JP2017161458A - 測定装置、測定方法及びプログラム - Google Patents

測定装置、測定方法及びプログラム Download PDF

Info

Publication number
JP2017161458A
JP2017161458A JP2016048465A JP2016048465A JP2017161458A JP 2017161458 A JP2017161458 A JP 2017161458A JP 2016048465 A JP2016048465 A JP 2016048465A JP 2016048465 A JP2016048465 A JP 2016048465A JP 2017161458 A JP2017161458 A JP 2017161458A
Authority
JP
Japan
Prior art keywords
speed
acceleration
acquired
unit
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016048465A
Other languages
English (en)
Other versions
JP6660010B2 (ja
Inventor
将司 上田
Shoji Ueda
将司 上田
量平 山本
Ryohei Yamamoto
量平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2016048465A priority Critical patent/JP6660010B2/ja
Publication of JP2017161458A publication Critical patent/JP2017161458A/ja
Application granted granted Critical
Publication of JP6660010B2 publication Critical patent/JP6660010B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】測位システムを用いることなく、測定対象者の速度をより正確に測定すること。【解決手段】運動解析装置1は、センサ情報取得部51と、速度推定部54とを備える。センサ情報取得部51は、加速度を取得する。速度推定部54は、取得された加速度に基づいて仮の速度を取得し、センサ情報取得部51によって取得された加速度の変動状況に応じて取得された仮の速度を変化させて、速度を推定する。【選択図】図4

Description

本発明は、測定装置、測定方法及びプログラムに関する。
従来、サッカーやラグビー等の屋外競技ではGPS(Global Positioning System)等の測位システムを用いた速度測定システムが試合分析に使用されている。ところが、屋根によってGPS信号が遮られてしまうような室内競技ではGPS等の測位システムを用いることができない。そこで、競技の様子を複数台のカメラで取り囲むように撮影することで選手の速度を測定することが可能ではあるが、競技会場によっては望む位置にカメラを配置することができなかったり、また、配置が可能であっても離れた場所にある複数のカメラを操作するのは手間がかかったりして、使い勝手がよいとは言えない。
これに対し、特許文献1においては、GPS等の測位システムを用いることなく、選手の身体に加速度センサを取り付け、その検出結果から選手の動きをモニタする技術が提案されている。
特開2013−220355号公報
しかしながら、上述した特許文献1に記載の技術では、加速度センサの検出結果から選手の動きをモニタしているため、例えば選手の速度をモニタする場合、加速度センサの検出結果を積分して速度が算出される。この場合、積分による誤差が累積することとなり、正確な速度が算出できない可能性がある。
このように、従来の技術においては、測位システムを用いることなく、測定対象者の正確な速度を測定することが困難であった。
本発明は、このような状況に鑑みてなされたものであり、測位システムを用いることなく、測定対象者の速度をより正確に測定することを目的とする。
上記目的を達成するため、本発明の一態様の測定装置は、
加速度を取得する加速度取得部と、
前記取得された加速度に基づいて仮の速度を取得し、前記加速度取得部によって取得された前記加速度の変動状況に応じて前記取得された仮の速度を変化させて、速度を推定する速度推定部と、
を備えることを特徴とする。
本発明によれば、測位システムを用いることなく、測定対象者の速度をより正確に測定することができる。
発明の一実施形態に係る運動解析装置の実装例を示す模式図であり、図1(A)は運動解析装置のモーションセンサユニットがユーザに装着された状態を示す図、図1(B)は運動解析装置のモーションセンサユニットと情報処理ユニットとが接続された状態を示す図である。 本発明の一実施形態に係る運動解析装置における情報処理ユニットのハードウェア構成を示すブロック図である。 本発明の一実施形態に係る運動解析装置におけるモーションセンサユニットのハードウェア構成を示すブロック図である。 運動解析装置の機能的構成のうち、速度推定処理を実行するための機能的構成を示す機能ブロック図である。 第1の速度v1及び第2の速度v2を混合するために用いるシグモイド関数を示す模式図である。 速度の真値に対する第1の速度v1及び第2の速度v2の関係の一例を示す模式図であり、図6(A)はユーザの運動から測定された速度の真値、図6(B)はユーザの運動から、速度推定部により算出された第1の速度v1、図6(C)はユーザの運動から、速度推定部により算出された第2の速度v2を示している。 ユーザの運動から取得された加速度の変動状況を表した模式図である。 速度の推定精度の差異を示す模式図であり、図7(A)は速度の真値、図7(B)は加速度を単純に積分して得られる仮速度v0、図7(C)は速度推定部54によって推定される速度Vを示している。 図4の機能的構成を有する運動解析装置が実行する速度推定処理の流れを説明するフローチャートである。 運動解析装置1が実行する速度算出処理の流れを説明するフローチャートである。
以下、本発明の実施形態について、図面を用いて説明する。
[第1実施形態]
図1は、発明の一実施形態に係る運動解析装置1の実装例を示す模式図であり、図1(A)は運動解析装置1のモーションセンサユニット1Bがユーザに装着された状態を示す図、図1(B)は運動解析装置1のモーションセンサユニット1Bと情報処理ユニット1Aとが接続された状態を示す図である。
運動解析装置1は、本発明の測定装置の一実施形態であり、本実施形態においては測定対象者の水平方向の速度を推定する装置として実現される。
図1(A)及び(B)に示すように、運動解析装置1は、情報処理ユニット1Aと、モーションセンサユニット1Bとを備えている。
情報処理ユニット1Aは、スマートフォン等の情報処理装置によって構成される。
モーションセンサユニット1Bは、測定対象者の腰付近等の体幹部に取り付けられ、測定対象者の加速度及び角速度を測定して情報処理ユニット1Aに送信する。
情報処理ユニット1Aでは、モーションセンサユニット1Bから送信された加速度及び角速度を用いて、測定対象者の速度を推定する。
なお、モーションセンサユニット1Bを運動解析装置1の外部装置によって構成し、運動解析装置1をスマートフォン等の情報処理装置単体で構成することとしてもよい。
[ハードウェア構成]
図2は、本発明の一実施形態に係る運動解析装置1における情報処理ユニット1Aのハードウェア構成を示すブロック図である。
運動解析装置1において、情報処理ユニット1Aは、図2に示すように、CPU(Central Processing Unit)11と、ROM(Read Only Memory)12と、RAM(Random Access Memory)13と、バス14と、入出力インターフェース15と、撮像部16と、入力部17と、出力部18と、記憶部19と、通信部20と、ドライブ21と、を備えている。
CPU11は、ROM12に記録されているプログラム、または、記憶部19からRAM13にロードされたプログラムに従って各種の処理を実行する。
RAM13には、CPU11が各種の処理を実行する上において必要なデータ等も適宜記憶される。
CPU11、ROM12及びRAM13は、バス14を介して相互に接続されている。このバス14にはまた、入出力インターフェース15も接続されている。入出力インターフェース15には、撮像部16、入力部17、出力部18、記憶部19、通信部20及びドライブ21が接続されている。
撮像部16は、図示はしないが、光学レンズ部と、イメージセンサと、を備えている。
光学レンズ部は、被写体を撮影するために、光を集光するレンズ、例えばフォーカスレンズやズームレンズ等で構成される。
フォーカスレンズは、イメージセンサの受光面に被写体像を結像させるレンズである。ズームレンズは、焦点距離を一定の範囲で自在に変化させるレンズである。
光学レンズ部にはまた、必要に応じて、焦点、露出、ホワイトバランス等の設定パラメータを調整する周辺回路が設けられる。
イメージセンサは、光電変換素子や、AFE(Analog Front End)等から構成される。
光電変換素子は、例えばCMOS(Complementary Metal Oxide Semiconductor)型の光電変換素子等から構成される。光電変換素子には、光学レンズ部から被写体像が入射される。そこで、光電変換素子は、被写体像を光電変換(撮像)して画像信号を一定時間蓄積し、蓄積した画像信号をアナログ信号としてAFEに順次供給する。
AFEは、このアナログの画像信号に対して、A/D(Analog/Digital)変換処理等の各種信号処理を実行する。各種信号処理によって、ディジタル信号が生成され、撮像部16の出力信号として出力される。
このような撮像部16の出力信号を、以下、「撮像画像のデータ」と呼ぶ。撮像画像のデータは、CPU11や図示しない画像処理部等に適宜供給される。
入力部17は、各種釦等で構成され、ユーザの指示操作に応じて各種情報を入力する。
出力部18は、ディスプレイやスピーカ等で構成され、画像や音声を出力する。
記憶部19は、ハードディスクあるいはDRAM(Dynamic Random Access Memory)等で構成され、各種画像のデータを記憶する。
通信部20は、端末間の直接的な無線通信あるいはインターネットを含むネットワークを介して他の装置との間で行う通信を制御する。本実施形態において、通信部20は、ブルートゥース(登録商標)あるいはWi−Fi等の無線通信によって、モーションセンサユニット1Bと通信を行う。
ドライブ21には、磁気ディスク、光ディスク、光磁気ディスク、あるいは半導体メモリ等よりなる、リムーバブルメディア31が適宜装着される。ドライブ21によってリムーバブルメディア31から読み出されたプログラムは、必要に応じて記憶部19にインストールされる。また、リムーバブルメディア31は、記憶部19に記憶されている画像のデータ等の各種データも、記憶部19と同様に記憶することができる。
図3は、本発明の一実施形態に係る運動解析装置1におけるモーションセンサユニット1Bのハードウェア構成を示すブロック図である。
運動解析装置1において、モーションセンサユニット1Bは、CPU(Central Processing Unit)111と、ROM(Read Only Memory)112と、RAM(Random Access Memory)113と、バス114と、入出力インターフェース115と、センサ部116と、入力部117と、出力部118と、記憶部119と、通信部120と、を備えている。
CPU111は、ROM112に記録されているプログラム、または、記憶部119からRAM113にロードされたプログラムに従って各種の処理を実行する。
RAM113には、CPU111が各種の処理を実行する上において必要なデータ等も適宜記憶される。
CPU111、ROM112及びRAM113は、バス114を介して相互に接続されている。このバス114にはまた、入出力インターフェース115も接続されている。入出力インターフェース115には、センサ部116、入力部117、出力部118、記憶部119及び通信部120が接続されている。
センサ部116は、加速度を測定する加速度センサ116Aと、角速度を測定する角速度センサ116Bとを備えている。センサ部116は、予め設定されたサンプリング周期(例えば、0.1秒)毎に、加速度センサ116A及び角速度センサ116Bによって加速度及び角速度を測定する。センサ部116によって測定された加速度及び角速度のデータは、測定時刻のデータと対応付けて、記憶部119に記憶される。
入力部117は、各種ボタン等で構成され、ユーザの指示操作に応じて各種情報を入力する。
出力部118は、ランプやスピーカあるいは振動用モータ等で構成され、光や音声あるいはバイブレーション信号を出力する。
記憶部119は、DRAM(Dynamic Random Access Memory)等の半導体メモリで構成され、各種データを記憶する。
通信部120は、端末間の直接的な無線通信によって他の装置との間で行う通信を制御する。本実施形態において、通信部120は、ブルートゥース(登録商標)あるいはWi−Fi等の無線通信によって、情報処理ユニット1Aと通信を行う。
[機能的構成]
図4は、このような運動解析装置1の機能的構成のうち、速度推定処理を実行するための機能的構成を示す機能ブロック図である。
速度推定処理とは、ユーザに装着されたモーションセンサユニット1Bにおけるセンサの検出結果を用いて、情報処理ユニット1Aによってユーザの速度を推定する一連の処理をいう。
速度推定処理が実行される場合には、図4に示すように、情報処理ユニット1AのCPU11において、センサ情報取得部51と、座標変換部52と、分散値算出部53と、速度推定部54とが機能する。
センサ情報取得部51は、モーションセンサユニット1Bによって測定された物理量(加速度及び角速度)のデータを取得する。このとき、センサ情報取得部51は、加速度のデータ及び角速度のデータと、その測定時刻のデータとを併せて取得する。
座標変換部52は、センサ情報取得部51によって取得された加速度及び角速度に基づいて、加速度センサ116A及び角速度センサ116Bにおける座標系で取得されている加速度及び角速度をワールド座標系に変換する。
具体的には、座標変換部52は、運動による加速度と重力加速度とを分離するため、加速度センサ116A及び角速度センサ116Bの姿勢における鉛直方向を推定する。このとき、座標変換部52は、加速度を平均化することでおおよその鉛直方向を取得する。さらに、座標変換部52は、おおよその鉛直方向に角速度センサ116Bの各時刻における姿勢変化の情報を加えることで、より正確な鉛直方向を推定する。そして、座標変換部52は、加速度センサ116A及び角速度センサ116Bにおける座標系の加速度をワールド座標系に変換することで、ワールド座標系における水平方向の加速度を取得する。例えば、ワールド座標系における時刻t+1の重力方向G(t+1)は、(1)式に従って算出できる。
G(t+1)=r×R(t)×G(t)+(1−r)×Aav (1)
ただし、(1)式において、rは予め設定された寄与率、R(t)は時刻tにおける角速度センサによる回転行列、G(t)は時刻tの重力方向、Aavは時刻tの加速度平均である。
(1)式に従って算出された重力方向の加速度を用いることで、各時刻におけるより正確な水平方向の加速度を取得することができる。
分散値算出部53は、センサ情報取得部51によって取得された加速度の分散値を算出する。この分散値は、加速度の変動状況を表す指標であり、本実施形態においては、加速度に対して異なる種類の周波数除去を行うフィルタ(後述)を適用した処理結果が、加速度の分散値に応じて混合される。なお、加速度の変動状況を表す指標としては、加速度の分散値を用いることの他、歩行または走行のピッチ等を用いることも可能である。
速度推定部54は、座標変換部52によって取得されたワールド座標系における水平方向の加速度を積分し、仮速度v0を算出する。
また、速度推定部54は、仮速度v0に第1のカットオフ周波数f1によるハイパスフィルタ処理を適用することにより、第1の速度v1を算出する。第1のカットオフ周波数f1は、モーションセンサユニット1Bを装着したユーザが数歩にわたって加速する程度の動作周波数の付近に設定されている。なお、第1のカットオフ周波数f1は、実験値あるいはシミュレーション値等から具体的な値を設定することができる。
また、速度推定部54は、仮速度v0に第2のカットオフ周波数f2によるハイパスフィルタ処理を適用することにより、第2の速度v2を算出する。第2のカットオフ周波数f2は、第1のカットオフ周波数f1よりも高い周波数に設定されている。即ち、第2の速度v2は、仮速度v0において第1の速度v1よりも高い周波数成分まで除去された速度となる。第2のカットオフ周波数f2は、例えば、モーションセンサユニット1Bを装着したユーザが頻繁に切り返しを行う場合等の動作周波数に対応する。
そして、速度推定部54は、分散値算出部53によって算出された加速度の分散値に応じて、第1の速度v1と第2の速度v2との寄与率を変化させて混合することにより、モーションセンサユニット1Bを装着したユーザの水平方向の速度Vを推定する。具体的には、速度推定部54は、加速度の分散値が大きいほど、第1の速度v1の寄与率(重みw1)を大きくし、加速度の分散値が小さいほど、第2の速度v2の寄与率(重みw2)を大きくして、ユーザの水平方向の速度Vを算出する。本実施形態においては、第1の速度v1と第2の速度v2とを混合する際に、シグモイド関数を用いて第1の速度v1の重みw1と第2の速度v2の重みw2とを算出し、これらの重みを第1の速度v1及び第2の速度v2にそれぞれ乗算して加算することにより速度Vを算出する。
図5は、第1の速度v1及び第2の速度v2を混合するために用いるシグモイド関数を示す模式図である。
図5に示すように、シグモイド関数を用いることにより、第1の速度v1は、加速度の分散値が大きくなるほど寄与率(重みw1)が1に近付き、第2の速度v2は、加速度の分散値が小さくなるほど寄与率(重みw2)が1に近付いている。即ち、ユーザの水平方向の速度Vは、
V=v1×w1+v2×w2 (2)
として算出される。ただし、(2)式において、w1+w2=1である。
[速度の推定結果]
上述のように、速度推定部54によって推定される速度Vは、第1の速度v1と第2の速度v2とが混合された結果となる。
図6は、速度の真値に対する第1の速度v1及び第2の速度v2の関係の一例を示す模式図であり、図6(A)はユーザの運動から測定された速度の真値、図6(B)はこのユーザの運動から、速度推定部54により算出された第1の速度v1、同様に、図6(C)も速度推定部54により算出された第2の速度v2を示している。なお、本実施形態においては、カメラによって運動しているユーザを撮影することにより水平方向の速度を実測した結果を「速度の真値」としており、グラフが欠損している部分は、ユーザが撮影されていないこと等により、水平方向の速度を測定できなかった部分である。
図7は、このユーザの運動から取得された加速度の変動状況を表した模式図である。
図6(A)及び図6(B)を参照すると、第1の速度v1は、第1のカットオフ周波数f1によってハイパスフィルタ処理されることにより、ドリフト誤差が抑制された速度であり、速度の真値に対して、A領域での推定精度が高くなっている。そしてA領域と図7の加速度の変動状況とを参照すると、このA領域においては加速度の分散値が大きいことがわかる。
一方、図6(A)及び図6(C)を参照すると、第2の速度v2は、第1のカットオフ周波数f1よりも高い第2のカットオフ周波数f2によってハイパスフィルタ処理されることにより、ドリフト誤差が抑制された速度であり、速度の真値に対して、B領域での推定精度が高くなっている。そしてB領域と図7の加速度の変動状況とを参照すると、このB領域においては加速度の分散値が小さいことがわかる。なお、B領域において、速度の推定値をゼロにリセットした場合、速度の推定値の連続性が失われることとなるが、第2の速度v2では、ハイパスフィルタ処理によってB領域での推定速度がゼロに近付けられているため、推定速度の連続性が維持されている。
そして、速度推定部54において、シグモイド関数を用いて、加速度の分散値が大きいほど、第1の速度v1の寄与率(重みw1)を大きくし、加速度の分散値が小さいほど、第2の速度v2の寄与率(重みw2)を大きくして混合することで、速度の真値に対して推定精度が高い速度Vを算出することができる。
図8は、速度の推定精度の差異を示す模式図であり、図8(A)は速度の真値、図8(B)は加速度を単純に積分して得られる仮速度v0、図8(C)は速度推定部54によって推定される速度Vを示している。
図8(A)及び図8(B)を参照すると、加速度を単純に積分して得られる仮速度v0は、速度の真値に対して、ドリフト誤差が累積的に積分され、時間の経過と共に推定精度が低下していることがわかる。
一方、図8(A)及び図8(C)を参照すると、速度推定部54によって推定される速度Vは、速度の真値に対して、時間の経過に関わらず、A領域及びB領域のいずれにおいても、高い推定精度が実現されていることがわかる。また、速度推定部54によって推定される速度Vは、A領域での推定精度を高めつつ、推定される速度の連続性が維持されたものとなる。
[動作]
図9は、図4の機能的構成を有する運動解析装置1が実行する速度推定処理の流れを説明するフローチャートである。
速度推定処理は、ユーザによる入力部17への速度推定処理開始の操作により開始される。
ステップS11において、センサ情報取得部51(CPU11)は、モーションセンサユニット1Bによって測定された物理量(加速度及び角速度)のデータを取得する。本実施形態において、センサ情報取得部51は、モーションセンサユニット1Bにおいて測定され、記憶部119に記憶されている所定時間分(ユーザが出場した1試合分等)の加速度及び角速度のデータと、その測定時刻のデータとを併せて取得する。なお、センサ情報取得部51が、より短い周期(例えば、1秒)毎にモーションセンサユニット1Bから加速度及び角速度のデータ等を取得することで、ユーザの速度を逐次推定することも可能である。
ステップS12において、座標変換部52(CPU11)は、取得した角速度を用いて、加速度をワールド座標系へ変換する。
ステップS13において、分散値算出部53(CPU11)は、各時刻における加速度の分散値を算出する。
ステップS14において、速度推定部54(CPU11)は、ワールド座標系における水平方向の加速度を積分し、各時刻の仮速度v0を算出する。
ステップS15において、速度推定部54(CPU11)は、仮速度v0に第1のカットオフ周波数f1によるハイパスフィルタ処理を適用することにより、第1の速度v1を算出する。
ステップS16において、速度推定部54(CPU11)は、仮速度v0に第2のカットオフ周波数f2によるハイパスフィルタ処理を適用することにより、第2の速度v2を算出する。
ステップS17において、速度推定部54(CPU11)は、速度算出処理を実行することにより、モーションセンサユニット1Bを装着したユーザの水平方向の速度Vを推定する。
ステップS18において、速度推定部54(CPU11)は、ステップS11で取得された全ての時刻のデータについて処理が終了したか否かの判定を行う。
ステップS11で取得された全ての時刻のデータについて処理が終了していない場合、ステップS18においてNOと判定されて、処理はステップS17に移行する。
一方、ステップS11で取得された全ての時刻のデータについて処理が終了している場合、ステップS18においてYESと判定されて、速度推定処理は終了となる。
次に、速度推定処理のステップS17においてサブフローとして実行される速度算出処理について説明する。
図10は、運動解析装置1が実行する速度算出処理の流れを説明するフローチャートである。
速度算出処理が開始されると、ステップS171において、速度推定部54(CPU11)は、各時刻における加速度の分散値に応じて、第1の速度v1の寄与率(重みw)と第2の速度v2の寄与率(重みw2)とを算出する(図5参照)。
ステップS172において、速度推定部54は、(2)式に従って、重みw1で重み付けした第1の速度v1と、重みw2で重み付けした第2の速度v2とを加算することにより、各時刻におけるユーザの水平方向の速度Vを算出する。
本実施形態においては、この算出された速度を、出力部18を構成するディスプレイにグラフ表示する。
そして、ステップS172の後、処理は加速度推定処理に戻る。
このような処理により、水平方向の加速度の積分結果を第1のカットオフ周波数f1でハイパスフィルタ処理し、高速度領域での高い推定精度を有する第1の速度v1を得ると共に、水平方向の加速度の積分結果を第2のカットオフ周波数f2(>f1)でハイパスフィルタ処理し、低速度領域での高い推定精度を有する第2の速度v2を得て、これらを加速度の分散値に応じて重み付けすることで、ユーザの水平方向の速度Vが得られる。
その結果、ユーザの推定速度Vは、速度の真値に対して、時間の経過に関わらず、低速度領域及び高速度領域のいずれにおいても、高い推定精度を有するものとなる。
したがって、測位システムを用いることなく、測定対象者の速度をより正確に測定することが可能となる。
即ち、従来の速度推定手法を用いる場合、モーションセンサユニット1Bによって測定された測定値から、正確な鉛直方向の推定を行うことができるとすれば、水平方向の加速度を積分することで水平方向の正確な速度を得ることができる。
しかしながら、複雑な動きが行われる競技中に測定されたデータから正確な鉛直方向の推定行うのはほぼ不可能である。
鉛直方向の推定精度が低下すると、重力加速度の成分が水平方向に加わり、これが時間と共に積分されることで、図8(B)に示すように、水平方向の速度にドリフト誤差が生じる。
一方、実際の競技においては、相手の動きに対応して、ユーザによる加速・停止が繰り返される。
これにより、走行あるいは歩行動作に応じて加速度の変動が生じる。言い換えると、加速度の変動が小さい部分では速度が小さくなる傾向がある。
本実施形態においては、この傾向を利用して、水平方向の速度のドリフト誤差を抑制している。
即ち、本実施形態においては、ドリフト誤差の抑制を行うため、低い周波数成分の除去を行っている。具体的には、数歩にわたって加速するような動作周波数の付近に第1のカットオフ周波数f1を設定している。これにより、高速度領域での推定精度が高い第1の速度v1が得られる(図6(B)参照)。
このような処理により、ドリフト誤差を一定程度除去できるが、静止時の速度をゼロに収束させることはできない。
そこで、本実施形態においては、加速度の分散値が低い場合の速度をゼロに近付ける処理を加えている。ただし、単純に分散値を閾値判定することにより速度をゼロにすると、推定速度の連続性が失われることとなる。
そのため、本実施形態においては、加速度の分散値が低い場合は、第1のカットオフ周波数f1より高い第2のカットオフ周波数f2までの除去を行っている。具体的には、頻繁に切り返しを行うような動作周波数の付近に第2のカットオフ周波数f2を設定している。これにより、低速度領域での推定精度が高い第2の速度v2が得られる(図6(C)参照)。
そして、第1の速度v1と第2の速度v2とを加速度の分散値に応じて、寄与率を変えながら混合する。具体的には、加速度の分散値が大きい場合は第1の速度v1の比率を大きくし、加速度の分散値が小さい場合は第2の速度v2の比率を大きくする。
これにより、速度の連続性を保ったまま加速度の分散値が大きい場合の速度をゼロに収束することができる。
その結果、静止・移動の両方において良好な推定精度で速度Vの推定を行うことができる。
このように、本実施形態によれば、相手の動きに対応して加速・停止が繰り返される室内競技等において、体幹にモーションセンサユニット1Bを装着するだけで、各選手(ユーザ)の速度変化を把握することができ、試合分析、選手の育成等に効果を奏するものとなる。
[第2実施形態]
次に、本発明の第2実施形態について説明する。
第2実施形態に係る運動解析装置1は、第1実施形態に係る運動解析装置1において、速度推定部54における速度推定の処理が異なっている。
したがって、以下、速度推定部54の処理を主として説明する。
第2実施形態において、速度推定部54は、座標変換部52によって取得されたワールド座標系における水平方向の加速度を各時刻の速度に反映させて速度を推定する際に、各時刻における加速度の分散値に応じて速度を抑制しながら、ユーザの水平方向の速度Vを推定する。
即ち、座標変換部52によって取得されたワールド座標系における水平方向の加速度を単純に速度に反映させる場合、
V(t)=V(t−1)+a(t)×ts (3)
となる。ただし、(3)式において、tは測定時刻(サンプリング時刻)、V(t)は時刻tにおける水平方向の速度、a(t)は時刻tにおける加速度、tsはサンプリング周期である。
これに対し、本実施形態における速度推定部54は、(4)式に従って、時刻tにおける水平方向の速度V(t)を推定する。
V(t)=α×V(t−1)+a(t)×ts (4)
ただし、(4)式において、αは0より大きく1より小さいパラメータであり、各時刻の加速度の分散値に応じて変化する値である。
即ち、(4)式において、αは時刻tにおける加速度の分散値が大きいほど、1に近い値を取り、時刻tにおける加速度の分散値が小さいほど、設定された下限値(例えば0.9)に近い値を取る。なお、αの下限値は、モーションセンサユニット1Bにおいて加速度及び角速度を測定するサンプリング周期に応じて設定され、サンプリング周期が短いほど、1に近い値に設定される。
(4)式によれば、過去の速度V(t−1)に累積しているドリフト誤差を抑制する方向にV(t−1)の値を減少させて(即ち、速度V(t−1)をゼロに収束する方向に変化させて)、現在の加速度a(t)に対応する速度成分を加算することで、各時刻における速度V(t)が算出される。
これにより、ドリフト誤差を抑制しつつ速度を推定することができ、速度の真値に対して、低速度領域及び高速度領域での推定精度が高い速度Vを得ることができる。また、速度推定部54によって推定される速度Vは、低速度領域での推定精度を高めつつ、推定される速度の連続性が維持されたものとなる。
以上のように構成される運動解析装置1は、センサ情報取得部51と、速度推定部54とを備える。
センサ情報取得部51は、加速度を取得する。
速度推定部54は、取得された加速度に基づいて仮の速度を取得し、センサ情報取得部51によって取得された加速度の変動状況に応じて取得された仮の速度を変化させて、速度を推定する。
これにより、加速度の変動状況に応じて、推定される速度を変化させることができ、速度の誤差成分を適切に抑制して速度を推定することができる。
したがって、測位システムを用いることなく、測定対象者の速度をより正確に測定することができる。
速度推定部54は、取得された加速度の水平方向の加速度成分に基づいて水平方向の仮の速度を取得し、取得された加速度の変動状況に応じて、取得される水平方向の仮の速度を変化させて、水平方向の速度を推定する。
これにより、水平方向の速度の誤差成分を加速度の変動状況に応じて抑制し、測定対象者の速度をより正確に測定することができる。
また、運動解析装置1は、座標変換部52を備える。
センサ情報取得部51は、角速度を取得する。
座標変換部52は、センサ情報取得部51によって取得された加速度及び角速度に基づいて、水平方向の加速度成分を取得する。
速度推定部54は、座標変換部52によって取得された水平方向の加速度成分から、水平方向の仮の速度を算出し、加速度の変動状況に応じて、水平方向の仮の速度におけるドリフト誤差成分を抑制して、当該水平方向の速度を推定する。
これにより、センサによって取得された水平方向の加速度成分から算出される仮の速度において、ドリフト誤差成分を適切に抑制して、より正確な水平方向の速度を推定することができる。
速度推定部54は、仮の速度を、異なる通過周波数帯域を有する複数のフィルタによって処理し、複数のフィルタの処理結果を、加速度の変動状況に応じて混合することで、速度を推定する。
これにより、推定される速度の連続性を維持しながら、より高い推定精度で速度を推定することができる。
速度推定部54は、異なる通過周波数帯域を有する複数のフィルタとして、第1のカットオフ周波数を有する第1のハイパスフィルタと、第1のカットオフ周波数よりも高い第2のカットオフ周波数を有する第2のハイパスフィルタとによって仮の速度を処理し、加速度の変動が小さいほど、第2のハイパスフィルタの処理結果の比率を大きくして、第1のハイパスフィルタの処理結果と第2のハイパスフィルタの処理結果とを混合することにより、速度を推定する。
これにより、時間の経過に関わらず、低速度領域及び高速度領域のいずれにおいても、より高い推定精度で速度を推定することができる。
速度推定部54は、加速度の変動状況を示す指標として加速度の分散を取得し、加速度の分散が小さいほど、取得される仮の速度を変化させて、当該速度を推定する。
これにより、加速度の分散を指標として、仮の速度におけるドリフト誤差を抑制しつつ、より高い推定精度で速度を推定することができる。
速度推定部54は、加速度の変動状況に応じて、過去に推定された速度をゼロに収束する方向に変化させると共に、現在の加速度による速度変化を加算することにより、速度を推定する。
これにより、各時刻における加速度から速度を推定する際に、ドリフト誤差を逐次抑制しながら、より高い精度で速度を推定することができる。
加速度の変動状況に応じて、過去に推定された速度をゼロに収束する方向に変化させる度合いは、加速度のサンプリング周期に応じて異なる。
これにより、より高い精度で速度を推定することができる。
なお、本発明は、上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
上述の実施形態では、ユーザの水平方向の速度を最終的な出力とする場合を例に挙げて説明したが、これに限られない。即ち、速度を介して取得される他の物理量(例えば、移動距離等)を運動解析装置1によって出力することとしてもよい。
また、モーションセンサユニット1Bによって加速度及び角速度のセンサデータを取得している際の様子を、情報処理ユニット1Aの撮像部16により取得しておき、映像とデータ間の同期を取った上でディスプレイにグラフと同時に映像を表示するようにしてもよい。そうすることで、どのようなプレーにどのような速度が関連付いているのかを容易に分析することができるようになる。
また、上述の実施形態では、本発明が適用される運動解析装置1は、情報処理装置である場合を例として説明したが、特にこれに限定されない。
例えば、本発明は、速度推定処理機能を有する電子機器一般に適用することができる。具体的には、例えば、本発明は、ノート型のパーソナルコンピュータ、テレビジョン受像機、ビデオカメラ、携帯型ナビゲーション装置、携帯電話機、スマートフォン、ポータブルゲーム機等に適用可能である。
上述した一連の処理は、ハードウェアにより実行させることもできるし、ソフトウェアにより実行させることもできる。
換言すると、図4の機能的構成は例示に過ぎず、特に限定されない。即ち、上述した一連の処理を全体として実行できる機能が運動解析装置1に備えられていれば足り、この機能を実現するためにどのような機能ブロックを用いるのかは特に図4の例に限定されない。
また、1つの機能ブロックは、ハードウェア単体で構成してもよいし、ソフトウェア単体で構成してもよいし、それらの組み合わせで構成してもよい。
本実施形態における機能的構成は、演算処理を実行するプロセッサによって実現され、本実施形態に用いることが可能なプロセッサには、シングルプロセッサ、マルチプロセッサ及びマルチコアプロセッサ等の各種処理装置単体によって構成されるものの他、これら各種処理装置と、ASIC(Application Specific Integrated Circuit)やFPGA(Field‐Programmable Gate Array)等の処理回路とが組み合わせられたものを含む。
一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、コンピュータ等にネットワークや記録媒体からインストールされる。
コンピュータは、専用のハードウェアに組み込まれているコンピュータであってもよい。また、コンピュータは、各種のプログラムをインストールすることで、各種の機能を実行することが可能なコンピュータ、例えば汎用のパーソナルコンピュータであってもよい。
このようなプログラムを含む記録媒体は、ユーザにプログラムを提供するために装置本体とは別に配布される図2のリムーバブルメディア31により構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに提供される記録媒体等で構成される。リムーバブルメディア31は、例えば、磁気ディスク(フロッピディスクを含む)、光ディスク、または光磁気ディスク等により構成される。光ディスクは、例えば、CD−ROM(Compact Disk−Read Only Memory),DVD(Digital Versatile Disk),Blu−ray(登録商標) Disc(ブルーレイディスク)等により構成される。光磁気ディスクは、MD(Mini−Disk)等により構成される。また、装置本体に予め組み込まれた状態でユーザに提供される記録媒体は、例えば、プログラムが記録されている図2のROM12や、図2の記憶部19に含まれるハードディスク等で構成される。
なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
以上、本発明のいくつかの実施形態について説明したが、これらの実施形態は、例示に過ぎず、本発明の技術的範囲を限定するものではない。本発明はその他の様々な実施形態を取ることが可能であり、さらに、本発明の要旨を逸脱しない範囲で、省略や置換等種々の変更を行うことができる。これら実施形態やその変形は、本明細書等に記載された発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
以下に、本願の出願当初の特許請求の範囲に記載された発明を付記する。
[付記1]
加速度を取得する加速度取得部と、
前記取得された加速度に基づいて仮の速度を取得し、前記加速度取得部によって取得された前記加速度の変動状況に応じて前記取得された仮の速度を変化させて、速度を推定する速度推定部と、
を備える測定装置。
[付記2]
前記速度推定部は、前記取得された加速度の水平方向の加速度成分に基づいて水平方向の仮の速度を取得し、前記取得された加速度の変動状況に応じて、前記取得される水平方向の仮の速度を変化させて、水平方向の速度を推定する付記1に記載の測定装置。
[付記3]
角速度を取得する角速度取得部と、
前記加速度取得部によって取得された加速度及び前記角速度取得部によって取得された角速度に基づいて、前記水平方向の加速度成分を取得する水平方向加速度取得部と、をさらに備え、
前記速度推定部は、前記水平方向加速度取得部によって取得された前記水平方向の加速度成分から、水平方向の仮の速度を算出し、前記加速度の変動状況に応じて、前記水平方向の仮の速度におけるドリフト誤差成分を抑制して、当該水平方向の速度を推定する付記2に記載の測定装置。
[付記4]
前記速度推定部は、前記仮の速度を、異なる通過周波数帯域を有する複数のフィルタによって処理し、前記複数のフィルタの処理結果を、前記加速度の変動状況に応じて混合することで、前記速度を推定する付記1乃至3のいずれかに記載の測定装置。
[付記5]
前記速度推定部は、前記異なる通過周波数帯域を有する複数のフィルタとして、第1のカットオフ周波数を有する第1のハイパスフィルタと、前記第1のカットオフ周波数よりも高い第2のカットオフ周波数を有する第2のハイパスフィルタとによって前記仮の速度を処理し、前記加速度の変動が小さいほど、前記第2のハイパスフィルタの処理結果の比率を大きくして、前記第1のハイパスフィルタの処理結果と前記第2のハイパスフィルタの処理結果とを混合することにより、前記速度を推定する付記4に記載の測定装置。
[付記6]
前記速度推定部は、前記加速度の変動状況を示す指標として前記加速度の分散を取得し、前記加速度の分散が小さいほど、前記取得される仮の速度を変化させて、当該速度を推定する付記1から5のいずれかに記載の測定装置。
[付記7]
前記速度推定部は、前記加速度の変動状況に応じて、過去に推定された前記速度をゼロに収束する方向に変化させると共に、現在の前記加速度による速度変化を加算することにより、前記速度を推定する付記1に記載の測定装置。
[付記8]
前記加速度の変動状況に応じて、過去に推定された前記速度をゼロに収束する方向に変化させる度合いは、前記加速度のサンプリング周期に応じて異なる付記7に記載の測定装置。
[付記9]
加速度を取得する加速度取得部と、処理部とを備える測定装置で用いられる測定方法であって、前記処理部は、
前記取得された加速度に基づいて仮の速度を取得し、
前記加速度取得部によって取得された前記加速度の変動状況に応じて前記取得された仮の速度を変化させて、速度を推定する、測定方法。
[付記10]
加速度を取得する加速度取得部と、処理部とを備える測定装置として用いられるコンピュータに、
前記取得された加速度に基づいて仮の速度を取得するステップと、
前記加速度取得部によって取得された加速度の変動状況に応じて前記取得された仮の速度を変化させて、速度を推定するステップと、
を実行させるプログラム。
1・・・運動解析装置,1A・・・情報処理ユニット,1B・・・モーションセンサユニット,11、111・・・CPU,12、112・・・ROM,13、113・・・RAM,14、114・・・バス,15、115・・・入出力インターフェース,16・・・撮像部,17、117・・・入力部,18、118・・・出力部,19、119・・・記憶部,20、120・・・通信部,21・・・ドライブ,31・・・リムーバブルメディア,51・・・センサ情報取得部,52・・・座標変換部,53・・・分散値算出部,54・・・速度推定部,116・・・センサ部,116A・・・加速度センサ,116B・・・角速度センサ

Claims (10)

  1. 加速度を取得する加速度取得部と、
    前記取得された加速度に基づいて仮の速度を取得し、前記加速度取得部によって取得された前記加速度の変動状況に応じて前記取得された仮の速度を変化させて、速度を推定する速度推定部と、
    を備える測定装置。
  2. 前記速度推定部は、前記取得された加速度の水平方向の加速度成分に基づいて水平方向の仮の速度を取得し、前記取得された加速度の変動状況に応じて、前記取得される水平方向の仮の速度を変化させて、水平方向の速度を推定する請求項1に記載の測定装置。
  3. 角速度を取得する角速度取得部と、
    前記加速度取得部によって取得された加速度及び前記角速度取得部によって取得された角速度に基づいて、前記水平方向の加速度成分を取得する水平方向加速度取得部と、をさらに備え、
    前記速度推定部は、前記水平方向加速度取得部によって取得された前記水平方向の加速度成分から、水平方向の仮の速度を算出し、前記加速度の変動状況に応じて、前記水平方向の仮の速度におけるドリフト誤差成分を抑制して、当該水平方向の速度を推定する請求項2に記載の測定装置。
  4. 前記速度推定部は、前記仮の速度を、異なる通過周波数帯域を有する複数のフィルタによって処理し、前記複数のフィルタの処理結果を、前記加速度の変動状況に応じて混合することで、前記速度を推定する請求項1乃至3のいずれかに記載の測定装置。
  5. 前記速度推定部は、前記異なる通過周波数帯域を有する複数のフィルタとして、第1のカットオフ周波数を有する第1のハイパスフィルタと、前記第1のカットオフ周波数よりも高い第2のカットオフ周波数を有する第2のハイパスフィルタとによって前記仮の速度を処理し、前記加速度の変動が小さいほど、前記第2のハイパスフィルタの処理結果の比率を大きくして、前記第1のハイパスフィルタの処理結果と前記第2のハイパスフィルタの処理結果とを混合することにより、前記速度を推定する請求項4に記載の測定装置。
  6. 前記速度推定部は、前記加速度の変動状況を示す指標として前記加速度の分散を取得し、前記加速度の分散が小さいほど、前記取得される仮の速度を変化させて、当該速度を推定する請求項1から5のいずれかに記載の測定装置。
  7. 前記速度推定部は、前記加速度の変動状況に応じて、過去に推定された前記速度をゼロに収束する方向に変化させると共に、現在の前記加速度による速度変化を加算することにより、前記速度を推定する請求項1に記載の測定装置。
  8. 前記加速度の変動状況に応じて、過去に推定された前記速度をゼロに収束する方向に変化させる度合いは、前記加速度のサンプリング周期に応じて異なる請求項7に記載の測定装置。
  9. 加速度を取得する加速度取得部と、処理部とを備える測定装置で用いられる測定方法であって、前記処理部は、
    前記取得された加速度に基づいて仮の速度を取得し、
    前記加速度取得部によって取得された前記加速度の変動状況に応じて前記取得された仮の速度を変化させて、速度を推定する、測定方法。
  10. 加速度を取得する加速度取得部と、処理部とを備える測定装置として用いられるコンピュータに、
    前記取得された加速度に基づいて仮の速度を取得するステップと、
    前記加速度取得部によって取得された加速度の変動状況に応じて前記取得された仮の速度を変化させて、速度を推定するステップと、
    を実行させるプログラム。
JP2016048465A 2016-03-11 2016-03-11 測定装置、測定方法及びプログラム Active JP6660010B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048465A JP6660010B2 (ja) 2016-03-11 2016-03-11 測定装置、測定方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048465A JP6660010B2 (ja) 2016-03-11 2016-03-11 測定装置、測定方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2017161458A true JP2017161458A (ja) 2017-09-14
JP6660010B2 JP6660010B2 (ja) 2020-03-04

Family

ID=59853956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048465A Active JP6660010B2 (ja) 2016-03-11 2016-03-11 測定装置、測定方法及びプログラム

Country Status (1)

Country Link
JP (1) JP6660010B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054464A1 (ja) * 2020-09-14 2022-03-17 カシオ計算機株式会社 電子機器、運動データ取得方法およびプログラム
WO2023153248A1 (ja) * 2022-02-10 2023-08-17 パナソニックIpマネジメント株式会社 速度算出装置、速度算出方法、及び速度算出プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253659A (ja) * 1997-03-06 1998-09-25 Murata Mfg Co Ltd 加速度センサの出力信号の処理方法
JP2002040040A (ja) * 2000-07-21 2002-02-06 Denso Corp 加速度を利用した処理装置
US7467060B2 (en) * 2006-03-03 2008-12-16 Garmin Ltd. Method and apparatus for estimating a motion parameter
JP2009115714A (ja) * 2007-11-08 2009-05-28 Tottori Univ 移動体の速度測定方法および同測定装置
JP6285106B2 (ja) * 2012-04-13 2018-02-28 アディダス アーゲー 運動をモニタする方法およびシステム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253659A (ja) * 1997-03-06 1998-09-25 Murata Mfg Co Ltd 加速度センサの出力信号の処理方法
JP3198968B2 (ja) * 1997-03-06 2001-08-13 株式会社村田製作所 加速度センサの出力信号の処理方法
JP2002040040A (ja) * 2000-07-21 2002-02-06 Denso Corp 加速度を利用した処理装置
JP3804409B2 (ja) * 2000-07-21 2006-08-02 株式会社デンソー 加速度を利用した処理装置
US7467060B2 (en) * 2006-03-03 2008-12-16 Garmin Ltd. Method and apparatus for estimating a motion parameter
JP2009115714A (ja) * 2007-11-08 2009-05-28 Tottori Univ 移動体の速度測定方法および同測定装置
JP6285106B2 (ja) * 2012-04-13 2018-02-28 アディダス アーゲー 運動をモニタする方法およびシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054464A1 (ja) * 2020-09-14 2022-03-17 カシオ計算機株式会社 電子機器、運動データ取得方法およびプログラム
WO2023153248A1 (ja) * 2022-02-10 2023-08-17 パナソニックIpマネジメント株式会社 速度算出装置、速度算出方法、及び速度算出プログラム

Also Published As

Publication number Publication date
JP6660010B2 (ja) 2020-03-04

Similar Documents

Publication Publication Date Title
US20170115319A1 (en) Rotation rate detecting apparatus, rotation rate detecting method, and program
US20150042839A1 (en) Distance measuring apparatus, imaging apparatus, and distance measuring method
CN109120844B (zh) 摄像控制装置、摄像控制方法以及存储介质
JP5811654B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP2016158780A (ja) 乗車姿勢評価装置、乗車姿勢評価方法及びプログラム
JP6660010B2 (ja) 測定装置、測定方法及びプログラム
JP2018085575A (ja) 画像処理装置、解析システム、画像処理方法及びプログラム
JP2015119323A (ja) 撮像装置、画像取得方法及びプログラム
US11305171B2 (en) Motion evaluation device using angular speed measured by a wearable sensor
KR102515570B1 (ko) 정보 처리 장치, 이동 궤적 정보 출력 방법, 및 기록 매체에 저장된 프로그램
JP6631190B2 (ja) 画像評価装置、画像評価方法及びプログラム
JP6210106B2 (ja) 撮影装置、画像評価方法及びプログラム
JP7255642B2 (ja) 情報処理装置、情報処理方法及びプログラム
US10661142B2 (en) Movement analysis device for determining whether a time range between a start time and a completion time of a predetermined movement by a target person is valid, and movement analysis method and recording medium
JP6668700B2 (ja) 撮影装置、画像評価方法及びプログラム
US10986261B2 (en) Image capturing apparatus and control method thereof
JP2018099416A (ja) 運動解析装置、運動解析方法及びプログラム
JP6521133B2 (ja) 撮像制御装置、撮像制御方法、及び、プログラム
JP6168127B2 (ja) 画像解析装置、画像解析方法、及びプログラム
JP2014187484A (ja) 画像処理装置、画像処理方法及びプログラム
JP2017192114A5 (ja)
JP2019113526A (ja) 電子機器、較正制御方法及びプログラム
JP5888272B2 (ja) 撮像装置、撮像制御方法及びプログラム
JP2017098634A (ja) 画像評価装置、画像評価方法及びプログラム
JP2013187726A (ja) 画像解析装置、画像処理装置、画像解析方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200121

R150 Certificate of patent or registration of utility model

Ref document number: 6660010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150