JP2017164732A - METHOD FOR PRODUCING TANTALUM NITRIDE (Ta3 N5) - Google Patents

METHOD FOR PRODUCING TANTALUM NITRIDE (Ta3 N5) Download PDF

Info

Publication number
JP2017164732A
JP2017164732A JP2016156366A JP2016156366A JP2017164732A JP 2017164732 A JP2017164732 A JP 2017164732A JP 2016156366 A JP2016156366 A JP 2016156366A JP 2016156366 A JP2016156366 A JP 2016156366A JP 2017164732 A JP2017164732 A JP 2017164732A
Authority
JP
Japan
Prior art keywords
mass
ammonia gas
tantalum nitride
oxygen content
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016156366A
Other languages
Japanese (ja)
Other versions
JP6745164B2 (en
Inventor
智佳 岸森
Chika Kishimori
智佳 岸森
和彦 常世田
Kazuhiko Tsuneyoda
和彦 常世田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Publication of JP2017164732A publication Critical patent/JP2017164732A/en
Application granted granted Critical
Publication of JP6745164B2 publication Critical patent/JP6745164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an industrial production method for TaNof a single phase with a low oxygen content.SOLUTION: A method for producing tantalum nitride (TaN) includes nitriding of tantalum oxide (TaO) at 800-950°C in an ammonia gas atmosphere with an ammonia gas flow rate of 0.05-0.8 L/min per 1g of TaO.SELECTED DRAWING: None

Description

本発明は、Ta35の製造方法に関する。 The present invention relates to a method for producing Ta 3 N 5 .

Ta35は、誘電体や超電導体などとして使用される金属窒化物である。さらに、近年では炭酸ガス排出削減、再生可能エネルギーの観点から、太陽光エネルギーを利用して、光触媒により水を分解して、水素や酸素を製造する技術に注目が集まっており、Ta35は光触媒として利用可能である(特許文献1)。
一方で、光触媒に含まれる酸素は忌避成分となり、水素の発生を阻害する。そこで、酸素を含まない高純度のTa35が求められている。
Ta 3 N 5 is a metal nitride used as a dielectric or a superconductor. Furthermore, in recent years, from the viewpoint of reducing carbon dioxide emissions and renewable energy, attention has been focused on technology for producing hydrogen and oxygen by using solar energy to decompose water using a photocatalyst. Ta 3 N 5 Can be used as a photocatalyst (Patent Document 1).
On the other hand, oxygen contained in the photocatalyst becomes a repellent component and inhibits generation of hydrogen. Therefore, high purity Ta 3 N 5 containing no oxygen is required.

非特許文献1では、塩化タンタル(TaCl5)を液体アンモニアで処理し、得られたTa(NH22Cl3を、アンモニア気流中で650〜750℃で分解することでTa35が得られている。特許文献1では、酸化タンタル(Ta25)をアンモニア気流中、850℃で25時間窒化することでTa35が得られる旨記載されている。
また特許文献2では、Ta基板を用い、真空紫外光を照射して親水化した後、フラックス水溶液(NaClとNa2CO3がモル比で4:1)を塗布し、100℃で乾燥させ、乾燥後、Ta基板をアンモニア気流中850℃、1時間加熱した。その後、アンモニア気流中で300℃まで、300℃から室温まで窒素気流中で冷却した。冷却後、残存するフラックスを温水中で除去することでTa35を得ている。
In Non-Patent Document 1, tantalum chloride (TaCl 5 ) is treated with liquid ammonia, and the resulting Ta (NH 2 ) 2 Cl 3 is decomposed at 650 to 750 ° C. in an ammonia stream to obtain Ta 3 N 5. Has been obtained. Patent Document 1 describes that Ta 3 N 5 can be obtained by nitriding tantalum oxide (Ta 2 O 5 ) in an ammonia stream at 850 ° C. for 25 hours.
In Patent Document 2, a Ta substrate is used and hydrophilicized by irradiation with vacuum ultraviolet light, and then a flux aqueous solution (NaCl and Na 2 CO 3 in a molar ratio of 4: 1) is applied and dried at 100 ° C., After drying, the Ta substrate was heated in an ammonia stream at 850 ° C. for 1 hour. Then, it cooled in the nitrogen stream from 300 degreeC to room temperature in the ammonia stream. After cooling, Ta 3 N 5 is obtained by removing the remaining flux in warm water.

特開2002−233769号公報JP 2002-233769 A 特開2015−71525号公報Japanese Patent Laying-Open No. 2015-71525

J.Amer.Chem.Soc.59,33〜40(1937)J. et al. Amer. Chem. Soc. 59, 33-40 (1937)

しかしながら、非特許文献1記載の方法では、750℃で6日間もの長時間を要する。特許文献2記載の方法では、工程数が長く工業的ではなく、親水化しフラックス水溶液を塗布させることで、Ta基板を酸化させTa25としている。また、特許文献1記載の方法を追試したところ、酸素量が多く、純度が低いことが判明した。 However, the method described in Non-Patent Document 1 requires as long as 6 days at 750 ° C. In the method described in Patent Document 2, the Ta substrate is oxidized to Ta 2 O 5 by applying a flux aqueous solution by making it hydrophilic and applying a flux aqueous solution because the number of steps is long and not industrial. Further, when the method described in Patent Document 1 was further tested, it was found that the amount of oxygen was large and the purity was low.

従って、本発明の課題は、酸素含有量が少なく、かつ単相のTa35の工業的な製造方法を提供することにある。 Accordingly, an object of the present invention is to provide an industrial process for producing single-phase Ta 3 N 5 with a low oxygen content.

そこで本発明者は、前記課題を解決すべく検討した結果、タンタル酸化物(Ta25)を出発原料として用い、800〜950℃という特定の温度で一定の流量のアンモニアガスを反応させることにより、酸素量が少なく、かつ単相のTa35が選択的に得られることを見出した。また、得られた酸素含有量の少ないTa35が、従来のTa35とは異なり、620〜750nmという可視光を吸収するものであることも見出した。 Therefore, as a result of studies to solve the above problems, the present inventor uses tantalum oxide (Ta 2 O 5 ) as a starting material, and reacts ammonia gas at a constant flow rate at a specific temperature of 800 to 950 ° C. Thus, it was found that a small amount of oxygen and single phase Ta 3 N 5 can be selectively obtained. It was also found that the obtained Ta 3 N 5 with a low oxygen content absorbs visible light of 620 to 750 nm, unlike the conventional Ta 3 N 5 .

すなわち、本発明は、次の〔1〕〜〔6〕を提供するものである。   That is, the present invention provides the following [1] to [6].

〔1〕タンタル酸化物(Ta25)を800〜950℃で、アンモニアガス雰囲気下で、アンモニアガス流量が、Ta25 1gあたり0.05〜0.8L/minで窒化することを特徴とする窒化タンタル(Ta35)の製造方法。
〔2〕加熱温度(℃)と加熱時間(hr)の積が10000〜25000になる時間、アンモニアガス雰囲気下で窒化する〔1〕記載の製造方法。
〔3〕窒化タンタル(Ta35)の酸素含有量が1mass%以下である〔1〕又は〔2〕記載の製造方法。
〔4〕620〜750nmの波長の可視光を吸収する窒化タンタル(Ta35)。
〔5〕酸素含有量が1mass%以下である〔4〕記載の窒化タンタル(Ta35)。
〔6〕純度が90%以上である〔4〕又は〔5〕記載の窒化タンタル(Ta35)。
[1] Nitrating tantalum oxide (Ta 2 O 5 ) at 800 to 950 ° C. in an ammonia gas atmosphere at an ammonia gas flow rate of 0.05 to 0.8 L / min per 1 g of Ta 2 O 5. A method for producing tantalum nitride (Ta 3 N 5 ), which is characterized.
[2] The production method according to [1], wherein nitriding is performed in an ammonia gas atmosphere for a time in which the product of the heating temperature (° C.) and the heating time (hr) is 10,000 to 25,000.
[3] The method according to [1] or [2], wherein the oxygen content of tantalum nitride (Ta 3 N 5 ) is 1 mass% or less.
[4] Tantalum nitride (Ta 3 N 5 ) that absorbs visible light having a wavelength of 620 to 750 nm.
[5] The tantalum nitride (Ta 3 N 5 ) according to [4], wherein the oxygen content is 1 mass% or less.
[6] The tantalum nitride (Ta 3 N 5 ) according to [4] or [5], wherein the purity is 90% or more.

本発明方法によれば、酸素量が少なく高純度のTa35が工業的に有利に製造できる。また、本発明の620〜750nmの波長の可視光を吸収するTa35は、酸素含有量が少なく高純度であり、可視光で触媒作用を有する光触媒として有用である。 According to the method of the present invention, Ta 3 N 5 having a small amount of oxygen and high purity can be produced industrially advantageously. In addition, Ta 3 N 5 that absorbs visible light having a wavelength of 620 to 750 nm according to the present invention has a low oxygen content and high purity, and is useful as a photocatalyst having catalytic action with visible light.

実施例1で得られたTa35の粉末XRD解析結果を示す。It shows a powder XRD analysis results of Ta 3 N 5 obtained in Example 1. 実施例2で得られたTa35の粉末XRD解析結果を示す。It shows a powder XRD analysis results of Ta 3 N 5 obtained in Example 2. 実施例3で得られたTa35の粉末XRD解析結果を示す。It shows a powder XRD analysis results of Ta 3 N 5 obtained in Example 3. 実施例4で得られたTa35の粉末XRD解析結果を示す。It shows a powder XRD analysis results of Ta 3 N 5 obtained in Example 4. 実施例5で得られたTa35の粉末XRD解析結果を示す。It shows a powder XRD analysis results of Ta 3 N 5 obtained in Example 5. 比較例1で得られた生成物の粉末XRD解析結果を示す。The powder XRD analysis result of the product obtained in Comparative Example 1 is shown. 比較例2で得られた生成物の粉末XRD解析結果を示す。The powder XRD analysis result of the product obtained in Comparative Example 2 is shown. 比較例3で得られた生成物の粉末XRD解析結果を示す。The powder XRD analysis result of the product obtained in Comparative Example 3 is shown. 比較例4で得られた生成物の粉末XRD解析結果を示す。The powder XRD analysis result of the product obtained in Comparative Example 4 is shown. 比較例5で得られた生成物の粉末XRD解析結果を示す。The powder XRD analysis result of the product obtained in Comparative Example 5 is shown. 実施例1で得られたTa35の吸収スペクトルを示す。It shows the absorption spectrum of Ta 3 N 5 obtained in Example 1.

本発明のTa35の製造方法は、Ta25を800〜950℃で、アンモニアガス雰囲気下で、アンモニアガス流量が、Ta25 1gあたり0.05〜0.8L/minで窒化することを特徴とする。 In the method for producing Ta 3 N 5 of the present invention, Ta 2 O 5 is 800 to 950 ° C. in an ammonia gas atmosphere, and the ammonia gas flow rate is 0.05 to 0.8 L / min per 1 g of Ta 2 O 5. It is characterized by nitriding.

本発明に用いる原料は、Ta25である。このようなタンタル酸化物を原料として用いるにもかかわらず、本発明においては、アンモニアガスとの反応温度及びアンモニアガスの流量を調整することにより、高純度で酸素含有量の少ないTa35が得られる。 The raw material used in the present invention is Ta 2 O 5 . Despite the use of such a tantalum oxide as a raw material, in the present invention, Ta 3 N 5 having high purity and low oxygen content can be obtained by adjusting the reaction temperature with ammonia gas and the flow rate of ammonia gas. can get.

窒化する際のアンモニアガス量は、Ta25 1gあたり0.05L/min以上0.8L/min以下が好ましい。さらに好ましくは、0.1L/min以上0.5L/min以下である。0.05L/min未満だと窒化時間が長く、工業的ではない。0.8L/min超だと、得られるTa35の酸素含有量が高くなる場合がある。また、窒化に使用されないアンモニアガス量が多くなり、製造コストが高くなる。 The amount of ammonia gas during nitriding is preferably 0.05 L / min or more and 0.8 L / min or less per gram of Ta 2 O 5 . More preferably, it is 0.1 L / min or more and 0.5 L / min or less. If it is less than 0.05 L / min, the nitriding time is long and not industrial. If it exceeds 0.8 L / min, the oxygen content of the obtained Ta 3 N 5 may be high. In addition, the amount of ammonia gas that is not used for nitriding increases, and the manufacturing cost increases.

窒化する温度(加熱温度)は、800℃以上950℃以下である。800℃未満の場合、窒化が十分に進行しない。950℃超の場合、Ta35から窒素が放出され金属Taとなるため高純度のTa35が得られない。より好ましい窒化温度は、800℃以上900℃以下である。 The nitriding temperature (heating temperature) is 800 ° C. or higher and 950 ° C. or lower. When the temperature is less than 800 ° C., nitriding does not proceed sufficiently. When the temperature is higher than 950 ° C., nitrogen is released from Ta 3 N 5 and becomes metal Ta, so that high-purity Ta 3 N 5 cannot be obtained. A more preferable nitriding temperature is 800 ° C. or higher and 900 ° C. or lower.

また、加熱時間は、加熱温度との関係で決定され、加熱温度(℃)と加熱時間(hr)の積が、10000〜25000になる時間が好ましい。この加熱時間が10000未満の場合には、窒化が十分に進行しないおそれがある。一方、25000を超えると、Ta35より窒素量の少ないタンタル窒化物が生成してしまうおそれがある。より好ましい前記積は12000〜20000であり、さらに好ましくは16000〜20000である。
具体的な加熱時間は13時間以上30時間以下が好ましく、15時間以上30時間以下がより好ましい。なお、ここで加熱時間は、800〜950℃の範囲に加熱されている時間である。
Further, the heating time is determined in relation to the heating temperature, and the time when the product of the heating temperature (° C.) and the heating time (hr) is 10000 to 25000 is preferable. If the heating time is less than 10,000, nitriding may not proceed sufficiently. On the other hand, if it exceeds 25000, tantalum nitride having a smaller amount of nitrogen than Ta 3 N 5 may be produced. More preferably, the product is 12000 to 20000, and more preferably 16000 to 20000.
The specific heating time is preferably 13 hours or longer and 30 hours or shorter, and more preferably 15 hours or longer and 30 hours or shorter. Here, the heating time is a time during which heating is performed in a range of 800 to 950 ° C.

反応装置は、1000℃程度の熱に耐えられる装置であればよく、例えば、管状炉、電気炉、バッチ式キルン、ロータリーキルンを用いれば良い。   The reaction apparatus may be an apparatus that can withstand heat of about 1000 ° C., and for example, a tubular furnace, an electric furnace, a batch kiln, or a rotary kiln may be used.

上記の反応により、反応容器中には高純度のTa35のみが残存するので回収が容易である。得られるTa35の純度は90%以上が好ましく、95%以上であるのがより好ましい。また、得られるTa35中の酸素含有量は1mass%以下が好ましく、0.85mass%以下であるのがより好ましい。 By the above reaction, only high-purity Ta 3 N 5 remains in the reaction vessel, so that it can be easily recovered. The purity of Ta 3 N 5 obtained is preferably 90% or more, and more preferably 95% or more. Further, the oxygen content in the obtained Ta 3 N 5 is preferably 1 mass% or less, and more preferably 0.85 mass% or less.

得られたTa35の吸収スペクトルを測定したところ、620〜750nmの波長の可視光を吸収することが判明した。光触媒として有用であることが報告されている特許文献1記載のTa35の吸収波長は紫外部から620nmまでである。従って、本発明の620〜750nmの波長の可視光を吸収するTa35は、新規なTa35であり、可視光を利用できる光触媒として有用である。
また、本発明のTa35としては、最大吸収波長が550〜700nmにあるのが好ましく、600〜700nmにあるのがより好ましく、620〜700nmにあるのがさらに好ましく、620〜680nmにあるのが特に好ましい。
When the absorption spectrum of the obtained Ta 3 N 5 was measured, it was found that visible light having a wavelength of 620 to 750 nm was absorbed. The absorption wavelength of Ta 3 N 5 described in Patent Document 1 reported to be useful as a photocatalyst is from the ultraviolet region to 620 nm. Therefore, Ta 3 N 5 that absorbs visible light having a wavelength of 620 to 750 nm according to the present invention is a novel Ta 3 N 5 and is useful as a photocatalyst that can use visible light.
Further, the Ta 3 N 5 of the present invention preferably has a maximum absorption wavelength of 550 to 700 nm, more preferably 600 to 700 nm, further preferably 620 to 700 nm, and more preferably 620 to 680 nm. Is particularly preferred.

本発明のTa35の吸収波長は、酸素含有量の低下及び純度の高度化とともに長波長側にシフトする傾向にあり、酸素含有量及び純度が高いことが好ましい。従って、Ta35の純度は90%以上が好ましく、95%以上であるのがより好ましい。また、Ta35中の酸素含有量は1mass%以下が好ましく、0.85mass%以下であるのがより好ましい。 The absorption wavelength of Ta 3 N 5 of the present invention tends to shift to a longer wavelength side with a decrease in oxygen content and an increase in purity, and preferably has a high oxygen content and purity. Therefore, the purity of Ta 3 N 5 is preferably 90% or more, and more preferably 95% or more. Further, the oxygen content in Ta 3 N 5 is preferably 1 mass% or less, and more preferably 0.85 mass% or less.

次に実施例を挙げて、本発明を詳細に説明する。   EXAMPLES Next, an Example is given and this invention is demonstrated in detail.

実施例1
グローブボックス内にて炉心管(内径50mm、長さ600mm)に酸化物(Ta25)5gを入れ、シリコンキャップで密閉した。グローブボックスから取り出した炉心管を管状炉にセットした。その後、アンモニアガスを1L/min(Ta25 1gあたり0.2L/min)雰囲気下で、反応温度850℃、20時間で窒化した。
得られた合成物の粉末XRD解析を行ったところ単相のTa35であった(図1)。得られたTa35を窒素酸素同時分析計で定量したところ、酸素含有量は0.76mass%と低く、窒素含有量は11.41mass%であり、理論量(11.43mass%)から算出した純度は99.8%であった。
Example 1
In a glove box, 5 g of oxide (Ta 2 O 5 ) was placed in a core tube (inner diameter 50 mm, length 600 mm) and sealed with a silicon cap. The furnace tube taken out from the glove box was set in a tubular furnace. Thereafter, ammonia gas was nitrided in an atmosphere of 1 L / min (0.2 L / min per 1 g of Ta 2 O 5 ) at a reaction temperature of 850 ° C. for 20 hours.
The resulting composite single phase and by performing powder XRD analysis of a Ta 3 N 5 (Fig. 1). When the obtained Ta 3 N 5 was quantified with a nitrogen-oxygen simultaneous analyzer, the oxygen content was as low as 0.76 mass% and the nitrogen content was 11.41 mass%, which was calculated from the theoretical amount (11.43 mass%). The purity obtained was 99.8%.

実施例2
アンモニアガス量をTa25仕込み量1gに対し、0.5L/minとした以外は、実施例1と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところ単相のTa35であった(図2)。得られたTa35を窒素酸素同時分析計で定量したところ、酸素含有量は0.59mass%と低く、窒素含有量は10.65mass%であり、理論量(11.43mass%)から算出した純度は93.2%であった。
Example 2
The same operation as in Example 1 was performed except that the ammonia gas amount was 0.5 L / min with respect to 1 g of the charged amount of Ta 2 O 5 .
The resulting composite single phase and by performing powder XRD analysis of a Ta 3 N 5 (Fig. 2). When the obtained Ta 3 N 5 was quantified with a nitrogen-oxygen simultaneous analyzer, the oxygen content was as low as 0.59 mass%, the nitrogen content was 10.65 mass%, and was calculated from the theoretical amount (11.43 mass%). The purity was 93.2%.

実施例3
仕込み量を10gとした以外は、実施例1と同様の操作(アンモニアガスをTa25 1gあたり0.1L/min)を行った。
得られた合成物の粉末XRD解析を行ったところ単相のTa35であった(図3)。得られたTa35を窒素酸素同時分析計で定量したところ、酸素含有量は0.66mass%と低く、窒素含有量は11.40mass%であり、理論量(11.43mass%)から算出した純度は99.7%であった。
Example 3
The same operation as in Example 1 (ammonia gas was 0.1 L / min per 1 g of Ta 2 O 5 ) except that the amount charged was 10 g.
The resulting composite single phase and by performing powder XRD analysis of a Ta 3 N 5 (Figure 3). When the obtained Ta 3 N 5 was quantified with a nitrogen-oxygen simultaneous analyzer, the oxygen content was as low as 0.66 mass% and the nitrogen content was 11.40 mass%, which was calculated from the theoretical amount (11.43 mass%). The purity was 99.7%.

実施例4
反応温度を900℃とした以外は、実施例1と同様の操作(アンモニアガスをTa25 1gあたり0.2L/min)を行った。
得られた合成物の粉末XRD解析を行ったところ単相のTa35であった(図4)。得られたTa35を窒素酸素同時分析計で定量したところ、酸素含有量は0.84mass%と低く、窒素含有量は10.88mass%であり、理論量(11.43mass%)から算出した純度は95.2%であった。
Example 4
The same operation as in Example 1 was performed except that the reaction temperature was 900 ° C. (ammonia gas was 0.2 L / min per 1 g of Ta 2 O 5 ).
The resulting composite single phase and by performing powder XRD analysis of a Ta 3 N 5 (Fig. 4). When the obtained Ta 3 N 5 was quantified with a nitrogen-oxygen simultaneous analyzer, the oxygen content was as low as 0.84 mass% and the nitrogen content was 10.88 mass%, which was calculated from the theoretical amount (11.43 mass%). The purity obtained was 95.2%.

実施例5
反応温度を800℃とし、実施例1と同様の操作(アンモニアガスをTa25 1gあたり0.2L/min)を行った。得られた合成物の粉末XRD解析を行ったところTa35であった(図5)。得られた合成物を窒素酸素同時分析計で定量したところ、酸素含有量は0.98mass%と低く、窒素含有量は10.41mass%であり、理論量(11.43mass%)から算出した純度は91.1%であった。
Example 5
The reaction temperature was set to 800 ° C., and the same operation as in Example 1 (ammonia gas was 0.2 L / min per 1 g of Ta 2 O 5 ) was performed. The resulting compound was Ta 3 N 5 where the powder XRD analysis was performed (Fig. 5). When the obtained composite was quantified with a nitrogen-oxygen simultaneous analyzer, the oxygen content was as low as 0.98 mass%, the nitrogen content was 10.41 mass%, and the purity calculated from the theoretical amount (11.43 mass%) Was 91.1%.

比較例1
反応温度を750℃とした以外は、実施例1と同様の操作(アンモニアガスをTa25 1gあたり0.2L/min)を行った。
得られた合成物の粉末XRD解析を行ったところTa35とTaONとTa25の混合相であった(図6)。得られたTa35を窒素酸素同時分析計で定量したところ、酸素含有量は3.89mass%と高く、窒素含有量は8.99mass%であった。
Comparative Example 1
The same operation as in Example 1 was performed except that the reaction temperature was 750 ° C. (ammonia gas was 0.2 L / min per 1 g of Ta 2 O 5 ).
The resulting compound was a mixed phase of Ta 3 where a powder XRD analysis was carried out of N 5 and TaON and Ta 2 O 5 (Fig. 6). When the obtained Ta 3 N 5 was quantified with a nitrogen-oxygen simultaneous analyzer, the oxygen content was as high as 3.89 mass% and the nitrogen content was 8.9 mass%.

比較例2
反応温度を850℃とし、(アンモニア量は仕込み量1gに対し、0.03L/min)とし、それ以外は実施例1と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところTa35とTaONの混合相であった(図7)。得られた合成物を窒素酸素同時分析計で定量したところ、酸素含有量は4.63mass%、窒素含有量は9.35mass%であった。
Comparative Example 2
The reaction temperature was 850 ° C. (the amount of ammonia was 0.03 L / min with respect to 1 g of the charged amount), and the other operations were performed in the same manner as in Example 1.
When the powder XRD analysis of the obtained composite was conducted, it was a mixed phase of Ta 3 N 5 and TaON (FIG. 7). When the obtained composite was quantified with a nitrogen-oxygen simultaneous analyzer, the oxygen content was 4.63 mass% and the nitrogen content was 9.35 mass%.

比較例3(特開2002−233769号公報の追試)
酸化物(Ta25)1gを入れ、仕込み量1gに対してアンモニアガスを1.0L/min雰囲気下で、反応温度850℃、25時間で窒化した。得られた合成物の粉末XRD解析を行ったところTa35とTaONの混合相であった(図8)。得られた合成物を窒素酸素同時分析計で定量したところ、酸素含有量は5.83mass%、窒素含有量は10.01mass%であった。
Comparative Example 3 (Additional Examination of JP 2002-233769 A)
1 g of oxide (Ta 2 O 5 ) was added, and ammonia gas was nitrided at a reaction temperature of 850 ° C. for 25 hours in an atmosphere of 1.0 L / min with respect to the charged amount of 1 g. When the powder XRD analysis of the obtained composite was performed, it was a mixed phase of Ta 3 N 5 and TaON (FIG. 8). When the obtained composite was quantified with a nitrogen-oxygen simultaneous analyzer, the oxygen content was 5.83 mass% and the nitrogen content was 10.01 mass%.

比較例4
反応温度を1000℃とし、アンモニア量をTa25仕込み量1gに対し、0.1L/minとする以外は、実施例1と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところ、Ta窒化物の混合相であった(図9)。得られた合成物を窒素酸素同時分析計で定量したところ、酸素含有量は3.33mass%、窒素含有量は10.00mass%であった。
Comparative Example 4
The same operation as in Example 1 was performed except that the reaction temperature was 1000 ° C. and the ammonia amount was 0.1 L / min with respect to 1 g of the charged amount of Ta 2 O 5 .
When the powder XRD analysis of the obtained composite was performed, it was a mixed phase of Ta nitride (FIG. 9). When the obtained synthesized product was quantified with a nitrogen-oxygen simultaneous analyzer, the oxygen content was 3.33 mass% and the nitrogen content was 10.00 mass%.

比較例5
反応時間を35時間とし、アンモニア量をTa25仕込み量1gに対し、0.1L/minとする以外は、実施例1と同様の操作を行った。
得られた合成物の粉末XRD解析を行ったところ、Ta窒化物の混合相であった(図10)。得られた合成物を窒素酸素同時分析計で定量したところ、酸素含有量は2.67mass%、窒素含有量は10.80mass%であった。
Comparative Example 5
The same operation as in Example 1 was performed except that the reaction time was 35 hours and the ammonia amount was 0.1 L / min with respect to 1 g of the charged amount of Ta 2 O 5 .
When the powder XRD analysis of the obtained composite was performed, it was a mixed phase of Ta nitride (FIG. 10). When the obtained composite was quantified with a nitrogen-oxygen simultaneous analyzer, the oxygen content was 2.67 mass% and the nitrogen content was 10.80 mass%.

実施例1〜5より、Ta25を800〜950℃の温度で、アンモニアガスの量がTa25 1gあたり0.05〜0.8L/minでアンモニアガスを反応させた場合、酸素含有量の少ない高純度のTa35が得られる。一方、反応温度が低い(750℃)比較例1では反応が十分に進行しなかった。また、反応温度が高い(1000℃)比較例4では、Ta窒化物ではあるがTa35以外の窒化物が混入していた。アンモニアガスの量がTa25 1gあたり0.05〜0.8L/minの範囲外の場合は、高純度のTa35が得られなかった。 From Examples 1 to 5, when Ta 2 O 5 was reacted with ammonia gas at a temperature of 800 to 950 ° C. and an ammonia gas amount of 0.05 to 0.8 L / min per gram of Ta 2 O 5 , oxygen High purity Ta 3 N 5 with a low content is obtained. On the other hand, in Comparative Example 1 where the reaction temperature was low (750 ° C.), the reaction did not proceed sufficiently. In Comparative Example 4 where the reaction temperature was high (1000 ° C.), nitrides other than Ta 3 N 5 were mixed although they were Ta nitrides. When the amount of ammonia gas was outside the range of 0.05 to 0.8 L / min per gram of Ta 2 O 5 , high-purity Ta 3 N 5 could not be obtained.

実施例6
実施例1〜5で得られたTa35の吸収スペクトルを、紫外可視分光光度計を用いて測定した。実施例1のTa35の吸収スペクトルを図11に示す。その結果、実施例1〜5で得られたTa35は620〜750nmの波長の可視光を吸収することが判明した。最大吸収波長と純度との関係を表1に示す。
Example 6
The absorption spectra of Ta 3 N 5 obtained in Examples 1 to 5 were measured using an ultraviolet-visible spectrophotometer. The absorption spectrum of Ta 3 N 5 of Example 1 is shown in FIG. As a result, it was found that Ta 3 N 5 obtained in Examples 1 to 5 absorbs visible light having a wavelength of 620 to 750 nm. Table 1 shows the relationship between the maximum absorption wavelength and purity.

Figure 2017164732
Figure 2017164732

Claims (6)

タンタル酸化物(Ta25)を800〜950℃で、アンモニアガス雰囲気下で、アンモニアガス流量が、Ta25 1gあたり0.05〜0.8L/minで窒化することを特徴とする窒化タンタル(Ta35)の製造方法。 Tantalum oxide (Ta 2 O 5 ) is nitrided at 800 to 950 ° C. in an ammonia gas atmosphere at an ammonia gas flow rate of 0.05 to 0.8 L / min per gram of Ta 2 O 5. A method for producing tantalum nitride (Ta 3 N 5 ). 加熱温度(℃)と加熱時間(hr)の積が10000〜25000になる時間、アンモニアガス雰囲気下で窒化する請求項1記載の製造方法。   The manufacturing method of Claim 1 which nitrides in ammonia gas atmosphere for the time when the product of heating temperature (degreeC) and heating time (hr) becomes 10000-25000. 窒化タンタル(Ta35)の酸素含有量が1mass%以下である請求項1又は2記載の製造方法。 The production method according to claim 1 or 2, wherein the tantalum nitride (Ta 3 N 5 ) has an oxygen content of 1 mass% or less. 620〜750nmの波長の可視光を吸収する窒化タンタル(Ta35)。 Tantalum nitride (Ta 3 N 5 ) that absorbs visible light having a wavelength of 620 to 750 nm. 酸素含有量が1mass%以下である請求項4記載の窒化タンタル(Ta35)。 The tantalum nitride (Ta 3 N 5 ) according to claim 4, wherein the oxygen content is 1 mass% or less. 純度が90%以上である請求項4又は5記載の窒化タンタル(Ta35)。 The tantalum nitride (Ta 3 N 5 ) according to claim 4 or 5, which has a purity of 90% or more.
JP2016156366A 2016-03-14 2016-08-09 Method for producing tantalum nitride (Ta3N5) Active JP6745164B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016049553 2016-03-14
JP2016049553 2016-03-14

Publications (2)

Publication Number Publication Date
JP2017164732A true JP2017164732A (en) 2017-09-21
JP6745164B2 JP6745164B2 (en) 2020-08-26

Family

ID=59909545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016156366A Active JP6745164B2 (en) 2016-03-14 2016-08-09 Method for producing tantalum nitride (Ta3N5)

Country Status (1)

Country Link
JP (1) JP6745164B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019156673A (en) * 2018-03-13 2019-09-19 太平洋セメント株式会社 Tantalum nitride crystal
JP2019155270A (en) * 2018-03-13 2019-09-19 太平洋セメント株式会社 photocatalyst
CN113634266A (en) * 2021-07-05 2021-11-12 宁波工程学院 ReS2Ta loaded by ultrathin nanosheets3N5Hollow nanosphere composite material and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019156673A (en) * 2018-03-13 2019-09-19 太平洋セメント株式会社 Tantalum nitride crystal
JP2019155270A (en) * 2018-03-13 2019-09-19 太平洋セメント株式会社 photocatalyst
JP7005394B2 (en) 2018-03-13 2022-01-21 太平洋セメント株式会社 photocatalyst
JP7058151B2 (en) 2018-03-13 2022-04-21 太平洋セメント株式会社 Tantalum nitride crystal
CN113634266A (en) * 2021-07-05 2021-11-12 宁波工程学院 ReS2Ta loaded by ultrathin nanosheets3N5Hollow nanosphere composite material and application thereof

Also Published As

Publication number Publication date
JP6745164B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
Boonchom Kinetic and thermodynamic studies of MgHPO 4· 3H 2 O by non-isothermal decomposition data
JP5825920B2 (en) Method for producing metal nitride
JP6745164B2 (en) Method for producing tantalum nitride (Ta3N5)
US20160023905A1 (en) Carbon nano-tube production from carbon dioxide
CN107673318B (en) Boron nitride nanotubes and batch preparation method thereof
JP2008231096A5 (en)
KR101647747B1 (en) Surface modification method of aluminum oxide carrier
CN106623962A (en) Method for preparing nanometer tungsten powder by organizing sodium tungstate
Liu et al. Efficient degradation of methylene blue dye by catalytic oxidation using the Na 8 Nb 6 O 19· 13H 2 O/H 2 O 2 system
JP6660776B2 (en) Method for producing tantalum nitride (Ta3N5)
JP6751043B2 (en) Tantalum nitride manufacturing method
CN110963471B (en) Ta synthesized by fused salt ion exchange type one-step method 3 N 5 Method (2)
JP7418849B2 (en) Oxynitrogen hydride, metal support containing oxynitrogen hydride, and catalyst for ammonia synthesis
JP6777576B2 (en) Manufacturing method of tantalum nitride
JP6454214B2 (en) Silica and production method thereof
KR102255171B1 (en) Method of preparing Cs-Pd catalyst for synthesis of hydrogen peroxide, and Method of preaparing heydrogen oxide using the Cs-Pd catalyst
CN107321357B (en) Preparation method and application of acetic acid hydrogenation catalyst
Kohno et al. A tracer study of a radical produced by UV irradiation on BaTi4O9 photocatalyst surface
CN107522178A (en) A kind of method for preparing boron nitride nano-tube
JP5036990B2 (en) Method for producing manganese fluoride
JP2007136394A (en) Manufacturing method of sulfur-doped titanium oxide
JP6759659B2 (en) Manufacturing method of cyclopentanone
JP2007112666A (en) Vanadium oxide (iii) and its manufacturing method
WO2013145806A1 (en) Mayenite production method
RU2003105881A (en) METHOD FOR PRODUCING EPOXY COMPOUNDS BY OXIDATION OF OLEFINS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R150 Certificate of patent or registration of utility model

Ref document number: 6745164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250