JP2017161846A - Optical system, optical instrument and method for manufacturing optical system - Google Patents

Optical system, optical instrument and method for manufacturing optical system Download PDF

Info

Publication number
JP2017161846A
JP2017161846A JP2016048455A JP2016048455A JP2017161846A JP 2017161846 A JP2017161846 A JP 2017161846A JP 2016048455 A JP2016048455 A JP 2016048455A JP 2016048455 A JP2016048455 A JP 2016048455A JP 2017161846 A JP2017161846 A JP 2017161846A
Authority
JP
Japan
Prior art keywords
lens
optical system
conditional expression
group
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016048455A
Other languages
Japanese (ja)
Other versions
JP6816370B2 (en
Inventor
真美 村谷
Mami Muratani
真美 村谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP2016048455A priority Critical patent/JP6816370B2/en
Publication of JP2017161846A publication Critical patent/JP2017161846A/en
Application granted granted Critical
Publication of JP6816370B2 publication Critical patent/JP6816370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical system (wide angle lens) that is small and bright.SOLUTION: An optical system WL includes a front group G1 having a positive or negative refractive power and a rear group G2 having a positive refractive power, in which upon focusing, an interval between the front group G1 and the rear group G2 varies. The front group G1 includes an object side lens (first negative lens L11), an intermediate lens (a first positive lens L12 and a positive cemented lens consisting of a second negative lens L13 and a second positive lens L14), and an image side lens (second negative lens L15). A positive lens L24 is disposed on a side closest to an image of the rear group G2; an aperture diaphragm S is disposed in the front group G1 or the rear group G2; and the optical system satisfies a conditional expression of 0.90<φL1/φSt<1.95, where φL1 represents an effective diameter of the object side lens of the front group G1, and φSt represents an aperture diameter of the aperture diaphragm S.SELECTED DRAWING: Figure 1

Description

本発明は、光学系、これを用いた光学機器およびこの光学系の製造方法に関する。   The present invention relates to an optical system, an optical apparatus using the optical system, and a method for manufacturing the optical system.

従来から、デジタルスチルカメラやデジタルビデオカメラ等の光学機器に用いられる光学系として、小型で全長の短い光学系が提案されている(例えば、特許文献1を参照)。しかしながら、光学系の全長を短くすると、射出瞳の位置が像面に近くなるため、像面の周辺部において実質的な開口効率が減少するいわゆるシェーディングが生じるおそれがある。   2. Description of the Related Art Conventionally, an optical system that is small and has a short overall length has been proposed as an optical system that is used in an optical apparatus such as a digital still camera or a digital video camera (see, for example, Patent Document 1). However, if the total length of the optical system is shortened, the position of the exit pupil becomes closer to the image plane, and so-called shading may occur in which the substantial aperture efficiency decreases at the periphery of the image plane.

特開2013−195558号公報JP 2013-195558 A

本発明に係る光学系は、物体側から順に並んだ、前群と、後群とを有し、合焦の際、前記前群と前記後群との間隔が変化し、前記前群は、物体側から順に並んだ、負の屈折力を有する物体側レンズと、中間レンズと、負の屈折力を有する像側レンズとからなり、前記中間レンズは、正レンズおよび正の接合レンズのうちいずれか一方もしくは両方からなり、前記後群の最も像側に正レンズが配置され、前記前群もしくは前記後群に開口絞りが配置され、以下の条件式を満足する。   The optical system according to the present invention has a front group and a rear group arranged in order from the object side, and the distance between the front group and the rear group changes during focusing, and the front group is An object side lens having a negative refractive power, an intermediate lens, and an image side lens having a negative refractive power, which are arranged in order from the object side, and the intermediate lens is either a positive lens or a positive cemented lens The positive lens is arranged on the most image side of the rear group, and the aperture stop is arranged in the front group or the rear group, and the following conditional expression is satisfied.

0.90<φL1/φSt<1.95
但し、φL1:前記前群の前記物体側レンズの有効径、
φSt:前記開口絞りの開口径。
0.90 <φL1 / φSt <1.95
Where φL1: effective diameter of the object side lens of the front group,
φSt: The aperture diameter of the aperture stop.

本発明に係る光学機器は、上記光学系を搭載して構成される。   An optical apparatus according to the present invention is configured by mounting the above optical system.

本発明に係る光学系の製造方法は、物体側から順に並んだ、前群と、後群とを有する光学系の製造方法であって、合焦の際、前記前群と前記後群との間隔が変化し、前記前群は、物体側から順に並んだ、負の屈折力を有する物体側レンズと、中間レンズと、負の屈折力を有する像側レンズとからなり、前記中間レンズは、正レンズおよび正の接合レンズのうちいずれか一方もしくは両方からなり、前記後群の最も像側に正レンズが配置され、前記前群もしくは前記後群に開口絞りが配置され、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置することを特徴とする。
0.90<φL1/φSt<1.95
但し、φL1:前記前群の前記物体側レンズの有効径、
φSt:前記開口絞りの開口径。
An optical system manufacturing method according to the present invention is a method for manufacturing an optical system having a front group and a rear group, which are arranged in order from the object side, and in focusing, between the front group and the rear group The interval changes, and the front group includes an object side lens having a negative refractive power, an intermediate lens, and an image side lens having a negative refractive power, which are arranged in order from the object side. It consists of one or both of a positive lens and a positive cemented lens, a positive lens is disposed closest to the image side of the rear group, an aperture stop is disposed in the front group or the rear group, and the following conditional expression Each lens is arranged in a lens barrel so as to be satisfied.
0.90 <φL1 / φSt <1.95
Where φL1: effective diameter of the object side lens of the front group,
φSt: The aperture diameter of the aperture stop.

本実施形態の第1実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 1st Example of this embodiment. 図2(a)は第1実施例に係る光学系の無限遠合焦時の諸収差図であり、図2(b)は第1実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 2A is a diagram illustrating various aberrations when the optical system according to the first example is focused at infinity, and FIG. 2B is a diagram illustrating various aberrations when the optical system according to the first example is focused at a short distance. FIG. 本実施形態の第2実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 2nd Example of this embodiment. 図4(a)は第2実施例に係る光学系の無限遠合焦時の諸収差図であり、図4(b)は第2実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 4A is a diagram showing various aberrations when the optical system according to the second example is focused at infinity, and FIG. 4B is a diagram showing various aberrations when the optical system according to the second example is focused at a short distance. FIG. 本実施形態の第3実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 3rd Example of this embodiment. 図6(a)は第3実施例に係る光学系の無限遠合焦時の諸収差図であり、図6(b)は第3実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 6A is a diagram illustrating various aberrations when the optical system according to the third example is focused at infinity, and FIG. 6B is a diagram illustrating various aberrations when the optical system according to the third example is focused at a short distance. FIG. 本実施形態の第4実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 4th Example of this embodiment. 図8(a)は第4実施例に係る光学系の無限遠合焦時の諸収差図であり、図8(b)は第4実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 8A is a diagram showing various aberrations when the optical system according to the fourth example is focused at infinity, and FIG. 8B is a diagram showing various aberrations when the optical system according to the fourth example is focused at a short distance. FIG. 本実施形態の第5実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 5th Example of this embodiment. 図10(a)は第5実施例に係る光学系の無限遠合焦時の諸収差図であり、図10(b)は第5実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 10A is a diagram showing various aberrations when the optical system according to the fifth example is focused at infinity, and FIG. 10B is a diagram showing various aberrations when the optical system according to the fifth example is focused at a short distance. FIG. 本実施形態の第6実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 6th Example of this embodiment. 図12(a)は第6実施例に係る光学系の無限遠合焦時の諸収差図であり、図12(b)は第6実施例に係る光学系の近距離合焦時の諸収差図である。12A is a diagram showing various aberrations when the optical system according to the sixth example is focused at infinity, and FIG. 12B is a diagram showing various aberrations when the optical system according to the sixth example is focused at a short distance. FIG. 本実施形態の第7実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on the 7th Example of this embodiment. 図14(a)は第7実施例に係る光学系の無限遠合焦時の諸収差図であり、図14(b)は第7実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 14A is a diagram showing various aberrations when the optical system according to the seventh example is focused at infinity, and FIG. 14B is a diagram showing various aberrations when focusing on the short distance of the optical system according to the seventh example. FIG. 本実施形態に係る光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the optical system which concerns on this embodiment. 本実施形態に係る光学系の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the optical system which concerns on this embodiment.

以下、本実施形態の光学系、光学機器について図を参照して説明する。本実施形態に係る光学系(広角レンズ)WLの一例として、図1に示す光学系WL(1)は、物体側から順に並んだ、前群G1と、後群G2とを有して構成される。前群G1は、物体側から順に並んだ、負の屈折力を有する物体側レンズと、中間レンズと、負の屈折力を有する像側レンズとから構成される。なお、中間レンズは、正レンズおよび正の接合レンズのうちいずれか一方もしくは両方から構成される。また、後群G2の最も像側に正レンズが配置され、前群G1もしくは後群G2に開口絞りSが配置される。このような光学系WL(1)において、合焦の際、前群G1と後群G2との間隔が変化するようになっている。   Hereinafter, the optical system and the optical apparatus of the present embodiment will be described with reference to the drawings. As an example of the optical system (wide-angle lens) WL according to this embodiment, the optical system WL (1) shown in FIG. 1 includes a front group G1 and a rear group G2, which are arranged in order from the object side. The The front group G1 includes an object side lens having negative refractive power, an intermediate lens, and an image side lens having negative refractive power, which are arranged in order from the object side. The intermediate lens is composed of one or both of a positive lens and a positive cemented lens. A positive lens is disposed on the most image side of the rear group G2, and an aperture stop S is disposed in the front group G1 or the rear group G2. In such an optical system WL (1), the distance between the front group G1 and the rear group G2 changes during focusing.

本実施形態に係る光学系WLは、図3に示す光学系WL(2)でも良く、図5に示す光学系WL(3)でも良く、図7に示す光学系WL(4)でも良く、図9に示す光学系WL(5)でも良く、図11に示す光学系WL(6)でも良く、図13に示す光学系WL(7)でも良い。なお、図3、図5、図7、図9、図11、および図13に示す光学系WL(2)〜WL(7)の各群は、図1に示す光学系WL(1)と同様に構成される。   The optical system WL according to the present embodiment may be the optical system WL (2) shown in FIG. 3, the optical system WL (3) shown in FIG. 5, or the optical system WL (4) shown in FIG. 9 may be the optical system WL (5) shown in FIG. 11, the optical system WL (6) shown in FIG. 11, or the optical system WL (7) shown in FIG. In addition, each group of the optical systems WL (2) to WL (7) shown in FIGS. 3, 5, 7, 9, 11, and 13 is the same as the optical system WL (1) shown in FIG. Configured.

上述したように、本実施形態に係る光学系WLでは、前群G1が、負の屈折力を有する物体側レンズと、正の屈折力を有する中間レンズ(正レンズまたは正の接合レンズ)と、負の屈折力を有する像側レンズとからなる逆トリプレット型のレンズ構成になっている。この構成により、効果的な収差補正を行うことができ、小型で明るい光学系を得ることが可能になる。具体的には、前群G1の物体側レンズは、光学系の全長の短縮や、歪曲収差の補正に寄与する。前群G1の中間レンズ(正レンズまたは正の接合レンズ)は、光学系の明るさの確保に寄与する。前群G1の像側レンズは、ペッツバール和の補正に寄与する。また、後群G2の最も像側に正レンズが配置されることで、ペッツバール和を良好に補正することが可能になり、像面Iから十分に離れた射出瞳の位置を確保することが可能になる。   As described above, in the optical system WL according to the present embodiment, the front group G1 includes an object side lens having a negative refractive power, an intermediate lens (a positive lens or a positive cemented lens) having a positive refractive power, This is a reverse triplet type lens structure composed of an image side lens having negative refractive power. With this configuration, effective aberration correction can be performed, and a small and bright optical system can be obtained. Specifically, the object-side lens of the front group G1 contributes to shortening the overall length of the optical system and correcting distortion. The intermediate lens (positive lens or positive cemented lens) in the front group G1 contributes to ensuring the brightness of the optical system. The image side lens in the front group G1 contributes to correction of Petzval sum. Further, since the positive lens is arranged on the most image side of the rear group G2, the Petzval sum can be corrected well, and the position of the exit pupil sufficiently separated from the image plane I can be secured. become.

上記構成の下、本実施形態に係る光学系WLは、次の条件式(1)を満足する。   Under the above configuration, the optical system WL according to the present embodiment satisfies the following conditional expression (1).

0.90<φL1/φSt<1.95 ・・・(1)
但し、φL1:前群G1の物体側レンズの有効径、
φSt:開口絞りSの開口径。
0.90 <φL1 / φSt <1.95 (1)
Where φL1: effective diameter of the object side lens in the front group G1,
φSt: The aperture diameter of the aperture stop S.

条件式(1)は、前群G1の物体側レンズの有効径と開口絞りSの開口径との適切な範囲を規定するための条件式である。なお、開口絞りSの開口径は、開口絞りSが最も開いた状態(開放絞り)での開口部の直径である。条件式(1)を満足することで、入射瞳の位置を物体側に変位させることができるため、前群G1の口径が大型化することなく、光学系WLの画角を広くすることができる。   Conditional expression (1) is a conditional expression for defining an appropriate range between the effective diameter of the object-side lens of the front group G1 and the aperture diameter of the aperture stop S. The aperture diameter of the aperture stop S is the diameter of the opening in the state where the aperture stop S is most open (open stop). By satisfying conditional expression (1), the position of the entrance pupil can be displaced toward the object side, so that the angle of view of the optical system WL can be widened without increasing the aperture of the front group G1. .

条件式(1)の対応値が上限値を上回ると、前群G1の径が大きくなって鏡筒が大型化するため、歪曲収差等の軸外収差の補正が困難になる。また、開口絞りSの開口径が小さすぎるため、明るい光学系が得られないので好ましくない。本実施形態の効果を確実にするために、条件式(1)の上限値を好ましくは1.88とし、さらに好ましくは1.75としてもよい。   If the corresponding value of the conditional expression (1) exceeds the upper limit value, the diameter of the front group G1 becomes large and the lens barrel becomes large, so that it is difficult to correct off-axis aberrations such as distortion. Further, since the aperture diameter of the aperture stop S is too small, a bright optical system cannot be obtained, which is not preferable. In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (1) is preferably 1.88, and more preferably 1.75.

条件式(1)の対応値が下限値を下回ると、前群G1の物体側レンズの有効径が小さすぎるため、光学系WLの画角を広くすることが困難になる。また、十分な光量を確保することが困難になる。本実施形態の効果を確実にするために、条件式(1)の下限値を好ましくは0.92とし、さらに好ましくは0.94としてもよい。   If the corresponding value of conditional expression (1) is less than the lower limit value, the effective diameter of the object-side lens in the front group G1 is too small, and it becomes difficult to widen the angle of view of the optical system WL. In addition, it becomes difficult to ensure a sufficient amount of light. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (1) is preferably 0.92, and more preferably 0.94.

本実施形態の光学系WLは、次の条件式(2)を満足することが好ましい。   The optical system WL of the present embodiment preferably satisfies the following conditional expression (2).

1.50<ndLz+(0.002×νdLz)<1.86 ・・・(2)
但し、ndLz:前群G1の像側レンズのd線に対する屈折率、
νdLz:前群G1の像側レンズのアッベ数。
1.50 <ndLz + (0.002 × νdLz) <1.86 (2)
Where ndLz: refractive index with respect to d-line of the image-side lens of the front group G1,
νdLz: Abbe number of the image-side lens in the front group G1.

条件式(2)は、前群G1の像側レンズのd線に対する屈折率とアッベ数との適切な範囲を規定するための条件式である。条件式(2)を満足することで、光学系WLが広い画角を有しても、ペッツバール和を良好に補正することができる。なお、前群G1の像側レンズを開口絞りSから離れた位置に配置することで、コマ収差を良好に補正することが可能である。   Conditional expression (2) is a conditional expression for defining an appropriate range of the refractive index and Abbe number for the d-line of the image-side lens of the front group G1. By satisfying conditional expression (2), the Petzval sum can be corrected well even if the optical system WL has a wide angle of view. By disposing the image side lens of the front group G1 at a position away from the aperture stop S, it is possible to satisfactorily correct coma.

条件式(2)の対応値が上限値を上回ると、ペッツバール和の補正が困難になるので好ましくない。本実施形態の効果を確実にするために、条件式(2)の上限値を好ましくは1.82とし、さらに好ましくは1.78としてもよい。   If the corresponding value of conditional expression (2) exceeds the upper limit value, correction of Petzval sum becomes difficult, which is not preferable. In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (2) is preferably 1.82, and more preferably 1.78.

条件式(2)の対応値が下限値を下回ると、ペッツバール和の補正が困難になるので好ましくない。本実施形態の効果を確実にするために、条件式(2)の下限値を好ましくは1.58とし、さらに好ましくは1.60としてもよい。   If the corresponding value of conditional expression (2) is less than the lower limit, it is not preferable because correction of Petzval sum becomes difficult. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (2) is preferably 1.58, and more preferably 1.60.

本実施形態の光学系WLは、次の条件式(3)を満足することが好ましい。   The optical system WL of the present embodiment preferably satisfies the following conditional expression (3).

0.60<(−Exp)/TL<1.10 ・・・(3)
但し、Exp:光学系WLにおける像面Iから射出瞳の位置までの光軸上の距離、
TL:無限遠合焦状態の光学系WLにおける最も物体側のレンズ面から像面までの光軸上の距離、なお最も像側のレンズ面から像面までは空気換算距離。
0.60 <(− Exp) / TL <1.10 (3)
Where Exp: the distance on the optical axis from the image plane I to the position of the exit pupil in the optical system WL,
TL: Distance on the optical axis from the lens surface closest to the object side to the image plane in the optical system WL in an infinitely focused state, and the air conversion distance from the lens surface closest to the image side to the image plane.

条件式(3)は、光学系WLの全長と像面Iから射出瞳の位置までの距離との適切な範囲を規定するための条件式である。なお、像面Iから射出瞳の位置までの距離は、像面Iを基準として物体側から像側へ向かう方向の値を正の値とする。条件式(3)の対応値が上限値を上回ると、射出瞳の位置が像面Iから物体側へ離れすぎるため、像面湾曲の補正が難しく、光学系全系が大型化するので好ましくない。本実施形態の効果を確実にするために、条件式(3)の上限値を好ましくは1.05としてもよい。   Conditional expression (3) is a conditional expression for defining an appropriate range between the total length of the optical system WL and the distance from the image plane I to the position of the exit pupil. The distance from the image plane I to the position of the exit pupil is a positive value in the direction from the object side to the image side with the image plane I as a reference. If the corresponding value of conditional expression (3) exceeds the upper limit value, the position of the exit pupil is too far away from the image plane I toward the object side, which makes correction of field curvature difficult and undesirably increasing the size of the entire optical system. . In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (3) may preferably be set to 1.05.

条件式(3)の対応値が下限値を下回ると、射出瞳の位置が像面Iに近くなるため、光学系の小型化には有利である。ところが、射出側の光線角が鋭角になりすぎるため、像面I側で光線のケラレが生じていわゆるシェーディングが発生する。本実施形態の効果を確実にするために、条件式(3)の下限値を好ましくは0.65とし、さらに好ましくは0.70としてもよい。   When the corresponding value of conditional expression (3) is below the lower limit, the position of the exit pupil is close to the image plane I, which is advantageous for downsizing the optical system. However, since the ray angle on the exit side becomes too acute, vignetting occurs on the image plane I side and so-called shading occurs. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (3) is preferably 0.65, and more preferably 0.70.

本実施形態の光学系WLにおいて、後群G2は、正の屈折力を有し、次の条件式(4)を満足することが好ましい。   In the optical system WL of the present embodiment, it is preferable that the rear group G2 has a positive refractive power and satisfies the following conditional expression (4).

0.36<f2/TL<1.00 ・・・(4)
但し、f2:後群G2の焦点距離、
TL:無限遠合焦状態の光学系WLにおける最も物体側のレンズ面から像面までの光軸上の距離、なお最も像側のレンズ面から像面までは空気換算距離。
0.36 <f2 / TL <1.00 (4)
Where f2 is the focal length of the rear group G2,
TL: Distance on the optical axis from the lens surface closest to the object side to the image plane in the optical system WL in an infinitely focused state, and the air conversion distance from the lens surface closest to the image side to the image plane.

条件式(4)は、後群G2の焦点距離と光学系WLの全長との適切な範囲を規定するための条件式である。条件式(4)を満足することで、光学系WLの全長を最小限に抑えながら、高い光学性能を得ることができる。   Conditional expression (4) is a conditional expression for defining an appropriate range between the focal length of the rear group G2 and the total length of the optical system WL. By satisfying conditional expression (4), high optical performance can be obtained while minimizing the total length of the optical system WL.

条件式(4)の対応値が上限値を上回ると、光学系WLの全長が短すぎるため、サジタルコマ収差、像面湾曲等の補正が困難になる。また、後群G2のパワー(屈折力)が弱すぎるため、フォーカス(合焦)に必要な倍率を稼ぐことができなくなる。本実施形態の効果を確実にするために、条件式(4)の上限値を好ましくは0.95とし、さらに好ましくは0.90としてもよい。   If the corresponding value of the conditional expression (4) exceeds the upper limit value, the total length of the optical system WL is too short, so that it is difficult to correct sagittal coma aberration, curvature of field, and the like. Further, since the power (refractive power) of the rear group G2 is too weak, it is impossible to earn a magnification necessary for focusing. In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (4) is preferably 0.95, and more preferably 0.90.

条件式(4)の対応値が下限値を下回ると、光学系WLの全長が長くなり、光学系全系が大型化するので好ましくない。また、後群G2のパワーが強すぎるため、球面収差やコマ収差の補正が困難になる。本実施形態の効果を確実にするために、条件式(4)の下限値を好ましくは0.38とし、さらに好ましくは0.40としてもよい。   If the corresponding value of conditional expression (4) is below the lower limit value, the total length of the optical system WL becomes long, and the entire optical system becomes large, which is not preferable. Further, since the power of the rear group G2 is too strong, it is difficult to correct spherical aberration and coma. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (4) is preferably 0.38, and more preferably 0.40.

本実施形態の光学系WLは、次の条件式(5)を満足することが好ましい。   The optical system WL of the present embodiment preferably satisfies the following conditional expression (5).

0.38<f/TL<0.70 ・・・(5)
但し、f:無限遠合焦状態の光学系WLの焦点距離、
TL:無限遠合焦状態の光学系WLにおける最も物体側のレンズ面から像面までの光軸上の距離、なお最も像側のレンズ面から像面までは空気換算距離。
0.38 <f / TL <0.70 (5)
Where f: focal length of the optical system WL in focus at infinity,
TL: Distance on the optical axis from the lens surface closest to the object side to the image plane in the optical system WL in an infinitely focused state, and the air conversion distance from the lens surface closest to the image side to the image plane.

条件式(5)は、光学系WLの全長と焦点距離との適切な範囲を規定するための条件式である。条件式(5)の対応値が上限値を上回ると、光学系WLの全長が短すぎるため、無限遠合焦状態から近距離合焦状態までの全ての範囲において、コマ収差等の諸収差を良好に補正することが困難になる。また、合焦に伴う像面の変動を補正することが困難になる。本実施形態の効果を確実にするために、条件式(5)の上限値を好ましくは0.68とし、さらに好ましくは0.67としてもよい。   Conditional expression (5) is a conditional expression for defining an appropriate range between the total length of the optical system WL and the focal length. If the corresponding value of the conditional expression (5) exceeds the upper limit value, the total length of the optical system WL is too short, and various aberrations such as coma aberration are observed in the entire range from the infinitely focused state to the short-range focused state. It becomes difficult to correct well. In addition, it becomes difficult to correct image plane fluctuations due to focusing. In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (5) is preferably 0.68, and more preferably 0.67.

条件式(5)の対応値が下限値を下回ると、光学系WLの全長が長くなるため、前群G1の径が大きくなり、軸外収差の補正が困難になる。また、光学系WLの全長に対し焦点距離が短すぎるため、各群の焦点距離が短くなり、コマ収差や球面収差の補正が困難になる。本実施形態の効果を確実にするために、条件式(5)の下限値を好ましくは0.40とし、さらに好ましくは0.42としてもよい。   If the corresponding value of the conditional expression (5) is less than the lower limit value, the total length of the optical system WL becomes long, so that the diameter of the front group G1 becomes large and it becomes difficult to correct off-axis aberrations. Further, since the focal length is too short with respect to the entire length of the optical system WL, the focal length of each group becomes short, and it becomes difficult to correct coma and spherical aberration. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (5) is preferably set to 0.40, and more preferably to 0.42.

本実施形態の光学系WLは、次の条件式(6)を満足することが好ましい。   The optical system WL of the present embodiment preferably satisfies the following conditional expression (6).

−0.36<f/f1<0.60 ・・・(6)
但し、f:無限遠合焦状態の光学系WLの焦点距離、
f1:前群G1の焦点距離。
−0.36 <f / f1 <0.60 (6)
Where f: focal length of the optical system WL in focus at infinity,
f1: Focal length of the front group G1.

条件式(6)は、前群G1のパワー(屈折力)の適切な範囲を規定するための条件式である。前群G1は、比較的弱い正または負の屈折力を有していることが好ましい。条件式(6)の対応値が上限値を上回ると、前群G1の焦点距離が長すぎるため、光学系の小型化が困難になるので好ましくない。また、相対的に後群G2の負荷が大きくなり、コマ収差や歪曲収差の補正が困難になる。本実施形態の効果を確実にするために、条件式(6)の上限値を好ましくは0.59とし、さらに好ましくは0.58としてもよい。   Conditional expression (6) is a conditional expression for defining an appropriate range of power (refractive power) of the front group G1. The front group G1 preferably has a relatively weak positive or negative refractive power. If the corresponding value of conditional expression (6) exceeds the upper limit value, the focal length of the front group G1 is too long, which makes it difficult to reduce the size of the optical system. In addition, the load on the rear group G2 becomes relatively large, and it becomes difficult to correct coma and distortion. In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (6) is preferably 0.59, and more preferably 0.58.

条件式(6)の対応値が下限値を下回ると、光学系WLの焦点距離が長すぎるため、光学系WLの画角を広くすることが困難になる。また、前群G1の負のパワーが強すぎるため、倍率色収差やコマ収差の補正が困難になる。本実施形態の効果を確実にするために、条件式(6)の下限値を好ましくは−3.30とし、さらに好ましくは−3.10としてもよい。   If the corresponding value of conditional expression (6) is less than the lower limit value, the focal length of the optical system WL is too long, and it becomes difficult to widen the angle of view of the optical system WL. In addition, since the negative power of the front group G1 is too strong, it is difficult to correct lateral chromatic aberration and coma. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (6) is preferably −3.30, and more preferably −3.10.

本実施形態の光学系WLにおいて、後群G2は、正の屈折力を有し、次の条件式(7)を満足することが好ましい。   In the optical system WL of the present embodiment, it is preferable that the rear group G2 has a positive refractive power and satisfies the following conditional expression (7).

0.010<f2/|f1|<0.900 ・・・(7)
但し、f2:後群G2の焦点距離、
f1:前群G1の焦点距離。
0.010 <f2 / | f1 | <0.900 (7)
Where f2 is the focal length of the rear group G2,
f1: Focal length of the front group G1.

条件式(7)は、前群G1と後群G2との適切なパワー配分(屈折力の配分)を規定するための条件式である。条件式(7)の対応値が上限値を上回ると、前群G1のパワーが強すぎるため、近距離合焦時の収差変動を抑えることが困難になる。また、前群G1のレンズのアッベ数が小さくなる傾向になるため、色収差の補正も困難になる。本実施形態の効果を確実にするために、条件式(7)の上限値を好ましくは0.87とし、さらに好ましくは0.84としてもよい。   Conditional expression (7) is a conditional expression for defining an appropriate power distribution (refractive power distribution) between the front group G1 and the rear group G2. If the corresponding value of conditional expression (7) exceeds the upper limit value, the power of the front group G1 is too strong, and it becomes difficult to suppress aberration fluctuations when focusing on a short distance. Further, since the Abbe number of the lens in the front group G1 tends to be small, it is difficult to correct chromatic aberration. In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (7) is preferably 0.87, and more preferably 0.84.

条件式(7)の対応値が下限値を下回ると、後群G2のパワーが強すぎるため、球面収差、コマ収差等の補正が困難になる。本実施形態の効果を確実にするために、条件式(7)の下限値を好ましくは0.020とし、さらに好ましくは0.035としてもよい。   When the corresponding value of conditional expression (7) is below the lower limit value, the power of the rear group G2 is too strong, and it becomes difficult to correct spherical aberration, coma aberration, and the like. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (7) is preferably 0.020, and more preferably 0.035.

本実施形態の光学系WLは、次の条件式(8)を満足することが好ましい。   The optical system WL of the present embodiment preferably satisfies the following conditional expression (8).

0.35<Y/BL<0.80 ・・・(8)
但し、Y:光学系WLのイメージサークルの半径、
BL:無限遠合焦状態の光学系WLにおける最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離。
0.35 <Y / BL <0.80 (8)
Y: radius of the image circle of the optical system WL,
BL: Distance on the optical axis from the most object-side lens surface to the most image-side lens surface in the infinitely focused optical system WL.

条件式(8)は、光学系WLのイメージサークルの半径(すなわち最大像高)とレンズ厚との適切な範囲を規定するための条件式である。条件式(8)の対応値が上限値を上回ると、撮像素子のフォーマットサイズに対して薄型のレンズ構成になっているが、諸収差の補正が困難になる。本実施形態の効果を確実にするために、条件式(8)の上限値を好ましくは0.70とし、さらに好ましくは0.66としてもよい。   Conditional expression (8) is a conditional expression for defining an appropriate range between the radius of the image circle of the optical system WL (that is, the maximum image height) and the lens thickness. If the corresponding value of conditional expression (8) exceeds the upper limit value, the lens configuration is thin with respect to the format size of the image sensor, but it becomes difficult to correct various aberrations. In order to ensure the effect of the present embodiment, the upper limit value of conditional expression (8) is preferably 0.70, and more preferably 0.66.

条件式(8)の対応値が下限値を下回ると、光学系WLの最大像高が小さくなるため、周辺光束においてケラレが生じるため好ましくない。また、軸外光線の入射高を小さくするためのパワー配置およびレンズ配置が必要になるため、結果的に像面湾曲、歪曲収差等の補正が困難になる可能性があり好ましくない。本実施形態の効果を確実にするために、条件式(8)の下限値を好ましくは0.39とし、さらに好ましくは0.43としてもよい。   If the corresponding value of conditional expression (8) is less than the lower limit value, the maximum image height of the optical system WL becomes small, and vignetting occurs in the peripheral light flux. Further, since it is necessary to arrange a power and a lens to reduce the incident height of off-axis rays, it is difficult to correct curvature of field, distortion, etc. as a result, which is not preferable. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (8) is preferably 0.39, more preferably 0.43.

本実施形態の光学機器は、上述した構成の光学系WLを備えて構成される。その具体例として、上記光学系WLを備えたカメラ(光学機器)を図15に基づいて説明する。このカメラ1は、図15に示すように撮影レンズ2として上記実施形態に係る光学系WLを備えたデジタルカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラ1は、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであってもよい。また、このカメラ1は、レンズ鏡筒とカメラボディ本体とが着脱可能な一眼レフタイプのカメラに限られるものではなく、レンズ鏡筒とカメラボディ本体とが一体型のコンパクトタイプのカメラであってもよい。このような構成によれば、撮影レンズとして上記光学系WLを搭載することにより、効果的な収差補正を行うことができ、小型で明るい光学機器を得ることが可能になる。   The optical apparatus according to the present embodiment includes the optical system WL having the above-described configuration. As a specific example, a camera (optical apparatus) provided with the optical system WL will be described with reference to FIG. The camera 1 is a digital camera provided with the optical system WL according to the above-described embodiment as a photographing lens 2 as shown in FIG. In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and reaches the image sensor 3. Thereby, the light from the subject is picked up by the image pickup device 3 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1. The camera 1 may be a mirrorless camera or a single lens reflex camera having a quick return mirror. Further, the camera 1 is not limited to a single-lens reflex type camera in which the lens barrel and the camera body main body are detachable. Even if the lens barrel and the camera body main body are an integrated compact type camera. Good. According to such a configuration, by mounting the optical system WL as a photographing lens, effective aberration correction can be performed, and a small and bright optical device can be obtained.

続いて、図16を参照しながら、上述の光学系WLの製造方法について概説する。まず、鏡筒内に、物体側から順に並べて、前群G1と、後群G2とを配置する(ステップST1)。このとき、前群G1は、物体側から順に並んだ、負の屈折力を有する物体側レンズと、中間レンズと、負の屈折力を有する像側レンズとからなるように構成する。またこのとき、中間レンズは、正レンズおよび正の接合レンズのうちいずれか一方もしくは両方からなるように構成する。またこのとき、後群G2の最も像側に正レンズを配置し、前群G1もしくは後群G2に開口絞りSを配置する。そして、合焦の際、前群G1と後群G2との間隔が変化するように構成する(ステップST2)。さらに、少なくとも上記条件式(1)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST3)。このような製造方法によれば、効果的な収差補正を行うことができ、小型で明るい光学系を製造することが可能になる。   Next, the method for manufacturing the above-described optical system WL will be outlined with reference to FIG. First, the front group G1 and the rear group G2 are arranged in order from the object side in the lens barrel (step ST1). At this time, the front group G1 is configured to include an object side lens having a negative refractive power, an intermediate lens, and an image side lens having a negative refractive power, which are arranged in order from the object side. At this time, the intermediate lens is configured to include either one or both of a positive lens and a positive cemented lens. At this time, the positive lens is disposed on the most image side of the rear group G2, and the aperture stop S is disposed in the front group G1 or the rear group G2. And in the case of focusing, it comprises so that the space | interval of front group G1 and back group G2 may change (step ST2). Further, each lens is arranged in the lens barrel so as to satisfy at least the conditional expression (1) (step ST3). According to such a manufacturing method, effective aberration correction can be performed, and a small and bright optical system can be manufactured.

以下、本実施形態の実施例に係る光学系(広角レンズ)WLを図面に基づいて説明する。図1、図3、図5、図7、図9、図11、図13は、第1〜第7実施例に係る光学系WL{WL(1)〜WL(7)}の構成及び屈折力配分を示す断面図である。各断面図には、無限遠から近距離物体へ合焦する際の、(「無限遠」および「近距離」と併記された)各群の位置が記載されている。   Hereinafter, an optical system (wide angle lens) WL according to an example of the present embodiment will be described with reference to the drawings. 1, FIG. 3, FIG. 5, FIG. 7, FIG. 9, FIG. 11 and FIG. 13 show the configurations and refractive powers of the optical systems WL {WL (1) to WL (7)} according to the first to seventh embodiments. It is sectional drawing which shows distribution. Each cross-sectional view describes the position of each group (along with “infinity” and “near distance”) when focusing from infinity to a near object.

これら図1、図3、図5、図7、図9、図11、図13において、各群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。   1, FIG. 3, FIG. 5, FIG. 7, FIG. 9, FIG. 11 and FIG. 13, each group is represented by a combination of symbol G and a number, and each lens is represented by a combination of symbol L and a number. In this case, in order to prevent complications due to an increase in the types and numbers of codes and numbers, the lens groups and the like are represented using combinations of codes and numbers independently for each embodiment. For this reason, even if the combination of the same code | symbol and number is used between Examples, it does not mean that it is the same structure.

以下に表1〜表7を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例、表6は第6実施例、表7は第7実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(
波長λ=587.6nm)、g線(波長λ=435.8nm)を選んでいる。
Tables 1 to 7 are shown below. Of these, Table 1 is the first example, Table 2 is the second example, Table 3 is the third example, Table 4 is the fourth example, and Table 5 is the first. 5 Example, Table 6 is a table | surface which shows each item data in 6th Example and Table 7 in 7th Example. In each embodiment, the d-line (
Wavelength λ = 587.6 nm) and g-line (wavelength λ = 435.8 nm) are selected.

[全体諸元]の表において、fは無限遠合焦状態の光学系WLにおける全系の焦点距離を示し、FNОはFナンバーを示す。2ωは画角(単位は°(度)で、ωが半画角である)を示し、Yは像高(最大像高)を示す。Bfは無限遠合焦状態の光学系WLにおける最も像側のレンズ面から像面Iまでの光軸上の空気換算距離(バックフォーカス)を示し、TLは無限遠合焦状態の光学系WLにおける最も物体側のレンズ面から像面Iまでの光軸上の距離(全長)を示す。なお、TLにおいて、光学系WLにおける最も像側のレンズ面から像面Iまでは空気換算距離を示す。また、TLおよびBfの値は、後述の[可変間隔データ]において、無限遠合焦状態、近距離(至近距離)合焦状態におけるそれぞれについて示す。   In the [Overall Specifications] table, f indicates the focal length of the entire system in the optical system WL in the infinitely focused state, and FNO indicates the F number. 2ω represents an angle of view (the unit is ° (degree), ω is a half angle of view), and Y represents an image height (maximum image height). Bf represents the air-converted distance (back focus) on the optical axis from the lens surface closest to the image side to the image plane I in the optical system WL in the infinite focus state, and TL in the optical system WL in the infinite focus state. The distance (full length) on the optical axis from the lens surface closest to the object side to the image plane I is shown. In TL, the distance from the lens surface closest to the image side to the image plane I in the optical system WL indicates an air conversion distance. In addition, the values of TL and Bf are shown for the infinite focus state and the short distance (closest distance) focus state in [variable interval data] described later.

また、φL1は前群G1の物体側レンズの有効径を示し、φStは開口絞りSの開口径を示す。Expは無限遠合焦状態の光学系WLにおける像面Iから射出瞳の位置までの光軸上の距離を示す。なお、像面Iから射出瞳の位置までの距離は、像面Iを基準として物体側から像側へ向かう方向の値を正の値とする。BLは無限遠合焦状態の光学系WLにおける最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離を示す。   ΦL1 indicates the effective diameter of the object side lens of the front group G1, and φSt indicates the aperture diameter of the aperture stop S. Exp represents the distance on the optical axis from the image plane I to the position of the exit pupil in the optical system WL in the infinitely focused state. The distance from the image plane I to the position of the exit pupil is a positive value in the direction from the object side to the image side with the image plane I as a reference. BL indicates the distance on the optical axis from the most object side lens surface to the most image side lens surface in the infinitely focused optical system WL.

[レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、νdは光学部材の材質のd線を基準とするアッベ数、ndは光学部材の材質のd線に対する屈折率を、それぞれ示す。曲率半径の「∞」は平面又は開口を示し、(絞りS)は開口絞りSを示す。空気の屈折率nd=1.00000の記載は省略している。レンズ面が非球面であ
る場合には面番号に*印を付して曲率半径Rの欄には近軸曲率半径を示している。
In the table of [lens specifications], the surface number indicates the order of the optical surfaces from the object side along the light traveling direction, and R indicates the radius of curvature of each optical surface (the surface where the center of curvature is located on the image side). D is a positive value), D is a surface interval which is a distance on the optical axis from each optical surface to the next optical surface (or image surface), νd is an Abbe number based on the d-line of the material of the optical member, nd indicates the refractive index of the optical member material with respect to the d-line. The curvature radius “∞” indicates a plane or an aperture, and (aperture S) indicates the aperture aperture S. The description of the refractive index of air nd = 1.0000 is omitted. When the lens surface is an aspherical surface, the surface number is marked with * and the radius of curvature R column indicates the paraxial radius of curvature.

[非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(ザグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。 In the [Aspherical Data] table, the shape of the aspherical surface shown in [Lens Specifications] is shown by the following equation (a). X (y) is the distance along the optical axis direction from the tangential plane at the apex of the aspheric surface to the position on the aspheric surface at height y (zag amount), and R is the radius of curvature of the reference sphere (paraxial curvature radius) , Κ is the conic constant, and Ai is the i-th aspherical coefficient. “E-n” indicates “× 10 −n ”. For example, 1.234E-05 = 1.234 × 10 −5 . The secondary aspheric coefficient A2 is 0, and the description thereof is omitted.

X(y)=(y2/R)/{1+(1−κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10 ・・・(a) X (y) = (y 2 / R) / {1+ (1−κ × y 2 / R 2 ) 1/2 } + A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 (a )

[群データ]の表において、前群G1および後群G2のそれぞれの始面(最も物体側の面)と焦点距離を示す。   In the table of [Group Data], the start surfaces (most object side surfaces) and focal lengths of the front group G1 and the rear group G2 are shown.

[可変間隔データ]の表は、[レンズ諸元]を示す表において面間隔が「可変」となっている面番号iにおける次の面までの面間隔Diを示す。例えば、第1実施例では、面番号10,17での面間隔D10,D17を示す。これらの値は、無限遠合焦状態、近距離(至近距離)合焦状態におけるそれぞれについて示す。   The table of [variable distance data] shows the surface distance Di to the next surface in the surface number i in which the surface distance is “variable” in the table indicating [lens specifications]. For example, in the first embodiment, surface intervals D10 and D17 at surface numbers 10 and 17 are shown. These values are shown for the infinite focus state and the short distance (closest distance) focus state, respectively.

[条件式対応値]の表には、上記の条件式(1)〜(8)に対応する値を示す。   The table corresponding to the conditional expressions (1) to (8) shows values corresponding to the conditional expressions (1) to (8).

以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。   Hereinafter, in all the specification values, “mm” is generally used for the focal length f, curvature radius R, surface distance D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this.

ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。   The explanation of the table so far is common to all the embodiments, and the duplicate explanation below will be omitted.

(第1実施例)
第1実施例について、図1〜図2および表1を用いて説明する。図1は、本実施形態の第1実施例に係る光学系のレンズ構成を示す図である。第1実施例に係る光学系WL(1)は、物体側から順に並んだ、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。各群の記号に付けている符号(+)もしくは(−)は各群の屈折力を示し、このことは以下の全ての実施例でも同様である。
(First embodiment)
A first embodiment will be described with reference to FIGS. FIG. 1 is a diagram illustrating a lens configuration of an optical system according to a first example of the present embodiment. The optical system WL (1) according to the first example includes a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power, which are arranged in order from the object side. The sign (+) or (−) attached to the symbol of each group indicates the refractive power of each group, and this is the same in all the following examples.

前群G1は、物体側から順に並んだ、両凹形状の第1の負レンズL11と、両凸形状の第1の正レンズL12と、開口絞りSと、両凹形状の第2の負レンズL13および両凸形状の第2の正レンズL14からなる接合レンズと、像側に凸面を向けたメニスカス形状の第3の負レンズL15と、から構成される。第3の負レンズL15は、像側のレンズ面が非球面である。第1実施例において、第1の負レンズL11が本実施形態の物体側レンズに該当し、第3の負レンズL15が本実施形態の像側レンズに該当する。また、第1の正レンズL12と、第2の負レンズL13および第2の正レンズL14からなる正の接合レンズとが、本実施形態の中間レンズに該当する。   The front group G1 includes, in order from the object side, a biconcave first negative lens L11, a biconvex first positive lens L12, an aperture stop S, and a biconcave second negative lens. The lens includes a cemented lens including L13 and a biconvex second positive lens L14, and a meniscus third negative lens L15 having a convex surface facing the image side. The third negative lens L15 has an aspheric lens surface on the image side. In the first example, the first negative lens L11 corresponds to the object side lens of the present embodiment, and the third negative lens L15 corresponds to the image side lens of the present embodiment. Further, the first positive lens L12 and the positive cemented lens including the second negative lens L13 and the second positive lens L14 correspond to the intermediate lens of the present embodiment.

後群G2は、物体側から順に並んだ、両凸形状の第1の正レンズL21および両凹形状の第1の負レンズL22からなる接合レンズと、両凹形状の第2の負レンズL23と、両凸形状の第2の正レンズL24と、から構成される。第2の正レンズL24は、像側のレンズ面が非球面である。   The rear group G2 includes, in order from the object side, a cemented lens including a biconvex first positive lens L21 and a biconcave first negative lens L22, and a biconcave second negative lens L23. And a biconvex second positive lens L24. The second positive lens L24 has an aspheric lens surface on the image side.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第1実施例に係る光学系WL(1)では、無限遠から近距離物体への合焦の際、前群G1および後群G2が異なる移動量で光軸に沿って物体側へ移動し、前群G1と後群G2との間隔が変化する(大きくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (1) according to the first example, when focusing from infinity to a short distance object, the front group G1 and the rear group G2 move toward the object side along the optical axis with different movement amounts. The interval between the group G1 and the rear group G2 is configured to change (become larger).

以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。   Table 1 below lists values of specifications of the optical system according to the first example.

(表1)
[全体諸元]
f=24.97
FNO=1.85
2ω=62.1
Y=14.25
Bf=14.318
TL=44.678
φL1=14.80
φSt=14.30
Exp=-39.973
BL=30.360
[レンズ諸元]
面番号 R D νd nd
1 -23.5865 1.0000 41.51 1.575010
2 32.5087 0.9332
3 20.7551 3.5088 40.66 1.883000
4 -45.6852 1.0000
5 ∞ 2.0111 (絞りS)
6 -30.3720 0.8000 32.18 1.672700
7 15.9804 3.7857 40.66 1.883000
8 -34.7764 1.0000
9 -23.1553 0.8000 31.16 1.688930
10* -100.1049 D10(可変)
11 34.2710 5.2717 40.66 1.883000
12 -13.3880 0.8000 32.18 1.672700
13 31.6442 3.9709
14 -16.5099 0.8000 33.72 1.647690
15 104.7860 0.1000
16 62.8584 4.2211 40.10 1.851348
17* -21.0915 D17(可変)
18 ∞ 2.0000 63.88 1.516800
19 ∞ 0.1000
[非球面データ]
第10面
κ=1.0000
A4=7.09969E-05,A6=5.82420E-08,A8=3.73981E-09,A10=-1.74407E-11
第17面
κ=1.0000
A4=3.72602E-05,A6=-2.34539E-08,A8=1.32257E-09,A10=-6.49301E-12
[群データ]
群 始面 焦点距離
G1 1 57.97
G2 11 34.64
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=24.97 β=-0.1
D0 ∞ 263.17
D10 0.358 1.090
D17 12.899 15.281
Bf(air) 14.318 16.700
TL(air) 44.678 47.792
[条件式対応値]
条件式(1) φL1/φSt=1.035
条件式(2) ndLz+(0.002×νdLz)=1.751
条件式(3) (−Exp)/TL=0.895
条件式(4) f2/TL=0.775
条件式(5) f/TL=0.559
条件式(6) f/f1=0.431
条件式(7) f2/|f1|=0.598
条件式(8) Y/BL=0.469
(Table 1)
[Overall specifications]
f = 24.97
FNO = 1.85
2ω = 62.1
Y = 14.25
Bf = 14.318
TL = 44.678
φL1 = 14.80
φSt = 14.30
Exp = -39.973
BL = 30.360
[Lens specifications]
Surface number R D νd nd
1 -23.5865 1.0000 41.51 1.575010
2 32.5087 0.9332
3 20.7551 3.5088 40.66 1.883000
4 -45.6852 1.0000
5 ∞ 2.0111 (Aperture S)
6 -30.3720 0.8000 32.18 1.672700
7 15.9804 3.7857 40.66 1.883000
8 -34.7764 1.0000
9 -23.1553 0.8000 31.16 1.688930
10 * -100.1049 D10 (variable)
11 34.2710 5.2717 40.66 1.883000
12 -13.3880 0.8000 32.18 1.672700
13 31.6442 3.9709
14 -16.5099 0.8000 33.72 1.647690
15 104.7860 0.1000
16 62.8584 4.2211 40.10 1.851348
17 * -21.0915 D17 (variable)
18 ∞ 2.0000 63.88 1.516800
19 ∞ 0.1000
[Aspherical data]
10th surface κ = 1.0000
A4 = 7.09969E-05, A6 = 5.82420E-08, A8 = 3.73981E-09, A10 = -1.74407E-11
Surface 17 κ = 1.0000
A4 = 3.72602E-05, A6 = -2.34539E-08, A8 = 1.32257E-09, A10 = -6.49301E-12
[Group data]
Group Start surface Focal length
G1 1 57.97
G2 11 34.64
[Variable interval data]
Infinite focus state Short range focus state
f = 24.97 β = −0.1
D0 ∞ 263.17
D10 0.358 1.090
D17 12.899 15.281
Bf (air) 14.318 16.700
TL (air) 44.678 47.792
[Conditional expression values]
Conditional expression (1) φL1 / φSt = 1.035
Conditional expression (2) ndLz + (0.002 × νdLz) = 1.751
Conditional expression (3) (−Exp) /TL=0.895
Conditional expression (4) f2 / TL = 0.775
Conditional expression (5) f / TL = 0.559
Conditional expression (6) f / f1 = 0.431
Conditional expression (7) f2 / | f1 | = 0.598
Conditional expression (8) Y / BL = 0.469

図2(a)は、第1実施例に係る光学系の無限遠合焦時の諸収差図である。図2(a)の各収差図において、FNOはFナンバー、Aは半画角をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図および歪曲収差図では半画角の最大値をそれぞれ示し、横収差図では各半画角の値を示す。図2(b)は、第1実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。図2(b)の各収差図に
おいて、NAは開口数、H0は物体高をそれぞれ示す。なお、球面収差図では最大口径に対応する開口数の値を示し、非点収差図および歪曲収差図では物体高の最大値をそれぞれ示し、横収差図では各物体高の値を示す。また、図2(a)および図2(b)の各収差図において、dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
FIG. 2A is a diagram illustrating various aberrations of the optical system according to the first example when focusing on infinity. In each aberration diagram of FIG. 2A, FNO represents an F number, and A represents a half angle of view. The spherical aberration diagram shows the F-number value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum half field angle, and the lateral aberration diagram shows the half field angle value. FIG. 2B is a diagram of various aberrations when the optical system according to Example 1 is in focus at a short distance (closest distance). In each aberration diagram of FIG. 2B, NA represents the numerical aperture, and H0 represents the object height. The spherical aberration diagram shows the numerical aperture value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum object height, and the lateral aberration diagram shows the value of each object height. 2A and 2B, d indicates the d-line (wavelength λ = 587.6 nm), and g indicates the g-line (wavelength λ = 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In the aberration diagrams of the following examples, the same reference numerals as those in this example are used, and redundant description is omitted.

各収差図より、第1実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the optical system according to the first example has excellent imaging performance by satisfactorily correcting various aberrations.

(第2実施例)
第2実施例について、図3〜図4および表2を用いて説明する。図3は、本実施形態の第2実施例に係る光学系のレンズ構成を示す図である。第2実施例に係る光学系WL(2)は、物体側から順に並んだ、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。
(Second embodiment)
2nd Example is described using FIGS. 3-4 and Table 2. FIG. FIG. 3 is a diagram illustrating a lens configuration of an optical system according to the second example of the present embodiment. The optical system WL (2) according to the second example includes a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power arranged in order from the object side.

前群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の負レンズL11と、両凸形状の正レンズL12および両凹形状の第2の負レンズL13からなる接合レンズと、から構成される。第2実施例において、第1の負レンズL11が本実施形態の物体側レンズに該当し、第2の負レンズL13が本実施形態の像側レンズに該当する。また、正レンズL12が本実施形態の中間レンズに該当する。   The front group G1 includes a meniscus first negative lens L11 having a convex surface facing the object side, a biconvex positive lens L12, and a biconcave second negative lens L13 arranged in order from the object side. And a cemented lens. In the second example, the first negative lens L11 corresponds to the object side lens of the present embodiment, and the second negative lens L13 corresponds to the image side lens of the present embodiment. The positive lens L12 corresponds to the intermediate lens of the present embodiment.

後群G2は、物体側から順に並んだ、開口絞りSと、両凸形状の第1の正レンズL21および両凹形状の第1の負レンズL22からなる接合レンズと、両凹形状の第2の負レンズL23および両凸形状の第2の正レンズL24からなる接合レンズと、両凸形状の第3の正レンズL25と、から構成される。第1の正レンズL21は、物体側のレンズ面が非球面である。第2の負レンズL23は、物体側のレンズ面が非球面である。第2の正レンズL24は、像側のレンズ面が非球面である。   The rear group G2 includes an aperture stop S, a cemented lens including a biconvex first positive lens L21 and a biconcave first negative lens L22, and a biconcave second, which are arranged in order from the object side. The negative lens L23 and a biconvex second positive lens L24, and a biconvex third positive lens L25. The first positive lens L21 has an aspheric lens surface on the object side. The second negative lens L23 has an aspheric lens surface on the object side. The second positive lens L24 has an aspheric lens surface on the image side.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第2実施例に係る光学系WL(2)では、無限遠から近距離物体への合焦の際、前群G1および後群G2が異なる移動量で光軸に沿って物体側へ移動し、前群G1と後群G2との間隔が変化する(大きくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (2) according to the second example, the front group G1 and the rear group G2 move toward the object side along the optical axis with different amounts of movement when focusing from infinity to a short distance object. The interval between the group G1 and the rear group G2 is configured to change (become larger).

以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。   Table 2 below lists values of specifications of the optical system according to the second example.

(表2)
[全体諸元]
f=31.56
FNO=2.20
2ω=47.4
Y=14.00
Bf=22.645
TL=47.455
φL1=14.35
φSt=13.23
Exp=-40.370
BL=24.810
[レンズ諸元]
面番号 R D νd nd
1 59.8248 0.8040 70.32 1.487490
2 14.4329 0.3274
3 16.3422 4.8625 49.26 1.743200
4 -36.6404 0.7989 41.51 1.575010
5 27.5371 D5(可変)
6 ∞ 0.2959
7* 16.6614 2.5633 40.10 1.851348
8 -39.9032 0.8000 30.13 1.698950
9 16.3607 5.0395
10* -12.0711 0.8000 31.16 1.688930
11 30.6678 2.2782 40.10 1.851348
12* -24.1100 1.0000
13 96.5352 3.2292 40.66 1.883000
14 -41.0451 D14(可変)
15 ∞ 2.0000 64.17 1.516800
16 ∞ 0.1000
[非球面データ]
第7面
κ=1.0000
A4=-2.21170E-05,A6=-1.02561E-07,A8=-3.74746E-09,A10=1.54704E-11
第10面
κ=1.0000
A4=4.14903E-04,A6=1.73676E-06,A8=-6.05789E-08,A10=7.26224E-10
第12面
κ=1.0000
A4=2.36538E-04,A6=3.42662E-07,A8=-1.74584E-08,A10=1.51803E-10
[群データ]
群 始面 焦点距離
G1 1 200.03
G2 6 32.96
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=31.56 β=-0.1
D0 ∞ 336.06
D5 2.011 5.900
D14 21.226 24.343
Bf(air) 22.645 25.762
TL(air) 47.455 54.460
[条件式対応値]
条件式(1) φL1/φSt=1.085
条件式(2) ndLz+(0.002×νdLz)=1.658
条件式(3) (−Exp)/TL=0.851
条件式(4) f2/TL=0.695
条件式(5) f/TL=0.665
条件式(6) f/f1=0.158
条件式(7) f2/|f1|=0.165
条件式(8) Y/BL=0.564
(Table 2)
[Overall specifications]
f = 31.56
FNO = 2.20
2ω = 47.4
Y = 14.00
Bf = 22.645
TL = 47.455
φL1 = 14.35
φSt = 13.23
Exp = -40.370
BL = 24.810
[Lens specifications]
Surface number R D νd nd
1 59.8248 0.8040 70.32 1.487490
2 14.4329 0.3274
3 16.3422 4.8625 49.26 1.743200
4 -36.6404 0.7989 41.51 1.575010
5 27.5371 D5 (variable)
6 ∞ 0.2959
7 * 16.6614 2.5633 40.10 1.851348
8 -39.9032 0.8000 30.13 1.698950
9 16.3607 5.0395
10 * -12.0711 0.8000 31.16 1.688930
11 30.6678 2.2782 40.10 1.851348
12 * -24.1100 1.0000
13 96.5352 3.2292 40.66 1.883000
14 -41.0451 D14 (variable)
15 ∞ 2.0000 64.17 1.516800
16 ∞ 0.1000
[Aspherical data]
Surface 7 κ = 1.0000
A4 = -2.21170E-05, A6 = -1.02561E-07, A8 = -3.74746E-09, A10 = 1.54704E-11
10th surface κ = 1.0000
A4 = 4.14903E-04, A6 = 1.73676E-06, A8 = -6.05789E-08, A10 = 7.26224E-10
12th surface κ = 1.0000
A4 = 2.36538E-04, A6 = 3.42662E-07, A8 = -1.74584E-08, A10 = 1.51803E-10
[Group data]
Group Start surface Focal length
G1 1 200.03
G2 6 32.96
[Variable interval data]
Infinite focus state Short range focus state
f = 31.56 β = −0.1
D0 ∞ 336.06
D5 2.011 5.900
D14 21.226 24.343
Bf (air) 22.645 25.762
TL (air) 47.455 54.460
[Conditional expression values]
Conditional expression (1) φL1 / φSt = 1.085
Conditional expression (2) ndLz + (0.002 × νdLz) = 1.658
Conditional expression (3) (−Exp) /TL=0.851
Conditional expression (4) f2 / TL = 0.695
Conditional expression (5) f / TL = 0.665
Conditional expression (6) f / f1 = 0.158
Conditional expression (7) f2 / | f1 | = 0.165
Conditional expression (8) Y / BL = 0.564

図4(a)は、第2実施例に係る光学系の無限遠合焦時の諸収差図である。図4(b)は、第2実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各収差図より、第2実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   FIG. 4A is a diagram illustrating various aberrations of the optical system according to Example 2 when focused on infinity. FIG. 4B is a diagram illustrating various aberrations when the optical system according to Example 2 is in focus at a short distance (closest distance). From the respective aberration diagrams, it can be seen that the optical system according to the second example has excellent imaging performance by properly correcting various aberrations.

(第3実施例)
第3実施例について、図5〜図6および表3を用いて説明する。図5は、本実施形態の第3実施例に係る光学系のレンズ構成を示す図である。第3実施例に係る光学系WL(3)は、物体側から順に並んだ、負の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。
(Third embodiment)
A third embodiment will be described with reference to FIGS. FIG. 5 is a diagram showing a lens configuration of an optical system according to the third example of the present embodiment. The optical system WL (3) according to the third example includes a front group G1 having negative refractive power and a rear group G2 having positive refractive power, which are arranged in order from the object side.

前群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の負レンズL11と、両凸形状の正レンズL12および両凹形状の第2の負レンズL13からなる接合レンズと、から構成される。第1の負レンズL11は、像側のレンズ面が非球面である。第3実施例において、第1の負レンズL11が本実施形態の物体側レンズに該当し、第2の負レンズL13が本実施形態の像側レンズに該当する。また、正レンズL12が本実施形態の中間レンズに該当する。   The front group G1 includes a meniscus first negative lens L11 having a convex surface facing the object side, a biconvex positive lens L12, and a biconcave second negative lens L13 arranged in order from the object side. And a cemented lens. The first negative lens L11 has an aspheric lens surface on the image side. In the third example, the first negative lens L11 corresponds to the object side lens of the present embodiment, and the second negative lens L13 corresponds to the image side lens of the present embodiment. The positive lens L12 corresponds to the intermediate lens of the present embodiment.

後群G2は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の正レンズL21と、開口絞りSと、像側に凸面を向けたメニスカス形状の第2の正レンズL22および両凹形状の負レンズL23からなる接合レンズと、両凸形状の第3の正レンズL24と、両凸形状の第4の正レンズL25と、から構成される。   The rear group G2 includes a meniscus first positive lens L21 having a convex surface facing the object side, an aperture stop S, and a meniscus second positive lens having a convex surface facing the image side, which are arranged in order from the object side. The lens includes a cemented lens including L22 and a biconcave negative lens L23, a biconvex third positive lens L24, and a biconvex fourth positive lens L25.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第3実施例に係る光学系WL(3)では、無限遠から近距離物体への合焦の際、前群G1が固定されるとともに、後群G2が光軸に沿って物体側へ移動して、前群G1と後群G2との間隔が変化する(小さくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (3) according to the third example, the front group G1 is fixed and the rear group G2 moves toward the object side along the optical axis when focusing from infinity to a close object. The interval between the front group G1 and the rear group G2 changes (becomes smaller).

以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。   Table 3 below lists values of specifications of the optical system according to the third example.

(表3)
[全体諸元]
f=24.39
FNO=1.88
2ω=65.8
Y=14.75
Bf=23.457
TL=54.380
φL1=18.00
φSt=13.60
Exp=-39.982
BL=30.923
[レンズ諸元]
面番号 R D νd nd
1 36.4497 0.8205 46.96 1.540720
2* 12.6655 4.4502
3 16.2009 3.3476 40.66 1.883000
4 -169.8361 0.8036 52.20 1.517420
5 13.3262 D5(可変)
6 31.7481 1.6864 40.66 1.883000
7 887.1077 1.0201
8 ∞ 1.7251 (絞りS)
9 -23.1046 5.1591 47.86 1.757000
10 -9.0050 0.8936 28.38 1.728250
11 44.1254 0.6575
12 522.8176 2.2171 40.66 1.883000
13 -22.7113 2.3118
14 343.2013 1.9337 40.66 1.883000
15 -47.0785 D15(可変)
16 ∞ 2.0000 63.88 1.516800
17 ∞ 0.1000
[非球面データ]
第2面
κ=1.0000
A4=1.10390E-05,A6=-7.99130E-08,A8=1.98740E-09,A10=-1.77630E-11
[群データ]
群 始面 焦点距離
G1 1 -210.40
G2 6 24.16
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=24.39 β=-0.1
D0 ∞ 252.46
D5 3.897 1.394
D15 22.038 24.541
Bf(air) 23.457 25.960
TL(air) 54.380 54.380
[条件式対応値]
条件式(1) φL1/φSt=1.324
条件式(2) ndLz+(0.002×νdLz)=1.622
条件式(3) (−Exp)/TL=0.735
条件式(4) f2/TL=0.444
条件式(5) f/TL=0.449
条件式(6) f/f1=-0.116
条件式(7) f2/|f1|=0.115
条件式(8) Y/BL=0.477
(Table 3)
[Overall specifications]
f = 24.39
FNO = 1.88
2ω = 65.8
Y = 14.75
Bf = 23.457
TL = 54.380
φL1 = 18.00
φSt = 13.60
Exp = -39.982
BL = 30.923
[Lens specifications]
Surface number R D νd nd
1 36.4497 0.8205 46.96 1.540720
2 * 12.6655 4.4502
3 16.2009 3.3476 40.66 1.883000
4 -169.8361 0.8036 52.20 1.517420
5 13.3262 D5 (variable)
6 31.7481 1.6864 40.66 1.883000
7 887.1077 1.0201
8 ∞ 1.7251 (Aperture S)
9 -23.1046 5.1591 47.86 1.757000
10 -9.0050 0.8936 28.38 1.728250
11 44.1254 0.6575
12 522.8176 2.2171 40.66 1.883000
13 -22.7113 2.3118
14 343.2013 1.9337 40.66 1.883000
15 -47.0785 D15 (variable)
16 ∞ 2.0000 63.88 1.516800
17 ∞ 0.1000
[Aspherical data]
Second side κ = 1.0000
A4 = 1.10390E-05, A6 = -7.99130E-08, A8 = 1.98740E-09, A10 = -1.77630E-11
[Group data]
Group Start surface Focal length
G1 1 -210.40
G2 6 24.16
[Variable interval data]
Infinite focus state Short range focus state
f = 24.39 β = −0.1
D0 ∞ 252.46
D5 3.897 1.394
D15 22.038 24.541
Bf (air) 23.457 25.960
TL (air) 54.380 54.380
[Conditional expression values]
Conditional expression (1) φL1 / φSt = 1.324
Conditional expression (2) ndLz + (0.002 × νdLz) = 1.622
Conditional expression (3) (−Exp) /TL=0.735
Conditional expression (4) f2 / TL = 0.444
Conditional expression (5) f / TL = 0.449
Conditional expression (6) f / f1 = -0.116
Conditional expression (7) f2 / | f1 | = 0.115
Conditional expression (8) Y / BL = 0.477

図6(a)は、第3実施例に係る光学系の無限遠合焦時の諸収差図である。図6(b)は、第3実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各収差図より、第3実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   FIG. 6A is a diagram of various aberrations of the optical system according to the third example when focusing on infinity. FIG. 6B is a diagram of various aberrations when the optical system according to Example 3 is in focus at a short distance (closest distance). From the respective aberration diagrams, it can be seen that the optical system according to the third example has excellent imaging performance by properly correcting various aberrations.

(第4実施例)
第4実施例について、図7〜図8および表4を用いて説明する。図7は、本実施形態の第4実施例に係る光学系のレンズ構成を示す図である。第4実施例に係る光学系WL(4)は、物体側から順に並んだ、負の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIGS. 7 to 8 and Table 4. FIG. FIG. 7 is a diagram showing a lens configuration of an optical system according to the fourth example of the present embodiment. The optical system WL (4) according to the fourth example includes a front group G1 having negative refractive power and a rear group G2 having positive refractive power, which are arranged in order from the object side.

前群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の負レンズL11と、両凸形状の正レンズL12および両凹形状の第2の負レンズL13からなる接合レンズと、から構成される。第1の負レンズL11は、像側のレンズ面が非球面である。第4実施例において、第1の負レンズL11が本実施形態の物体側レンズに該当し、第2の負レンズL13が本実施形態の像側レンズに該当する。また、正レンズL12が本実施形態の中間レンズに該当する。   The front group G1 includes a meniscus first negative lens L11 having a convex surface facing the object side, a biconvex positive lens L12, and a biconcave second negative lens L13 arranged in order from the object side. And a cemented lens. The first negative lens L11 has an aspheric lens surface on the image side. In the fourth example, the first negative lens L11 corresponds to the object side lens of the present embodiment, and the second negative lens L13 corresponds to the image side lens of the present embodiment. The positive lens L12 corresponds to the intermediate lens of the present embodiment.

後群G2は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の正レンズL21と、開口絞りSと、像側に凸面を向けたメニスカス形状の第2の正レンズL22および両凹形状の負レンズL23からなる接合レンズと、像側に凸面を向けたメニスカス形状の第3の正レンズL24と、両凸形状の第4の正レンズL25と、から構成される。   The rear group G2 includes a meniscus first positive lens L21 having a convex surface facing the object side, an aperture stop S, and a meniscus second positive lens having a convex surface facing the image side, which are arranged in order from the object side. The lens includes a cemented lens including L22 and a biconcave negative lens L23, a meniscus third positive lens L24 having a convex surface facing the image side, and a biconvex fourth positive lens L25.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第4実施例に係る光学系WL(4)では、無限遠から近距離物体への合焦の際、前群G1が固定されるとともに、後群G2が光軸に沿って物体側へ移動して、前群G1と後群G2との間隔が変化する(小さくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (4) according to the fourth example, the front group G1 is fixed and the rear group G2 moves to the object side along the optical axis when focusing from infinity to a close object. The interval between the front group G1 and the rear group G2 changes (becomes smaller).

以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。   Table 4 below provides values of specifications of the optical system according to the fourth example.

(表4)
[全体諸元]
f=24.01
FNO=1.71
2ω=67.4
Y=14.75
Bf=22.577
TL=54.340
φL1=20.00
φSt=13.80
Exp=-40.008
BL=31.763
[レンズ諸元]
面番号 R D νd nd
1 39.9359 1.0000 61.25 1.589130
2* 14.3824 4.7333
3 15.7804 5.0881 40.66 1.883000
4 -44.4075 0.8082 38.03 1.603420
5 13.3628 D5(可変)
6 22.1593 1.8601 40.66 1.883000
7 66.7019 0.3806
8 ∞ 2.9573 (絞りS)
9 -17.2370 2.9736 55.35 1.677900
10 -9.1895 0.8017 27.57 1.755200
11 60.0458 0.9320
12 -123.7762 2.6605 40.66 1.883000
13 -19.0508 0.2421
14 72.9743 3.1748 42.73 1.834810
15 -39.1454 D15(可変)
16 ∞ 2.0000 63.88 1.516800
17 ∞ 0.1000
[非球面データ]
第2面
κ=1.0000
A4=1.21050E-05,A6=2.10680E-08,A8=1.53200E-10,A10=2.64730E-12
[群データ]
群 始面 焦点距離
G1 1 -499.56
G2 6 23.43
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=24.01 β=-0.1
D0 ∞ 244.78
D5 4.151 1.733
D15 21.158 23.576
Bf(air) 22.577 24.995
TL(air) 54.340 54.340
[条件式対応値]
条件式(1) φL1/φSt=1.449
条件式(2) ndLz+(0.002×νdLz)=1.679
条件式(3) (−Exp)/TL=0.736
条件式(4) f2/TL=0.431
条件式(5) f/TL=0.442
条件式(6) f/f1=-0.048
条件式(7) f2/|f1|=0.047
条件式(8) Y/BL=0.464
(Table 4)
[Overall specifications]
f = 24.01
FNO = 1.71
2ω = 67.4
Y = 14.75
Bf = 22.577
TL = 54.340
φL1 = 20.00
φSt = 13.80
Exp = -40.008
BL = 31.763
[Lens specifications]
Surface number R D νd nd
1 39.9359 1.0000 61.25 1.589130
2 * 14.3824 4.7333
3 15.7804 5.0881 40.66 1.883000
4 -44.4075 0.8082 38.03 1.603420
5 13.3628 D5 (variable)
6 22.1593 1.8601 40.66 1.883000
7 66.7019 0.3806
8 ∞ 2.9573 (Aperture S)
9 -17.2370 2.9736 55.35 1.677900
10 -9.1895 0.8017 27.57 1.755200
11 60.0458 0.9320
12 -123.7762 2.6605 40.66 1.883000
13 -19.0508 0.2421
14 72.9743 3.1748 42.73 1.834810
15 -39.1454 D15 (variable)
16 ∞ 2.0000 63.88 1.516800
17 ∞ 0.1000
[Aspherical data]
Second side κ = 1.0000
A4 = 1.21050E-05, A6 = 2.10680E-08, A8 = 1.53200E-10, A10 = 2.64730E-12
[Group data]
Group Start surface Focal length
G1 1 -499.56
G2 6 23.43
[Variable interval data]
Infinite focus state Short range focus state
f = 24.01 β = −0.1
D0 ∞ 244.78
D5 4.151 1.733
D15 21.158 23.576
Bf (air) 22.577 24.995
TL (air) 54.340 54.340
[Conditional expression values]
Conditional expression (1) φL1 / φSt = 1.449
Conditional expression (2) ndLz + (0.002 × νdLz) = 1.679
Conditional expression (3) (−Exp) /TL=0.636
Conditional expression (4) f2 / TL = 0.431
Conditional expression (5) f / TL = 0.442
Conditional expression (6) f / f1 = -0.048
Conditional expression (7) f2 / | f1 | = 0.047
Conditional expression (8) Y / BL = 0.464

図8(a)は、第4実施例に係る光学系の無限遠合焦時の諸収差図である。図8(b)は、第4実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各収差図より、第4実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   FIG. 8A is a diagram of various aberrations of the optical system according to Example 4 when focused on infinity. FIG. 8B is a diagram of various aberrations when the optical system according to Example 4 is in focus at a short distance (closest distance). From the respective aberration diagrams, it can be seen that the optical system according to the fourth example has excellent imaging performance by satisfactorily correcting various aberrations.

(第5実施例)
第5実施例について、図9〜図10および表5を用いて説明する。図9は、本実施形態の第5実施例に係る光学系のレンズ構成を示す図である。第5実施例に係る光学系WL(5)は、物体側から順に並んだ、負の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。
(5th Example)
A fifth embodiment will be described with reference to FIGS. 9 to 10 and Table 5. FIG. FIG. 9 is a diagram illustrating a lens configuration of an optical system according to Example 5 of the present embodiment. The optical system WL (5) according to the fifth example includes a front group G1 having negative refractive power and a rear group G2 having positive refractive power, which are arranged in order from the object side.

前群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の負レンズL11と、両凸形状の正レンズL12および両凹形状の第2の負レンズL13からなる接合レンズと、から構成される。第1の負レンズL11は、像側のレンズ面が非球面である。第5実施例において、第1の負レンズL11が本実施形態の物体側レンズに該当し、第2の負レンズL13が本実施形態の像側レンズに該当する。また、正レンズL12が本実施形態の中間レンズに該当する。   The front group G1 includes a meniscus first negative lens L11 having a convex surface facing the object side, a biconvex positive lens L12, and a biconcave second negative lens L13 arranged in order from the object side. And a cemented lens. The first negative lens L11 has an aspheric lens surface on the image side. In the fifth example, the first negative lens L11 corresponds to the object side lens of the present embodiment, and the second negative lens L13 corresponds to the image side lens of the present embodiment. The positive lens L12 corresponds to the intermediate lens of the present embodiment.

後群G2は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1の正レンズL21と、開口絞りSと、像側に凸面を向けたメニスカス形状の第2の正レンズL
22および両凹形状の負レンズL23からなる接合レンズと、像側に凸面を向けたメニスカス形状の第3の正レンズL24と、両凸形状の第4の正レンズL25と、から構成される。
The rear group G2 includes a meniscus first positive lens L21 having a convex surface facing the object side, an aperture stop S, and a meniscus second positive lens having a convex surface facing the image side, which are arranged in order from the object side. L
22 and a biconcave negative lens L23, a meniscus third positive lens L24 having a convex surface facing the image side, and a biconvex fourth positive lens L25.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第5実施例に係る光学系WL(5)では、無限遠から近距離物体への合焦の際、前群G1が固定されるとともに、後群G2が光軸に沿って物体側へ移動して、前群G1と後群G2との間隔が変化する(小さくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (5) according to the fifth example, the front group G1 is fixed and the rear group G2 moves to the object side along the optical axis when focusing from infinity to a close object. The interval between the front group G1 and the rear group G2 changes (becomes smaller).

以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。   Table 5 below lists values of specifications of the optical system according to the fifth example.

(表5)
[全体諸元]
f=23.47
FNO=2.25
2ω=66.9
Y=14.75
Bf=23.557
TL=49.428
φL1=18.00
φSt=11.41
Exp=-40.109
BL=25.871
[レンズ諸元]
面番号 R D νd nd
1 107.9731 0.8205 46.97 1.540720
2* 10.9981 2.4243
3 13.9894 2.5274 46.59 1.816000
4 -79.8057 0.8000 52.20 1.517420
5 15.0985 D5(可変)
6 26.2360 1.3840 40.66 1.883000
7 197.2957 1.3232
8 ∞ 4.9853 (絞りS)
9 -24.8310 2.5295 60.19 1.640000
10 -7.7839 0.8000 31.16 1.688930
11 58.9890 0.6647
12 -74.9679 1.6834 40.66 1.883000
13 -19.5144 0.1292
14 509.9112 1.7993 40.66 1.883000
15 -31.4185 D15(可変)
16 ∞ 2.0000 63.88 1.516800
17 ∞ 0.1000
[非球面データ]
第2面
κ=1.0000
A4=-1.23248E-07,A6=-3.78341E-09,A8=-2.50622E-09,A10=-4.53602E-12
[群データ]
群 始面 焦点距離
G1 1 -83.16
G2 6 22.47
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=23.47 β=-0.1
D0 ∞ 249.95
D5 4.000 1.355
D15 22.139 24.784
Bf(air) 23.557 26.202
TL(air) 49.428 49.428
[条件式対応値]
条件式(1) φL1/φSt=1.578
条件式(2) ndLz+(0.002×νdLz)=1.622
条件式(3) (−Exp)/TL=0.811
条件式(4) f2/TL=0.455
条件式(5) f/TL=0.475
条件式(6) f/f1=-0.282
条件式(7) f2/|f1|=0.270
条件式(8) Y/BL=0.570
(Table 5)
[Overall specifications]
f = 23.47
FNO = 2.25
2ω = 66.9
Y = 14.75
Bf = 23.557
TL = 49.428
φL1 = 18.00
φSt = 11.41
Exp = -40.109
BL = 25.871
[Lens specifications]
Surface number R D νd nd
1 107.9731 0.8205 46.97 1.540720
2 * 10.9981 2.4243
3 13.9894 2.5274 46.59 1.816000
4 -79.8057 0.8000 52.20 1.517420
5 15.0985 D5 (variable)
6 26.2360 1.3840 40.66 1.883000
7 197.2957 1.3232
8 ∞ 4.9853 (Aperture S)
9 -24.8310 2.5295 60.19 1.640000
10 -7.7839 0.8000 31.16 1.688930
11 58.9890 0.6647
12 -74.9679 1.6834 40.66 1.883000
13 -19.5144 0.1292
14 509.9112 1.7993 40.66 1.883000
15 -31.4185 D15 (variable)
16 ∞ 2.0000 63.88 1.516800
17 ∞ 0.1000
[Aspherical data]
Second side κ = 1.0000
A4 = -1.23248E-07, A6 = -3.78341E-09, A8 = -2.50622E-09, A10 = -4.53602E-12
[Group data]
Group Start surface Focal length
G1 1 -83.16
G2 6 22.47
[Variable interval data]
Infinite focus state Short range focus state
f = 23.47 β = -0.1
D0 ∞ 249.95
D5 4.000 1.355
D15 22.139 24.784
Bf (air) 23.557 26.202
TL (air) 49.428 49.428
[Conditional expression values]
Conditional expression (1) φL1 / φSt = 1.578
Conditional expression (2) ndLz + (0.002 × νdLz) = 1.622
Conditional expression (3) (−Exp) /TL=0.911
Conditional expression (4) f2 / TL = 0.455
Conditional expression (5) f / TL = 0.475
Conditional expression (6) f / f1 = −0.282
Conditional expression (7) f2 / | f1 | = 0.270
Conditional expression (8) Y / BL = 0.570

図10(a)は、第5実施例に係る光学系の無限遠合焦時の諸収差図である。図10(b)は、第5実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各収差図より、第5実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   FIG. 10A is a diagram of various aberrations of the optical system according to Example 5 when focusing on infinity. FIG. 10B is a diagram illustrating various aberrations when the optical system according to Example 5 is in focus at a short distance (closest distance). From each aberration diagram, it can be seen that the optical system according to the fifth example has excellent imaging performance by satisfactorily correcting various aberrations.

(第6実施例)
第6実施例について、図11〜図12および表6を用いて説明する。図11は、本実施形態の第6実施例に係る光学系のレンズ構成を示す図である。第6実施例に係る光学系WL(6)は、物体側から順に並んだ、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。
(Sixth embodiment)
A sixth embodiment will be described with reference to FIGS. 11 to 12 and Table 6. FIG. FIG. 11 is a diagram showing a lens configuration of an optical system according to the sixth example of the present embodiment. The optical system WL (6) according to the sixth example includes a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power, which are arranged in order from the object side.

前群G1は、物体側から順に並んだ、両凹形状の第1の負レンズL11と、両凸形状の正レンズL12および像側に凸面を向けたメニスカス形状の第2の負レンズL13からなる接合レンズと、から構成される。第6実施例において、第1の負レンズL11が本実施形態の物体側レンズに該当し、第2の負レンズL13が本実施形態の像側レンズに該当する。また、正レンズL12が本実施形態の中間レンズに該当する。   The front group G1 includes a biconcave first negative lens L11, a biconvex positive lens L12, and a meniscus second negative lens L13 having a convex surface facing the image side, which are arranged in order from the object side. And a cemented lens. In the sixth example, the first negative lens L11 corresponds to the object side lens of the present embodiment, and the second negative lens L13 corresponds to the image side lens of the present embodiment. The positive lens L12 corresponds to the intermediate lens of the present embodiment.

後群G2は、物体側から順に並んだ、開口絞りSと、両凸形状の第1の正レンズL21および両凹形状の第1の負レンズL22からなる接合レンズと、両凹形状の第2の負レンズL23および両凸形状の第2の正レンズL24からなる接合レンズと、両凸形状の第3の正レンズL25と、から構成される。第1の正レンズL21は、物体側のレンズ面が非球面である。第2の負レンズL23は、物体側のレンズ面が非球面である。第2の正レンズL24は、像側のレンズ面が非球面である。   The rear group G2 includes an aperture stop S, a cemented lens including a biconvex first positive lens L21 and a biconcave first negative lens L22, and a biconcave second, which are arranged in order from the object side. The negative lens L23 and a biconvex second positive lens L24, and a biconvex third positive lens L25. The first positive lens L21 has an aspheric lens surface on the object side. The second negative lens L23 has an aspheric lens surface on the object side. The second positive lens L24 has an aspheric lens surface on the image side.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第6実施例に係る光学系WL(6)では、無限遠から近距離物体への合焦の際、前群G1および後群G2が異なる移動量で光軸に沿って物体側へ移動し、前群G1と後群G2との間隔が変化する(小さくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (6) according to the sixth example, the front group G1 and the rear group G2 move toward the object side along the optical axis with different amounts of movement when focusing from infinity to a short distance object. The interval between the group G1 and the rear group G2 is configured to change (become small).

以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。   Table 6 below provides values of specifications of the optical system according to the sixth example.

(表6)
[全体諸元]
f=24.10
FNO=1.85
2ω=65.1
Y=14.75
Bf=14.943
TL=39.463
φL1=14.00
φSt=13.00
Exp=-39.971
BL=24.520
[レンズ諸元]
面番号 R D νd nd
1 -28.4741 0.8923 41.51 1.575010
2 39.1920 0.4983
3 16.9984 3.0364 40.66 1.883000
4 -42.5726 0.7889 31.16 1.688930
5 -1010.0926 D5(可変)
6 ∞ 3.2962 (絞りS)
7* 24.3876 3.6900 40.10 1.851350
8 -10.9999 0.8108 30.13 1.698950
9 16.8961 3.5031
10* -7.7846 0.7999 31.16 1.688930
11 98.8713 2.7021 40.10 1.851350
12* -14.9932 0.1008
13 154.0868 3.0786 40.66 1.883000
14 -27.6738 D14(可変)
15 ∞ 2.0000 63.88 1.516800
16 ∞ 0.1000
[非球面データ]
第7面
κ=1.0000
A4=-1.13520E-04,A6=-6.74260E-07,A8=-2.01520E-08,A10=9.39710E-11
第10面
κ=1.0000
A4=5.79240E-04,A6=3.88230E-06,A8=-2.06270E-08,A10=1.30200E-09
第12面
κ=1.0000
A4=2.30750E-04,A6=-1.71840E-08,A8=-5.02940E-09,A10=4.73930E-12
[群データ]
群 始面 焦点距離
G1 1 42.30
G2 6 34.37
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=24.10 β=-0.1
D0 ∞ 250.63
D5 1.322 1.200
D14 13.525 15.970
Bf(air) 14.943 17.388
TL(air) 39.463 41.785
[条件式対応値]
条件式(1) φL1/φSt=1.077
条件式(2) ndLz+(0.002×νdLz)=1.751
条件式(3) (−Exp)/TL=1.013
条件式(4) f2/TL=0.871
条件式(5) f/TL=0.611
条件式(6) f/f1=0.570
条件式(7) f2/|f1|=0.813
条件式(8) Y/BL=0.602
(Table 6)
[Overall specifications]
f = 24.10
FNO = 1.85
2ω = 65.1
Y = 14.75
Bf = 14.943
TL = 39.463
φL1 = 14.00
φSt = 13.00
Exp = -39.971
BL = 24.520
[Lens specifications]
Surface number R D νd nd
1 -28.4741 0.8923 41.51 1.575010
2 39.1920 0.4983
3 16.9984 3.0364 40.66 1.883000
4 -42.5726 0.7889 31.16 1.688930
5 -1010.0926 D5 (variable)
6 ∞ 3.2962 (Aperture S)
7 * 24.3876 3.6900 40.10 1.851350
8 -10.9999 0.8108 30.13 1.698950
9 16.8961 3.5031
10 * -7.7846 0.7999 31.16 1.688930
11 98.8713 2.7021 40.10 1.851350
12 * -14.9932 0.1008
13 154.0868 3.0786 40.66 1.883000
14 -27.6738 D14 (variable)
15 ∞ 2.0000 63.88 1.516800
16 ∞ 0.1000
[Aspherical data]
Surface 7 κ = 1.0000
A4 = -1.13520E-04, A6 = -6.74260E-07, A8 = -2.01520E-08, A10 = 9.39710E-11
10th surface κ = 1.0000
A4 = 5.79240E-04, A6 = 3.88230E-06, A8 = -2.06270E-08, A10 = 1.30200E-09
12th surface κ = 1.0000
A4 = 2.30750E-04, A6 = -1.71840E-08, A8 = -5.02940E-09, A10 = 4.73930E-12
[Group data]
Group Start surface Focal length
G1 1 42.30
G2 6 34.37
[Variable interval data]
Infinite focus state Short range focus state
f = 24.10 β = −0.1
D0 ∞ 250.63
D5 1.322 1.200
D14 13.525 15.970
Bf (air) 14.943 17.388
TL (air) 39.463 41.785
[Conditional expression values]
Conditional expression (1) φL1 / φSt = 1.077
Conditional expression (2) ndLz + (0.002 × νdLz) = 1.751
Conditional expression (3) (−Exp) /TL=1.014
Conditional expression (4) f2 / TL = 0.871
Conditional expression (5) f / TL = 0.611
Conditional expression (6) f / f1 = 0.570
Conditional expression (7) f2 / | f1 | = 0.803
Conditional expression (8) Y / BL = 0.602

図12(a)は、第6実施例に係る光学系の無限遠合焦時の諸収差図である。図12(b)は、第6実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各収差図より、第6実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   FIG. 12A is a diagram of various aberrations of the optical system according to Example 6 when focused on infinity. FIG. 12B is a diagram illustrating various aberrations when the optical system according to Example 6 is in focus at a short distance (closest distance). From each aberration diagram, it can be seen that the optical system according to Example 6 has excellent imaging performance by correcting various aberrations satisfactorily.

(第7実施例)
第7実施例について、図13〜図14および表7を用いて説明する。図13は、本実施形態の第7実施例に係る光学系のレンズ構成を示す図である。第7実施例に係る光学系WL(7)は、物体側から順に並んだ、正の屈折力を有する前群G1と、正の屈折力を有する後群G2とから構成されている。
(Seventh embodiment)
A seventh embodiment will be described with reference to FIGS. 13 to 14 and Table 7. FIG. FIG. 13 is a diagram showing a lens configuration of an optical system according to the seventh example of the present embodiment. The optical system WL (7) according to the seventh example includes a front group G1 having a positive refractive power and a rear group G2 having a positive refractive power, which are arranged in order from the object side.

前群G1は、物体側から順に並んだ、両凹形状の第1の負レンズL11と、両凸形状の第1の正レンズL12と、開口絞りSと、両凹形状の第2の負レンズL13および両凸形状の第2の正レンズL14からなる接合レンズと、両凹形状の第3の負レンズL15と、から構成される。第1の負レンズL11は、物体側のレンズ面が非球面である。第3の負レンズL15は、物体側のレンズ面が非球面である。第7実施例において、第1の負レンズL11が本実施形態の物体側レンズに該当し、第3の負レンズL15が本実施形態の像側レンズに該当する。また、第1の正レンズL12と、第2の負レンズL13および第2の正レンズL14からなる正の接合レンズとが、本実施形態の中間レンズに該当する。   The front group G1 includes, in order from the object side, a biconcave first negative lens L11, a biconvex first positive lens L12, an aperture stop S, and a biconcave second negative lens. The lens includes a cemented lens including L13 and a biconvex second positive lens L14, and a biconcave third negative lens L15. The first negative lens L11 has an aspheric lens surface on the object side. The third negative lens L15 has an aspheric lens surface on the object side. In the seventh example, the first negative lens L11 corresponds to the object side lens of the present embodiment, and the third negative lens L15 corresponds to the image side lens of the present embodiment. Further, the first positive lens L12 and the positive cemented lens including the second negative lens L13 and the second positive lens L14 correspond to the intermediate lens of the present embodiment.

後群G2は、物体側から順に並んだ、両凸形状の第1の正レンズL21および両凹形状の第1の負レンズL22からなる接合レンズと、両凹形状の第2の負レンズL23および両凸形状の第2の正レンズL24からなる接合レンズと、像側に凸面を向けたメニスカス形状の第3の正レンズL25と、から構成される。第3の正レンズL25は、像側のレンズ面が非球面である。   The rear group G2 includes a cemented lens including a biconvex first positive lens L21 and a biconcave first negative lens L22, a biconcave second negative lens L23, The lens includes a cemented lens including a biconvex second positive lens L24 and a meniscus third positive lens L25 having a convex surface facing the image side. The third positive lens L25 has an aspheric lens surface on the image side.

後群G2の像側に、像面Iが配置される。後群G2と像面Iとの間における像面Iの近傍に、像面Iに配設される撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするためのローパスフィルタFLが配置される。第7実施例に係る光学系WL(7)では、無限遠から近距離物体への合焦の際、前群G1および後群G2が異なる移動量で光軸に沿って物体側へ移動し、前群G1と後群G2との間隔が変化する(小さくなる)ように構成される。   An image plane I is disposed on the image side of the rear group G2. A low pass for cutting a spatial frequency higher than the limit resolution of an image pickup device (for example, CCD, CMOS, etc.) disposed on the image plane I in the vicinity of the image plane I between the rear group G2 and the image plane I. A filter FL is arranged. In the optical system WL (7) according to the seventh example, the front group G1 and the rear group G2 move toward the object side along the optical axis with different movement amounts when focusing from infinity to a short distance object. The interval between the group G1 and the rear group G2 is configured to change (become small).

以下の表7に、第7実施例に係る光学系の諸元の値を掲げる。   Table 7 below provides values of specifications of the optical system according to the seventh example.

(表7)
[全体諸元]
f=35.79
FNO=1.86
2ω=62.0
Y=21.60
Bf=19.756
TL=56.084
φL1=19.20
φSt=20.00
Exp=-40.000
BL=36.328
[レンズ諸元]
面番号 R D νd nd
1* -40.1205 1.250 31.2 1.68893
2 54.9934 0.125
3 25.9110 3.722 40.7 1.88300
4 -132.1071 1.250
5 ∞ 1.956 (絞りS)
6 -66.3010 1.000 41.0 1.58144
7 20.2021 4.306 40.7 1.88300
8 -77.5553 0.439
9* -62.6081 1.250 31.2 1.68893
10 114.3743 D10(可変)
11 30.5815 4.417 40.7 1.88300
12 -34.7670 1.251 36.4 1.62004
13 35.1617 5.121
14 -16.5664 1.000 30.1 1.69895
15 47.2983 5.005 40.7 1.88300
16 -35.9354 0.500
17 -53.1146 1.867 49.5 1.77250
18* -29.4890 D18(可変)
19 ∞ 2.500 63.9 1.51680
20 ∞ 0.100
[非球面データ]
第1面
κ=1.0000
A4=2.17830E-07,A6=2.28154E-08,A8=-1.79806E-10,A10=8.74643E-13
第9面
κ=1.0000
A4=-2.16812E-05,A6=4.81264E-09,A8=1.34488E-10,A10=2.15929E-13
第18面
κ=1.0000
A4=2.16108E-05,A6=3.37861E-08,A8=1.21515E-10,A10=-3.44430E-13
[群データ]
群 始面 焦点距離
G1 1 79.95
G2 11 50.83
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=35.79 β=-0.2162
D0 ∞ 186.16
D10 1.868 0.902
D18 18.008 25.874
Bf(air) 19.756 27.622
TL(air) 56.084 62.984
[条件式対応値]
条件式(1) φL1/φSt=0.960
条件式(2) ndLz+(0.002×νdLz)=1.751
条件式(3) (−Exp)/TL=0.878
条件式(4) f2/TL=0.893
条件式(5) f/TL=0.629
条件式(6) f/f1=0.448
条件式(7) f2/|f1|=0.636
条件式(8) Y/BL=0.595
(Table 7)
[Overall specifications]
f = 35.79
FNO = 1.86
2ω = 62.0
Y = 21.60
Bf = 19.756
TL = 56.084
φL1 = 19.20
φSt = 20.00
Exp = -40.000
BL = 36.328
[Lens specifications]
Surface number R D νd nd
1 * -40.1205 1.250 31.2 1.68893
2 54.9934 0.125
3 25.9110 3.722 40.7 1.88300
4 -132.1071 1.250
5 ∞ 1.956 (Aperture S)
6 -66.3010 1.000 41.0 1.58144
7 20.2021 4.306 40.7 1.88300
8 -77.5553 0.439
9 * -62.6081 1.250 31.2 1.68893
10 114.3743 D10 (variable)
11 30.5815 4.417 40.7 1.88300
12 -34.7670 1.251 36.4 1.62004
13 35.1617 5.121
14 -16.5664 1.000 30.1 1.69895
15 47.2983 5.005 40.7 1.88300
16 -35.9354 0.500
17 -53.1146 1.867 49.5 1.77250
18 * -29.4890 D18 (variable)
19 ∞ 2.500 63.9 1.51680
20 ∞ 0.100
[Aspherical data]
First side κ = 1.0000
A4 = 2.17830E-07, A6 = 2.28154E-08, A8 = -1.79806E-10, A10 = 8.74643E-13
9th surface κ = 1.0000
A4 = -2.16812E-05, A6 = 4.81264E-09, A8 = 1.34488E-10, A10 = 2.15929E-13
18th surface κ = 1.0000
A4 = 2.16108E-05, A6 = 3.37861E-08, A8 = 1.21515E-10, A10 = -3.44430E-13
[Group data]
Group Start surface Focal length
G1 1 79.95
G2 11 50.83
[Variable interval data]
Infinite focus state Short range focus state
f = 35.79 β = −0.2162
D0 ∞ 186.16
D10 1.868 0.902
D18 18.008 25.874
Bf (air) 19.756 27.622
TL (air) 56.084 62.984
[Conditional expression values]
Conditional expression (1) φL1 / φSt = 0.960
Conditional expression (2) ndLz + (0.002 × νdLz) = 1.751
Conditional expression (3) (−Exp) /TL=0.878
Conditional expression (4) f2 / TL = 0.893
Conditional expression (5) f / TL = 0.629
Conditional expression (6) f / f1 = 0.448
Conditional expression (7) f2 / | f1 | = 0.636
Conditional expression (8) Y / BL = 0.595

図14(a)は、第7実施例に係る光学系の無限遠合焦時の諸収差図である。図14(b)は、第7実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各収差図より、第7実施例に係る光学系は、諸収差を良好に補正し優れた結像性能を有していることがわかる。   FIG. 14A is a diagram of various aberrations of the optical system according to Example 7 when focused on infinity. FIG. 14B is a diagram illustrating various aberrations when the optical system according to Example 7 is in focus at a short distance (closest distance). From the respective aberration diagrams, it can be seen that the optical system according to the seventh example has excellent imaging performance by properly correcting various aberrations.

上記各実施例によれば、小型で良好な光学性能を有した光学系を実現することができる。   According to each of the embodiments described above, an optical system that is small and has good optical performance can be realized.

ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。   Here, each said Example has shown one specific example of this invention, and this invention is not limited to these.

なお、以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。   Note that the following contents can be adopted as appropriate as long as the optical performance of the optical system of the present embodiment is not impaired.

本実施形態の光学系の数値実施例として、前群と後群からなる2群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、3群等)の光学系を構成することもできる。具体的には、本実施形態の光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。   As a numerical example of the optical system of the present embodiment, a two-group configuration including a front group and a rear group has been shown, but the present application is not limited to this, and an optical system having other group configurations (for example, three groups). Can also be configured. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image plane side of the optical system of the present embodiment may be used.

本実施形態の光学系において、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。   In the optical system of the present embodiment, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or is rotated and moved (oscillated) in the in-plane direction including the optical axis. An anti-vibration lens group that corrects image blur caused by blur may be used.

レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。   The lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.

レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。   When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Either is fine. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

開口絞りは、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良
い。
The aperture stop may be replaced by a lens frame without providing a member as an aperture stop.

各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。   Each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high contrast optical performance. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.

G1 前群 G2 後群
I 像面 S 開口絞り
G1 Front group G2 Rear group I Image surface S Aperture stop

Claims (10)

物体側から順に並んだ、前群と、後群とを有し、
合焦の際、前記前群と前記後群との間隔が変化し、
前記前群は、物体側から順に並んだ、負の屈折力を有する物体側レンズと、中間レンズと、負の屈折力を有する像側レンズとからなり、
前記中間レンズは、正レンズおよび正の接合レンズのうちいずれか一方もしくは両方からなり、
前記後群の最も像側に正レンズが配置され、
前記前群もしくは前記後群に開口絞りが配置され、
以下の条件式を満足することを特徴とする光学系。
0.90<φL1/φSt<1.95
但し、φL1:前記前群の前記物体側レンズの有効径、
φSt:前記開口絞りの開口径。
A front group and a rear group, arranged in order from the object side,
During focusing, the distance between the front group and the rear group changes,
The front group is composed of an object side lens having a negative refractive power, an intermediate lens, and an image side lens having a negative refractive power, arranged in order from the object side.
The intermediate lens is composed of one or both of a positive lens and a positive cemented lens,
A positive lens is disposed on the most image side of the rear group,
An aperture stop is disposed in the front group or the rear group,
An optical system satisfying the following conditional expression:
0.90 <φL1 / φSt <1.95
Where φL1: effective diameter of the object side lens of the front group,
φSt: The aperture diameter of the aperture stop.
以下の条件式を満足することを特徴とする請求項1に記載の光学系。
1.50<ndLz+(0.002×νdLz)<1.86
但し、ndLz:前記前群の前記像側レンズのd線に対する屈折率、
νdLz:前記前群の前記像側レンズのアッベ数。
The optical system according to claim 1, wherein the following conditional expression is satisfied.
1.50 <ndLz + (0.002 × νdLz) <1.86
Where ndLz: refractive index with respect to d-line of the image side lens of the front group,
νdLz: Abbe number of the image side lens in the front group.
以下の条件式を満足することを特徴とする請求項1または2に記載の光学系。
0.60<(−Exp)/TL<1.10
但し、Exp:前記光学系における像面から射出瞳の位置までの光軸上の距離、
TL:無限遠合焦状態の前記光学系における最も物体側のレンズ面から像面までの光軸上の距離、なお最も像側のレンズ面から像面までは空気換算距離。
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.60 <(− Exp) / TL <1.10
Where Exp: the distance on the optical axis from the image plane in the optical system to the position of the exit pupil,
TL: Distance on the optical axis from the lens surface closest to the object side to the image plane in the optical system in the infinitely focused state, and the air-converted distance from the lens surface closest to the image side to the image plane.
前記後群は、正の屈折力を有し、
以下の条件式を満足することを特徴とする請求項1から3のいずれか一項に記載の光学系。
0.36<f2/TL<1.00
但し、f2:前記後群の焦点距離、
TL:無限遠合焦状態の前記光学系における最も物体側のレンズ面から像面までの光軸上の距離、なお最も像側のレンズ面から像面までは空気換算距離。
The rear group has a positive refractive power;
The optical system according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
0.36 <f2 / TL <1.00
Where f2: focal length of the rear group,
TL: Distance on the optical axis from the lens surface closest to the object side to the image plane in the optical system in the infinitely focused state, and the air-converted distance from the lens surface closest to the image side to the image plane.
以下の条件式を満足することを特徴とする請求項1から4のいずれか一項に記載の光学系。
0.38<f/TL<0.70
但し、f:無限遠合焦状態の前記光学系の焦点距離、
TL:無限遠合焦状態の前記光学系における最も物体側のレンズ面から像面までの光軸上の距離、なお最も像側のレンズ面から像面までは空気換算距離。
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.38 <f / TL <0.70
Where f: focal length of the optical system in the infinitely focused state,
TL: Distance on the optical axis from the lens surface closest to the object side to the image plane in the optical system in the infinitely focused state, and the air-converted distance from the lens surface closest to the image side to the image plane.
以下の条件式を満足することを特徴とする請求項1から5のいずれか一項に記載の光学系。
−0.36<f/f1<0.60
但し、f:無限遠合焦状態の前記光学系の焦点距離、
f1:前記前群の焦点距離。
The optical system according to claim 1, wherein the following conditional expression is satisfied.
−0.36 <f / f1 <0.60
Where f: focal length of the optical system in the infinitely focused state,
f1: Focal length of the front group.
前記後群は、正の屈折力を有し、
以下の条件式を満足することを特徴とする請求項1から6のいずれか一項に記載の光学系。
0.010<f2/|f1|<0.900
但し、f2:前記後群の焦点距離、
f1:前記前群の焦点距離。
The rear group has a positive refractive power;
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.010 <f2 / | f1 | <0.900
Where f2: focal length of the rear group,
f1: Focal length of the front group.
以下の条件式を満足することを特徴とする請求項1から7のいずれか一項に記載の光学系。
0.35<Y/BL<0.80
但し、Y:前記光学系のイメージサークルの半径、
BL:無限遠合焦状態の前記光学系における最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離。
The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.35 <Y / BL <0.80
Where Y: radius of the image circle of the optical system,
BL: Distance on the optical axis from the most object side lens surface to the most image side lens surface in the optical system in an infinitely focused state.
請求項1から8のいずれか一項に記載の光学系を搭載して構成される光学機器。   An optical apparatus configured by mounting the optical system according to claim 1. 物体側から順に並んだ、前群と、後群とを有する光学系の製造方法であって、
合焦の際、前記前群と前記後群との間隔が変化し、
前記前群は、物体側から順に並んだ、負の屈折力を有する物体側レンズと、中間レンズと、負の屈折力を有する像側レンズとからなり、
前記中間レンズは、正レンズおよび正の接合レンズのうちいずれか一方もしくは両方からなり、
前記後群の最も像側に正レンズが配置され、
前記前群もしくは前記後群に開口絞りが配置され、
以下の条件式を満足するように、
レンズ鏡筒内に各レンズを配置することを特徴とする光学系の製造方法。
0.90<φL1/φSt<1.95
但し、φL1:前記前群の前記物体側レンズの有効径、
φSt:前記開口絞りの開口径。
A method of manufacturing an optical system having a front group and a rear group, arranged in order from the object side,
During focusing, the distance between the front group and the rear group changes,
The front group is composed of an object side lens having a negative refractive power, an intermediate lens, and an image side lens having a negative refractive power, arranged in order from the object side.
The intermediate lens is composed of one or both of a positive lens and a positive cemented lens,
A positive lens is disposed on the most image side of the rear group,
An aperture stop is disposed in the front group or the rear group,
To satisfy the following conditional expression,
A method of manufacturing an optical system, wherein each lens is arranged in a lens barrel.
0.90 <φL1 / φSt <1.95
Where φL1: effective diameter of the object side lens of the front group,
φSt: The aperture diameter of the aperture stop.
JP2016048455A 2016-03-11 2016-03-11 Optical system and optical equipment Active JP6816370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048455A JP6816370B2 (en) 2016-03-11 2016-03-11 Optical system and optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048455A JP6816370B2 (en) 2016-03-11 2016-03-11 Optical system and optical equipment

Publications (2)

Publication Number Publication Date
JP2017161846A true JP2017161846A (en) 2017-09-14
JP6816370B2 JP6816370B2 (en) 2021-01-20

Family

ID=59853191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048455A Active JP6816370B2 (en) 2016-03-11 2016-03-11 Optical system and optical equipment

Country Status (1)

Country Link
JP (1) JP6816370B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346907A (en) * 2019-06-30 2019-10-18 瑞声科技(新加坡)有限公司 Camera optical camera lens
EP4170406A1 (en) * 2021-10-25 2023-04-26 Calin Technology Co., Ltd. Optical imaging lens

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330675A (en) * 2005-04-28 2006-12-07 Olympus Corp Zoom optical system and electronic equipment using the same
JP2006343552A (en) * 2005-06-09 2006-12-21 Canon Inc Zoom lens and imaging apparatus having the same
JP2009276536A (en) * 2008-05-14 2009-11-26 Nikon Corp Wide-angle lens and imaging device
JP2010072276A (en) * 2008-09-18 2010-04-02 Nikon Corp Photographic lens, optical instrument with the photographic lens, and manufacturing method
JP2012068327A (en) * 2010-09-21 2012-04-05 Hoya Corp Zoom lens system, and electronic imaging apparatus using the same
JP2012128294A (en) * 2010-12-16 2012-07-05 Ricoh Co Ltd Wide-angle lens, imaging lens unit, camera and information device
JP2013186458A (en) * 2012-03-12 2013-09-19 Olympus Imaging Corp Inner focus lens system and imaging apparatus including the same
JP2014219587A (en) * 2013-05-09 2014-11-20 富士フイルム株式会社 Imaging lens and imaging apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330675A (en) * 2005-04-28 2006-12-07 Olympus Corp Zoom optical system and electronic equipment using the same
JP2006343552A (en) * 2005-06-09 2006-12-21 Canon Inc Zoom lens and imaging apparatus having the same
JP2009276536A (en) * 2008-05-14 2009-11-26 Nikon Corp Wide-angle lens and imaging device
JP2010072276A (en) * 2008-09-18 2010-04-02 Nikon Corp Photographic lens, optical instrument with the photographic lens, and manufacturing method
JP2012068327A (en) * 2010-09-21 2012-04-05 Hoya Corp Zoom lens system, and electronic imaging apparatus using the same
JP2012128294A (en) * 2010-12-16 2012-07-05 Ricoh Co Ltd Wide-angle lens, imaging lens unit, camera and information device
JP2013186458A (en) * 2012-03-12 2013-09-19 Olympus Imaging Corp Inner focus lens system and imaging apparatus including the same
JP2014219587A (en) * 2013-05-09 2014-11-20 富士フイルム株式会社 Imaging lens and imaging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346907A (en) * 2019-06-30 2019-10-18 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN110346907B (en) * 2019-06-30 2021-09-21 瑞声光学解决方案私人有限公司 Image pickup optical lens
EP4170406A1 (en) * 2021-10-25 2023-04-26 Calin Technology Co., Ltd. Optical imaging lens

Also Published As

Publication number Publication date
JP6816370B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP5263589B2 (en) Zoom lens system, optical apparatus equipped with the zoom lens system, and zooming method using the zoom lens system
JP2008170720A (en) Wide angle lens, imaging apparatus, and focusing method for wide angle lens
JP5396888B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP2013217952A (en) Optical system, optical device, method for manufacturing optical system
JP5428775B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP2017161847A (en) Optical system, optical instrument and method for manufacturing optical system
JP5333906B2 (en) Zoom lens and optical equipment
JP7146451B2 (en) Zoom lens and imaging device
JP4624744B2 (en) Wide angle zoom lens
WO2013128882A1 (en) Optical system, optical device, and method for manufacturing optical system
JP2011076021A (en) Wide-angle lens, optical apparatus, and method for manufacturing the wide-angle lens
JP5423299B2 (en) Wide-angle lens and optical equipment
JP2017107067A (en) Zoom lens, optical apparatus and method for manufacturing zoom lens
JP5217694B2 (en) Lens system and optical device
JP2012163855A (en) Zoom lens, optical device, and manufacturing method of zoom lens
JP5544845B2 (en) OPTICAL SYSTEM, IMAGING DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5458586B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP6816370B2 (en) Optical system and optical equipment
JP2017156431A (en) Optical system, optical apparatus, and method for manufacturing optical system
JP6701831B2 (en) Optical system and optical equipment
JP6828252B2 (en) Optical system and optical equipment
JP2017161848A (en) Optical system, optical instrument and method for manufacturing optical system
JP5338345B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5434006B2 (en) Zoom lens, image pickup apparatus, and zooming method
JP2010117532A (en) Zoom lens, optical equipment, and method for manufacturing zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R150 Certificate of patent or registration of utility model

Ref document number: 6816370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250