JP2009191487A - H-steel - Google Patents

H-steel Download PDF

Info

Publication number
JP2009191487A
JP2009191487A JP2008031904A JP2008031904A JP2009191487A JP 2009191487 A JP2009191487 A JP 2009191487A JP 2008031904 A JP2008031904 A JP 2008031904A JP 2008031904 A JP2008031904 A JP 2008031904A JP 2009191487 A JP2009191487 A JP 2009191487A
Authority
JP
Japan
Prior art keywords
thickness
flange
web
ratio
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008031904A
Other languages
Japanese (ja)
Inventor
Tadayoshi Okada
忠義 岡田
Ichiro Takeuchi
一郎 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008031904A priority Critical patent/JP2009191487A/en
Publication of JP2009191487A publication Critical patent/JP2009191487A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an H-steel which is light in weight and not reduced in cross sectional performance. <P>SOLUTION: In the H-steel having a tensile strength of a 400 N/mm<SP>2</SP>class, the relationship between a height (H) of the H-steel and a side length (B), as a flange width, of the same is represented by the expression of (B/H)≤0.77. Further the relationship between the side length (B) and a flange thickness (t<SB>2</SB>) is represented by the expression of 10.0<B/(2×t<SB>2</SB>)≤15.5, the relationship between the height (H), a web thickness (t<SB>1</SB>), and the flange thickness (t<SB>2</SB>) is represented by the expression of 56.6<(H-2×t<SB>2</SB>)/(t<SB>1</SB>)≤71.0, and the relationship between the web thickness (t<SB>1</SB>) and the flange thickness (t<SB>2</SB>) is represented by the expression of 0.75<(t<SB>1</SB>/t<SB>2</SB>)<1.0, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、床版あるいは屋根床版を直接支持し柱と直接連結されない小梁あるいは弾性設計範囲で使用する梁等に使用されるH形鋼に関する。   The present invention relates to an H-section steel used for a small beam which directly supports a floor slab or a roof slab and is not directly connected to a column, or a beam used in an elastic design range.

従来、H形鋼としては、次の(1)〜(5)のような各種H形鋼が知られている。   Conventionally, various H-section steels such as the following (1) to (5) are known as H-section steels.

(1)フランジ幅厚比が10以下、かつ、加工硬化を開始した後6%までの歪範囲における加工硬化指数が0.2以上であり、6%以上の歪範囲における塑性変形応力の上昇勾配が、最大モーメントを生じる位置の近傍のモーメント勾配より大きいことにより、最大モーメントを生じる位置に発生した塑性域がその周囲に拡大する、耐震性に優れたH形鋼が知られている(例えば、特許文献1参照。)。 (1) The flange width-thickness ratio is 10 or less, the work hardening index in the strain range up to 6% after work hardening is started is 0.2 or more, and the plastic gradient stress rises in the strain range of 6% or more. Is larger than the moment gradient in the vicinity of the position where the maximum moment is generated, so that a plastic region generated at the position where the maximum moment is generated expands around the H-section steel having excellent earthquake resistance (for example, (See Patent Document 1).

(2)ウェブ厚・フランジ厚比が1.2〜4であり、柱梁接合部パネル内のダブラープレートや斜めスチフナ等による補強を省略可能な柱用のH形鋼が知られている(例えば、特許文献2参照。) (2) An H-section steel for a column having a web thickness / flange thickness ratio of 1.2 to 4 and capable of omitting reinforcement by a doubler plate, a diagonal stiffener, or the like in a column-beam joint panel (for example, , See Patent Document 2.)

(3)ウェブ厚・フランジ厚比が1.1〜2.0であり、柱梁接合部における梁フランジ接合位置の水平スチフナ、パネル内のダブラープレートや斜めスチフナ等による補強が省略可能な柱用のH形鋼が知られている(例えば、特許文献3参照)。 (3) For columns with a web thickness / flange thickness ratio of 1.1 to 2.0, which can be reinforced by horizontal stiffeners at beam flange joints at column beam joints, doubler plates in panels and diagonal stiffeners, etc. H-shaped steel is known (see, for example, Patent Document 3).

(4)薄肉ウェブH形鋼であって、ウェブ厚・フランジ厚比が0.5以下、かつ、圧延製造時のウェブ波打ち現象を防止するために、ウェブに所定間隔をおいて凹凸を形成したH形鋼が知られている(例えば、特許文献4参照)。 (4) A thin web H-shaped steel having a web thickness / flange thickness ratio of 0.5 or less, and in order to prevent web waviness during rolling production, irregularities were formed on the web at predetermined intervals. H-section steel is known (see, for example, Patent Document 4).

(5)薄肉ウェブH形鋼であって、ウェブ厚・フランジ厚比が0.5以下、かつ、圧延製造時のウェブ波打ち現象を防止するために、ウェブの一側面のみの長手方向全長に少なくても1本の突条補強リブが設けられたH形鋼が知られている(例えば、特許文献5参照)。 (5) Thin-walled web H-section steel with a web thickness / flange thickness ratio of 0.5 or less, and less than the entire length in the longitudinal direction of only one side of the web in order to prevent web waviness during rolling production However, an H-section steel provided with a single rib reinforcing rib is known (for example, see Patent Document 5).

また、従来、H形鋼に関する技術としては、次の(A)〜(D)のような技術も知られている。   Conventionally, the following techniques (A) to (D) are also known as techniques related to H-section steel.

(A)耐震性に優れた柱・梁部材とするために、H形鋼の塑性変形能力を確保する必要があることから、フランジ幅厚比およびウェブ幅厚比を、「JIS G 3192」や「特開2002−88974号公報」で示されるように、変形能力があると言われる比較的小さい数値範囲(主用途が梁である辺・高さ比が0.77以下の範囲では、フランジ幅厚比の上限10.0、ウェブ幅厚比の上限56.6)で規定している。 (A) Since it is necessary to secure the plastic deformation capacity of the H-section steel in order to make the column / beam member excellent in earthquake resistance, the flange width-thickness ratio and the web width-thickness ratio are set to “JIS G 3192” or As disclosed in Japanese Patent Application Laid-Open No. 2002-88974, a relatively small numerical range that is said to have deformation capability (in the range where the side / height ratio where the main application is a beam is 0.77 or less, the flange width is The upper limit of the thickness ratio is 10.0 and the upper limit of the web width / thickness ratio is 56.6).

(B)断面二次モーメントおよび断面係数の対重量効率を向上させるために、梁用H形鋼のウェブ厚・フランジ厚比を、「JIS G 3192」で示されるように比較的小さい数値範囲(主用途が梁である辺・高さ比が0.77以下の範囲では、ウェブ厚・フランジ厚比の上限0.75)で規定している。 (B) In order to improve the weight efficiency of the section moment of inertia and section modulus, the web thickness / flange thickness ratio of the H-beam for beams is set to a relatively small numerical range as shown in “JIS G 3192” ( In the range where the side / height ratio of the main application is a beam of 0.77 or less, the upper limit of the web thickness / flange thickness ratio is 0.75).

(C)柱梁接合部パネル内のダブラープレートや斜めスチフナ等による補強を省略するために、柱用H形鋼のウェブ厚・フランジ厚比を、比較的大きい数値範囲(ウェブ厚・フランジ厚比の下限1.1)で規定することも知られている(例えば、前記特許文献2、または特許文献3参照)。 (C) Reducing the web thickness / flange thickness ratio of the column H-shaped steel to a relatively large numerical range (web thickness / flange thickness ratio) in order to omit reinforcement by doubler plates and diagonal stiffeners in the beam-column joint panel. The lower limit 1.1) is also known (see, for example, Patent Document 2 or Patent Document 3).

(D)圧延製造時のウェブ波打ち現象を防止しつつ薄肉ウェブH形鋼を実現するために、ウェブ厚・フランジ厚比を、比較的小さい数値範囲(ウェブ厚・フランジ厚比の上限0.5)で規定することも知られている(例えば、特許文献4、または特許文献5参照)。
特開2002−88974号公報 特開2000−54560号公報 特開2003−155779号公報 特開昭59−141658号公報 特開昭61−162658号公報
(D) In order to realize the thin web H-section steel while preventing the web waviness phenomenon during rolling production, the web thickness / flange thickness ratio is set to a relatively small numerical range (the upper limit of the web thickness / flange thickness ratio is 0.5). ) Is also known (see, for example, Patent Document 4 or Patent Document 5).
JP 2002-88974 A JP 2000-54560 A Japanese Patent Laid-Open No. 2003-15579 JP 59-141658 A JP 61-162658 A

H形鋼の形状については、JIS G 3192(熱間圧延形鋼の形状,寸法,質量及びその許容差)に記載されている各種のH形鋼が知られている。   As for the shape of the H-section steel, various H-section steels described in JIS G 3192 (the shape, dimensions, mass, and tolerance of hot rolled shape steel) are known.

JIS G 3192「熱間圧延形鋼の形状,寸法,質量及びその許容差」について、後記の表1に、当該JIS掲載の「付表8 H形鋼の標準断面寸法とその断面積,単位質量,断面特性」における断面寸法を転記し、さらに表1中に、辺・高さ比(B/H)と、フランジ幅厚比(B/(2×t))、ウェブ幅厚比((H−2×t)/t)、ウェブ厚・フランジ厚比(t/t)を示すように、下記(a)〜(c)のことがわかる。
(a)フランジ幅厚比は3.1〜13.4の範囲にある。
(b)ウェブ幅厚比は8.0〜56.6の範囲にある。
(c)ウェブ厚・フランジ厚比は0.53〜1.00の範囲となっている。
表1における従来の各種H形鋼の辺・高さ比(B/H)が、0.77以下の従来の各種H形鋼を図1に白○印で、また、表1における辺・高さ比(B/H)が、0.77を超える従来の各種H形鋼を×印でプロットして示す。
図1は、横軸をフランジ幅厚比(B/(2×t))とし、縦軸をウェブ幅厚比((H−2×t)/t)として示すグラフである。
また、図2には、横軸を辺・高さ比(B/H)とし、縦軸をウェブ厚・フランジ厚比(t/t)として、表1に示す各種従来のH形鋼をプロットして示す。
Regarding JIS G 3192 “Shape, size, mass and tolerance of hot rolled section steel”, in Table 1 below, “Appendix Table 8 Standard section dimensions of H section steel and its cross-sectional area, unit mass, The cross-sectional dimensions in “Cross-section characteristics” are transcribed, and in Table 1, the side / height ratio (B / H), flange width / thickness ratio (B / (2 × t 2 )), web width / thickness ratio ((H −2 × t 2 ) / t 1 ) and web thickness / flange thickness ratio (t 1 / t 2 ), the following (a) to (c) are understood.
(A) The flange width / thickness ratio is in the range of 3.1 to 13.4.
(B) The web width / thickness ratio is in the range of 8.0 to 56.6.
(C) The web thickness / flange thickness ratio is in the range of 0.53 to 1.00.
Various conventional H-section steels with a side / height ratio (B / H) of 0.77 or less in Table 1 are indicated by white circles in FIG. Various conventional H-section steels having a thickness ratio (B / H) exceeding 0.77 are plotted with x marks.
FIG. 1 is a graph in which the horizontal axis represents the flange width / thickness ratio (B / (2 × t 2 )) and the vertical axis represents the web width / thickness ratio ((H−2 × t 2 ) / t 1 ).
FIG. 2 shows various conventional H-section steels shown in Table 1, where the horizontal axis is the side / height ratio (B / H) and the vertical axis is the web thickness / flange thickness ratio (t 1 / t 2 ). Is plotted.

ここで、辺・高さ比が、0.77以下の範囲(H形鋼におけるフランジの幅で、細幅系列または中幅系列の圧延H形鋼として市販されている)は、主用途が梁に分類され、また、辺・高さ比が0.77超の範囲(H形鋼におけるフランジの幅で、広幅系列圧延H形鋼として市販されている)は、主用途が柱やブレースに分類できる。なお、表1では、高さ×辺(H×B)(単位mm)が、150×100、200×150、250×175、300×200、350×250、400×300、450×300、500×300、600×300、700×300、800×300、900×300(mm)が中幅系列であり、高さ(H)と辺(B)が同じ寸法が広幅系列であり、それ以外が細幅系列である。   Here, in the range where the side-to-height ratio is 0.77 or less (the flange width of the H-section steel, which is commercially available as a narrow or medium-width rolled H-section steel), the main application is a beam. In addition, the range whose side-to-height ratio exceeds 0.77 (the flange width in H-section steel, which is commercially available as wide-series rolled H-section steel) is classified as a column or brace. it can. In Table 1, height × side (H × B) (unit: mm) is 150 × 100, 200 × 150, 250 × 175, 300 × 200, 350 × 250, 400 × 300, 450 × 300, 500. × 300, 600 × 300, 700 × 300, 800 × 300, 900 × 300 (mm) are medium width series, and the same dimension of height (H) and side (B) is a wide width series. It is a narrow series.

そこで、主用途が梁である、辺・高さ比が0.77以下の範囲に限定すれば、次の(d)〜(f)のことがわかる。
(d)フランジ幅厚比は、3.1〜10.0の範囲であり、
(e)ウェブ幅厚比は、17.2〜56.6の範囲であり、
(f)ウェブ厚・フランジ厚比は、0.53〜0.75の範囲となっている。
Therefore, the following (d) to (f) can be seen if the main application is a beam and the side / height ratio is limited to a range of 0.77 or less.
(D) The flange width / thickness ratio is in the range of 3.1 to 10.0;
(E) The web width thickness ratio is in the range of 17.2-56.6,
(F) The web thickness / flange thickness ratio is in the range of 0.53 to 0.75.

前記(d)〜(f)のように設定されているのは、次の(g)(h)のような理由である。   The reasons (d) to (f) are set for the following reasons (g) and (h).

(g)フランジ幅厚比が3.1〜10.0の範囲で、ウェブ幅厚比が17.2〜56.6の範囲と比較的小さい数値範囲となっているのは、部材断面を構成する板要素の幅と厚さとの比が大きいと、圧縮力を受ける部分に局部座屈を生じ、部材断面の耐力が低下して必要な塑性変形能力が得られなくなることに起因している。   (G) The flange width / thickness ratio is in the range of 3.1 to 10.0, and the web width / thickness ratio is in the range of 17.2 to 56.6, which is a relatively small numerical range. When the ratio between the width and thickness of the plate element to be processed is large, local buckling occurs in the portion that receives the compressive force, and the yield strength of the cross section of the member is reduced, so that the necessary plastic deformation ability cannot be obtained.

(h)さらに、ウェブ厚・フランジ厚比が0.53〜0.75と比較的小さい数値範囲になっているのは、梁が曲げ応力を受ける部材のため、フランジを厚くし、ウェブを薄くすることにより、単位断面積当たりの断面二次モーメントおよび断面係数がアップすることに起因している。   (H) Furthermore, the web thickness / flange thickness ratio is a relatively small numerical range of 0.53 to 0.75 because the beam is a member subjected to bending stress, so the flange is thickened and the web is thinned. This is because the secondary moment of inertia and the section modulus per unit cross-sectional area are increased.

ところで、小梁は、使用される本数が大梁に比べて多いため、必要とされる断面性能を低下させないで1本あたりの重量を軽量化できると、1本当りのコスト低減が小さくても、構造物の本体のコストの低減に大きく寄与できる。
例えば、小梁等を、その耐震性能を低下させることなく、梁重量を10%以上軽量化できると、梁の単価を例えば10%程度低減でき、そのため、構造物本体のコストを格段に低減できるばかりでなく、構造物を軽量化でき、構造物が軽量化された分、柱の負担が小さくなるため、構造物の耐震性能の向上にも寄与することができる。
本発明は前記のような課題を解消したH形鋼を提供することを目的とする。
By the way, because the number of small beams used is larger than that of large beams, if the weight per one can be reduced without reducing the required cross-sectional performance, even if the cost reduction per one is small, This can greatly contribute to the cost reduction of the main body of the structure.
For example, if the beam weight can be reduced by 10% or more without reducing the seismic performance of a small beam or the like, the unit price of the beam can be reduced by, for example, about 10%, and thus the cost of the structure body can be significantly reduced. In addition, the weight of the structure can be reduced, and the burden on the pillar is reduced by the weight of the structure, which can contribute to the improvement of the earthquake resistance performance of the structure.
An object of this invention is to provide the H-section steel which eliminated the above subjects.

前記の課題を有利に解決するために、第1発明のH形鋼では、H形鋼の高さ(H)およびフランジ幅である辺の長さ(B)の関係が、
(B/H)≦0.77 ・・・(1)
である引張強さが400N/mm級のH形鋼であって、前記辺の長さ(B)とフランジ厚tの関係が、
10.0<B/(2×t)≦15.5 ・・・(2)
であり、かつ、前記高さ(H)とウェブ厚(t),フランジ厚(t)の関係が、
56.6<(H−2×t)/t)≦71.0 ・・・(3)
であり、さらに、ウェブ厚(t)とフランジ厚(t)の関係が、
0.75<(t/t)<1.0 ・・・(4)
であることを特徴とする。
In order to solve the above-mentioned problem advantageously, in the H-section steel of the first invention, the relationship between the height (H) of the H-section steel and the side length (B) which is the flange width is
(B / H) ≦ 0.77 (1)
The tensile strength is 400 N / mm grade 2 H-section steel, and the relationship between the side length (B) and the flange thickness t 2 is
10.0 <B / (2 × t 2 ) ≦ 15.5 (2)
And the relationship between the height (H), the web thickness (t 1 ), and the flange thickness (t 2 )
56.6 <(H−2 × t 2 ) / t 1 ) ≦ 71.0 (3)
And the relationship between the web thickness (t 1 ) and the flange thickness (t 2 ) is
0.75 <(t 1 / t 2 ) <1.0 (4)
It is characterized by being.

また、第2発明のH形鋼では、H形鋼の高さ(H)およびフランジ幅である辺の長さ(B)の関係が、
(B/H)≦0.77 ・・・(1)
である引張強さが400N/mm級のH形鋼であって、前記辺の長さ(B)とフランジ厚(t)の関係が、
10.0<B/(2×t)≦15.5×√(235/F) ・・・(2a)
であり、かつ、前記高さ(H)とウェブ厚(t),フランジ厚(t)の関係が、
56.6<(H−2×t)/t)≦71.0×√(235/F) ・・・(3a)
ここに、Fは鋼材の基準強度(N/mm2)で、235≦F<325
であり、さらに、ウェブ厚(t)とフランジ厚(t)の関係が、
0.75<(t/t)<1.0 ・・・(4)
であることを特徴とする。
また、第3発明では、第1発明または第2発明のH型鋼において、前記H形鋼が小梁用のH形鋼であることを特徴とする。
In the H-section steel of the second invention, the relationship between the height (H) of the H-section steel and the side length (B) which is the flange width is
(B / H) ≦ 0.77 (1)
The tensile strength is 400 N / mm grade 2 H-section steel, and the relationship between the side length (B) and the flange thickness (t 2 ) is
10.0 <B / (2 × t 2 ) ≦ 15.5 × √ (235 / F) (2a)
And the relationship between the height (H), the web thickness (t 1 ), and the flange thickness (t 2 )
56.6 <(H−2 × t 2 ) / t 1 ) ≦ 71.0 × √ (235 / F) (3a)
Here, F is the standard strength (N / mm2) of the steel material, and 235 ≦ F <325.
And the relationship between the web thickness (t 1 ) and the flange thickness (t 2 ) is
0.75 <(t 1 / t 2 ) <1.0 (4)
It is characterized by being.
In the third invention, the H-shaped steel of the first invention or the second invention is characterized in that the H-shaped steel is an H-shaped steel for a small beam.

本発明によると、H形鋼の高さ(H)およびフランジ幅である辺の長さ(B)の関係が、(B/H)≦0.77である引張強さが400N/mm級のH形鋼で、辺の長さ(B)とフランジ厚tの関係が10.0<B/(2×t)≦15.5であり、かつ、前記高さ(H)とウェブ厚tおよびフランジ厚tの関係が56.6<(H−2×t)/t)≦71.0であり、ウェブ厚tとフランジ厚tの関係が0.75<(t/t)<1.0であるようにH形鋼の寸法を設定すると、H形鋼1本あたりの重量を従来の場合より10%程度軽量化でき、H形鋼1本当りのコストを低減することができ、これを使用した構造物のコストの低減に大きく寄与できる。例えば、小梁を、その耐震性能を低下させることなく、小梁重量を10%以上軽量化でき、小梁の単価を例えば10%程度低減でき、そのため、構造物のコストを格段に低減できるばかりでなく、小梁の軽量化により構造物を軽量化でき、耐震性能の向上を図ることもできる。
特に、汎用性の高い小梁用のH形鋼に適用できるので、従来のH形鋼よりも断面積を10%程度低減した上、従来と同等以上の断面性能を有する小梁とすることができるので、安価で断面二次モーメントを15%程度以上最大60%程度、断面係数を同等程度以上最大15%程度向上させた小梁とすることができる。
また、本発明によると、H形鋼の高さ(H)およびフランジ幅である辺の長さ(B)の関係が、(B/H)≦0.77である引張強さが400N/mm級のH形鋼で、辺の長さ(B)とフランジ厚tの関係が10.0<B/(2×t)≦15.5×√(235/F)であり、かつ、前記高さ(H)とウェブ厚tおよびフランジ厚tの関係が56.6<(H−2×t)/t)≦71.0×√(235/F)であり、ウェブ厚tとフランジ厚tの関係が0.75<(t/t)<1.0であるようにH形鋼の寸法を設定すると、鋼材の基準強度としての前記F(N/mm2)が235≦F<325と広げた場合でも、H形鋼1本あたりの重量を従来の場合より断面積から見て、少なくとも5%程度以上最大15%程度軽量化でき、H形鋼1本当りのコストを低減することができ、これを使用した構造物のコストの低減に大きく寄与できる。例えば、小梁を、その耐震性能を低下させることなく、小梁重量を少なくとも5%程度以上最大15%軽量化でき、小梁の単価を例えば5%程度以上15%程度低減でき、そのため、構造物のコストを格段に低減できるばかりでなく、小梁の軽量化により構造物を軽量化でき、耐震性能の向上を図ることもできる。
また、前記と同様、汎用性の高い小梁用のH形鋼に適用できるので、従来のH形鋼よりも断面積を少なくとも5%程度以上最大15%程度低減した上、従来と同等以上の断面性能を有する小梁とすることができるので、安価で断面二次モーメントを5%程度以上最大65%程度、断面係数を同等程度以上最大20%程度向上させた小梁とすることができる。
According to the present invention, the relationship between the height (H) of the H-section steel and the length (B) of the side which is the flange width is (B / H) ≦ 0.77 and the tensile strength is 400 N / mm 2 class The relationship between the side length (B) and the flange thickness t 2 is 10.0 <B / (2 × t 2 ) ≦ 15.5, and the height (H) and the web The relationship between the thickness t 1 and the flange thickness t 2 is 56.6 <(H−2 × t 2 ) / t 1 ) ≦ 71.0, and the relationship between the web thickness t 1 and the flange thickness t 2 is 0.75 < If the dimensions of the H-section steel are set so that (t 1 / t 2 ) <1.0, the weight per H-section steel can be reduced by about 10% compared to the conventional case, and per H-section steel. This can greatly reduce the cost of a structure using this. For example, the beam can be reduced by 10% or more and the unit price of the beam can be reduced by, for example, about 10% without degrading the seismic performance of the beam, so that the cost of the structure can be significantly reduced. In addition, the structure can be reduced in weight by reducing the weight of the beam, and the seismic performance can be improved.
In particular, since it can be applied to a highly versatile H-beam for small beams, the cross-sectional area is reduced by about 10% compared to conventional H-beams, and a beam having a cross-sectional performance equal to or higher than that of a conventional beam can be obtained. Therefore, it is possible to obtain a small beam that is inexpensive and has an improved secondary moment of inertia of about 15% to a maximum of about 60% and a section modulus of about the same or higher to a maximum of about 15%.
Further, according to the present invention, the relationship between the height (H) of the H-shaped steel and the side length (B) which is the flange width is (B / H) ≦ 0.77, and the tensile strength is 400 N / mm. In the second grade H-section steel, the relationship between the side length (B) and the flange thickness t 2 is 10.0 <B / (2 × t 2 ) ≦ 15.5 × √ (235 / F), and The relationship between the height (H), the web thickness t 1 and the flange thickness t 2 is 56.6 <(H−2 × t 2 ) / t 1 ) ≦ 71.0 × √ (235 / F), When the dimension of the H-shaped steel is set so that the relationship between the web thickness t 1 and the flange thickness t 2 is 0.75 <(t 1 / t 2 ) <1.0, the F (N / Mm2) even when 235 ≦ F <325, the weight per H-section steel is at least about 5% or more and about 15% at the maximum or more when viewed from the cross-sectional area as compared with the conventional case. Can weight reduction, it is possible to reduce the cost per one H-shaped steel, it can contribute significantly to cost reduction of the structure using the same. For example, the weight of the beam can be reduced by at least about 5% or more and up to 15% without reducing the seismic performance, and the unit price of the beam can be reduced by, for example, about 5% or more and about 15%. Not only can the cost of objects be remarkably reduced, but also the weight of the structure can be reduced by reducing the weight of the beams, and the seismic performance can be improved.
Further, as described above, since it can be applied to a highly versatile H-beam for beam, the cross-sectional area is reduced by at least about 5% or more and about 15% or less than the conventional H-section steel, and at least equivalent to the conventional one. Since the beam can have a cross-sectional performance, the beam can be inexpensive and can have a cross-sectional secondary moment improved by about 5% or more and a maximum of about 65% and a section modulus improved by about the same or more by about 20% or less.

次に、本発明を図示の実施形態に基づいて詳細に説明する。     Next, the present invention will be described in detail based on the illustrated embodiment.

先ず、図3には、本発明のH形鋼1および従来のH形鋼2の各部の代表寸法が示されている。符号HはH形鋼1(2)の高さ寸法(mm)、Bは圧延H形鋼1,2のフランジ幅である辺の長さ寸法(mm)を、tはウェブ3の厚さ寸法(mm)を、tはフランジ4の厚さ寸法(mm)を、rはウェブ3とフランジ4との内隅部の曲率半径アール(mm)をそれぞれ示している。 First, FIG. 3 shows representative dimensions of each part of the H-section steel 1 of the present invention and the conventional H-section steel 2. Symbol H is the height dimension (mm) of H-section steel 1 (2), B is the side length dimension (mm) which is the flange width of rolled H-section steels 1 and 2, t 1 is the thickness of web 3 The dimension (mm), t 2 indicates the thickness dimension (mm) of the flange 4, and r indicates the radius of curvature R (mm) of the inner corner of the web 3 and the flange 4.

そして、本発明においても、主用途を梁とするために、前記の従来の場合と同様、本発明において使用するH形鋼は、H形鋼1の高さ(H)およびフランジ幅である辺の長さB(辺の長さを、単に辺ともいう)の関係が下記(1)式を満足するようにしている。
(B/H)≦0.77 ・・・(1)
Also in the present invention, in order to use the main application as a beam, the H-section steel used in the present invention is a side that is the height (H) and the flange width of the H-section steel 1 in the same manner as the conventional case described above. The length B (side length is also simply referred to as side) satisfies the following formula (1).
(B / H) ≦ 0.77 (1)

前記のように、H形鋼1の高さ(H)およびフランジ幅である辺の長さ(B)の関係を規定した理由については、前記の従来と同様、H形鋼1の高さ(H)およびフランジ幅である辺の長さ(B)の比である辺・高さ比B/Hが0.77未満であるか、以上であるかは、辺・高さ比B/Hが0.77を超える場合には柱用として使用され、B/Hが0.77以下の場合には、中幅または小幅なH形鋼を区分している実用上の指標であるので、これを本発明でも採用している。   As described above, the reason for defining the relationship between the height (H) of the H-section steel 1 and the side length (B) that is the flange width is the same as that of the above-described conventional technique. H) and the side / height ratio B / H, which is the ratio of the length (B) of the side which is the flange width, is less than 0.77 or more. When it exceeds 0.77, it is used as a column, and when B / H is 0.77 or less, it is a practical index for classifying medium-width or small-width H-section steel. This is also adopted in the present invention.

しかも、本発明の第1の実施形態で対象としているH形鋼は、辺・高さ比(B/H)が0.77以下に属するH形鋼で、主として小梁用のH形鋼で、引張強さが400N/mm級(鋼材の基準強度Fが235N/mm)である。すなわち、JIS G 3101においてSS400(引張強さ400N/mm〜510N/mm)、JIS G 3106においてSM400A、B、C(引張強さ400N/mm〜510N/mm)、JIS G 3136においてSN400A、B、C(引張強さ400N/mm〜510N/mm)に相当するH形鋼である。 Moreover, the H-section steel that is the subject of the first embodiment of the present invention is an H-section steel having a side-to-height ratio (B / H) of 0.77 or less, mainly an H-section steel for small beams. The tensile strength is 400 N / mm 2 class (the standard strength F of the steel material is 235 N / mm 2 ). That is, in JIS G 3101 SS400 (tensile strength 400N / mm 2 ~510N / mm 2 ), SM400A in JIS G 3106, B, C (tensile strength 400N / mm 2 ~510N / mm 2 ), in JIS G 3136 SN400A, B, is H-shaped steel corresponding to C (tensile strength 400N / mm 2 ~510N / mm 2 ).

加えて、本発明のH形鋼では、弾性範囲で使用するH形鋼であり、特に例えば、小梁用のH形鋼とすることにより、弾性範囲の使用に留まることから、梁部材の必要塑性変形能力はゼロ(塑性率1.0)で十分となる。
このように、本発明において対象とするH形鋼1は、弾性範囲で使用するH形鋼であり、必要塑性変形能力をゼロ(塑性率1.0)とすることによって、フランジ幅厚比(B/(2×t)およびウェブ幅厚比(H−2×t)/(t)は、「JIS G 3192」や「特開2002−88974」で示される数値範囲、すなわち、フランジ幅厚比(B/(2×t)の上限値10.0およびウェブ幅厚比(H−2×t)/(t)の上限値56.6より大きくしている。
In addition, the H-section steel of the present invention is an H-section steel that is used in the elastic range, and in particular, for example, by using an H-section steel for a small beam, the use of the elastic range remains. A plastic deformation capacity of zero (plasticity ratio 1.0) is sufficient.
Thus, the H-section steel 1 targeted in the present invention is an H-section steel used in the elastic range, and by setting the required plastic deformation capacity to zero (plasticity ratio 1.0), the flange width-thickness ratio ( B / (2 × t 2 ) and web width / thickness ratio (H−2 × t 2 ) / (t 1 ) are numerical ranges shown in “JIS G 3192” and “JP 2002-88974”, that is, flanges. The upper limit value 10.0 of the width / thickness ratio (B / (2 × t 2 )) and the upper limit value 56.6 of the web width / thickness ratio (H−2 × t 2 ) / (t 1 ) are set.

なお、本発明におけるH形鋼1のフランジ幅厚比(B/(2×t)およびウェブ幅厚比(H−2×t)/(t)の上限値としては、建築基準法(平成19年5月18日国土交通省告示第596号)で定められている制限値を満足すればよく、引張強さが400N/mm級(鋼材の基準強度Fが235N/mm)の場合には、フランジ幅厚比(B/(2×t)は15.5以下であり、ウェブ幅厚比(H−2×t)/(t)は71.0以下となる。
したがって、前記辺の長さ(B)とフランジ厚tの関係が、
10.0<B/(2×t)≦15.5 ・・・(2)
であり、かつ、前記高さ(H)とウェブ厚t,フランジ厚tの関係が、
56.6<(H−2×t)/t)≦71.0 ・・・(3)
としている。
In addition, as an upper limit value of the flange width thickness ratio (B / (2 × t 2 ) and web width thickness ratio (H−2 × t 2 ) / (t 1 ) of the H-section steel 1 in the present invention, the Building Standard Act (As of May 18, 2007, Ministry of Land, Infrastructure, Transport and Tourism Notification No. 596) Satisfying the limit value, the tensile strength is 400 N / mm 2 class (the standard strength F of steel is 235 N / mm 2 ) In this case, the flange width / thickness ratio (B / (2 × t 2 ) is 15.5 or less, and the web width / thickness ratio (H−2 × t 2 ) / (t 1 ) is 71.0 or less. .
Therefore, the relationship between the length (B) of the side and the flange thickness t 2 is
10.0 <B / (2 × t 2 ) ≦ 15.5 (2)
And the relationship between the height (H), the web thickness t 1 , and the flange thickness t 2 is
56.6 <(H−2 × t 2 ) / t 1 ) ≦ 71.0 (3)
It is said.

一方、上記のフランジ幅厚比(B/(2×t)およびウェブ幅厚比(H−2×t)/(t1)を、通常(従来の場合)より大きくすることにより、H形鋼1の断面の高さ(H)および辺(B)の寸法を拡大できることから、ウェブ厚tがフランジ厚tと同厚より若干小さい程度でも、曲げ応力に抵抗するうえでの単位断面積当たりの断面二次モーメント(I)および断面係数(Z)を従来の場合よりも高めて、剛性(特に強軸回り)を向上させることが可能となる。
よって、ウェブ厚・フランジ厚比(t/t)は、「JIS G 3192」で示される数値範囲、すなわち、ウェブ厚・フランジ厚比(t/t)の上限値0.75より大きくできる。
従って、本発明では、ウェブ厚・フランジ厚比(t/t)の下限値として、0.75より大きくしている。
On the other hand, by increasing the flange width / thickness ratio (B / (2 × t 2 ) and web width / thickness ratio (H−2 × t 2 ) / (t 1) above the normal (conventional case), an H shape Since the height (H) and side (B) of the cross section of the steel 1 can be enlarged, even if the web thickness t 1 is slightly smaller than the same thickness as the flange thickness t 2 , the unit breakage in resisting bending stress It is possible to improve the rigidity (particularly around the strong axis) by increasing the cross-sectional secondary moment (I) and the section modulus (Z) per area as compared with the conventional case.
Therefore, the web thickness / flange thickness ratio (t 1 / t 2 ) is based on the numerical value range indicated by “JIS G 3192”, that is, the upper limit value 0.75 of the web thickness / flange thickness ratio (t 1 / t 2 ). Can be big.
Therefore, in the present invention, the lower limit value of the web thickness / flange thickness ratio (t 1 / t 2 ) is set to be larger than 0.75.

なお、ウェブ厚tがフランジ厚tと同厚以上になると、断面二次モーメントIおよび断面係数Zの対重量効率が悪化するため、ウェブ厚・フランジ厚比(t/t)は、1.0未満としている。
従って、本発明のH形鋼1では、ウェブ厚・フランジ厚比(t/t)の上下限値として、
0.75<(t/t)<1.0 ・・・(4)
としている。
When the web thickness t 1 is equal to or greater than the flange thickness t 2 , the weight efficiency of the section secondary moment I and the section modulus Z deteriorates, so the web thickness / flange thickness ratio (t 1 / t 2 ) is , Less than 1.0.
Therefore, in the H-section steel 1 of the present invention, as the upper and lower limit values of the web thickness / flange thickness ratio (t 1 / t 2 ),
0.75 <(t 1 / t 2 ) <1.0 (4)
It is said.

前記のような条件で各種寸法に設定された本発明の各種のH形鋼1を本発明例A〜Hとして表2に示す。表2には、断面寸法と、辺・高さ比(B/H)と、フランジ幅厚比(B/(2×t)と、ウェブ幅厚比(H−2×t)/(t)と、ウェブ厚・フランジ厚比(t/t)と、及び断面性能を示す。また、表2には、本発明例A〜Hに対応する従来の各種のH形鋼2を従来例A〜Hとして表2に合わせて示した。また、表2には、本発明例A〜Hとこれに対応する従来例A〜Hとの、断面積比、強軸回りの断面二次モーメント比および強軸回りの断面係数比を示した。
なお、フランジ幅厚比を横軸,ウェブ幅厚比を縦軸にとった図1に示す座標軸上において、従来例A(〜H)から本発明例A(〜H)への移動距離(mm)を各実施例ごとに算出すると、下記のようになり、本発明の実施例AおよびB(横軸:フランジ幅厚比、縦軸:ウェブ幅厚比における座標軸上での移動距離>30)は,C〜H(同じ座標軸上での移動距離<25)より移動距離(mm)が大きくなる分、断面二次モーメント比が大きくなることがわかった。

実施例 従来例から本発明例への移動距離 断面二次モーメント比
A 33.3 1.61
B 31.8 1.39
C 23.6 1.17
D 23.3 1.24
E 18.4 1.18
F 23.1 1.21
G 22.0 1.14
H 19.7 1.14
Various H-section steels 1 of the present invention set to various dimensions under the above conditions are shown in Table 2 as Invention Examples A to H. Table 2 shows cross-sectional dimensions, side / height ratio (B / H), flange width / thickness ratio (B / (2 × t 2 ), and web width / thickness ratio (H−2 × t 2 ) / ( t 1 ), web thickness / flange thickness ratio (t 1 / t 2 ), and cross-sectional performance are shown in Table 2. Table 2 shows various conventional H-section steels 2 corresponding to Examples A to H of the present invention. Are shown in Table 2 as conventional examples A to H. In addition, in Table 2, the cross-sectional area ratio and the cross section around the strong axis between the inventive examples A to H and the conventional examples A to H corresponding thereto are shown. The secondary moment ratio and the section modulus ratio around the strong axis are shown.
In addition, on the coordinate axis shown in FIG. 1 where the horizontal axis represents the flange width / thickness ratio and the vertical axis represents the web width / thickness ratio, the moving distance (mm) from the conventional example A (˜H) to the present invention example A (˜H). ) For each example, the results are as follows: Examples A and B of the present invention (horizontal axis: flange width-thickness ratio, vertical axis: web width-thickness ratio moving distance on coordinate axis> 30) It has been found that the cross-sectional second moment ratio increases as the movement distance (mm) becomes larger than C to H (movement distance <25 on the same coordinate axis).

Example Travel Distance from Conventional Example to Example of the Present Invention Cross Section Second Moment Ratio A 33.3 1.61
B 31.8 1.39
C 23.6 1.17
D 23.3 1.24
E 18.4 1.18
F 23.1 1.21
G 22.0 1.14
H 19.7 1.14

Figure 2009191487
Figure 2009191487

Figure 2009191487
Figure 2009191487

表2における本発明のH形鋼である本発明例A〜Hと、これに対応した従来のH形鋼である従来例A〜Hを比較すると、従来例に比べて、ウェブ厚t1およびフランジ厚t2を小さくし、高さ(H)およびフランジ幅である辺(B)を大きくした本発明のH形鋼の本発明例A〜Hでは、断面積Aで10%から14%低減でき、強軸回りの断面二次モーメント(I)比で14%から61%性能向上でき、また、強軸回りの断面係数(Z)比で同等から17%性能向上できることがわかる。
なお、表1において、辺・高さ比(B/H)の最小値としては、0.33であることがわかる。
In Table 2, the inventive examples A to H which are H-shaped steels of the present invention and the conventional examples A to H which are conventional H-shaped steels corresponding thereto are compared with the web thickness t1 and the flange as compared with the conventional examples. In the inventive examples A to H of the H-section steel of the present invention in which the thickness t2 is reduced and the height (H) and the side (B) which is the flange width are increased, the cross-sectional area A can be reduced by 10% to 14%. It can be seen that the cross-sectional secondary moment (I) ratio around the strong axis can improve performance by 14% to 61%, and the cross-section coefficient (Z) ratio around the strong axis can improve performance by 17%.
In Table 1, it can be seen that the minimum value of the side / height ratio (B / H) is 0.33.

また、図1からわかるように、フランジ幅厚比−ウェブ幅厚比のグラフ上において、本発明の前記式(1)から(4)の条件を満たす本発明例A〜Hを含むH形鋼1は、従来公知のH形鋼の領域と明確に区別できる領域のH形鋼であることがわかる。
また、図2からわかるように、辺・高さ(B/H)−ウェブ厚・フランジ厚比(t/t)のグラフ上において、本発明の前記式(1)から(4)の条件を満たす本発明例A〜Hを含むH形鋼1は、従来公知のH形鋼の領域と明確に区別できる領域のH形鋼であることがわかる。
また、表2および図1,2からわかるように、本発明のように、寸法設定されたH形鋼1は従来公知のH形鋼の場合よりも、格段に断面性能が優れたH形鋼とすることができる。
Further, as can be seen from FIG. 1, on the graph of the flange width-thickness ratio-web width-thickness ratio, the H-section steel including the invention examples A to H satisfying the conditions of the above formulas (1) to (4) of the present invention. It can be seen that No. 1 is an H-shaped steel in a region that can be clearly distinguished from a conventionally known H-shaped steel region.
Further, as can be seen from FIG. 2, on the graph of side / height (B / H) -web thickness / flange thickness ratio (t 1 / t 2 ), the formulas (1) to (4) of the present invention It can be seen that the H-section steel 1 including Examples A to H of the present invention satisfying the conditions is an H-section steel in a region that can be clearly distinguished from a conventionally known H-section steel region.
Further, as can be seen from Table 2 and FIGS. 1 and 2, as in the present invention, the dimensioned H-section steel 1 is an H-section steel having a much better cross-sectional performance than a conventionally known H-section steel. It can be.

図1および表2では、鋼材の基準強度Fが235N/mmの場合における本発明の実施例および従来例の断面性能を示したが、次に、前記実施形態と同様に、鋼材の基準強度F(N/mm)が235≦F<325である場合、また具体的な基準強度Fが255N/mmあるいは325N/mm場合における本発明の実施例の断面性能について、従来例と比較して説明する。 1 and Table 2 show the cross-sectional performance of the examples of the present invention and the conventional example when the standard strength F of the steel material is 235 N / mm 2. Next, as in the above-described embodiment, the standard strength of the steel material is shown. When F (N / mm 2 ) is 235 ≦ F <325, and the specific reference strength F is 255 N / mm 2 or 325 N / mm 2 , the cross-sectional performance of the example of the present invention is compared with the conventional example. To explain.

前記のように、小梁用のH形鋼とすることにより、弾性範囲の使用に留まることから、梁部材の必要塑性変形能力はゼロ(塑性率1.0)で十分となる。よって、フランジ幅厚比およびウェブ幅厚比は、「JIS G 3192」や「特開2002−88974」で示される数値範囲(フランジ幅厚比の上限10.0、ウェブ幅厚比の上限56.6)より大きくできる。本発明におけるH形鋼1のフランジ幅厚比(B/(2×t)およびウェブ幅厚比(H−2×t)/(t)の上限値としては、建築基準法(平成19年5月18日国土交通省告示第596号)で定められている制限値を満足すればよく、引張強さが400N/mm級(鋼材の基準強度Fが235N/mm)の場合には、フランジ幅厚比(B/(2×t)は15.5以下であり、ウェブ幅厚比(H−2×t)/(t)は71.0以下となることから、引張強さが400N/mm級(鋼材の基準強度Fが、235≦F<325N/mm)で、基準強度をFとした場合には、フランジ幅厚比(B/(2×t)は15.5×√(235/F)以下とすればよく、かつウェブ幅厚比(H−2×t)/(t)は71.0×√(235/F)以下とすればよい。
例えば、基準強度F(N/mm)が255である場合には、フランジ幅厚比(B/(2×t)は15.5×√(235/255)以下とすればよく、かつウェブ幅厚比(H−2×t)/(t)は71.0×√(235/255)以下とすればよい。
また、基準強度F(N/mm)が325である場合には、フランジ幅厚比(B/(2×t)は15.5×√(235/325)以下とすればよく、かつウェブ幅厚比(H−2×t)/(t)は71.0×√(235/325)以下とすればよい。
As described above, by using an H-shaped steel for a small beam, the use of the elastic range is limited, so that the required plastic deformation capacity of the beam member is sufficient to be zero (plasticity ratio 1.0). Therefore, the flange width-thickness ratio and the web width-thickness ratio are the numerical ranges shown in “JIS G 3192” and “JP 2002-88974” (upper limit of flange width / thickness ratio 10.0, upper limit 56. of web width / thickness ratio). 6) Can be larger. The upper limit of the flange width-thickness ratio (B / (2 × t 2 ) and web width-thickness ratio (H-2 × t 2 ) / (t 1 ) of the H-section steel 1 in the present invention is If the limit value set by the Ministry of Land, Infrastructure, Transport and Tourism Notification No. 596 on May 18, 19th) is satisfied and the tensile strength is 400 N / mm 2 class (the standard strength F of steel is 235 N / mm 2 ) The flange width thickness ratio (B / (2 × t 2 ) is 15.5 or less, and the web width thickness ratio (H-2 × t 2 ) / (t 1 ) is 71.0 or less. When the tensile strength is 400 N / mm 2 class (the standard strength F of the steel material is 235 ≦ F <325 N / mm 2 ) and the standard strength is F, the flange width thickness ratio (B / (2 × t 2) it may be a 15.5 × √ (235 / F) or less, and the web width-thickness ratio (H-2 × t 2) / (t 1) is 71 0 × √ (235 / F) may be less.
For example, when the reference strength F (N / mm 2 ) is 255, the flange width-thickness ratio (B / (2 × t 2 ) may be 15.5 × √ (235/255) or less, and The web width / thickness ratio (H−2 × t 2 ) / (t 1 ) may be 71.0 × √ (235/255) or less.
When the reference strength F (N / mm 2 ) is 325, the flange width thickness ratio (B / (2 × t 2 ) may be 15.5 × √ (235/325) or less, and The web width / thickness ratio (H−2 × t 2 ) / (t 1 ) may be 71.0 × √ (235/325) or less.

前記のような鋼材の基準強度Fが、235≦F<325N/mm)を要求される本発明のH形鋼およびその各部の寸法は、次のように設定される。 The H-section steel of the present invention and the dimensions of each part thereof, in which the reference strength F of the steel material as described above is required to satisfy 235 ≦ F <325 N / mm 2 , are set as follows.

H形鋼の高さ(H)およびフランジ幅である辺の長さ(B)の関係が、
(B/H)≦0.77 ・・・(1)
である引張強さが400N/mm級のH形鋼であって、前記辺の長さ(B)とフランジ厚(t)の関係が、
10.0<B/(2×t)≦15.5×√(235/F) ・・・(2a)
であり、かつ、前記高さ(H)とウェブ厚(t),フランジ厚(t)の関係が、
56.6<(H−2×t)/t)≦71.0×√(235/F) ・・・(3a)
ここに、Fは鋼材の基準強度(N/mm2)で、235≦F<325
であり、さらに、ウェブ厚(t)とフランジ厚(t)の関係が、
0.75<(t/t)<1.0 ・・・(4)
であるH形鋼とすればよい。
The relationship between the height of the H-shaped steel (H) and the length of the side that is the flange width (B) is
(B / H) ≦ 0.77 (1)
The tensile strength is 400 N / mm grade 2 H-section steel, and the relationship between the side length (B) and the flange thickness (t 2 ) is
10.0 <B / (2 × t 2 ) ≦ 15.5 × √ (235 / F) (2a)
And the relationship between the height (H), the web thickness (t 1 ), and the flange thickness (t 2 )
56.6 <(H−2 × t 2 ) / t 1 ) ≦ 71.0 × √ (235 / F) (3a)
Here, F is the standard strength (N / mm2) of the steel material, and 235 ≦ F <325.
And the relationship between the web thickness (t 1 ) and the flange thickness (t 2 ) is
0.75 <(t 1 / t 2 ) <1.0 (4)
What is necessary is just to set it as the H-section steel which is.

例えば、鋼材の基準強度Fが255N/mmの場合について、前記のような条件で各種寸法に設定された本発明の各種のH形鋼1を本発明例A〜Hとして表3に示す。表3に、断面寸法と、辺・高さ比(B/H)と、フランジ幅厚比(B/(2×t)と、ウェブ幅厚比(H−2×t)/(t)と、ウェブ厚・フランジ厚比(t/t)と、及び断面性能を示す。また、表3に、本発明例A〜Hに対応する従来の各種のH形鋼2を従来例A〜Hとして合わせて示した。また、表3に、本発明例A〜Hとこれに対応する従来例A〜Hとの、断面積比、強軸回りの断面二次モーメント比および強軸回りの断面係数比を示した。 For example, in the case where the standard strength F of the steel material is 255 N / mm 2 , various H-section steels 1 of the present invention set to various dimensions under the above conditions are shown in Table 3 as Invention Examples A to H. Table 3 shows cross-sectional dimensions, side / height ratio (B / H), flange width / thickness ratio (B / (2 × t 2 ), and web width / thickness ratio (H−2 × t 2 ) / (t 1 ), web thickness / flange thickness ratio (t 1 / t 2 ), and cross-sectional performance are shown in Table 3. Table 3 shows various conventional H-section steels 2 corresponding to Examples A to H of the present invention. The results are also shown as examples A to H. Table 3 shows the cross-sectional area ratio, the cross-sectional secondary moment ratio around the strong axis, and the strength of the inventive examples A to H and the corresponding conventional examples A to H. The section modulus ratio around the axis is shown.

Figure 2009191487
Figure 2009191487

表3に示す本発明の実施例の断面性能のように、本発明例A〜Hは、小梁用のH形鋼として、いずれも辺・高さ比が0.77以下、フランジ幅厚比が10.0超14.88以下、ウェブ幅厚比が56.6超68.16以下、ウェブ厚・フランジ厚比が0.75超1.0未満となっている。   As in the cross-sectional performance of the examples of the present invention shown in Table 3, the inventive examples A to H are H-shaped steels for small beams, and the side-to-height ratio is 0.77 or less, and the flange width-thickness ratio. Is more than 10.0 and 14.88 or less, the web width thickness ratio is more than 56.6 and less than 68.16, and the web thickness / flange thickness ratio is more than 0.75 and less than 1.0.

また、表3における本発明のH形鋼である本発明例A〜Hと、これに対応した従来のH形鋼である従来例A〜Hを比較すると、従来例に比べて、ウェブ厚t1およびフランジ厚t2を小さくし、高さ(H)およびフランジ幅である辺(B)を大きくした本発明のH形鋼の本発明例A〜Hでは、断面積Aで9%から13%低減でき、強軸回りの断面二次モーメント(I)比で6%から61%性能向上でき、また、強軸回りの断面係数(Z)比で同等から17%性能向上できることがわかる。   Moreover, when the invention examples A to H which are H-shaped steels of the present invention in Table 3 are compared with conventional examples A to H which are conventional H-shaped steels corresponding thereto, the web thickness t1 is larger than that of the conventional examples. In the inventive examples A to H of the H-section steel of the present invention in which the flange thickness t2 is reduced and the height (H) and the side (B) which is the flange width are increased, the sectional area A is reduced from 9% to 13%. It can be seen that the cross-sectional secondary moment (I) ratio around the strong axis can be improved by 6% to 61%, and the cross-section coefficient (Z) ratio around the strong axis can be improved by 17%.

また、鋼材の基準強度Fが325N/mmの場合について、前記のような条件で各種寸法に設定された本発明の各種のH形鋼1を本発明例A〜Hとして表4に示す。表4には、断面寸法と、辺・高さ比(B/H)と、フランジ幅厚比(B/(2×t)と、ウェブ幅厚比(H−2×t)/(t)と、ウェブ厚・フランジ厚比(t/t)と、及び断面性能を示す。また、表4には、本発明例A〜Hに対応する従来の各種のH形鋼2を従来例A〜Hとして表4に合わせて示した。また、表4には、本発明例A〜Hとこれに対応する従来例A〜Hとの、断面積比、強軸回りの断面二次モーメント比および強軸回りの断面係数比を示した。 Further, in the case where the standard strength F of the steel material is 325 N / mm 2 , various H-section steels 1 of the present invention set to various dimensions under the above conditions are shown in Table 4 as Invention Examples A to H. Table 4 shows cross-sectional dimensions, side / height ratio (B / H), flange width / thickness ratio (B / (2 × t 2 ), and web width / thickness ratio (H−2 × t 2 ) / ( t 1 ), web thickness / flange thickness ratio (t 1 / t 2 ), and cross-sectional performance are shown in Table 4. Table 4 shows various conventional H-section steels 2 corresponding to Examples A to H of the present invention. Are shown in Table 4 as Conventional Examples A to H. In addition, Table 4 shows the cross-sectional area ratio of the invention examples A to H and the corresponding Conventional Examples A to H, and the cross section around the strong axis. The secondary moment ratio and the section modulus ratio around the strong axis are shown.

Figure 2009191487
Figure 2009191487

表4に示す本発明の実施例の断面性能のように、本発明例A〜Hは、小梁用のH形鋼として、いずれも辺・高さ比が0.77以下、フランジ幅厚比が10.0超13.17以下、ウェブ幅厚比が56.6超60.35以下、ウェブ厚・フランジ厚比が0.75超1.0未満となっている。   As in the cross-sectional performance of the examples of the present invention shown in Table 4, the inventive examples A to H are all H-shaped steels for small beams, and the side-to-height ratio is 0.77 or less, and the flange width-thickness ratio. Is more than 10.0 and 13.17 or less, the web width thickness ratio is more than 56.6 and 60.35 or less, and the web thickness / flange thickness ratio is more than 0.75 and less than 1.0.

また、表4における本発明のH形鋼である本発明例A〜Hと、これに対応した従来のH形鋼である従来例A〜Hを比較すると、従来例に比べて、ウェブ厚t1およびフランジ厚t2を小さくし、高さ(H)およびフランジ幅である辺(B)を大きくした本発明のH形鋼の本発明例A〜Hでは、断面積Aで5%から10%低減でき、強軸回りの断面二次モーメント(I)比で5%から65%性能向上でき、また、強軸回りの断面係数(Z)比で同等から20%性能向上できることがわかる。   Moreover, when the invention examples A to H which are H-shaped steels of the present invention in Table 4 are compared with conventional examples A to H which are conventional H-shaped steels corresponding thereto, the web thickness t1 is larger than that of the conventional examples. In the inventive examples A to H of the H-section steel of the present invention in which the flange thickness t2 is reduced and the height (H) and the side (B) which is the flange width are increased, the cross-sectional area A is reduced from 5% to 10%. It can be seen that the cross-sectional secondary moment (I) ratio around the strong axis can be improved by 5% to 65%, and the cross-section coefficient (Z) ratio around the strong axis can be improved by 20%.

本発明のH形鋼1は、細幅の小梁以外にも、細幅の梁や、中幅の小梁および梁にも適用するようにしてもよい。
また、本発明のH形鋼1は、圧延H形鋼をはじめとして、溶接組立H形鋼、山形鋼や溝形鋼などを用いてファスニング組立した組立断面H形鋼でもよい。
The H-section steel 1 of the present invention may be applied to a narrow beam, a medium beam, and a beam in addition to the narrow beam.
In addition, the H-section steel 1 of the present invention may be an assembled cross-section H-section steel that is fast-assembled using a rolled H-section steel, a welded assembly H-section steel, an angle steel, a channel section steel, or the like.

本発明の各種H形鋼と従来の各種H形鋼とのウェブ幅厚比とフランジ幅厚比との関係を示すグラフである。It is a graph which shows the relationship between the web width-thickness ratio and flange width-thickness ratio of the various H-section steel of this invention and the conventional various H-section steel. 本発明の各種H形鋼と従来の各種H形鋼とのウェブ厚・フランジ厚比と辺・高さ比との関係を示すグラフである。It is a graph which shows the relationship between the web thickness / flange thickness ratio and the side / height ratio of various H-section steels of the present invention and conventional various H-section steels. H形鋼の各部の代表寸法を示す説明図である。It is explanatory drawing which shows the representative dimension of each part of H-section steel.

符号の説明Explanation of symbols

1 本発明のH形鋼
2 従来のH形鋼
3 ウェブ
4 フランジ
1 H-shaped steel of the present invention 2 Conventional H-shaped steel 3 Web 4 Flange

Claims (3)

H形鋼の高さ(H)およびフランジ幅である辺の長さ(B)の関係が、
(B/H)≦0.77 ・・・(1)
である引張強さが400N/mm級のH形鋼であって、前記辺の長さ(B)とフランジ厚(t)の関係が、
10.0<B/(2×t)≦15.5 ・・・(2)
であり、かつ、前記高さ(H)とウェブ厚(t),フランジ厚(t)の関係が、
56.6<(H−2×t)/t)≦71.0 ・・・(3)
であり、さらに、ウェブ厚(t)とフランジ厚(t)の関係が、
0.75<(t/t)<1.0 ・・・(4)
であることを特徴とするH形鋼。
The relationship between the height of the H-shaped steel (H) and the length of the side that is the flange width (B) is
(B / H) ≦ 0.77 (1)
The tensile strength is 400 N / mm grade 2 H-section steel, and the relationship between the side length (B) and the flange thickness (t 2 ) is
10.0 <B / (2 × t 2 ) ≦ 15.5 (2)
And the relationship between the height (H), the web thickness (t 1 ), and the flange thickness (t 2 )
56.6 <(H−2 × t 2 ) / t 1 ) ≦ 71.0 (3)
And the relationship between the web thickness (t 1 ) and the flange thickness (t 2 ) is
0.75 <(t 1 / t 2 ) <1.0 (4)
H-section steel characterized by being.
H形鋼の高さ(H)およびフランジ幅である辺の長さ(B)の関係が、
(B/H)≦0.77 ・・・(1)
である引張強さが400N/mm級のH形鋼であって、前記辺の長さ(B)とフランジ厚(t)の関係が、
10.0<B/(2×t)≦15.5×√(235/F) ・・・(2a)
であり、かつ、前記高さ(H)とウェブ厚(t),フランジ厚(t)の関係が、
56.6<(H−2×t)/t)≦71.0×√(235/F) ・・・(3a)
ここに、Fは鋼材の基準強度(N/mm)で、235≦F<325
であり、さらに、ウェブ厚(t)とフランジ厚(t)の関係が、
0.75<(t/t)<1.0 ・・・(4)
であることを特徴とするH形鋼。
The relationship between the height of the H-shaped steel (H) and the length of the side that is the flange width (B) is
(B / H) ≦ 0.77 (1)
The tensile strength is 400 N / mm grade 2 H-section steel, and the relationship between the side length (B) and the flange thickness (t 2 ) is
10.0 <B / (2 × t 2 ) ≦ 15.5 × √ (235 / F) (2a)
And the relationship between the height (H), the web thickness (t 1 ), and the flange thickness (t 2 )
56.6 <(H−2 × t 2 ) / t 1 ) ≦ 71.0 × √ (235 / F) (3a)
Here, F is the standard strength (N / mm 2 ) of the steel material, and 235 ≦ F <325.
And the relationship between the web thickness (t 1 ) and the flange thickness (t 2 ) is
0.75 <(t 1 / t 2 ) <1.0 (4)
H-section steel characterized by being.
前記H形鋼が小梁用のH形鋼であることを特徴とする請求項1または2に記載のH型鋼。   The H-shaped steel according to claim 1 or 2, wherein the H-shaped steel is an H-shaped steel for a small beam.
JP2008031904A 2008-02-13 2008-02-13 H-steel Pending JP2009191487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031904A JP2009191487A (en) 2008-02-13 2008-02-13 H-steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031904A JP2009191487A (en) 2008-02-13 2008-02-13 H-steel

Publications (1)

Publication Number Publication Date
JP2009191487A true JP2009191487A (en) 2009-08-27

Family

ID=41073755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031904A Pending JP2009191487A (en) 2008-02-13 2008-02-13 H-steel

Country Status (1)

Country Link
JP (1) JP2009191487A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084605A (en) * 2012-10-23 2014-05-12 Jfe Steel Corp Rolled h-shaped steel
JP2014084606A (en) * 2012-10-23 2014-05-12 Jfe Steel Corp Rolled h-shaped steel
JP2014109149A (en) * 2012-12-03 2014-06-12 Nippon Steel & Sumitomo Metal Rolled h-shaped steel
WO2020183587A1 (en) * 2019-03-11 2020-09-17 Jfeスチール株式会社 Weld-assembly h-beam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084605A (en) * 2012-10-23 2014-05-12 Jfe Steel Corp Rolled h-shaped steel
JP2014084606A (en) * 2012-10-23 2014-05-12 Jfe Steel Corp Rolled h-shaped steel
JP2014109149A (en) * 2012-12-03 2014-06-12 Nippon Steel & Sumitomo Metal Rolled h-shaped steel
WO2020183587A1 (en) * 2019-03-11 2020-09-17 Jfeスチール株式会社 Weld-assembly h-beam

Similar Documents

Publication Publication Date Title
US20120017523A1 (en) Metal joint, damping structure, and architectural construction
JP4677059B2 (en) Rolled H-section steel
JP3451328B2 (en) Beam-to-column connection with energy absorption mechanism
JP2009191487A (en) H-steel
JP6400000B2 (en) Roll forming square steel pipe
JP6003591B2 (en) Rolled H-section steel
JP2019194428A (en) H-shaped steel beam
JP6003526B2 (en) Rolled H-section steel
JP7207054B2 (en) Rolled H-section steel and composite beams
JP6152809B2 (en) Beam-column joint structure
JP2021055464A (en) Steel beam with floor slab and reinforcement method thereof
JP2017166182A (en) Flange structure and shape formed steel
JP7380627B2 (en) Steel beams, column-beam joint structures, and structures containing them
JP6728742B2 (en) Steel beam
JP2007283330A (en) Shape steel
JP2008007960A (en) Folded-plate material for building structure
JP7314030B2 (en) Steel frame beam with floor slab having opening and its reinforcement method
JP6915749B2 (en) Welding assembly H-section steel and welding assembly H-section steel manufacturing method
JP6885370B2 (en) Steel beam and column-beam joint structure using the steel beam
JP2023055384A (en) Member with h-shaped cross section, and support structure
JP2009293254A (en) Shear panel, shape steel, and bearing wall
JP5330698B2 (en) BUILDING STRUCTURE AND BUILDING STRUCTURE DESIGN METHOD
JP2023146400A (en) Elastic design member and method for designing elastic design member
JP6807787B2 (en) Steel beam reinforcement structure
JP2007291721A (en) Truss structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Effective date: 20120130

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120214

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120710

Free format text: JAPANESE INTERMEDIATE CODE: A02