, wherein the superconducting bearing is any one of a polycrystalline metal bulk superconductor composed of Mg and B. 前記多結晶状の超電導バルク体の最大長は、150mm以上であることを特徴とする、請求項1〜4のいずれか1項に記載の超電導軸受。
The superconducting bearing according to any one of claims 1 to 4, wherein a maximum length of the polycrystalline superconducting bulk body is 150 mm or more.
JP2016052063A 2016-03-16 2016-03-16 Superconducting bearing Active JP6746981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016052063A JP6746981B2 (en) 2016-03-16 2016-03-16 Superconducting bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016052063A JP6746981B2 (en) 2016-03-16 2016-03-16 Superconducting bearing

Publications (2)

Publication Number Publication Date
JP2017166563A true JP2017166563A (en) 2017-09-21
JP6746981B2 JP6746981B2 (en) 2020-08-26

Family

ID=59912906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016052063A Active JP6746981B2 (en) 2016-03-16 2016-03-16 Superconducting bearing

Country Status (1)

Country Link
JP (1) JP6746981B2 (en)

Also Published As

Publication number Publication date
JP6746981B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP2011014539A (en) Superconductive element, and relative preparation process
JP6119851B2 (en) Oxide superconducting bulk magnet
Yamaki et al. Rare-earth-dependent tri-axial magnetic anisotropies and growth conditions in REBa2Cu4O8
JP4799979B2 (en) Oxide superconductor coil, oxide superconductor coil manufacturing method, oxide superconductor coil excitation method, oxide superconductor coil cooling method, and magnet system
JP6746981B2 (en) Superconducting bearing
US5034359A (en) Insulating composition
JP6772674B2 (en) Manufacturing method of superconducting bulk joint and superconducting bulk joint
Wang et al. Superconducting properties and microstructures of CeO2 doped YBa2Cu3O7− δ films fabricated by pulsed laser deposition
JP7372538B2 (en) superconducting bearing
JP2975608B2 (en) Insulating composition
JP2001114576A (en) Joined body and oxide superconductor used therein
JP4903729B2 (en) Oxide superconducting magnet, manufacturing method thereof, and cooling method
JP3283691B2 (en) High damping oxide superconducting material and method of manufacturing the same
JP2018127381A (en) Method for producing superconductive bulk conjugate
JP6202190B2 (en) Oxide superconducting bulk magnet
JP3854364B2 (en) Method for producing REBa2Cu3Ox-based superconductor
Murakami Melt process, flux pinning and levitation
JP2761722B2 (en) Oxide superconductor and manufacturing method thereof
Sengupta et al. Fabrication and characterization of melt-processed YBCO
Werfel et al. Technology, preparation, and characterization
Lee et al. Magnetic Properties of YBaCuO Superconductors Fabricated Using Melt Growth
JPH0769626A (en) Metal oxide and production thereof
Horii et al. Magnetic tri-axial grain alignment achieved in bismuth-based cuprate superconductors
Easterling et al. The microstructure and properties of high T c superconducting oxides
Horii et al. Rare-Earth-Dependent Tri-axial Magnetic Anisotropies and Growth Conditions in REBa2Cu4O8

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R151 Written notification of patent or utility model registration

Ref document number: 6746981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151