JP2017165916A5 - - Google Patents

Download PDF

Info

Publication number
JP2017165916A5
JP2017165916A5 JP2016054559A JP2016054559A JP2017165916A5 JP 2017165916 A5 JP2017165916 A5 JP 2017165916A5 JP 2016054559 A JP2016054559 A JP 2016054559A JP 2016054559 A JP2016054559 A JP 2016054559A JP 2017165916 A5 JP2017165916 A5 JP 2017165916A5
Authority
JP
Japan
Prior art keywords
ethylene
atom
hydrocarbon group
carbon atoms
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016054559A
Other languages
Japanese (ja)
Other versions
JP6772497B2 (en
JP2017165916A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2016054559A priority Critical patent/JP6772497B2/en
Priority claimed from JP2016054559A external-priority patent/JP6772497B2/en
Publication of JP2017165916A publication Critical patent/JP2017165916A/en
Publication of JP2017165916A5 publication Critical patent/JP2017165916A5/ja
Application granted granted Critical
Publication of JP6772497B2 publication Critical patent/JP6772497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

すなわち、本発明は以下のエチレン系マクロモノマーの製造方法を提供するものである。
[1]下記条件(イ)〜(ハ)を満たすエチレン系マクロモノマー
(イ)ゲルパーミエーションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.0以上4.0未満、
(ロ)炭素数1000個当たりのビニル基数(V)が0.25個〜10個であり、かつ、Z(= ×Mn/14000)が0.50〜1.1である、および
(ハ)ゲルパーミエーションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)が3000〜100000である、
を得るための製造方法であって、
下記必須成分(A)および(B)を含むオレフィン重合用触媒
成分(A):遷移金属元素を含む架橋シクロペンタジエニルインデニル化合物、および
成分(B):層状ケイ酸塩、
を用いて、エチレンを単独重合またはエチレン以外のα−オレフィンと共重合することを特徴とするエチレン系マクロモノマーの製造方法。
That is, the present invention provides the following method for producing an ethylene macromonomer.
[1] Ethylene-based macromonomer satisfying the following conditions (A) to (C) (A) Ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) measured by gel permeation chromatography (GPC) (Mw / Mn) is 1.0 or more and less than 4.0,
(B) The number of vinyl groups per 1000 carbon atoms (V 1 ) is 0.25 to 10 and Z 1 (= V 1 × Mn / 14000 ) is 0.50 to 1.1. And (c) the weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) is 3000 to 100,000.
A manufacturing method for obtaining
Olefin polymerization catalyst component (A) containing the following essential components (A) and (B): a bridged cyclopentadienyl indenyl compound containing a transition metal element, and component (B): a layered silicate,
A process for producing an ethylene-based macromonomer, characterized in that ethylene is homopolymerized or copolymerized with an α-olefin other than ethylene.

2.本発明で製造されるエチレン系マクロモノマーの特性
本発明により得られるエチレン系マクロモノマーは、下記条件(イ)〜(ハ)を満足する。
(イ)ゲルパーミエーションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.0以上4.0未満
(ロ)炭素数1000個当たりのビニル基数(V)が0.25個〜10個であり、かつ、Z(= ×Mn/14000)が0.50〜1.1である
(ハ)ゲルパーミエーションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)が3000〜100000である
2. Characteristics of the ethylene-based macromonomer produced according to the present invention The ethylene-based macromonomer obtained according to the present invention satisfies the following conditions (A) to (C).
(A) The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 1.0 or more and less than 4.0 (b) 1000 carbon atoms. (C) Gel permeation chromatography wherein the number of vinyl groups per unit (V 1 ) is from 0.25 to 10 and Z 1 (= V 1 × Mn / 14000 ) is from 0.50 to 1.1. The weight average molecular weight (Mw) measured by chromatography (GPC) is 3000 to 100,000.

2−2.条件(ロ)ビニル基数V
本発明により得られるエチレン系マクロモノマーの炭素数1000個当たりのビニル基数(V)は0.25個〜10個であり、好ましくは0.28個〜7個であり、より好ましくは0.30個〜5個であり、更に好ましくは0.32個〜3個であり、かつ、Z(= ×Mn/14000)は0.50〜1.1であり、好ましくは0.55〜1.0である。
2-2. Condition (b) Number of vinyl groups V 1
The number of vinyl groups (V 1 ) per 1000 carbon atoms of the ethylene-based macromonomer obtained according to the present invention is 0.25 to 10, preferably 0.28 to 7, more preferably 0.8. 30 to 5, more preferably 0.32 to 3, and Z 1 (= V 1 × Mn / 14000 ) is 0.50 to 1.1, preferably 0.55. -1.0.

なお、本発明で、エチレン系マクロモノマーの全1000炭素原子あたりのビニル基数(V)、ビニリデン基数(V)、ビニレン基数(V)、三置換不飽和結合数(V)は、H−核磁気共鳴法(H−NMR)で測定したものをいう。また、Z(= ×Mn/14000)、Z(= ×Mn/14000)、Z(= ×Mn/14000)は、それぞれマクロモノマー分子1本当たりのビニリデン基数、ビニレン基数、三置換不飽和結合数を近似する値である。ビニル基数(V1)、ビニリデン基数(V2)、ビニレン基数(V3)、三置換不飽和結合数(V4)は、それぞれ以下の構造式で表わされる基を1個として数える。 In the present invention, the number of vinyl groups (V 1 ), the number of vinylidene groups (V 2 ), the number of vinylene groups (V 3 ) and the number of trisubstituted unsaturated bonds (V 4 ) per 1000 carbon atoms of the ethylene macromonomer are: This is measured by 1 H-nuclear magnetic resonance method ( 1 H-NMR). Z 2 (= V 2 × Mn / 14000 ), Z 3 (= V 3 × Mn / 14000 ), Z 4 (= V 4 × Mn / 14000 ) is the number of vinylidene groups per macromonomer molecule , It is a value approximating the number of vinylene groups and the number of trisubstituted unsaturated bonds . The number of vinyl groups (V1), the number of vinylidene groups (V2), the number of vinylene groups (V3), and the number of trisubstituted unsaturated bonds (V4) are each counted as one group represented by the following structural formula.

4.評価
表2及び表3に示す実験結果を参酌しながら、実験結果を説明する。
実施例1は、触媒の重合活性が良好であり、メルトフローレート(MFR)の点でも生産性の障害にならない良好な流動性を示した。実施例1で得られたエチレン系マクロモノマー(エチレン・1−ヘキセン共重合体)の特性をみると、Mw/Mn値(条件(イ))が2.2であることから狭い分子量分布を有し、炭素数1000個当たりのビニル基数(V)(条件(ロ−1))が0.51であり、Z(= ×Mn/14000)(条件(ロ−2))が0.60であり、かつV/V値(条件(ホ))が51超であることから良好な重合反応性を発揮できる高い末端ビニル含有率を有するが成形加工性等を悪化させるほど過剰な量の末端ビニルを含んでおらず、Mw値(条件(ハ))が36200であることから成形加工性等の点で良好な低分子量を有し、分子量3000から100万の間での分岐指数g’の最低値(gL)(条件(ニ))が0.92であることから分岐構造が少なくてマクロモノマーとして好ましく、エチレン以外のα−オレフィン含量も適切であった。
実施例2は、触媒成分当りのマクロモノマーの生産性を向上させることを目的として、重合条件のエチレン分圧を大きくしたこと以外は実施例1と同様に重合反応を行ったところ、狙い通り触媒の重合活性が実施例1よりも大きくなった。また、得られたマクロモノマーの物性は実施例1で得られたものと同様に良好であった。
実施例3は、重合体粒子の溶融付着が生じにくい低温重合でもマクロモノマーが高い生産性で製造可能か確認することを目的として、重合条件のエチレン分圧を大きくし、重合温度を低くしたこと以外は実施例1と同様に重合反応を行ったところ、触媒の重合活性が実施例1よりも小さくなったが、重合温度が低いことを考慮すると触媒の重合活性は良好であり、比較例1よりも遙かに高い重合活性であった。また、得られたマクロモノマーの物性は実施例1で得られたものと同様に良好であった。
一方、比較例1は、触媒成分(A)として実施例1と同じ錯体1を用いるが、触媒成分(B)層状ケイ酸塩を用いる代わりにメチルアルミノキサンを用いて固体触媒を合成し、当該固体触媒を用いて実施例1と同じ条件でエチレン系マクロモノマー(エチレン・1−ヘキセン共重合体)を製造した実験例である。比較例1を実施例1と対比すると、触媒の重合活性が低く、メルトフローレート(MFR)の点では明らかに流動性が悪かった。
比較例1で得られたエチレン系マクロモノマーの特性をみると、Mw/Mn値(条件(イ))が4.0であることから実施例1よりも広い分子量分布を有し、炭素数1000個当たりのビニル基数(V)(条件(ロ−1))が0.42であり、Z(= ×Mn/14000)(条件(ロ−2))が0.53であり、かつV/V値(条件(ホ))が21であることから実施例1よりも低い末端ビニル含有率を有し、Mw値(条件(ハ))が71500であることから成形加工性等の点で実施例1よりも高い分子量を有し、分子量3000から100万の間での分岐指数g’の最低値(gL)(条件(ニ))が0.54であることから実施例1よりも分岐構造が多かった。
また比較例1で得られたエチレン系マクロモノマーは、炭素数1000個当たりのビニレン基数(V)、炭素数1000個当たりの三置換不飽和結合数(V)、これらに対応するマクロモノマー分子一本当たりのビニレン基数の近似値(Z ×Mn/14000)およびマクロモノマー分子一本当たりの三置換不飽和結合数の近似値(Z ×Mn/14000)が、実施例1と比べて低かった。
4). Evaluation The experimental results will be described with reference to the experimental results shown in Tables 2 and 3.
In Example 1, the polymerization activity of the catalyst was good, and good fluidity that did not hinder productivity in terms of melt flow rate (MFR) was exhibited. Looking at the characteristics of the ethylene-based macromonomer (ethylene / 1-hexene copolymer) obtained in Example 1, the Mw / Mn value (condition (ii)) is 2.2, so that it has a narrow molecular weight distribution. And the number of vinyl groups per 1000 carbon atoms (V 1 ) (condition (B-1)) is 0.51, and Z 1 (= V 1 × Mn / 14000 ) (condition (B-2)) is 0. .60, and the V 1 / V 2 value (condition (e)) is more than 51, so that it has a high terminal vinyl content capable of exhibiting good polymerization reactivity, but is excessive so as to deteriorate the molding processability and the like. It has a low molecular weight that is good in terms of molding processability, etc., and has a molecular weight of between 3000 and 1,000,000 because it does not contain a large amount of terminal vinyl and the Mw value (condition (c)) is 36200. The minimum value (gL) (condition (d)) of the index g ′ is 0.92. Preferably a less macromonomer branched structure and a, alpha-olefin content other than ethylene was also appropriate.
In Example 2, the polymerization reaction was carried out in the same manner as in Example 1 except that the ethylene partial pressure of the polymerization conditions was increased for the purpose of improving the productivity of the macromonomer per catalyst component. The polymerization activity of was higher than that of Example 1. Further, the physical properties of the obtained macromonomer were as good as those obtained in Example 1.
In Example 3, the ethylene partial pressure of the polymerization conditions was increased and the polymerization temperature was lowered for the purpose of confirming whether the macromonomer can be produced with high productivity even at low temperature polymerization in which the polymer particles are less likely to melt and adhere. Except for the above, the polymerization reaction was carried out in the same manner as in Example 1. As a result, the polymerization activity of the catalyst was smaller than that in Example 1. However, considering that the polymerization temperature was low, the polymerization activity of the catalyst was good. The polymerization activity was much higher than that. Further, the physical properties of the obtained macromonomer were as good as those obtained in Example 1.
On the other hand, Comparative Example 1 uses the same complex 1 as Example 1 as the catalyst component (A), but instead of using the catalyst component (B) layered silicate, a solid catalyst is synthesized using methylaluminoxane, and the solid This is an experimental example in which an ethylene-based macromonomer (ethylene / 1-hexene copolymer) was produced under the same conditions as in Example 1 using a catalyst. When Comparative Example 1 was compared with Example 1, the polymerization activity of the catalyst was low, and the fluidity was clearly poor in terms of melt flow rate (MFR).
Looking at the characteristics of the ethylene-based macromonomer obtained in Comparative Example 1, the Mw / Mn value (condition (A)) is 4.0, so that it has a molecular weight distribution wider than that of Example 1, and has a carbon number of 1000 The number of vinyl groups per unit (V 1 ) (condition (B-1)) is 0.42, Z 1 (= V 1 × Mn / 14000 ) (condition (B-2)) is 0.53, In addition, since the V 1 / V 2 value (condition (e)) is 21, the terminal vinyl content is lower than in Example 1, and the Mw value (condition (c)) is 71500, so that the molding processability is achieved. The molecular weight higher than that of Example 1 in terms of the above, etc., and the minimum value (gL) (condition (d)) of the branching index g ′ between 3000 and 1,000,000 is 0.54. There were more branch structures than 1.
In addition, the ethylene-based macromonomer obtained in Comparative Example 1 has the number of vinylene groups per 1000 carbon atoms (V 3 ), the number of trisubstituted unsaturated bonds per 1000 carbon atoms (V 4 ), and the macromonomer corresponding thereto. The approximate number of vinylene groups per molecule (Z 3 = V 3 × Mn / 14000 ) and the approximate number of trisubstituted unsaturated bonds per macromonomer molecule (Z 4 = V 4 × Mn / 14000 ) It was low compared with Example 1.

Claims (7)

下記条件(イ)〜(ハ)を満たすエチレン系マクロモノマー
(イ)ゲルパーミエーションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.0以上4.0未満、
(ロ)炭素数1000個当たりのビニル基数(V)が0.25個〜10個であり、かつ、Z(= ×Mn/14000)が0.50〜1.1である、および
(ハ)ゲルパーミエーションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)が3000〜100000である、
を得るための製造方法であって、
下記必須成分(A)および(B)を含むオレフィン重合用触媒
成分(A):遷移金属元素を含む架橋シクロペンタジエニルインデニル化合物、および
成分(B):層状ケイ酸塩、
を用いて、エチレンを単独重合またはエチレン以外のα−オレフィンと共重合することを特徴とするエチレン系マクロモノマーの製造方法。
Ethylene-based macromonomer satisfying the following conditions (a) to (c) (a) Ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) measured by gel permeation chromatography (GPC) (Mw / Mn) 1.0 or more and less than 4.0,
(B) The number of vinyl groups per 1000 carbon atoms (V 1 ) is 0.25 to 10 and Z 1 (= V 1 × Mn / 14000 ) is 0.50 to 1.1. And (c) the weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) is 3000 to 100,000.
A manufacturing method for obtaining
Olefin polymerization catalyst component (A) containing the following essential components (A) and (B): a bridged cyclopentadienyl indenyl compound containing a transition metal element, and component (B): a layered silicate,
A process for producing an ethylene-based macromonomer, characterized in that ethylene is homopolymerized or copolymerized with an α-olefin other than ethylene.
前記必須成分(A)が下記一般式(1c)で表わされる化合物であることを特徴とする請求項1に記載のエチレン系マクロモノマーの製造方法。
Figure 2017165916
[但し、式(1c)中、M1cは、Ti、ZrまたはHfのいずれかの遷移金属を示す。X1cおよびX2cは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、酸素原子若しくは窒素原子を含む炭素数1〜20の炭化水素基、炭素数1〜20の炭化水素基置換アミノ基または炭素数1〜20のアルコキシ基を示す。Q1cとQ2cは、各々独立して、炭素原子、ケイ素原子またはゲルマニウム原子を示す。R1cは、それぞれ独立して、水素原子または炭素数1〜10の炭化水素基を示し、4つのR1cのうち少なくとも2つが結合してQ1cおよびQ2cと一緒に環を形成していてもよい。mは、0または1であり、mが0の場合、Q1cは、R2cを含む共役5員環と直接結合している。R2cおよびR4cは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、ケイ素数1〜6を含む炭素数1〜18のケイ素含有炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、酸素原子を含む炭素数1〜20の炭化水素基または炭素数1〜20の炭化水素基置換シリル基を示す。R3cは、下記一般式(1−ac)で示される置換アリール基を示す。]
Figure 2017165916
[但し、式(1−ac)中、Y1cは、周期表14族、15族または16族の原子を示す。R5c、R6c、R7c、R8cおよびR9cは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1〜20の炭化水素基、酸素若しくは窒素を含む炭素数1〜20の炭化水素基、炭素数1〜20の炭化水素基置換アミノ基、炭素数1〜20のアルコキシ基、ケイ素数1〜6を含む炭素数1〜18のケイ素含有炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、または炭素数1〜20の炭化水素基置換シリル基を示し、R5c、R6c、R7c、R8cおよびR9cの各基は隣接する基同士で結合して、それらに結合している原子と一緒に環を形成していてもよい。nは、0または1であり、nが0の場合、Y1cに置換基R5cが存在しない。pは、0または1であり、pが0の場合、R7cが結合する炭素原子とR9cが結合する炭素原子は直接結合している。Y1cが炭素原子の場合、R5c、R6c、R7c、R8c、R9cのうち少なくとも1つは水素原子ではない。R2cが五員環構造置換基でない場合、pは0である。すなわち、R2cおよびR3cのうち少なくとも一方は五員環構造の置換基である。]
The said essential component (A) is a compound represented by the following general formula (1c), The manufacturing method of the ethylene-type macromonomer of Claim 1 characterized by the above-mentioned.
Figure 2017165916
[In the formula (1c), M 1c represents a transition metal of Ti, Zr or Hf. X 1c and X 2c each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a hydrocarbon group having 1 to 20 carbon atoms including an oxygen atom or a nitrogen atom, or 1 to 20 carbon atoms. A hydrocarbon group-substituted amino group or an alkoxy group having 1 to 20 carbon atoms. Q 1c and Q 2c each independently represent a carbon atom, a silicon atom, or a germanium atom. R 1c independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and at least two of the four R 1cs are bonded to form a ring together with Q 1c and Q 2c. Also good. mc is 0 or 1, and when mc is 0, Q 1c is directly bonded to a conjugated 5-membered ring containing R 2c . R 2c and R 4c are each independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group having 1 to 18 carbon atoms including 1 to 6 silicon atoms, or 1 carbon atom. -20 halogen-containing hydrocarbon group, a C1-C20 hydrocarbon group containing an oxygen atom, or a C1-C20 hydrocarbon group-substituted silyl group. R 3c represents a substituted aryl group represented by the following general formula (1-ac). ]
Figure 2017165916
[In the formula (1-ac), Y 1c represents an atom of Group 14, 15 or 16 of the periodic table. R 5c , R 6c , R 7c , R 8c and R 9c are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydrocarbon group having 1 to 20 carbon atoms, a carbon number containing oxygen or nitrogen 1-20 hydrocarbon group, C1-C20 hydrocarbon group-substituted amino group, C1-C20 alkoxy group, C1-C18 silicon-containing hydrocarbon group containing 1-6 silicon atoms, carbon A halogen-containing hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group-substituted silyl group having 1 to 20 carbon atoms, and each group of R 5c , R 6c , R 7c , R 8c and R 9c is an adjacent group They may be bonded to form a ring together with the atoms bonded to them. n c is 0 or 1, if n c is 0, there is no substituent R 5c to Y 1c. pc is 0 or 1, and when pc is 0, the carbon atom to which R 7c is bonded and the carbon atom to which R 9c are bonded are directly bonded. When Y 1c is a carbon atom, at least one of R 5c , R 6c , R 7c , R 8c , and R 9c is not a hydrogen atom. Pc is 0 when R 2c is not a five-membered ring structure substituent. That is, at least one of R 2c and R 3c is a substituent having a five-membered ring structure. ]
前記必須成分(A)が、インデニル環上に五員環構造置換基を有する、遷移金属元素を含む架橋シクロペンタジエニルインデニル化合物であることを特徴とする請求項1または請求項2に記載のエチレン系マクロモノマーの製造方法。   3. The essential component (A) is a bridged cyclopentadienyl indenyl compound containing a transition metal element having a five-membered ring structure substituent on the indenyl ring. Of producing an ethylene-based macromonomer. 前記必須成分(B)が、酸または金属塩で処理された層状ケイ酸塩であることを特徴とする請求項1〜請求項3のいずれか一項に記載のエチレン系マクロモノマーの製造方法。   The said essential component (B) is the layered silicate processed with the acid or metal salt, The manufacturing method of the ethylene-type macromonomer as described in any one of Claims 1-3 characterized by the above-mentioned. 前記エチレン系マクロモノマーが更に下記条件(二)を満足することを特徴とする請求項1〜請求項4のいずれか一項に記載のエチレン系マクロモノマーの製造方法。
(二)示差屈折計、粘度検出器、および、光散乱検出器を組み合わせたGPC測定装置により測定される分岐指数g’の分子量3000から100万の間での最低値(g)が0.75〜1.00である。
The method for producing an ethylene macromonomer according to any one of claims 1 to 4, wherein the ethylene macromonomer further satisfies the following condition (2).
(2) The lowest value (g L ) of the branching index g ′ measured by a GPC measuring apparatus in which a differential refractometer, a viscosity detector, and a light scattering detector are combined between 3000 and 1,000,000 is 0. 75-1.00.
前記エチレン系マクロモノマーが更に下記条件(ホ)を満足することを特徴とする請求項1〜請求項5のいずれか一項に記載のエチレン系マクロモノマーの製造方法。
(ホ)上記炭素数1000個当たりのビニル基数(V)と炭素数1000個当たりのビニリデン基数(V)の比(V/V)が22以上である
The method for producing an ethylene macromonomer according to any one of claims 1 to 5, wherein the ethylene macromonomer further satisfies the following condition (e).
(E) is the ratio of the vinyl groups (V 1) per number 1000 carbon vinylidene groups per number 1000 carbon (V 2) (V 1 / V 2) is 22 or more.
下記条件(1)〜(3)でエチレンを単独重合またはエチレン以外のα−オレフィンと共重合することを特徴とする請求項1〜請求項6のいずれか一項に記載のエチレン系マクロモノマーの製造方法。
[重合条件]
(1)重合温度:30℃以上90℃未満
(2)エチレン分圧:0.3MPa以上3MPa未満
(3)重合時間:0.3時間以上30時間未満
The ethylene-based macromonomer according to any one of claims 1 to 6, wherein ethylene is homopolymerized or copolymerized with an α-olefin other than ethylene under the following conditions (1) to (3). Production method.
[Polymerization conditions]
(1) Polymerization temperature: 30 ° C. or more and less than 90 ° C. (2) Ethylene partial pressure: 0.3 MPa or more and less than 3 MPa (3) Polymerization time: 0.3 hour or more and less than 30 hours
JP2016054559A 2016-03-17 2016-03-17 Method for producing ethylene-based macromonomer Active JP6772497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016054559A JP6772497B2 (en) 2016-03-17 2016-03-17 Method for producing ethylene-based macromonomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016054559A JP6772497B2 (en) 2016-03-17 2016-03-17 Method for producing ethylene-based macromonomer

Publications (3)

Publication Number Publication Date
JP2017165916A JP2017165916A (en) 2017-09-21
JP2017165916A5 true JP2017165916A5 (en) 2019-02-07
JP6772497B2 JP6772497B2 (en) 2020-10-21

Family

ID=59912564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016054559A Active JP6772497B2 (en) 2016-03-17 2016-03-17 Method for producing ethylene-based macromonomer

Country Status (1)

Country Link
JP (1) JP6772497B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7243345B2 (en) * 2019-03-19 2023-03-22 日本ポリエチレン株式会社 Method for producing ethylene-based macromonomer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3785518B2 (en) * 1997-06-13 2006-06-14 東ソー株式会社 Catalyst for producing ethylene polymer and method for producing ethylene polymer using the same
JP2000080117A (en) * 1998-09-04 2000-03-21 Mitsubishi Chemicals Corp Preparation of olefin polymerization catalyst component
JP5123464B2 (en) * 2004-03-03 2013-01-23 東ソー株式会社 Catalyst for producing particulate macromonomer and method for producing particulate macromonomer
JP2006028326A (en) * 2004-07-15 2006-02-02 Tosoh Corp Method for producing catalyst for producing macromonomer, and method for producing macromonomer
JP5633991B2 (en) * 2010-07-19 2014-12-03 日本ポリプロ株式会社 Metallocene complex, polymerization catalyst using the same, and method for producing olefin polymer
JP6051738B2 (en) * 2012-03-29 2016-12-27 日本ポリエチレン株式会社 Metallocene compound, olefin polymerization catalyst component and olefin polymerization catalyst containing the same, and method for producing olefin polymer using the olefin polymerization catalyst
JP6344138B2 (en) * 2013-08-27 2018-06-20 日本ポリエチレン株式会社 Metallocene compound, olefin polymerization catalyst component and olefin polymerization catalyst containing the same, and method for producing olefin polymer using the olefin polymerization catalyst

Similar Documents

Publication Publication Date Title
RU2670752C9 (en) Olefin based polymer with excellent processing ability
JP6470834B2 (en) Excellent processability ethylene / alpha-olefin copolymer
CN103443139B (en) The higher olefin polymer of ethenyl blocking and production method thereof
KR101593666B1 (en) Olefin based polymer having excellent processibility
JP2017518423A (en) Polyolefin with excellent environmental stress crack resistance
JP6788590B2 (en) Ethylene / alpha-olefin copolymer with excellent workability and surface properties
KR20160121940A (en) Ethylene/alpha-olefin copolymer having an excellent environmental stress crack resistance
KR102073253B1 (en) Supported hybrid metallocene catalyst and method for preparing polyolefin using the same
JP2017536422A (en) Excellent processability ethylene / alpha-olefin copolymer
KR20160123172A (en) Ethylene/alpha-olefin copolymer having excellent processibility
JP2014513735A (en) NOVEL CATALYST FOR PRODUCING VINYL-TERMINATE POLYMER AND METHOD OF USING THE SAME
CN111788239A (en) Ethylene/alpha-olefin copolymer and process for producing the same
CN113227171A (en) Catalyst for polymerizing olefin and olefin polymer prepared using the same
WO2019125065A1 (en) Ethylene/1-butene copolymer having excellent processability
KR102566283B1 (en) Supported hybrid metallocene catalyst and method for preparing polyolefine using the same
KR20180046291A (en) Ethylene/alpha-olefin copolymer having an excellent environmental stress crack resistance
JP2021517199A (en) Ethylene / alpha-olefin copolymer and its production method
KR20160121045A (en) High density polyethylene copolymer for blow molding
JP2017165916A5 (en)
KR101713065B1 (en) Hybrid supported metallocene catalyst, method for preparing polyolefin by using the same and polyolefin having improved melting strength
JP4781623B2 (en) Olefin block copolymer and method for producing the same
KR20210020424A (en) Novel transition metal compound and method for preparing polyethlene using the same
KR102724460B1 (en) Supported hybrid metallocene catalyst, and preparation method of polyolefin using the same
JPWO2018168940A1 (en) Method for producing polar olefin polymer and copolymer
KR102402638B1 (en) Propylene random copolymer