JP2017166182A - Flange structure and shape formed steel - Google Patents

Flange structure and shape formed steel Download PDF

Info

Publication number
JP2017166182A
JP2017166182A JP2016051255A JP2016051255A JP2017166182A JP 2017166182 A JP2017166182 A JP 2017166182A JP 2016051255 A JP2016051255 A JP 2016051255A JP 2016051255 A JP2016051255 A JP 2016051255A JP 2017166182 A JP2017166182 A JP 2017166182A
Authority
JP
Japan
Prior art keywords
flange
plate portion
web
thickness
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016051255A
Other languages
Japanese (ja)
Other versions
JP6677030B2 (en
Inventor
博巳 平山
Hiromi Hirayama
博巳 平山
半谷 公司
Koji Hanya
公司 半谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016051255A priority Critical patent/JP6677030B2/en
Publication of JP2017166182A publication Critical patent/JP2017166182A/en
Application granted granted Critical
Publication of JP6677030B2 publication Critical patent/JP6677030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flange structure, in which capacity against compressive stress after topical buckling in a flange is enhanced so that energy absorbing property on entire shape formed steel may be improved.SOLUTION: A flange structure 1 to which the present invention is applied is arranged on shape formed steel 7 having a predetermined cross sectional shape, which comprises a flange 2 extending in width direction Y on sectional direction and a web 5 connected to the flange 2. On the flange 2, a thick plate part 3 is formed on a held edge side α to which the web 5 is connected and a thin plate part 4 is formed on free edge side β away from the web 5. The plate thickness tβ of the thin plate part 4 is smaller than the plate thickness tα of the thick plate part 3.SELECTED DRAWING: Figure 2

Description

本発明は、所定の断面形状で形成された形鋼に設けられるフランジ構造、及び、所定の断面形状で形成された形鋼に関する。   The present invention relates to a flange structure provided in a shape steel formed with a predetermined cross-sectional shape, and a shape steel formed with a predetermined cross-sectional shape.

従来から、梁フランジと柱との接合部で、柱側にスチフナを設けることなく、鋼材量の増加を招かずに、接合部近傍での応力集中による梁フランジの早期破壊を回避すること等を目的として、例えば、特許文献1に開示されるH形鋼等が提案されている。   Conventionally, at the joint between the beam flange and the column, without providing a stiffener on the column side, without causing an increase in the amount of steel, avoiding the early failure of the beam flange due to stress concentration near the joint, etc. As an object, for example, an H-section steel disclosed in Patent Document 1 has been proposed.

特許文献1に開示されたH形鋼は、上下フランジの幅方向中央部の板厚t1を、幅方向中央部より外側の両縁端部の板厚t2よりも厚くする。特許文献1に開示されたH形鋼は、板厚が厚い幅方向中央部の板厚t2に対する、板厚が薄い両縁端部を板厚t1の比率(t1/t2)が、0.40以上、0.77以下に設定されて、フランジの幅方向中央部と両縁端部との板厚差により生じる段差がフランジ内面側に形成されることを特徴とする。   The H-section steel disclosed in Patent Document 1 makes the plate thickness t1 at the center portion in the width direction of the upper and lower flanges thicker than the plate thickness t2 at both edge ends outside the center portion in the width direction. In the H-shaped steel disclosed in Patent Document 1, the ratio (t1 / t2) of the thickness t1 of the edge portions where the plate thickness is thin with respect to the plate thickness t2 in the central portion in the width direction is 0.40. As described above, the level difference is set to 0.77 or less, and a step caused by a difference in plate thickness between the center portion in the width direction of the flange and both end portions is formed on the inner surface side of the flange.

一方で、例えば非特許文献1に開示された鋼製I桁は、鋼製I桁のフランジ及びウェブを構成する鋼板にテーパー鋼板を適用した場合に、鋼製I桁の強度、変形性能及びエネルギー吸収性能について検討したものである。非特許文献1に開示された鋼製I桁は、鋼製I桁のフランジにおいて、テーパー鋼板の自由端側を薄くするとともに支持端側を厚くすることで、鋼製I桁フランジの圧縮時の強度、変形性能及びエネルギー吸収性能の向上が確認されたとするものである。   On the other hand, for example, the steel I-girder disclosed in Non-Patent Document 1 has the strength, deformation performance and energy of steel I-girder when a tapered steel plate is applied to the steel I-girder flange and web. The absorption performance was examined. The steel I girder disclosed in Non-Patent Document 1 is a steel I girder flange in which the steel I girder flange is compressed by thinning the free end side of the tapered steel plate and thickening the support end side. It is assumed that improvement in strength, deformation performance and energy absorption performance has been confirmed.

特開2015−190296号公報JP-A-2015-190296

「板幅方向にテーパーを有する鋼製自由突出板の圧縮強度と変形能」(鈴木康夫ほか 土木学会論文集A、Vol.62、No.3、pp.531−pp.542、2006.7)“Compressive strength and deformability of steel free protruding plate with taper in width direction” (Yasuo Suzuki et al., Japan Society of Civil Engineers A, Vol.62, No.3, pp.531-pp.542, 20066.7)

ここで、H形鋼のフランジに代表されるように、圧縮応力が生じる条件の自由端が形成されたフランジ構造は、その局部座屈後の応力負担能力が低下することで、スチフナ等で補剛された場合と比較して、部材断面全体としてのエネルギー吸収性能が低下する。このため、実構造物の部材においては、フランジ構造に局部座屈を発生させないようにするか、又は、局部座屈発生後のフランジ構造を含む部材全体のエネルギー吸収性能が要求性能を満足するように、フランジ構造の幅厚比の上限を制限している。このことは、引張応力が生じる条件のフランジ構造と比較して、部材全体を構成する要素の板厚が増加することに直結するため、コストアップの要因となっている。   Here, as represented by the H-shaped steel flange, the flange structure formed with a free end under conditions where compressive stress is generated is compensated with stiffeners or the like due to the reduced stress bearing capacity after local buckling. Compared with the case of being stiffened, the energy absorption performance of the entire member cross section is lowered. For this reason, in the member of the actual structure, either local buckling should not be generated in the flange structure, or the energy absorption performance of the entire member including the flange structure after the occurrence of local buckling should satisfy the required performance. In addition, the upper limit of the width-thickness ratio of the flange structure is limited. This is directly connected to an increase in the plate thickness of the elements constituting the entire member as compared with the flange structure in which tensile stress is generated, and this causes an increase in cost.

特許文献1に開示されたH形鋼では、フランジの幅方向中央部の板厚を両縁端部の板厚より厚くして、幅方向中央部の板厚と両縁端部の板厚との比率等を所定の範囲とすることで、フランジの幅方向中央部のひずみ発生量が抑制されるものとする。しかし、特許文献1に開示されたH形鋼では、フランジの局部座屈後の圧縮応力の負担能力や圧縮エネルギー吸収性能を向上させるという技術的思想は開示されていない。   In the H-section steel disclosed in Patent Document 1, the thickness of the flange in the center in the width direction is made thicker than the thickness of the edges at both edges, and the thickness of the center in the width direction and the thickness of both edges are By setting the ratio and the like within a predetermined range, the amount of strain generated in the center portion in the width direction of the flange is suppressed. However, the H-section steel disclosed in Patent Document 1 does not disclose the technical idea of improving the load capacity and compressive energy absorption performance of compressive stress after local buckling of the flange.

また、非特許文献1に開示された鋼製I桁は、フランジとなるテーパー鋼板の自由端側を薄くするとともに支持端側を厚くして、鋼製I桁のフランジの圧縮時の強度、変形性能及びエネルギー吸収性能を向上させるものとする。しかし、非特許文献1に開示された鋼製I桁は、フランジがその板厚を幅方向で連続的に変化させたテーパー状に形成されるため、鋼構造の桁や梁として接合させて用いられる場合に、溶接接合やボルト接合の方法に工夫が必要となる。   In addition, the steel I girder disclosed in Non-Patent Document 1 is such that the free end side of the tapered steel plate to be the flange is made thin and the support end side is made thick so that the strength and deformation of the flange of the steel I girder are compressed. The performance and energy absorption performance shall be improved. However, the steel I girder disclosed in Non-Patent Document 1 is used as a steel structure girder or beam because the flange is formed in a taper shape whose plate thickness is continuously changed in the width direction. In some cases, it is necessary to devise methods for welding and bolting.

そこで、本発明は、上述した問題点に鑑みて案出されたものであって、その目的とするところは、フランジの局部座屈後の圧縮応力の負担能力を高めて、形鋼全体のエネルギー吸収性能を向上させることのできるフランジ構造及び形鋼を提供することにある。   Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is to increase the load capacity of compressive stress after local buckling of the flange, and to improve the energy of the entire shape steel. An object of the present invention is to provide a flange structure and a shape steel capable of improving the absorption performance.

第1発明に係るフランジ構造は、所定の断面形状で形成された形鋼に設けられるフランジ構造であって、断面方向で幅方向に延びるフランジと、前記フランジに連結されるウェブとを備え、前記フランジは、前記ウェブが連結される拘束端側に厚板部が形成されて、前記ウェブから離間した自由端側に薄板部が形成されるとともに、前記厚板部の板厚tαよりも前記薄板部の板厚tβが小さくなって、前記フランジの幅方向の幅寸法Bfと前記フランジの断面積Afとの関係から、下記(1)式により算出される平均化幅厚比(b/t)avgが、8以上、18以下となることを特徴とする。 A flange structure according to a first aspect of the present invention is a flange structure provided in a section steel formed with a predetermined cross-sectional shape, and includes a flange extending in a width direction in a cross-sectional direction, and a web connected to the flange, The flange is formed with a thick plate portion on a restraining end side to which the web is connected, a thin plate portion is formed on a free end side separated from the web, and the thin plate is larger than a plate thickness tα of the thick plate portion. An average width-thickness ratio (b / b) calculated by the following equation (1) from the relationship between the width dimension B f in the width direction of the flange and the cross-sectional area A f of the flange. t) avg is 8 or more and 18 or less.

第2発明に係るフランジ構造は、第1発明において、前記フランジは、前記厚板部の板厚tαが幅方向で略均一となって、前記薄板部の板厚tβが幅方向で略均一となるとともに、前記厚板部と前記薄板部とが連続する箇所に段部が形成されて、前記厚板部の板厚tαに対する前記薄板部の板厚tβの比率(tβ/tα)が、1/3以上、5/6以下となることを特徴とする。   The flange structure according to a second aspect of the present invention is the flange according to the first aspect, wherein the thickness tα of the thick plate portion is substantially uniform in the width direction, and the thickness tβ of the thin plate portion is substantially uniform in the width direction. In addition, a step portion is formed at a location where the thick plate portion and the thin plate portion are continuous, and a ratio (tβ / tα) of the plate thickness tβ of the thin plate portion to the plate thickness tα of the thick plate portion is 1 / 3 or more and 5/6 or less.

第3発明に係るフランジ構造は、第1発明又は第2発明において、前記フランジは、前記フランジの幅方向の幅寸法Bfに対する前記薄板部の幅方向の幅寸法bβの比率(bβ/Bf)が、1/4以上、3/4未満となることを特徴とする。 Flange structure according to the third invention, in the first or second aspect of the invention, the flange is the ratio of the width Bbeta the width direction of the thin portion with respect to the width dimension B f in the width direction of the flange (bβ / B f ) Is not less than 1/4 and less than 3/4.

第4発明に係る形鋼は、所定の断面形状で形成された形鋼であって、断面方向で幅方向に延びる一対のフランジと、一対の前記フランジの各々の内面に連結されるウェブとを備え、各々の前記フランジは、前記ウェブが連結される拘束端側に厚板部が形成されて、前記ウェブから離間した自由端側に薄板部が形成されるとともに、前記厚板部の板厚tαよりも前記薄板部の板厚tβが小さくなって、前記ウェブが連結される各々の前記フランジの内面で、前記厚板部と前記薄板部とが連続する箇所に段部が形成されて、前記フランジの幅方向の幅寸法Bfと前記フランジの断面積Afとの関係から、下記(1)式により算出される平均化幅厚比(b/t)avgが、8以上、18以下となることを特徴とする。 The shape steel according to the fourth invention is a shape steel having a predetermined cross-sectional shape, and includes a pair of flanges extending in the width direction in the cross-sectional direction, and a web connected to the inner surfaces of the pair of flanges. Each of the flanges has a thick plate portion formed on a restraining end side to which the web is connected, a thin plate portion formed on a free end side separated from the web, and a plate thickness of the thick plate portion. A plate thickness tβ of the thin plate portion is smaller than tα, and a step portion is formed at a location where the thick plate portion and the thin plate portion are continuous on the inner surface of each flange to which the web is connected, The average width-thickness ratio (b / t) avg calculated by the following formula (1) from the relationship between the width dimension B f in the width direction of the flange and the cross-sectional area A f of the flange is 8 or more and 18 or less. It is characterized by becoming.

第5発明に係る形鋼は、第4発明において、一対の前記フランジ及び前記ウェブは、幅方向で前記ウェブの両側方に各々の前記フランジが延びることで、断面略H形状に形成されることを特徴とする。   According to a fifth aspect of the present invention, in the fourth invention, the pair of flanges and the web are formed to have a substantially H-shaped cross section by extending the flanges on both sides of the web in the width direction. It is characterized by.

Figure 2017166182
Figure 2017166182

第1発明〜第5発明によれば、フランジに厚板部及び薄板部が形成されて、特に、上記(1)式により算出される平均化幅厚比(b/t)avgが、8以上、18以下となることで、同一断面積のフランジで負担することのできる局部座屈後の圧縮応力、圧縮エネルギー吸収量が向上するため、経済的なフランジ構造を提供することが可能となる。 According to the first to fifth inventions, the thick plate portion and the thin plate portion are formed on the flange, and in particular, the average width-thickness ratio (b / t) avg calculated by the above formula (1) is 8 or more. 18 or less, since the compressive stress and the amount of compressed energy absorbed after local buckling that can be borne by the flange having the same cross-sectional area are improved, an economical flange structure can be provided.

特に、第2発明、第3発明によれば、厚板部の板厚tαに対する薄板部の板厚tβの比率(tβ/tα)が、1/3以上、5/6以下となることで、又は、フランジの幅寸法Bfに対する薄板部の幅寸法bβの比率(bβ/Bf)が、1/4以上、3/4未満となることで、安定的なエネルギー吸収性能を確実に実現することが可能となる。 In particular, according to the second invention and the third invention, the ratio of the plate thickness tβ of the thin plate portion to the plate thickness tα of the thick plate portion (tβ / tα) is 1/3 or more and 5/6 or less. Alternatively, the ratio of the width dimension bβ of the thin plate portion to the width dimension B f of the flange (bβ / B f ) is ¼ or more and less than 3/4, so that stable energy absorption performance is surely realized. It becomes possible.

特に、第4発明、第5発明によれば、高さ方向の曲げ力でフランジに圧縮応力が生じる場合にも、フランジの局部座屈後の圧縮応力の負担能力を高めて、形鋼全体でのエネルギー吸収性能を向上させることが可能となる。また、フィラープレートと添接板とを用いたボルト摩擦接合等ができるため、ボルト接合等の方法に特段の工夫をすることなく、H形鋼等が用いられた梁端同士等を容易に接合させることが可能となる。   In particular, according to the fourth and fifth inventions, even when a compressive stress is generated in the flange by a bending force in the height direction, the load capacity of the compressive stress after local buckling of the flange is increased, It becomes possible to improve the energy absorption performance. In addition, since bolt friction welding using filler plates and attachment plates can be performed, beam ends using H-shaped steel, etc. can be easily joined without special contrivance in bolt joining methods. It becomes possible to make it.

本発明を適用したフランジ構造が設けられた形鋼を示す斜視図である。It is a perspective view showing a section steel provided with a flange structure to which the present invention is applied. 本発明を適用したフランジ構造が設けられたH形鋼を示す正面図である。It is a front view which shows the H-section steel provided with the flange structure to which this invention is applied. 本発明を適用したフランジ構造が設けられた溝形鋼を示す正面図である。It is a front view showing channel steel provided with a flange structure to which the present invention is applied. (a)は、本発明を適用したフランジ構造が設けられたCT形鋼を示す正面図であり、(b)は、その山形鋼を示す正面図である。(A) is a front view which shows CT section steel provided with the flange structure to which this invention is provided, (b) is a front view which shows the angle steel. 本発明を適用したフランジ構造の数値解析モデルを示す斜視図である。It is a perspective view which shows the numerical analysis model of the flange structure to which this invention is applied. 本発明を適用したフランジ構造で平均圧縮応力と平均ひずみとの関係を示すグラフである。It is a graph which shows the relationship between an average compressive stress and an average distortion by the flange structure to which this invention is applied. 本発明を適用したフランジ構造でフランジの座屈強度と無次元化幅厚比との関係を示すグラフである。It is a graph which shows the relationship between the buckling strength of a flange and dimensionless width-thickness ratio in the flange structure to which this invention is applied. (a)は、本発明を適用したフランジ構造で無次元化圧縮エネルギー吸収量と平均化幅厚比との関係を示すグラフであり、(b)は、平均ひずみε=3.0%のときにおける単位体積あたりの圧縮エネルギー吸収量を示すグラフである。(A) is a graph which shows the relationship between the dimensionless compression energy absorption amount and the average width-thickness ratio in the flange structure to which the present invention is applied, and (b) is when the average strain ε = 3.0%. It is a graph which shows the compression energy absorption amount per unit volume in. 本発明を適用したフランジ構造で無次元化圧縮エネルギー吸収量と幅寸法比率との関係を示すグラフである。It is a graph which shows the relationship between the dimensionless compression energy absorption and width dimension ratio by the flange structure to which this invention is applied. 本発明を適用したフランジ構造が設けられたH形鋼の接合例を示す正面図である。It is a front view which shows the example of joining of the H-section steel in which the flange structure to which this invention was applied was provided.

以下、本発明を適用したフランジ構造1及び形鋼7を実施するための形態について、図面を参照しながら詳細に説明する。   Hereinafter, the form for implementing the flange structure 1 and the shape steel 7 to which this invention is applied is demonstrated in detail, referring drawings.

本発明を適用したフランジ構造1は、図1に示すように、所定の断面形状で形成された形鋼7に設けられる。本発明を適用した形鋼7は、例えば、住宅、学校、事務所、病院施設等の建築物において、柱材、梁材又は斜材等の構造材として用いられるほか、棚等の各種設備の構成材としても用いられる。   As shown in FIG. 1, the flange structure 1 to which the present invention is applied is provided on a shape steel 7 formed with a predetermined cross-sectional shape. The shape steel 7 to which the present invention is applied is used, for example, as a structural material such as a pillar material, a beam material or a diagonal material in a building such as a house, a school, an office, or a hospital facility. Also used as a component.

本発明を適用した形鋼7は、主に、図2に示すように、奥行方向Xに対する断面形状が略H形状に形成されたH形鋼71が用いられる。また、本発明を適用した形鋼7は、図3に示すように、断面形状が略C形状に形成された溝形鋼72が用いられてもよい。   As the shape steel 7 to which the present invention is applied, as shown in FIG. 2, an H-section steel 71 having a substantially H-shaped cross section with respect to the depth direction X is used. Further, as the shape steel 7 to which the present invention is applied, as shown in FIG. 3, a groove shape steel 72 having a substantially C-shaped cross section may be used.

本発明を適用した形鋼7は、図2、図3に示すように、奥行方向Xに対する断面方向で、幅方向Yに延びる一対のフランジ2と、高さ方向Zに延びるウェブ5とを備え、各々のフランジ2にウェブ5が連結されることで、一対のフランジ2にウェブ5が架設される。   The shape steel 7 to which the present invention is applied includes a pair of flanges 2 extending in the width direction Y in the cross-sectional direction with respect to the depth direction X and a web 5 extending in the height direction Z as shown in FIGS. By connecting the web 5 to each flange 2, the web 5 is installed on the pair of flanges 2.

本発明を適用した形鋼7は、例えば、H形鋼71が用いられる場合に、一対のフランジ2とウェブ5とを高周波抵抗溶接等で互いに接合した溶接軽量H形鋼が用いられる。また、本発明を適用した形鋼7は、一対のフランジ2とウェブ5とをサブマージアーク溶接等で接合した溶接H形鋼、又は、圧延で製造した圧延H形鋼等が用いられてもよい。   As the section steel 7 to which the present invention is applied, for example, when a H-section steel 71 is used, a welded lightweight H-section steel in which the pair of flanges 2 and the web 5 are joined to each other by high-frequency resistance welding or the like is used. In addition, the shape steel 7 to which the present invention is applied may be a welded H-section steel obtained by joining a pair of flanges 2 and the web 5 by submerged arc welding, a rolled H-section steel manufactured by rolling, or the like. .

本発明を適用した形鋼7は、一対のフランジ2が高さ方向Zに離間して互いに略平行に形成されることで、各々のフランジ2の内面20が互いに対向して配置される。本発明を適用した形鋼7は、一対のフランジ2と略直交するようにウェブ5が形成されて、ウェブ5の高さ方向Zの両端部が、一対のフランジ2の各々の内面20に連結される。   In the shape steel 7 to which the present invention is applied, the pair of flanges 2 are formed so as to be separated from each other in the height direction Z and substantially parallel to each other, so that the inner surfaces 20 of the respective flanges 2 are arranged to face each other. In the shape steel 7 to which the present invention is applied, the web 5 is formed so as to be substantially orthogonal to the pair of flanges 2, and both end portions in the height direction Z of the web 5 are connected to the inner surfaces 20 of the pair of flanges 2. Is done.

本発明を適用した形鋼7は、図2に示すように、H形鋼71が用いられる場合に、各々のフランジ2が幅方向Yでウェブ5の両側方に延びることで、一対のフランジ2及びウェブ5が断面略H形状に形成される。   As shown in FIG. 2, the shape steel 7 to which the present invention is applied includes a pair of flanges 2 by extending each flange 2 to both sides of the web 5 in the width direction Y when an H-section steel 71 is used. And the web 5 is formed in a substantially H-shaped cross section.

本発明を適用した形鋼7は、図3に示すように、溝形鋼72が用いられる場合に、各々のフランジ2が幅方向Yでウェブ5の片側方に延びることで、一対のフランジ2及びウェブ5が断面略C形状に形成される。   As shown in FIG. 3, in the shape steel 7 to which the present invention is applied, when a grooved steel 72 is used, each flange 2 extends to one side of the web 5 in the width direction Y. And the web 5 is formed in the cross-sectional substantially C shape.

本発明を適用したフランジ構造1は、主に、図2に示すように、H形鋼71のフランジ2に設けられて、又は、図3に示すように、溝形鋼72のフランジ2に設けられる。また、本発明を適用したフランジ構造1は、図4に示すように、1個のフランジ2にウェブ5の片端部が連結されたCT形鋼73又は山形鋼74のフランジ2に設けられてもよい。   The flange structure 1 to which the present invention is applied is mainly provided on the flange 2 of the H-section steel 71 as shown in FIG. 2 or on the flange 2 of the channel steel 72 as shown in FIG. It is done. In addition, as shown in FIG. 4, the flange structure 1 to which the present invention is applied may be provided on the flange 2 of the CT steel 73 or the angle steel 74 in which one end of the web 5 is connected to one flange 2. Good.

本発明を適用したフランジ構造1は、図2〜図4に示すように、断面方向で幅方向Yに延びるフランジ2と、フランジ2に連結されるウェブ5とを備える。   As shown in FIGS. 2 to 4, the flange structure 1 to which the present invention is applied includes a flange 2 extending in the width direction Y in the cross-sectional direction, and a web 5 connected to the flange 2.

フランジ2は、ウェブ5が連結される拘束端側αに厚板部3が形成されて、ウェブ5が連結されていない自由端側βに薄板部4が形成される。フランジ2は、特に、幅方向Yの拘束端側αがウェブ5に連結されて拘束された状態となるとともに、幅方向Yの自由端側βがウェブ5から離間してウェブ5に拘束されていない状態となる。   In the flange 2, the thick plate portion 3 is formed on the restraining end side α to which the web 5 is connected, and the thin plate portion 4 is formed on the free end side β to which the web 5 is not connected. In particular, the flange 2 is in a state in which the restraining end side α in the width direction Y is connected to the web 5 and restrained, and the free end side β in the width direction Y is separated from the web 5 and restrained by the web 5. No state.

フランジ2は、厚板部3の板厚tαよりも薄板部4の板厚tβが小さくなる。フランジ2は、例えば、厚板部3の板厚tαが幅方向Yで略均一となるとともに、薄板部4の板厚tβが幅方向Yで略均一となって、厚板部3が6mm〜16mm程度の板厚tαとなるとともに、薄板部4が2mm〜13mm程度の板厚tβとなる。   In the flange 2, the plate thickness tβ of the thin plate portion 4 is smaller than the plate thickness tα of the thick plate portion 3. In the flange 2, for example, the plate thickness tα of the thick plate portion 3 is substantially uniform in the width direction Y, and the plate thickness tβ of the thin plate portion 4 is substantially uniform in the width direction Y. The plate thickness tα is about 16 mm, and the thin plate portion 4 has a plate thickness tβ of about 2 mm to 13 mm.

フランジ2は、厚板部3の板厚tαよりも薄板部4の板厚tβが小さくなって、厚板部3と薄板部4とが幅方向Yで連続する箇所に、所定の段差Δt(=tα−tβ)の段部6が形成される。フランジ2は、幅方向Yで所定の箇所に段部6が形成される。   In the flange 2, the plate thickness tβ of the thin plate portion 4 becomes smaller than the plate thickness tα of the thick plate portion 3, and a predetermined step Δt (is provided at a location where the thick plate portion 3 and the thin plate portion 4 are continuous in the width direction Y. = Tα−tβ) is formed. As for the flange 2, the step part 6 is formed in the predetermined location in the width direction Y. As shown in FIG.

フランジ2は、図2に示すように、H形鋼71の形鋼7に設けられる場合に、幅方向Yでウェブ5の両側方の各1箇所に段部6が形成される。また、フランジ2は、図3に示すように、溝形鋼72の形鋼7に設けられる場合に、幅方向Yでウェブ5の片側方の1箇所に段部6が形成される。フランジ2は、必要に応じて、幅方向Yでウェブ5の片側方又は両側方に、合計で2箇所以上の段部6が形成されてもよい。   As shown in FIG. 2, when the flange 2 is provided on the shape steel 7 of the H-section steel 71, a step portion 6 is formed at one place on each side of the web 5 in the width direction Y. Further, as shown in FIG. 3, when the flange 2 is provided on the shape steel 7 of the channel steel 72, a step portion 6 is formed at one place on one side of the web 5 in the width direction Y. The flange 2 may be formed with two or more step portions 6 in total on one side or both sides of the web 5 in the width direction Y as required.

フランジ2は、図2、図3に示すように、H形鋼71又は溝形鋼72に設けられる場合に、一対のフランジ2の各々の内面20が互いに対向して配置されて、一対のフランジ2の内面20に形成された各々の段部6が、幅方向Yで互いに略同一の位置に配置される。   As shown in FIGS. 2 and 3, when the flange 2 is provided on the H-shaped steel 71 or the groove-shaped steel 72, the inner surfaces 20 of the pair of flanges 2 are arranged to face each other, so that the pair of flanges 2 The two step portions 6 formed on the inner surface 20 of the two are disposed at substantially the same position in the width direction Y.

フランジ2は、フランジ2の内面20にのみ段部6が形成されることで、フランジ2の外面21が略平坦状に形成される。フランジ2は、必要に応じて、フランジ2の外面21にのみ段部6が形成されて、フランジ2の内面20が略平坦状に形成されてもよく、また、フランジ2の内面20及び外面21に段部6が形成されてもよい。   In the flange 2, the step portion 6 is formed only on the inner surface 20 of the flange 2, so that the outer surface 21 of the flange 2 is formed in a substantially flat shape. The flange 2 may have a step 6 formed only on the outer surface 21 of the flange 2 as necessary, and the inner surface 20 of the flange 2 may be formed in a substantially flat shape, and the inner surface 20 and the outer surface 21 of the flange 2 may be formed. A step portion 6 may be formed.

フランジ2は、図2、図4(a)に示すように、H形鋼71又はCT形鋼73の形鋼7に設けられる場合に、例えば、幅方向Yの全幅寸法(=2×Bf)が40mm〜160mm程度となって、奥行方向Xに対する断面方向の全断面積(=2×Af)が160mm2〜2000mm2程度となる。また、フランジ2は、厚板部3の幅方向Yの全幅寸法(=2×bα)が20mm〜150mm程度となって、薄板部4の幅方向Yの全幅寸法(=2×bβ)が10mm〜80mm程度となる。 As shown in FIGS. 2 and 4A, when the flange 2 is provided on the shape steel 7 of the H-section steel 71 or the CT-section steel 73, for example, the full width dimension in the width direction Y (= 2 × B f ) is on the order of 40Mm~160mm, the total cross-sectional area of the cross-sectional direction with respect to the depth direction X (= 2 × a f) is 160mm 2 ~2000mm 2 about. Further, the flange 2 has a total width dimension (= 2 × bα) in the width direction Y of the thick plate portion 3 of about 20 mm to 150 mm, and a total width dimension (= 2 × bβ) in the width direction Y of the thin plate portion 4 is 10 mm. It will be about ~ 80mm.

また、フランジ2は、図3、図4(b)に示すように、溝形鋼72又は山形鋼74の形鋼7に設けられる場合に、例えば、幅方向Yの幅寸法(=Bf)が40mm〜160mm程度となって、奥行方向Xに対する断面方向の断面積(=Af)が160mm2〜2000mm2程度となる。また、フランジ2は、厚板部3の幅方向Yの幅寸法(=bα)が20mm〜150mm程度となって、薄板部4の幅方向Yの幅寸法(=bβ)が10mm〜80mm程度となる。 Further, as shown in FIGS. 3 and 4B, when the flange 2 is provided on the section steel 7 of the channel steel 72 or the angle steel 74, for example, the width dimension in the width direction Y (= B f ) There is about 40Mm~160mm, the cross-sectional area of the cross-sectional direction with respect to the depth direction X (= a f) is 160mm 2 ~2000mm 2 about. The flange 2 has a width dimension (= bα) in the width direction Y of the thick plate portion 3 of about 20 mm to 150 mm, and a width dimension (= bβ) of the thin plate portion 4 in the width direction Y of about 10 mm to 80 mm. Become.

フランジ2は、図2、図4(a)に示すように、H形鋼71又はCT形鋼73の形鋼7に設けられる場合に、幅方向Yで厚板部3の略中央にウェブ5が連結されて、ウェブ5から段部6までの延長が、厚板部3の幅寸法bαとなる。そして、フランジ2は、ウェブ5の両側方に形成された段部6よりも自由端側βでの各々の延長が互いに略同一となって、各々の自由端側βでの延長が、薄板部4の幅寸法bβとなる。   As shown in FIGS. 2 and 4A, the flange 2 has a web 5 at the center of the thick plate portion 3 in the width direction Y when the flange 2 is provided on the shape steel 7 of the H-section steel 71 or the CT-section steel 73. Are connected, and the extension from the web 5 to the step portion 6 becomes the width dimension bα of the thick plate portion 3. The flange 2 has substantially the same extension on the free end side β as compared with the step portions 6 formed on both sides of the web 5, and the extension on each free end side β is a thin plate portion. The width dimension bβ is 4.

フランジ2は、図3、図4(b)に示すように、溝形鋼72又は山形鋼74の形鋼7に設けられる場合に、幅方向Yで厚板部3の片側端にウェブ5が連結されて、ウェブ5から段部6までの延長が、厚板部3の幅寸法bαとなる。そして、フランジ2は、ウェブ5の片側方に形成された段部6よりも自由端側βでの延長が、薄板部4の幅寸法bβとなる。   As shown in FIGS. 3 and 4 (b), when the flange 2 is provided on the section steel 7 of the channel steel 72 or the angle steel 74, the web 5 is provided at one end of the thick plate portion 3 in the width direction Y. The extension from the web 5 to the stepped portion 6 is the width dimension bα of the thick plate portion 3. The flange 2 has an extension on the free end side β with respect to the step portion 6 formed on one side of the web 5 to be the width dimension bβ of the thin plate portion 4.

フランジ2は、奥行方向Xに対する断面方向の断面積Afが、厚板部3の幅寸法bα×厚板部3の板厚tα+薄板部4の幅寸法bβ×薄板部4の板厚tβで算出される。 The flange 2 has a cross-sectional area A f in the cross-sectional direction with respect to the depth direction X: width dimension bα of the thick plate portion 3 × plate thickness tα of the thick plate portion 3 + width dimension bβ of the thin plate portion 4 × plate thickness tβ. Calculated.

ここで、本発明を適用したフランジ構造1は、特に、フランジ2の幅方向Yの幅寸法Bfと、フランジ2の断面積Afとの関係から、下記(1)式により算出される平均化幅厚比(b/t)avgが、8以上、18以下となる。 Here, the flange structure 1 to which the present invention is applied is, in particular, an average calculated by the following equation (1) from the relationship between the width dimension B f in the width direction Y of the flange 2 and the cross-sectional area A f of the flange 2. Width ratio (b / t) avg is 8 or more and 18 or less.

Figure 2017166182
Figure 2017166182

そして、平均化幅厚比(b/t)avgは、厚板部3の板厚tα及び薄板部4の板厚tβが幅方向Yで略均一となる場合に、厚板部3の幅寸法bα及び板厚tαと薄板部4の幅寸法bβ及び板厚tβとの関係から、特に、下記(2)式により算出することもできる。 The average width-thickness ratio (b / t) avg is the width dimension of the thick plate portion 3 when the plate thickness tα of the thick plate portion 3 and the plate thickness tβ of the thin plate portion 4 are substantially uniform in the width direction Y. From the relationship between bα and the plate thickness tα and the width dimension bβ and the plate thickness tβ of the thin plate portion 4, in particular, it can be calculated by the following equation (2).

Figure 2017166182
Figure 2017166182

本発明を適用したフランジ構造1は、厚板部3の板厚tαに対する薄板部4の板厚tβの比率(tβ/tα)が、1/3以上、5/6以下となることが望ましい。また、本発明を適用したフランジ構造1は、フランジ2の幅寸法Bfに対する薄板部4の幅寸法bβの比率(bβ/Bf)が、1/4以上、3/4未満となることが望ましく、必要に応じて、1/4以上、1/2以下となってもよい。 In the flange structure 1 to which the present invention is applied, the ratio of the plate thickness tβ of the thin plate portion 4 to the plate thickness tα of the thick plate portion 3 (tβ / tα) is preferably 1/3 or more and 5/6 or less. In the flange structure 1 to which the present invention is applied, the ratio (bβ / B f ) of the width dimension bβ of the thin plate portion 4 to the width dimension B f of the flange 2 may be 1/4 or more and less than 3/4. Desirably, it may be ¼ or more and ½ or less as necessary.

ここでは、本発明を適用したフランジ構造1の有効性を確認するため、図5に示す数値解析モデル及び表1に示す数値解析の計算条件で、フランジ2が奥行方向Xの圧縮外力Pを受けた場合の力学的挙動について数値解析を実施した。   Here, in order to confirm the effectiveness of the flange structure 1 to which the present invention is applied, the flange 2 receives a compression external force P in the depth direction X under the numerical analysis model shown in FIG. 5 and the calculation conditions of the numerical analysis shown in Table 1. Numerical analysis was performed on the mechanical behavior of the case.

Figure 2017166182
Figure 2017166182

この数値解析では、表1に示す全ての数値解析の計算条件で、幅方向Yの対称性を考慮して、ウェブ5が連結されたフランジ2の支持条件に近似するように、一辺自由端、三辺単純支持のフランジ2とした。また、この数値解析では、フランジ2となる幅寸法Bf、奥行寸法Dfの単板に対して、断面直交方向から圧縮外力Pを与えた。 In this numerical analysis, in consideration of the symmetry in the width direction Y in the calculation conditions of all numerical analysis shown in Table 1, one side free end, so as to approximate the support condition of the flange 2 to which the web 5 is connected, The flange 2 is a three-sided simple support. Further, in this numerical analysis, the width dimension B f as a flange 2 for veneers depth D f, to give a compression force P from a cross-sectional orthogonal directions.

この数値解析では、引張強さが490N級及び590N級の鋼材を想定した材料条件として、フランジ2の奥行方向Xの中央で自由端側βにBf/150の初期たわみδmaxを与えたうえで、材料降伏点σy、降伏後硬化係数Etをパラメータとした。また、この数値解析では、平均化幅厚比(b/t)avg、厚板部3の板厚tαに対する薄板部4の板厚tβの板厚比率(tβ/tα)、及び、フランジ2の幅寸法Bfに対する薄板部4の幅寸法bβの幅寸法比率(bβ/Bf)もパラメータとした。 In this numerical analysis, an initial deflection δ max of B f / 150 is given to the free end side β at the center in the depth direction X of the flange 2 as a material condition assuming steel materials having a tensile strength of 490 N class and 590 N class. The material yield point σy and the post-yield hardening coefficient Et were used as parameters. In this numerical analysis, the average width-thickness ratio (b / t) avg , the plate thickness ratio of the plate thickness tβ of the thin plate portion 4 to the plate thickness tα of the thick plate portion 3 (tβ / tα), and the flange 2 width ratio of the width dimension Bbeta of the thin portion 4 to the width dimension B f (bβ / B f) also as a parameter.

この数値解析では、各々の平均化幅厚比(b/t)avgにおいて、段部6が形成されない板厚一様な従来モデルについても、段部6が形成された本発明のモデルと比較するために数値解析を実施している。この数値解析では、フランジ2の幅寸法Bfが全てのモデルで一定なので、平均化幅厚比(b/t)avgが等しいモデルではフランジ2の断面積Afが等しいものとなる。このため、フランジ2の断面積Afが等しい条件の下では、板厚一様な従来モデルも含めて、板厚比率(tβ/tα)及び幅寸法比率(bβ/Bf)の効果的な範囲を比較検討することができる。 In this numerical analysis, for each average width-thickness ratio (b / t) avg , a conventional model with a uniform plate thickness in which the step portion 6 is not formed is also compared with the model of the present invention in which the step portion 6 is formed. For this purpose, numerical analysis is performed. In this numerical analysis, since the width dimension B f of the flange 2 is constant in all models, the cross-sectional area A f of the flange 2 is equal in a model where the average width-thickness ratio (b / t) avg is equal. For this reason, under the condition that the cross-sectional area A f of the flange 2 is equal, the plate thickness ratio (tβ / tα) and the width dimension ratio (bβ / B f ) are effective including the conventional model with a uniform plate thickness. Ranges can be compared.

この数値解析の結果は、図6〜図9に示す。なお、図6〜図9では、板厚比率(tβ/tα)を1/3、1/2、2/3又は5/6とした。図6では、材料降伏点σy=325N/mm2、平均化幅厚比(b/t)avg=11、幅寸法比率bβ/Bf=0.25とした。また、図7、図8では、材料降伏点σy=325N/mm2、幅寸法比率bβ/Bf=0.25とした。さらに、図9では、材料降伏点σy=325N/mm2、平均化幅厚比(b/t)avg=14とした。 The results of this numerical analysis are shown in FIGS. 6 to 9, the plate thickness ratio (tβ / tα) is 1/3, 1/2, 2/3, or 5/6. In FIG. 6, the material yield point σy = 325 N / mm 2 , the average width-thickness ratio (b / t) avg = 11, and the width dimension ratio bβ / B f = 0.25. 7 and 8, the material yield point σy = 325 N / mm 2 and the width dimension ratio bβ / B f = 0.25. Further, in FIG. 9, the material yield point σy = 325 N / mm 2 and the average width-thickness ratio (b / t) avg = 14.

図6では、平均圧縮応力σと平均ひずみεとの関係が示される。ここで、平均圧縮応力σは、圧縮外力Pをフランジ2の断面積Afで除した値で、平均ひずみεは、フランジ2の奥行方向Xの圧縮変形量δを奥行寸法Dfで除した値である。図6では、板厚一様な従来モデルを実線、本発明のモデルを板厚比率(tβ/tα)ごとに実線以外で示している。 FIG. 6 shows the relationship between the average compressive stress σ and the average strain ε. Here, the average compressive stress σ is a value obtained by dividing the compression external force P by the cross-sectional area A f of the flange 2, and the average strain ε is obtained by dividing the amount of compressive deformation δ in the depth direction X of the flange 2 by the depth dimension D f . Value. In FIG. 6, a conventional model with a uniform thickness is indicated by a solid line, and the model of the present invention is indicated by a thickness ratio (tβ / tα) other than the solid line.

本発明を適用したフランジ構造1は、図6に示すように、板厚一様な従来モデルと比較すると、何れの板厚比率(tβ/tα)であっても、局部座屈発生後の応力低下が小さくなることがわかる。また、本発明を適用したフランジ構造1は、板厚比率(tβ/tα)が小さくなるにしたがって、局部座屈発生後の応力低下が小さくなることがわかる。   As shown in FIG. 6, the flange structure 1 to which the present invention is applied has a stress after the occurrence of local buckling regardless of the thickness ratio (tβ / tα) as compared with the conventional model having a uniform thickness. It can be seen that the decrease is reduced. Further, it can be seen that, in the flange structure 1 to which the present invention is applied, the stress reduction after the occurrence of local buckling becomes smaller as the plate thickness ratio (tβ / tα) becomes smaller.

図7では、材料降伏点σyで無次元化したフランジ2の座屈強度(σcr/σy)と、平均化幅厚比(b/t)avgから求めた無次元化幅厚比{(b/t)avg×√(σy/E)}との関係が示される。本発明を適用したフランジ構造1は、図7に示すように、板厚一様な従来モデルと比較すると、何れの板厚比率(tβ/tα)であっても、板厚一様な従来モデルの座屈強度(σcr/σy)を下回らないことがわかる。 In FIG. 7, the dimensionless width-thickness ratio {(b / t) obtained from the buckling strength (σcr / σy) of the flange 2 made dimensionless at the material yield point σy and the average width-thickness ratio (b / t) avg t) The relationship with avg × √ (σy / E)} is shown. As shown in FIG. 7, the flange structure 1 to which the present invention is applied has a plate thickness uniform conventional model at any plate thickness ratio (tβ / tα) as compared with a plate thickness uniform conventional model. It can be seen that the buckling strength (σcr / σy) is not lower.

図8(a)では、本発明のモデルの圧縮エネルギー吸収量Enを、同じ平均化幅厚比(b/t)avgの板厚一様な従来モデルの圧縮エネルギー吸収量Eoで無次元化した無次元化圧縮エネルギー吸収量En/Eoを縦軸とする。ここで、無次元化圧縮エネルギー吸収量En/Eoは、図8(b)に示す平均ひずみε=3.0%のときにおける単位体積あたりの値として、図8(a)に示すように、横軸となる平均化幅厚比(b/t)avgとの関係が、板厚比率(tβ/tα)ごとに示される。 In FIG. 8 (a), the compression energy absorption amount En of the model of the present invention is made dimensionless with the compression energy absorption amount Eo of the conventional model with the same average width-thickness ratio (b / t) avg and a uniform plate thickness. The dimensionless compression energy absorption amount En / Eo is taken as the vertical axis. Here, the dimensionless compression energy absorption amount En / Eo is a value per unit volume when the average strain ε = 3.0% shown in FIG. 8B, as shown in FIG. The relationship with the average width-thickness ratio (b / t) avg on the horizontal axis is shown for each plate thickness ratio (tβ / tα).

図8(a)では、板厚一様な従来モデルでの無次元化圧縮エネルギー吸収量En/Eoが1.0となる。このことから、本発明を適用したフランジ構造1は、同じ平均化幅厚比(b/t)avgの板厚一様な従来モデルと比較すると、何れの平均化幅厚比(b/t)avgであっても、無次元化圧縮エネルギー吸収量En/Eoが大きくなることがわかる。そして、本発明を適用したフランジ構造1は、平均化幅厚比(b/t)avgが大きいほど、無次元化圧縮エネルギー吸収量En/Eoが大きくなることがわかる。 In FIG. 8A, the dimensionless compression energy absorption amount En / Eo in the conventional model with a uniform plate thickness is 1.0. Therefore, the flange structure 1 to which the present invention is applied has any average width / thickness ratio (b / t) as compared with the conventional model having the same average width / thickness ratio (b / t) avg. It can be seen that the dimensionless compression energy absorption amount En / Eo increases even with avg . The flange structure 1 to which the present invention is applied shows that the dimensionless compression energy absorption amount En / Eo increases as the average width-thickness ratio (b / t) avg increases.

本発明を適用したフランジ構造1は、フランジ2に厚板部3及び薄板部4が形成されて、特に、上記(1)式により算出される平均化幅厚比(b/t)avgが、8以上となることで、無次元化圧縮エネルギー吸収量En/Eoが確実に上昇する。このため、本発明を適用したフランジ構造1は、板厚一様な従来モデルと比較すると、同一断面積のフランジ2で負担することのできる局部座屈後の圧縮応力、圧縮エネルギー吸収量が向上することで、経済的なフランジ構造1を提供することが可能となる。なお、本発明を適用したフランジ構造1では、フランジ2の幅厚比が大きくなって局部座屈し易くなることを防止する観点から、上記(1)式により算出される平均化幅厚比(b/t)avgを、18以下とする。 In the flange structure 1 to which the present invention is applied, the thick plate portion 3 and the thin plate portion 4 are formed on the flange 2, and in particular, the average width-thickness ratio (b / t) avg calculated by the above equation (1) is By becoming 8 or more, the dimensionless compression energy absorption amount En / Eo is reliably increased. For this reason, the flange structure 1 to which the present invention is applied improves the compressive stress and compressive energy absorption after local buckling that can be borne by the flange 2 having the same cross-sectional area as compared with the conventional model having a uniform plate thickness. This makes it possible to provide an economical flange structure 1. In the flange structure 1 to which the present invention is applied, the average width-thickness ratio (b) calculated by the above equation (1) from the viewpoint of preventing the width-to-thickness ratio of the flange 2 from becoming large and being easily buckled locally. a / t) avg, and 18 or less.

本発明を適用したフランジ構造1は、上記(1)式により算出される平均化幅厚比(b/t)avgが、特に、9.1以上となることが望ましい。このとき、本発明を適用したフランジ構造1は、平均化幅厚比(b/t)avgの増大に伴って、無次元化圧縮エネルギー吸収量En/Eoの上昇率が顕著となる。このため、本発明を適用したフランジ構造1は、平均化幅厚比(b/t)avgが、9.1以上、18以下となることで、フランジ2による顕著なエネルギー吸収性能を実現することが可能となる。 In the flange structure 1 to which the present invention is applied, the average width-thickness ratio (b / t) avg calculated by the above equation (1) is particularly preferably 9.1 or more. At this time, in the flange structure 1 to which the present invention is applied, as the average width-thickness ratio (b / t) avg increases, the increase rate of the dimensionless compression energy absorption amount En / Eo becomes remarkable. Therefore, in the flange structure 1 to which the present invention is applied, the average width-thickness ratio (b / t) avg is 9.1 or more and 18 or less, thereby realizing remarkable energy absorption performance by the flange 2. Is possible.

本発明を適用したフランジ構造1は、厚板部3の板厚tαに対する薄板部4の板厚tβの比率(tβ/tα)を、1/3以上、5/6以下とすることが望ましく、特に、1/3以上、1/2以下とすることもできる。このとき、本発明を適用したフランジ構造1は、何れの平均化幅厚比(b/t)avgであっても、無次元化圧縮エネルギー吸収量En/Eoの低下が認められず、安定的なエネルギー吸収性能を確実に実現することが可能となる。 In the flange structure 1 to which the present invention is applied, the ratio (tβ / tα) of the plate thickness tβ of the thin plate portion 4 to the plate thickness tα of the thick plate portion 3 is preferably 1/3 or more and 5/6 or less, In particular, it can be set to 1/3 or more and 1/2 or less. At this time, the flange structure 1 to which the present invention is applied is stable regardless of the average width-thickness ratio (b / t) avg without a decrease in the dimensionless compression energy absorption amount En / Eo. It is possible to reliably realize an energy absorption performance.

図9では、無次元化圧縮エネルギー吸収量En/Eoを縦軸とするとともに、幅寸法比率bβ/Bfを横軸として、板厚一様な従来モデルでの無次元化圧縮エネルギー吸収量En/Eoが1.0となる。このことから、本発明を適用したフランジ構造1は、同じ平均化幅厚比(b/t)avgの板厚一様な従来モデルと比較すると、何れの板厚比率(tβ/tα)であっても、無次元化圧縮エネルギー吸収量En/Eoが大きくなることがわかる。 In FIG. 9, the dimensionless compression energy absorption amount En / Eo in the conventional model with a uniform plate thickness is shown with the dimensionless compression energy absorption amount En / Eo as the vertical axis and the width dimension ratio bβ / Bf as the horizontal axis. / Eo is 1.0. Therefore, the flange structure 1 to which the present invention is applied has any plate thickness ratio (tβ / tα) as compared with the conventional model with the same average width-thickness ratio (b / t) avg. However, it can be seen that the dimensionless compression energy absorption amount En / Eo increases.

本発明を適用したフランジ構造1は、フランジ2の幅寸法Bfに対する薄板部4の幅寸法bβの比率(bβ/Bf)が、1/4以上、3/4未満となることで、無次元化圧縮エネルギー吸収量En/Eoの低下が認められず、安定的なエネルギー吸収性能を確実に実現することが可能となる。また、本発明を適用したフランジ構造1は、幅寸法比率bβ/Bfが1/2となる場合に、無次元化圧縮エネルギー吸収量En/Eoが最も大きいものとなり、幅寸法比率bβ/Bfが、1/4以上、1/2以下となることで、無次元化圧縮エネルギー吸収量En/Eoが増大傾向を示すため、エネルギー吸収性能を確実に向上させることが可能となる。 In the flange structure 1 to which the present invention is applied, the ratio (bβ / B f ) of the width dimension bβ of the thin plate portion 4 to the width dimension B f of the flange 2 is not less than 1/4 and less than 3/4. A decrease in the dimensionally compressed energy absorption amount En / Eo is not recognized, and stable energy absorption performance can be reliably realized. Further, in the flange structure 1 to which the present invention is applied, when the width dimension ratio bβ / Bf becomes 1/2, the dimensionless compression energy absorption amount En / Eo becomes the largest, and the width dimension ratio bβ / B When f is ¼ or more and ½ or less, the dimensionless compression energy absorption amount En / Eo shows an increasing tendency, so that the energy absorption performance can be reliably improved.

なお、ここでは、表1に示すその他の解析条件における結果の図示は省略するが、図6〜図9に示された傾向は、表1に示した全ての材料条件及び形状条件で同様となることを確認している。即ち、本発明を適用したフランジ構造1は、板厚一様な従来モデルと比較すると、座屈強度(σcr/σy)の低下が認められず、また、局部座屈後の圧縮応力の負担能力を高めて、圧縮エネルギー吸収量が向上することを確認している。   In addition, although illustration of the result in the other analysis conditions shown in Table 1 is omitted here, the tendency shown in FIGS. 6 to 9 is the same in all material conditions and shape conditions shown in Table 1. I have confirmed that. That is, in the flange structure 1 to which the present invention is applied, a decrease in buckling strength (σcr / σy) is not recognized as compared with the conventional model having a uniform plate thickness, and the ability to bear compressive stress after local buckling. It has been confirmed that the amount of compressed energy absorbed is improved.

また、本発明を適用した形鋼7は、図10に示すように、本発明を適用したフランジ構造1がフランジ2に設けられる。このため、本発明を適用した形鋼7は、高さ方向Zの曲げ力M等でフランジ2に圧縮応力が生じる場合にも、フランジ2の局部座屈後の圧縮応力の負担能力を高めて、形鋼7全体でのエネルギー吸収性能を向上させることが可能となる。   Further, as shown in FIG. 10, the shape steel 7 to which the present invention is applied is provided with a flange structure 1 to which the present invention is applied. For this reason, the shape steel 7 to which the present invention is applied increases the load capacity of the compressive stress after local buckling of the flange 2 even when compressive stress is generated in the flange 2 by the bending force M in the height direction Z or the like. It is possible to improve the energy absorption performance of the entire shape steel 7.

なお、本発明を適用した形鋼7は、梁端同士の接合箇所等に用いられる場合に、例えば、段部6の段差Δtと同程度の板厚となるフィラープレート60を設けて、添接板61を用いたボルト摩擦接合等ができる。このとき、本発明を適用した形鋼7は、ボルト接合等で特段の工夫をすることなく、フィラープレート60等で段部6の段差Δtを吸収しながら、形鋼7が用いられた梁端同士等を容易に接合させることが可能となる。   Note that the shape steel 7 to which the present invention is applied is provided with a filler plate 60 having a thickness approximately the same as the step Δt of the stepped portion 6 when used at a joint between beam ends, for example. Bolt friction welding using the plate 61 can be performed. At this time, the shape steel 7 to which the present invention is applied is a beam end in which the shape steel 7 is used while absorbing the step Δt of the step portion 6 with the filler plate 60 or the like without special measures by bolt joining or the like. It becomes possible to join each other easily.

以上、本発明の実施形態の例について詳細に説明したが、上述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならない。   As mentioned above, although the example of embodiment of this invention was demonstrated in detail, all the embodiment mentioned above showed only the example of actualization in implementing this invention, and these are the technical aspects of this invention. The range should not be interpreted in a limited way.

1 :フランジ構造
2 :フランジ
20 :内面
21 :外面
3 :厚板部
4 :薄板部
5 :ウェブ
6 :段部
60 :フィラープレート
61 :添接板
7 :形鋼
71 :H形鋼
72 :溝形鋼
73 :CT形鋼
α :拘束端側
β :自由端側
X :奥行方向
Y :幅方向
Z :高さ方向
1: Flange structure 2: Flange 20: Inner surface 21: Outer surface 3: Thick plate portion 4: Thin plate portion 5: Web 6: Step portion 60: Filler plate 61: Joining plate 7: Shape steel 71: H-section steel 72: Groove Shape steel 73: CT shape steel α: Restrained end side β: Free end side X: Depth direction Y: Width direction Z: Height direction

Claims (5)

所定の断面形状で形成された形鋼に設けられるフランジ構造であって、
断面方向で幅方向に延びるフランジと、前記フランジに連結されるウェブとを備え、
前記フランジは、前記ウェブが連結される拘束端側に厚板部が形成されて、前記ウェブから離間した自由端側に薄板部が形成されるとともに、前記厚板部の板厚tαよりも前記薄板部の板厚tβが小さくなって、前記フランジの幅方向の幅寸法Bfと前記フランジの断面積Afとの関係から、下記(1)式により算出される平均化幅厚比(b/t)avgが、8以上、18以下となること
を特徴とするフランジ構造。
Figure 2017166182
A flange structure provided in a section steel formed with a predetermined cross-sectional shape,
A flange extending in the cross-sectional direction in the width direction, and a web connected to the flange,
The flange has a thick plate portion formed on a restraining end side to which the web is connected, a thin plate portion is formed on a free end side separated from the web, and the plate thickness tα is greater than the plate thickness tα of the thick plate portion. The plate thickness tβ of the thin plate portion is reduced, and an average width-thickness ratio (b) calculated by the following equation (1) from the relationship between the width dimension B f in the width direction of the flange and the cross-sectional area A f of the flange. / T) A flange structure wherein avg is 8 or more and 18 or less.
Figure 2017166182
前記フランジは、前記厚板部の板厚tαが幅方向で略均一となって、前記薄板部の板厚tβが幅方向で略均一となるとともに、前記厚板部と前記薄板部とが連続する箇所に段部が形成されて、前記厚板部の板厚tαに対する前記薄板部の板厚tβの比率(tβ/tα)が、1/3以上、5/6以下となること
を特徴とする請求項1記載のフランジ構造。
In the flange, the plate thickness tα of the thick plate portion is substantially uniform in the width direction, the plate thickness tβ of the thin plate portion is substantially uniform in the width direction, and the thick plate portion and the thin plate portion are continuous. A step portion is formed at a position where the plate thickness tβ of the thin plate portion with respect to the plate thickness tα of the thick plate portion (tβ / tα) is 1/3 or more and 5/6 or less. The flange structure according to claim 1.
前記フランジは、前記フランジの幅方向の幅寸法Bfに対する前記薄板部の幅方向の幅寸法bβの比率(bβ/Bf)が、1/4以上、3/4未満となること
を特徴とする請求項1又は2記載のフランジ構造。
The flange has a ratio (bβ / B f ) of a width dimension bβ in the width direction of the thin plate portion to a width dimension B f in the width direction of the flange is not less than 1/4 and less than 3/4. The flange structure according to claim 1 or 2.
所定の断面形状で形成された形鋼であって、
断面方向で幅方向に延びる一対のフランジと、一対の前記フランジの各々の内面に連結されるウェブとを備え、
各々の前記フランジは、前記ウェブが連結される拘束端側に厚板部が形成されて、前記ウェブから離間した自由端側に薄板部が形成されるとともに、前記厚板部の板厚tαよりも前記薄板部の板厚tβが小さくなって、前記ウェブが連結される各々の前記フランジの内面で、前記厚板部と前記薄板部とが連続する箇所に段部が形成されて、前記フランジの幅方向の幅寸法Bfと前記フランジの断面積Afとの関係から、下記(1)式により算出される平均化幅厚比(b/t)avgが、8以上、18以下となること
を特徴とする形鋼。
Figure 2017166182
A shape steel having a predetermined cross-sectional shape,
A pair of flanges extending in the width direction in the cross-sectional direction, and a web connected to the inner surfaces of each of the pair of flanges,
Each of the flanges has a thick plate portion formed on the restraining end side to which the web is connected, a thin plate portion formed on the free end side separated from the web, and a thickness tα of the thick plate portion. In addition, the thickness tβ of the thin plate portion is reduced, and on the inner surface of each flange to which the web is connected, a step portion is formed at a location where the thick plate portion and the thin plate portion are continuous, and the flange An average width-thickness ratio (b / t) avg calculated by the following equation (1) is 8 or more and 18 or less from the relationship between the width dimension Bf in the width direction of the flange and the cross-sectional area Af of the flange. Shaped steel characterized by
Figure 2017166182
一対の前記フランジ及び前記ウェブは、幅方向で前記ウェブの両側方に各々の前記フランジが延びることで、断面略H形状に形成されること
を特徴とする請求項4記載の形鋼。
The pair of flanges and the web are formed into a substantially H-shaped cross section by extending the flanges on both sides of the web in the width direction.
JP2016051255A 2016-03-15 2016-03-15 Flange structure and section steel Active JP6677030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016051255A JP6677030B2 (en) 2016-03-15 2016-03-15 Flange structure and section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016051255A JP6677030B2 (en) 2016-03-15 2016-03-15 Flange structure and section steel

Publications (2)

Publication Number Publication Date
JP2017166182A true JP2017166182A (en) 2017-09-21
JP6677030B2 JP6677030B2 (en) 2020-04-08

Family

ID=59913027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016051255A Active JP6677030B2 (en) 2016-03-15 2016-03-15 Flange structure and section steel

Country Status (1)

Country Link
JP (1) JP6677030B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065155A (en) * 2016-10-18 2018-04-26 新日鐵住金株式会社 Weld junction structure
JP2021017778A (en) * 2019-07-23 2021-02-15 株式会社竹中工務店 Beam forming method and construction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065155A (en) * 2016-10-18 2018-04-26 新日鐵住金株式会社 Weld junction structure
JP2021017778A (en) * 2019-07-23 2021-02-15 株式会社竹中工務店 Beam forming method and construction method
JP7295731B2 (en) 2019-07-23 2023-06-21 株式会社竹中工務店 Beam formation method and erection method

Also Published As

Publication number Publication date
JP6677030B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP2011001792A (en) Beam-column joint part structure of rigid frame skeleton and rolled h-steel
JP2017166182A (en) Flange structure and shape formed steel
JP2019194428A (en) H-shaped steel beam
JP6956466B2 (en) Steel beam and column beam joint structure
JP6163731B2 (en) Seismic walls and structures
JP6680005B2 (en) Steel beam and beam-column joint structure
JP6105878B2 (en) Steel beam and column beam connection structure
JP5967438B2 (en) Brace seismic reinforcement structure
JP6681277B2 (en) Joint strength evaluation method of beam-column joint structure, method of designing beam-column joint structure, and beam-column joint structure
JP6432155B2 (en) Beam-column joint structure
JP6152809B2 (en) Beam-column joint structure
JP5285500B2 (en) Strength frame structure
JP6054101B2 (en) Ladder bearing wall
JP6268998B2 (en) End structure of steel member
JP2009191487A (en) H-steel
JP2015021284A (en) Stiffening structure of steel beam
KR101618153B1 (en) Steel Frame Structure with Stiffener
JP2016216905A (en) Column-beam frame
JP5537065B2 (en) Strength frame structure
JP3638142B2 (en) Column and beam joining device
JP2020070585A (en) Bearing wall and building
JP6038550B2 (en) Reinforcement structure of steel beam made of H-shaped steel
JP7495309B2 (en) Ladder-type load-bearing wall structure and portal structure
JP2019157518A (en) Bearing wall frame structure in ladder shape
RU220192U1 (en) Assembly connection assembly for load-bearing elements of an I-section, working in tension, joined at the ends of profiles using non-contacting flange sheets attached to the wall and shelves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R151 Written notification of patent or utility model registration

Ref document number: 6677030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151