JP2017161396A - Foreign substance detection device and foreign substance detection method - Google Patents

Foreign substance detection device and foreign substance detection method Download PDF

Info

Publication number
JP2017161396A
JP2017161396A JP2016046977A JP2016046977A JP2017161396A JP 2017161396 A JP2017161396 A JP 2017161396A JP 2016046977 A JP2016046977 A JP 2016046977A JP 2016046977 A JP2016046977 A JP 2016046977A JP 2017161396 A JP2017161396 A JP 2017161396A
Authority
JP
Japan
Prior art keywords
ray
image data
transmission image
inspection object
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016046977A
Other languages
Japanese (ja)
Other versions
JP6491125B2 (en
Inventor
格 宮崎
Itaru Miyazaki
格 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Infivis Co Ltd
Original Assignee
Anritsu Infivis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Infivis Co Ltd filed Critical Anritsu Infivis Co Ltd
Priority to JP2016046977A priority Critical patent/JP6491125B2/en
Publication of JP2017161396A publication Critical patent/JP2017161396A/en
Application granted granted Critical
Publication of JP6491125B2 publication Critical patent/JP6491125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a foreign substance more accurately with a smaller structure using a plurality of X-ray sensors arranged in a line so as to intersect a direction where a test subject passes.SOLUTION: X rays emitted from an X-ray generator 22 to the passage of a test subject W are received by a plurality of X-ray sensors 31to 31of a photon detection type. The X-ray sensors 31to 31are arranged in one line so as to intersect a direction where the test subject W passes and every time the X-ray photon is input, output a pulse signal of a peak value corresponding to the photon energy. Transmission image data generating means 40 determines which one of sectioned regions the peak value of the pulse signal output from the X-ray sensors 31to 31in a predetermined period enters, accumulates the number of pulse signals input in the predetermined period for each region, and generates a plurality of pieces of transmission image data with the different X-ray transmission energy using the accumulation result. Determining means 50 determines whether there is a foreign substance on the test subject W by performing predetermined image processing on the obtained plurality of pieces of transmission image data.SELECTED DRAWING: Figure 1

Description

本発明は、X線を用いて被検査物内の異物検出を行なう技術に関する。   The present invention relates to a technique for detecting foreign matter in an inspection object using X-rays.

食品等の製造を行なう工場では、製品に金属やプラスチック等の異物が混入していないか否かを異物検出装置によって調べている。   In a factory that manufactures foods and the like, it is checked by a foreign object detection device whether or not foreign substances such as metal and plastic are mixed in the product.

この異物検出装置として、従来では、コンベア等によって所定方向に搬送される被検査物の通過路にX線を出射し、被検査物を透過したX線の強さをセンサ(複数のX線センサが通過方向と直交する方向に並んで一体化されたラインセンサ)で検出し、その検出信号が異物の存在によって局所的に変化することを利用して検出する方式のものが用いられている。   As this foreign matter detection device, conventionally, a sensor (a plurality of X-ray sensors) emits X-rays to the passage of an inspection object conveyed in a predetermined direction by a conveyor or the like and transmits the inspection object. Are detected using a line sensor integrated in line in a direction orthogonal to the passage direction, and the detection signal is locally changed due to the presence of foreign matter.

しかし、上記したように被検査物を透過したX線の強度をセンサで検出する方式では、X線が通過する方向の厚さや材質が変化する物品による透過率の違いにより、異物を正確に検出できない場合があった。   However, as described above, the sensor detects the intensity of X-rays that have passed through the object to be inspected, so that foreign matter can be accurately detected due to the difference in transmittance depending on the material whose thickness or material changes in the direction in which X-rays pass. There were cases where it was not possible.

これを解決する技術として、例えば特許文献1には、被検査物を通過するX線のエネルギーを異ならせて得られる二つの透過X線データに対するサブトラクション(画像データの差分処理)等の処理を行なうことで、異物の検出精度を高めることが提案されている。   As a technique for solving this problem, for example, Patent Document 1 performs processing such as subtraction (difference processing of image data) on two pieces of transmitted X-ray data obtained by differentiating the energy of X-rays passing through the inspection object. Thus, it has been proposed to increase the detection accuracy of foreign matter.

特開平10−318943号公報Japanese Patent Laid-Open No. 10-318943

しかしながら、上記特許文献1では、単一のX線源から出力されて被検査物を透過したX線を、被検査物の搬送方向に並んで配置され、X線に対するエネルギー感度が異なる二つの検出器(ラインセンサ)で検出することで、二つの透過X線データを得るようにしている。   However, in Patent Document 1, X-rays output from a single X-ray source and transmitted through the inspection object are arranged side by side in the conveyance direction of the inspection object, and two detections having different energy sensitivities to the X-rays. Two transmission X-ray data are obtained by detecting with a detector (line sensor).

このため、必然的に一方の検出器に入射するX線が被検査物内を透過する経路と、他方の検出器に入射するX線が被検査物内を透過する経路が一致せず、その影響で、被検査物の異物を正しく認識できなくなることが考えられる。また、二つの検出器のセンサ素子の特性差により、正確な異物検出を行なえないことも考えられる。   For this reason, the path through which X-rays incident on one detector pass through the object to be inspected does not match the path through which X-rays incident on the other detector pass through the object to be inspected. It is considered that the foreign object of the inspection object cannot be correctly recognized due to the influence. It is also conceivable that accurate foreign object detection cannot be performed due to the characteristic difference between the sensor elements of the two detectors.

なお、特許文献1には、X線エネルギーが異なる2つのX線源を用いることも記載されているが、その場合、二つのX線が互いに干渉しないようにX線源およびそれに対応する二つの検出器(ラインセンサ)の間隔を広くとらなければならず、装置全体が大きくなるとともに、その間で搬送中の被検査物の姿勢変化が起きやすくなり、しかも、前記同様に二つの検出器を用いるため、異物の検出精度が低下する恐れがある。   Patent Document 1 also describes the use of two X-ray sources having different X-ray energies. In that case, the X-ray source and two corresponding X-ray sources are used so that the two X-rays do not interfere with each other. The distance between the detectors (line sensors) must be widened, the entire apparatus becomes large, and the posture change of the object to be inspected tends to occur between them, and two detectors are used as described above. For this reason, there is a risk that the detection accuracy of the foreign matter is lowered.

本発明は、上記課題を解決し、被検査物の通過方向に交差するように一列に並んだ複数のX線センサを用いながら、異物の検出をより高い精度で行なえ、小型に構成できる異物検出装置および異物検出方法を提供することを目的としている。   The present invention solves the above-mentioned problems, and can detect a foreign object with higher accuracy while using a plurality of X-ray sensors arranged in a row so as to cross the passing direction of the inspection object, and can detect a foreign object that can be made compact. An object is to provide an apparatus and a foreign object detection method.

前記目的を達成するために、本発明の請求項1の異物検出装置は、
被検査物が通過する通過路にX線を出射するX線発生部(22)と、
前記X線発生部から前記通過路に出射されて被検査物を透過したX線を受ける位置で、被検査物の通過方向と交差する方向に並ぶように配置され、それぞれがX線を受けて電気信号に変換する複数のX線センサ(31〜31)と、
前記X線発生部と前記複数のX線センサとの間を被検査物が通過している間に前記複数のX線センサからそれぞれ出力される信号を所定期間ずつ区切って所定の信号処理を行い、被検査物の通過方向と前記X線センサの並び方向とで決まる2次元の位置の情報と、該位置毎の信号処理結果からなる被検査物の透過画像データを生成する透過画像データ生成手段(40)と、
前記透過画像データ生成手段によって生成された透過画像データに基づいて、被検査物内の異物の有無を判定する判定手段(50)とを有する異物検出装置において、
前記X線センサは、X線の光子が入力される毎に該光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型であって、
前記透過画像データ生成手段は、
前記各X線センサについて、該X線センサから前記所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、前記所定期間内のパルス信号入力数を前記領域毎に累積し、該領域毎の累積結果を用いて、X線透過エネルギーが異なる複数の透過画像データを生成するように構成され、
前記判定手段は、前記透過画像データ生成手段で得られた複数の透過画像データに対してサブトラクション処理を含む所定の画像処理を行なうことで、被検査物の異物の有無を判定することを特徴する。
In order to achieve the above object, a foreign object detection device according to claim 1 of the present invention comprises:
An X-ray generator (22) for emitting X-rays to a passageway through which the inspection object passes;
The X-ray generation unit is arranged to receive X-rays that are emitted from the X-ray generation unit and pass through the inspection object so as to be arranged in a direction intersecting the passing direction of the inspection object. A plurality of X-ray sensors (31 1 to 31 N ) that convert electrical signals;
While a test object passes between the X-ray generation unit and the plurality of X-ray sensors, signals output from the plurality of X-ray sensors are divided for a predetermined period and predetermined signal processing is performed. Transmission image data generating means for generating transmission image data of an inspection object comprising information on a two-dimensional position determined by a passing direction of the inspection object and an arrangement direction of the X-ray sensors and a signal processing result for each position (40)
In the foreign object detection device having the determination means (50) for determining the presence or absence of the foreign substance in the inspection object based on the transmission image data generated by the transmission image data generation means,
The X-ray sensor is a photon detection type that outputs a pulse signal having a peak value corresponding to the energy of the photon every time an X-ray photon is input,
The transmission image data generation means includes
For each of the X-ray sensors, it is determined whether the peak value of the pulse signal output from the X-ray sensor within the predetermined period falls within a predetermined range of the predetermined range, and within the predetermined period Is configured to generate a plurality of transmission image data having different X-ray transmission energies, using the accumulation result for each region.
The determination unit is configured to determine the presence or absence of foreign matter on the inspection object by performing predetermined image processing including subtraction processing on the plurality of transmission image data obtained by the transmission image data generation unit. .

また、本発明の請求項2の異物検出装置は、請求項1記載の異物検出装置において、
当該異物検出装置の動作モードを、異物を含まない良品サンプルを前記X線発生部と前記複数のX線センサの間に通過させて動作を確認する準備モードと、異物の有無の検出が必要な被検査物を前記X線発生部と前記複数のX線センサとの間に通過させて異物検出処理を行なう検査モードのいずれかに切り替えるモード切替手段(60)と、
前記準備モードの際に、前記良品サンプルを前記X線発生部と前記複数のX線センサの間に通過させたときに得られる前記透過画像データから、前記X線センサが前記所定期間に出力するパルス信号の数の最大値を求める最大パルス数算出手段(70)と、
前記最大パルス数算出手段によって求めた最大値と、前記X線センサが前記所定期間に出力することができる規格上の最大パルス数に対して予め設定された適正範囲とを比較する比較手段(80)と、
前記比較手段の比較結果に応じて、前記最大値が前記適正範囲に入るように、前記複数のX線センサに入力されるX線量を設定するX線量設定手段(90)とを有しており、
前記準備モードで設定されたX線量を用いて、前記検査モードの検査を行なうことを特徴とする。
Further, the foreign matter detection device according to claim 2 of the present invention is the foreign matter detection device according to claim 1,
It is necessary to detect the operation mode of the foreign object detection apparatus, a preparation mode in which a non-defective sample that does not contain foreign objects is passed between the X-ray generation unit and the plurality of X-ray sensors to check the operation, and the presence or absence of foreign objects is detected. Mode switching means (60) for switching the inspection object to one of inspection modes in which foreign matter detection processing is performed by passing an object between the X-ray generation unit and the plurality of X-ray sensors;
In the preparation mode, the X-ray sensor outputs the non-defective sample during the predetermined period from the transmission image data obtained when the non-defective sample is passed between the X-ray generator and the plurality of X-ray sensors. Maximum pulse number calculating means (70) for obtaining the maximum value of the number of pulse signals;
Comparing means (80) for comparing the maximum value obtained by the maximum pulse number calculating means with an appropriate range preset for the maximum number of pulses according to the standard that the X-ray sensor can output during the predetermined period. )When,
X-ray dose setting means (90) for setting X-ray doses input to the plurality of X-ray sensors so that the maximum value falls within the appropriate range according to the comparison result of the comparison means. ,
The inspection in the inspection mode is performed using the X-ray dose set in the preparation mode.

また、本発明の本発明の請求項3の異物検出装置は、請求項2記載の異物検出装置において、
前記X線発生部には、加熱したフィラメントから放出される電子を加速して陽極のターゲットに衝突させてX線を放出させる熱陰極X線管が用いられ、
前記X線量設定手段は、前記熱陰極X線管の管電流または管電圧の少なくとも一方を可変して、前記X線センサに入射されるX線量を設定することを特徴とする。
Further, the foreign matter detection device according to claim 3 of the present invention is the foreign matter detection device according to claim 2,
The X-ray generator uses a hot cathode X-ray tube that accelerates electrons emitted from a heated filament to collide with an anode target and emits X-rays.
The X-ray dose setting means sets an X-ray dose incident on the X-ray sensor by varying at least one of a tube current and a tube voltage of the hot cathode X-ray tube.

また、本発明の本発明の請求項4の異物検出装置は、請求項2記載の異物検出装置において、
前記X線量設定手段は、前記複数のX線センサの受光面積を可変して、該複数のX線センサに入射されるX線量を設定することを特徴とする。
Further, the foreign matter detection device according to claim 4 of the present invention is the foreign matter detection device according to claim 2,
The X-ray dose setting means sets the X-ray dose incident on the plurality of X-ray sensors by changing the light receiving area of the plurality of X-ray sensors.

また、本発明の請求項5の異物検出方法は、
X線発生部(22)から被検査物が通過する通過路にX線を出射する段階と、
前記通過路に出射されて被検査物を透過したX線を、被検査物の通過方向と交差する方向に並んだ複数のX線センサ(31〜31)で受けて電気信号に変換する段階と、
前記X線発生部と前記複数のX線センサとの間を被検査物が通過している間に前記複数のX線センサからそれぞれ出力される信号を所定期間ずつ区切って所定の信号処理を行い、被検査物の通過方向と前記X線センサの並び方向とで決まる2次元の位置の情報と、該位置毎の信号処理結果からなる被検査物の透過画像データを生成する段階と、
前記生成された透過画像データに基づいて、被検査物内の異物の有無を判定する段階とを含む異物検出方法において、
前記X線センサとして、X線の光子が入力される毎に、該光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型を用い、
前記透過画像データを生成する段階では、前記各X線センサについて、該X線センサから前記所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、前記所定期間内のパルス信号入力数を前記領域毎に累積し、該領域毎の累積結果を用いて、X線透過エネルギーが異なる複数の透過画像データを生成し、
前記被検査物内の異物の有無を判定する段階では、前記生成された複数の透過画像データに対してサブトラクション処理を含む所定の画像処理を行なうことで、被検査物の異物の有無を判定することを特徴する。
Moreover, the foreign matter detection method of claim 5 of the present invention is
Emitting X-rays from the X-ray generator (22) to a passage through which the inspection object passes;
The X-rays emitted to the passage and transmitted through the inspection object are received by a plurality of X-ray sensors (31 1 to 31 N ) arranged in a direction intersecting the inspection object's passing direction and converted into an electrical signal. Stages,
While a test object passes between the X-ray generation unit and the plurality of X-ray sensors, signals output from the plurality of X-ray sensors are divided for a predetermined period and predetermined signal processing is performed. Generating two-dimensional position information determined by the direction of passage of the inspection object and the arrangement direction of the X-ray sensors, and transmission image data of the inspection object comprising signal processing results for each position;
In the foreign matter detection method including the step of determining the presence or absence of foreign matter in the inspection object based on the generated transmission image data,
As the X-ray sensor, each time an X-ray photon is input, a photon detection type that outputs a pulse signal having a peak value corresponding to the energy of the photon is used.
In the step of generating the transmission image data, for each of the X-ray sensors, the peak value of the pulse signal output from the X-ray sensor within the predetermined period is any one of the regions in which the predetermined range is divided into a plurality of ranges in advance. Determine whether to enter, accumulate the number of pulse signal input within the predetermined period for each region, and use the accumulated result for each region to generate a plurality of transmission image data having different X-ray transmission energy,
In the step of determining the presence or absence of foreign matter in the inspection object, the presence or absence of foreign matter in the inspection object is determined by performing predetermined image processing including subtraction processing on the plurality of generated transmission image data. It is characterized by that.

このように、本発明の請求項1、5では、X線センサとして、X線の光子が入力される毎に、その光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型を用い、各X線センサについて、そのX線センサから所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、所定期間内のパルス信号入力数を領域毎に累積し、その領域毎の累積結果を用いて、X線透過エネルギーが異なる複数の透過画像データを生成し、それら生成された複数の透過画像データに対してサブトラクション処理を含む所定の画像処理を行なうことで、被検査物の異物の有無を判定している。   As described above, according to the first and fifth aspects of the present invention, as the X-ray sensor, every time an X-ray photon is input, a photon detection type that outputs a pulse signal having a peak value corresponding to the energy of the photon is used. For each X-ray sensor, it is determined whether the peak value of the pulse signal output from the X-ray sensor within a predetermined period falls within a predetermined range of the predetermined range, and a pulse within the predetermined period is determined. The number of signal inputs is accumulated for each region, and a plurality of transmission image data with different X-ray transmission energy is generated using the accumulation result for each region, and subtraction processing is performed on the generated plurality of transmission image data. Presence or absence of foreign matter on the inspection object is determined by performing predetermined image processing.

このため、被検査物の通過方向と交差する方向に一列に並んだ複数のX線センサを用いながら、複数のX線透過エネルギーが異なる複数の透過画像データを生成することができ、従来のように複数のラインセンサを被検査物の通過方向に並べる方法や、複数のX線源を用いる方法に比べて、異物の検出精度を高くすることができ、装置全体を小型化できる。   Therefore, it is possible to generate a plurality of transmission image data having different X-ray transmission energies while using a plurality of X-ray sensors arranged in a line in a direction intersecting with the passing direction of the inspection object. Compared with a method in which a plurality of line sensors are arranged in the direction in which the inspection object passes and a method in which a plurality of X-ray sources are used, the foreign object detection accuracy can be increased and the entire apparatus can be downsized.

また、本発明の請求項2の異物検出装置では、準備モードの際に、異物を含まない良品サンプルをX線発生部と複数のX線センサの間に通過させたときに得られる透過画像データから、X線センサが所定期間に出力するパルス信号の数の最大値を求め、その最大値が、X線センサが所定期間に出力することができる規格上の最大パルス数に対して予め設定された適正範囲に入るように、複数のX線センサに入力されるX線量を設定している。   In the foreign matter detection apparatus according to claim 2 of the present invention, in the preparation mode, transmission image data obtained when a non-defective sample containing no foreign matter is passed between the X-ray generation unit and the plurality of X-ray sensors. From this, the maximum value of the number of pulse signals output by the X-ray sensor in a predetermined period is obtained, and the maximum value is set in advance with respect to the standard maximum number of pulses that the X-ray sensor can output in the predetermined period. The X-ray dose input to the plurality of X-ray sensors is set so as to fall within the appropriate range.

このため、被検査物を透過したX線の光子数が多すぎて、光子毎に発生するパルス信号が重なりあう現象(パイルアップ現象)による透過画像データの誤差が生じにくくなり、種々の被検査物の異物検出を精度良く行なうことができる。   For this reason, there are too many photons of X-rays that have passed through the object to be inspected, and transmission image data errors due to a phenomenon (pile-up phenomenon) in which pulse signals generated for each photon overlap each other are less likely to occur. It is possible to detect a foreign object with high accuracy.

本発明の実施形態の構成図Configuration diagram of an embodiment of the present invention X線センサから出力されるパルス信号と領域との関係を示す図The figure which shows the relationship between the pulse signal output from an X-ray sensor, and an area | region 波高値の領域毎に得られる3種類の透過画像データの例を示す図The figure which shows the example of three types of transmission image data obtained for every area | region of a crest value X線センサから出力されるパルス信号が重なった場合の波形を示す図The figure which shows the waveform when the pulse signal output from the X-ray sensor overlaps パイルアップを抑制するための構成例を示す図The figure which shows the structural example for suppressing a pileup

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した異物検出装置20の全体構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the overall configuration of a foreign object detection device 20 to which the present invention is applied.

この異物検出装置20は、搬送装置21、X線発生部22、複数NのX線センサ31〜31、透過画像データ生成手段40および判定手段50を有している。 The foreign object detection device 20 includes a transport device 21, an X-ray generation unit 22, a plurality of N X-ray sensors 31 1 to 31 N , a transmission image data generation unit 40, and a determination unit 50.

搬送装置21は、被検査物Wを所定方向(図では紙面に直交する方向)に搬送するためのものであり、一般的には、コンベアのように被検査物Wを一定速度で水平に搬送するものが使用されるが、必ずしも動力源をもつ搬送装置を用いる必要はなく、被検査物の重さを利用して傾斜路を滑走させる方式や、上方から落下させる方式であってもよい。   The transport device 21 is for transporting the inspection object W in a predetermined direction (in the figure, the direction orthogonal to the paper surface). Generally, the inspection apparatus W is horizontally transported at a constant speed like a conveyor. However, it is not always necessary to use a conveyance device having a power source, and a method of sliding on a ramp using the weight of an object to be inspected or a method of dropping from above may be used.

X線発生部22は、搬送装置21によって所定方向に搬送される被検査物Wが通過する通過路にX線を出射する。この実施形態では、搬送装置21によって搬送される被検査物Wの上方からその搬送路の幅方向に拡がるX線を出射するものとするが、X線の出射方向はこれに限らず、被検査物Wの側方から側面方向へ出射してもよい。   The X-ray generation unit 22 emits X-rays to a passing path through which the inspection object W transported in a predetermined direction by the transport device 21 passes. In this embodiment, X-rays extending in the width direction of the conveyance path are emitted from above the inspection object W conveyed by the conveyance device 21, but the emission direction of the X-rays is not limited to this, and the inspection object is inspected. You may radiate | emit to the side surface direction from the side of the thing W. FIG.

X線発生部22は、X線源として、加熱したフィラメントから放出される電子を加速して陽極のターゲットに衝突させてX線を放出させる熱陰極X線管や、格子制御型熱陰極X線管が用いられ、その他にX線管を駆動するために必要な電源が含まれている。   The X-ray generator 22 serves as an X-ray source such as a hot cathode X-ray tube that accelerates electrons emitted from a heated filament to collide with an anode target and emits X-rays, or a lattice-controlled hot cathode X-ray. A tube is used and, in addition, a power source necessary for driving the X-ray tube is included.

複数NのX線センサ31〜31は、それぞれがX線を受けて電気信号に変換するものであり、X線発生部22から被検査物Wの通過路に出射されて被検査物Wを透過したX線を受ける位置で、被検査物Wの通過方向(紙面と直交する方向)と交差(この例では直交)する方向に隙間がほとんど無い状態で一列に並んでいる。 The plurality of N X-ray sensors 31 1 to 31 N each receive X-rays and convert them into electric signals. The X-ray sensors 31 1 to 31 N are emitted from the X-ray generation unit 22 to the passage of the inspection object W and are inspected. Are arranged in a line with almost no gap in the direction intersecting (orthogonal in this example) with the passing direction (direction orthogonal to the paper surface) of the inspection object W.

なお、実際の装置としては、複数NのX線センサ31〜31は、それぞれが一体的に連結された一本のラインセンサ30で構成され、搬送装置21の搬送路の下面側に配置されている。ここで、例えばX線センサの幅を1mm、X線センサ同士の隙間を幅に対して無視できる程小さいとし、被検査物Wを搬送する搬送路の幅を200mmとすれば、概略200個のX線センサを有するラインセンサを用いればよい。 As an actual apparatus, the plurality of N X-ray sensors 31 1 to 31 N are each constituted by a single line sensor 30 that is integrally connected, and is arranged on the lower surface side of the conveyance path of the conveyance apparatus 21. Has been. Here, for example, assuming that the width of the X-ray sensors is 1 mm, and the gap between the X-ray sensors is negligibly small with respect to the width, and the width of the transport path for transporting the inspection object W is 200 mm, approximately 200 pieces. A line sensor having an X-ray sensor may be used.

従来の異物検出装置で用いられるX線センサは、一般的に入射したX線により可視光を発生してこれをフォトセンサで受けて電気信号に変換するシンチレータ型フォトセンサであって可視光のエネルギーを積分した値が画像の濃淡を表すが、この異物検出装置20が用いるX線センサ31〜31は、被検査物Wを透過したX線の光子が入力される毎に、その光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型(CdTeセンサ)であり、単位時間当りに出力するパルス数が透過画像の濃淡を表すことになる。 An X-ray sensor used in a conventional foreign object detection apparatus is a scintillator photosensor that generates visible light by an incident X-ray and receives it by a photosensor and converts it into an electrical signal. The X-ray sensors 31 1 to 31 N used by the foreign object detection device 20 each time an X-ray photon transmitted through the inspection object W is input. This is a photon detection type (CdTe sensor) that outputs a pulse signal having a peak value corresponding to energy, and the number of pulses output per unit time represents the density of the transmitted image.

透過画像データ生成手段40は、X線発生部22とX線センサ31〜31の間を被検査物Wが通過している間にX線センサ31〜31からそれぞれ出力される信号を所定期間(以下スキャン時間という)ずつ区切って所定の信号処理を行い、被検査物Wの通過方向とX線センサの並び方向とで決まる2次元の位置の情報と、その位置毎の信号処理結果からなる被検査物の透過画像データを生成する。なお、このスキャン時間は、被検査物に対する搬送方向の検出単位を決定するものであり、被検査物の長さを搬送速度で除算して得られる物品通過時間に対して十分短いものとする。 The transmission image data generation means 40 is a signal output from each of the X-ray sensors 31 1 to 31 N while the inspection object W passes between the X-ray generation unit 22 and the X-ray sensors 31 1 to 31 N. Is divided into predetermined periods (hereinafter referred to as scan times) to perform predetermined signal processing, information on the two-dimensional position determined by the passing direction of the inspection object W and the arrangement direction of the X-ray sensors, and signal processing for each position The transmission image data of the inspection object as a result is generated. The scan time is used to determine a detection unit in the conveyance direction with respect to the inspection object, and is sufficiently short with respect to the article passage time obtained by dividing the length of the inspection object by the conveyance speed.

前記したように、光子検出型のX線センサ31〜31は、一つの光子の入力に対して、その光子のエネルギーに対応した波高値のパルス信号を一つ出力するが、X線発生部22から出射されるX線の光子のエネルギーは一定でなくばらつきがあるため、それに応じて、図2に示すように、各X線センサから出力されるパルス信号P、P、P、…の波高値H、H、H、…にばらつきが生じる。 As described above, the photon detection type X-ray sensors 31 1 to 31 N output one pulse signal having a peak value corresponding to the energy of the photon in response to one photon input. Since the energy of X-ray photons emitted from the unit 22 is not constant and varies, accordingly, as shown in FIG. 2, pulse signals P 1 , P 2 , P 3 output from the respective X-ray sensors. ,... Vary in peak values H 1 , H 2 , H 3 ,.

言い換えれば、エネルギーの異なるX線が混在していることになり、スキャン時間内に一つのX線センサから出力されるパルス信号の波高値H、H、H、…が、予め波高値の出力範囲全体を複数M(図2ではM=4)に区分けした領域R〜Rのいずれに入るかを判定し、スキャン時間内のパルス信号入力数を領域毎に累積すれば、X線透過エネルギーの範囲が異なる複数の透過画像データを生成することができる。 In other words, X-rays having different energies are mixed, and the peak values H 1 , H 2 , H 3 ,... Of pulse signals output from one X-ray sensor within the scan time are the peak values in advance. If one of the regions R 1 to R M into which the entire output range is divided into a plurality of M (M = 4 in FIG. 2) is determined and the number of pulse signal inputs within the scan time is accumulated for each region, X A plurality of transmission image data having different ranges of the line transmission energy can be generated.

これを実現するために、透過画像データ生成手段40は、各X線センサ31〜31の出力信号を、それぞれA/D変換器41〜41によってデジタルのデータ列に変換し、波高値検出手段42〜42に入力する。 In order to realize this, the transmission image data generation means 40 converts the output signals of the X-ray sensors 31 1 to 31 N into digital data strings by the A / D converters 41 1 to 41 N , respectively, The high value detection means 42 1 to 42 N are input.

各波高値検出手段42〜42は、入力されるデータ列からパルス信号の波高値を検出するためのものであり、例えば入力されるデータ列に対して微分処理を行い、微分値(信号の傾き)が所定以上の正の値から所定以下の負の値に切り換わるときのゼロクロスタイミングを検出し、そのゼロクロスイミングにおけるデータ値をパルス信号の波高値として検出し、それぞれ領域判定手段43〜43に出力する。 Each of the peak value detection means 42 1 to 42 N is for detecting the peak value of the pulse signal from the input data string. For example, the differential value (signal ) Is detected as a peak value of the pulse signal, and the region determination unit 43 1 detects the data value in the zero cross swimming as the peak value of the pulse signal. ~ 43 Output to N.

領域判定手段43〜43は、前記した波高値の出力範囲を複数Mの領域領域R〜Rに区分けする境界値領域L〜LM−1と、波高値検出手段42〜42で検出された波高値とを比較し、その波高値がいずれの領域に入るかを判定し、波高値が入る領域を表す領域識別信号を領域別累積手段44〜44に出力する。 The area determination means 43 1 to 43 N include boundary value areas L 1 to L M−1 that divide the output range of the peak values into a plurality of M area areas R 1 to R M , and peak value detection means 42 1 to 42 N. 42 N is compared with the peak value detected at N , and it is determined which area the peak value falls in, and an area identification signal indicating the area where the peak value enters is output to the accumulation means 44 1 to 44 N by area. .

各領域別累積手段44〜44は、スキャン時間内に領域判定手段43〜43からそれぞれ出力される領域識別信号を受け、同一領域を示す領域識別信号の入力数をそれぞれ累積して、スキャン時間内における領域毎の累積数を求めて順次出力する。 Each area accumulating means 44 1 to 44 N receives the area identification signals output from the area determination means 43 1 to 43 N within the scan time, respectively, and accumulates the number of input area identification signals indicating the same area. The cumulative number for each region within the scan time is obtained and sequentially output.

この領域識別信号の累積数は、スキャン時間内に1つのX線センサから出力されるパルス信号のうち、その波高値が入る領域が同じパルス信号同士の累計数であり、上記計数手段からスキャン時間毎に出力される領域識別信号の累積数を、透過画像データメモリ45に、並列的に且つ時系列に記憶することで、領域ごとの被検査物に対するX線透過画像データが得られる。   The cumulative number of region identification signals is the cumulative number of pulse signals having the same peak value among the pulse signals output from one X-ray sensor within the scan time. By storing the cumulative number of region identification signals output for each region in the transmission image data memory 45 in parallel and in time series, X-ray transmission image data for the inspection object for each region can be obtained.

簡単な例として、スキャン時間を3単位、X線センサ数Nを3、波高値の領域数Mを3とし、パルス信号の累計数をA(波高値の領域の順位、スキャン時間の順位,センサの並び順位)で表すと、最初のスキャン時間T1内で、1番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累計数をA(1,1,1)、領域Rに入るものの累計数をA(2,1,1)、領域Rに入るもの累計数をA(3,1,1)とする。 As a simple example, the scan time is 3 units, the number of X-ray sensors N is 3, the number M of peak values is 3, and the cumulative number of pulse signals is A (order of peak values, rank of scan time, sensor expressed in sequence order) of in the first scan time T1, of the first X-ray pulse signal sensor 311 has output, the total number of those whose peak value enters the area R 1 a (1, 1 , 1), the cumulative number a (2,1,1 those entering the area R 2), the cumulative number to fall region R 3 and a (3,1,1).

また、同じスキャン時間T1内で2番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累計数をA(1,1,2)、領域Rに入るものの累計数をA(2,1,2)、領域Rに入るものの累計数をA(3,1,2)とする。 Also, of the second X-ray sensor 31 pulse signal 2 is output in the same scan time within T1, the total number of those whose peak value enters the area R 1 A (1,1,2), in the region R 2 entering one of the cumulative number a (2,1,2), the cumulative number of those entering the area R 3 and a (3,1,2).

また、同じスキャン時間T1内で3番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累計数をA(1,1,3)、領域Rに入るものの累計数をA(2,1,3)、領域Rに入るものの累計数をA(3,1,3)とする。 Further, of the third pulse signal by the X-ray sensor 313 is output in the same scan time within T1, the total number of those whose peak value enters the area R 1 A (1,1,3), in the region R 2 entering one of the cumulative number a (2,1,3), the cumulative number of those entering the area R 3 and a (3,1,3).

同様に、次のスキャン時間T2内で、1番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累計数をA(1,2,1)、領域Rに入るものの累計数をA(2,2,1)、領域Rに入るものの累計数をA(3,2,1)とし、2番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累計数をA(1,2,2)、領域Rに入るものの累計数をA(2,2,2)、領域Rに入るものの累計数をA(3,2,2)とし、3番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累計数をA(1,2,3)、領域Rに入るものの累計数をA(2,2,3)、領域Rに入るものの累計数をA(3,2,3)とする。 Similarly, in the next scan time T2, 1 th of the pulse signal X-ray sensor 311 has output, the total number of those whose peak value enters the area R 1 A (1,2,1), region the total number of those entering the R 2 a (2,2,1), the cumulative number of those entering the area R 3 and a (3,2,1), the second X-ray sensor 312 is a pulse signal output Of these, the cumulative number of those whose peak values fall into the region R 1 is A (1,2,2), the cumulative number of those whose peak values fall into the region R 2 is A (2,2,2), and the cumulative number of those whose peak values fall into the region R 3 Is A (3,2,2), and among the pulse signals output from the third X-ray sensor 31 3 , the cumulative number of the peak values falling within the region R 1 is A (1,2,3), Assume that the cumulative number of things entering R 2 is A (2,2,3), and the cumulative number of things entering region R 3 is A (3,2,3).

さらに、次のスキャン時間T3内で、1番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累計数をA(1,3,1)、領域Rに入るものの累計数をA(2,3,1)、領域Rに入るものの累計数をA(3,3,1)とし、2番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るもの累計数をA(1,3,2)、領域Rに入るものの累計数をA(2,3,2)、領域Rに入るものの累計数をA(3,3,2)とし、3番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累計数をA(1,3,3)、領域Rに入るものの累計数をA(2,3,3)、領域Rに入るものの累計数をA(3,3,3)とする。 Further, in the next scan time T3, of the first X-ray pulse signal sensor 311 has output, the total number of those whose peak value enters the region R 1 A (1, 3, 1), area R the total number of those entering 2 a (2,3,1), the cumulative number of those entering the area R 3 and a (3,3,1), of the second X-ray sensor 312 is a pulse signal output , the cumulative number that the peak value enters the area R 1 a (1,3,2), the cumulative number of those entering the area R 2 a (2,3,2), the cumulative number of those entering the area R 3 and a (3,3,2), 3 th of pulse signals X-ray sensor 313 has output, the total number of those whose peak value enters the region R 1 a (1,3,3), a region R the total number of those entering 2 a (2,3,3), the cumulative number of those entering the area R 3 and a (3,3,3).

このようにして得られたデータから、領域Rについて得られた9つの累計数を、図3の(a)のように、横方向をスキャン時間の順、縦方向をセンサの並び順となるように3行3列に配置すれば、領域Rに対応したエネルギー範囲のX線による被検査物の9つの部位の透過画像データが得られる。 From the data obtained in this manner, the nine cumulative numbers obtained for the region R 1 are arranged in the order of scanning time in the horizontal direction and the arrangement order of sensors in the vertical direction as shown in FIG. if arranged in three rows and three columns as the transmission image data for the nine sites of the object by the X-ray energy range corresponding to the region R 1 is obtained.

同様に、領域Rについて得られた9つの累計数を、図3の(b)のように3行3列に配置すれば、領域Rに対応したエネルギー範囲のX線による被検査物の透過画像データが得られ、領域Rについて得られた9つの累計数を、図3の(c)のように3行3列に配置すれば、領域Rに対応したエネルギー範囲のX線による被検査物の透過画像データが得られる。 Similarly, if the nine cumulative numbers obtained for the region R 2 are arranged in 3 rows and 3 columns as shown in FIG. 3B, the X-rays of the inspected object in the energy range corresponding to the region R 2 can be obtained. If transmission image data is obtained, and the nine cumulative numbers obtained for the region R 3 are arranged in 3 rows and 3 columns as shown in FIG. 3C, X-rays in the energy range corresponding to the region R 3 are obtained. Transmission image data of the inspection object is obtained.

実際には、異物検査に必要なスキャン数は、物品の搬送方向の長さを搬送速度で除して得られる搬送時間(例えば0.5秒)をスキャン時間(例えば1ミリ秒)で除算した値(例えば500)となり、センサの並び方向の分割数はX線センサの数N(例えば200)に対応している。   In practice, the number of scans required for foreign object inspection is obtained by dividing the transport time (for example, 0.5 seconds) obtained by dividing the length of the article in the transport direction by the transport speed by the scan time (for example, 1 millisecond). The value (for example, 500) corresponds to the number N of the X-ray sensors (for example, 200).

このようにして、波高値の領域にそれぞれ対応したエネルギー範囲毎の透過画像データが得られれば、判定手段50により、それら複数の透過画像データに対して従来から行なわれているサブトラクション処理を含む所定の画像処理を行なうことで、被検査物の異物の有無を判定することができる。   When transmission image data for each energy range corresponding to each peak value region is obtained in this way, the determination means 50 performs predetermined processing including subtraction processing conventionally performed on the plurality of transmission image data. By performing this image processing, it is possible to determine the presence or absence of foreign matter on the inspection object.

なお、上記の波高値の領域の区分けの仕方は任意であり、一つの例としては、X線発生部22から出射されるX線の光子のエネルギーの最大値(X線管の場合、電子の加速電圧に依存する理論値)に対してX線センサが出力するパルス信号の波高値と、所定の基準値(例えば0)との間を複数に等分すればよい。また、領域数も2つ以上で任意であり、最初に多くの領域で透過画像データを生成しておき、その被検査物について異物の検出に最適な透過画像データの組合せを見つけ、その最適な透過画像データによるサブトラクション処理を含む所定の画像処理を行なってもよい。   The method of dividing the peak value region is arbitrary, and as one example, the maximum value of the energy of the X-ray photons emitted from the X-ray generator 22 (in the case of an X-ray tube, What is necessary is just to divide equally between the peak value of the pulse signal which a X-ray sensor outputs with respect to a theoretical value (according to acceleration voltage), and a predetermined reference value (for example, 0). In addition, the number of areas is arbitrary with two or more, and transmission image data is first generated for many areas, and a combination of transmission image data that is optimal for detecting foreign matter is found for the inspection object. Predetermined image processing including subtraction processing using transmission image data may be performed.

具体的には、例えば、初期の領域数を10として、それぞれの領域で透過画像データを生成しておき、エネルギーの大きい方から数えて1番目の領域を前述の領域Rに割当て、3番目の領域を前述の領域Rに割当て、……というように、初期の領域から最終的な領域に選択的に割り当てて、この割り当てられた領域の透過画像データを複数用いて、所定の画像処理を行なってもよい。また、エネルギーの大きい方から数えて1番目と2番目の領域の透過画像データを合成して、これを前述の領域Rの透過画像データとし、3番目と4番目の領域の透過画像データを合成して、これを前述の領域Rの透過画像データとし、……というように初期の複数の領域の透過画像データを合成して最終的な1つの領域の透過画像データとし、その合成された透過画像データを複数用いる、あるいは合成された透過画像データと、それを含まない初期の領域の透過画像データとを用いて所定の画像処理を行なってもよい。 Specifically, for example, assuming that the initial number of areas is 10, transmission image data is generated in each area, and the first area counted from the largest energy is assigned to the area R 1 described above. Are assigned to the above-mentioned region R 2 ,..., And so on, and a predetermined image processing is performed using a plurality of transmission image data of the assigned region. May be performed. Also, the transmission image data of the first and second regions counted from the largest energy are synthesized, and this is used as the transmission image data of the region R 1 described above, and the transmission image data of the third and fourth regions is used. synthesized and, this as a transmission image data in the above described region R 2, by combining the transmission image data of the initial plurality of regions so as ...... the transmitted image data of the final one region is the combined The predetermined image processing may be performed using a plurality of transmitted image data or synthesized image data and transmitted image data of an initial region that does not include the transmitted image data.

上記具体例では、初期の領域の数だけ透過画像データを生成しておき、異物の検出に最適な透過画像データの組合せに応じて、領域の割当てや透過画像データの合成を行なうようにしているが、被検査物に対して異物検出に最適な透過画像データの組合せが既知の場合には、割当てられる領域についての透過画像データのみを生成すればよく、また、複数の透過画像データを合成する代わりに、複数の領域の領域識別信号の累積数を加算して、一つの透過画像データを生成してもよい。これにより、透過画像データの記憶領域を節約することができる。   In the above specific example, transmission image data is generated for the initial number of areas, and areas are assigned and transmission image data is synthesized in accordance with the optimal combination of transmission image data for foreign object detection. However, if the combination of transmission image data that is optimal for foreign object detection is known for the object to be inspected, it is sufficient to generate only transmission image data for the allocated area, and a plurality of transmission image data is synthesized. Instead, one transmission image data may be generated by adding the cumulative number of area identification signals of a plurality of areas. Thereby, the storage area of the transmission image data can be saved.

ここで、サブトラクション処理について簡単に説明すると、同一部位について異なるエネルギーによるX線透過データが得られた場合、その差分処理を行なうと、その部位の厚さの影響が除去され、材質(透過率)の影響だけが現れ、X線エネルギーの違いに対する被検査物自体の材質の透過率変化と、異物の材質の透過率変化の差が顕著化する。これにより、異物に対する検出感度が高くなる。判定手段50では、この処理の他に、ノイズの除去等のために各種のフィルタ処理などを行い、異物の検出をより高い精度で行なっている。   Here, the subtraction process will be briefly described. When X-ray transmission data with different energy is obtained for the same part, if the difference process is performed, the influence of the thickness of the part is removed, and the material (transmittance) is obtained. Only the influence of the above appears, and the difference between the change in the transmittance of the material of the object to be inspected and the change in the transmittance of the material of the foreign matter with respect to the difference in X-ray energy becomes remarkable. Thereby, the detection sensitivity with respect to a foreign material becomes high. In addition to this process, the determination unit 50 performs various filter processes and the like for noise removal and the like to detect foreign matter with higher accuracy.

上記方法で得られた複数の透過画像データは、物品の通過方向と直交する方向に一列に並んだ複数のX線センサの出力から求めているので、二つのラインセンサを用いる従来方式に比べて、格段に精度の高い透過画像データが得られ、それにより、異物検出を正確に行なうことができ、しかも小型に構成できる。   Since the plurality of transmission image data obtained by the above method is obtained from the outputs of a plurality of X-ray sensors arranged in a line in a direction orthogonal to the passing direction of the article, compared to the conventional method using two line sensors. Thus, transmission image data with extremely high accuracy can be obtained, whereby foreign object detection can be performed accurately, and a compact configuration can be achieved.

なお、判定手段50の判定結果(異物の有無を示す信号)は、図示しない後続の選別装置に送られ、異物有りと判定された物品が、良品の経路から排除されることになる。   The determination result of the determination means 50 (a signal indicating the presence or absence of foreign matter) is sent to a subsequent sorting device (not shown), and the article determined to have foreign matter is excluded from the non-defective product path.

上記のように光子検出型のX線センサを用いた場合、X線発生部22から出射されるX線の量(単位時間当りに出力される光子数)が多すぎると、図4のように、X線センサから出力されるパルス信号P、P同士やパルス信号P、P同士が重なってしまい、二つのパルス信号に対して一つのピーク値(波高値)しか得られない現象が発生する。この現象を一般的にパイルアップ現象と呼び、この現象が高い確率で発生すると、領域ごとの正しい計数結果が得られなくなり、その結果、異物の検出を正確に行なえなくなる。 When the photon detection type X-ray sensor is used as described above, if the amount of X-rays emitted from the X-ray generation unit 22 (the number of photons output per unit time) is too large, as shown in FIG. The pulse signals P 1 and P 2 output from the X-ray sensor and the pulse signals P 4 and P 5 overlap each other, and only one peak value (peak value) can be obtained for the two pulse signals. Will occur. This phenomenon is generally called a pile-up phenomenon, and if this phenomenon occurs with a high probability, a correct counting result for each region cannot be obtained, and as a result, foreign matter cannot be detected accurately.

これを防ぐためには、予め被検査物に応じてX線発生部22から出射されるX線の量やX線センサに入力されるX線の量を適正な範囲に設定すればよい。   In order to prevent this, the amount of X-rays emitted from the X-ray generation unit 22 or the amount of X-rays input to the X-ray sensor may be set in an appropriate range in advance according to the inspection object.

図5は、この機能を実現するための構成を示しており、前記実施形態に示した構成に加え、モード切替手段60、最大パルス数算出手段70、比較手段80およびX線量設定手段90を備えている。   FIG. 5 shows a configuration for realizing this function, and in addition to the configuration shown in the above embodiment, a mode switching means 60, a maximum pulse number calculating means 70, a comparing means 80, and an X-ray dose setting means 90 are provided. ing.

モード切替手段60は、異物検出装置20の動作モードを、異物を含まない良品サンプルをX線発生部22とX線センサ31〜31の間に通過させて動作を確認する準備モードと、異物の有無の検出が必要な被検査物をX線発生部22とX線センサ31〜31の間に通過させて異物検出処理を行なう検査モードのいずれかに切り替えるためのもので、例えば図示しない操作部に対する所定操作を受けてモードの切替え処理を行なう。 The mode switching unit 60 sets the operation mode of the foreign object detection device 20 as a preparation mode in which a non-defective sample that does not include foreign substances is passed between the X-ray generation unit 22 and the X-ray sensors 31 1 to 31 N to check the operation. This is for switching to an inspection mode in which foreign matter detection processing is performed by passing an inspection object that requires detection of the presence or absence of foreign matter between the X-ray generator 22 and the X-ray sensors 31 1 to 31 N. A mode switching process is performed in response to a predetermined operation on an operation unit (not shown).

最大パルス数算出手段70は、準備モードの際に、透過画像データ生成手段40で得られる透過画像データから、X線センサがスキャン時間に出力する全領域のパルス信号の数うちの最大値Amax を求める。   The maximum pulse number calculating means 70 calculates the maximum value Amax out of the total number of pulse signals output by the X-ray sensor during the scan time from the transmission image data obtained by the transmission image data generation means 40 in the preparation mode. Ask.

図3に示したパルス信号の累積数を用いて表せば、最大パルス数算出手段70は、ΣA(i,1,1)〜ΣA(i,1,3)、ΣA(i,2,1)〜ΣA(i,2,3)、ΣA(i,3,1)〜ΣA(i,3,3)の9つの値のうちの最大のものを上記最大値Amax とする。ただし、記号Σは、i=1〜N(図3はN=3の例)の総和を表す。   If expressed using the cumulative number of pulse signals shown in FIG. 3, the maximum pulse number calculating means 70 is ΣA (i, 1,1) to ΣA (i, 1,3), ΣA (i, 2,1). The maximum value among the nine values of .SIGMA.A (i, 2,3) and .SIGMA.A (i, 3,1) to .SIGMA.A (i, 3,3) is defined as the maximum value Amax. However, the symbol Σ represents the sum of i = 1 to N (FIG. 3 shows an example where N = 3).

また、比較手段80は、最大パルス数算出手段70によって求めた最大値Amax と、一つのX線センサがスキャン時間内に出力することができる規格上の最大パルス数(例えば、スキャン時間1ミリ秒で1000個)に対して予め設定された適正範囲(例えば、400〜600)とを比較する。   The comparison unit 80 also determines the maximum value Amax obtained by the maximum pulse number calculation unit 70 and the standard maximum number of pulses that one X-ray sensor can output within the scan time (for example, a scan time of 1 millisecond). Is compared with a preset appropriate range (for example, 400 to 600).

X線量設定手段90は、比較手段80の比較結果に応じて、最大値Amax が前記適正範囲に入るように、複数のX線センサに入力されるX線量を設定する。なお、この例では、X線発生部22のX線源が、熱陰極X線管あるいは格子制御型熱陰極X線管であるとし、その管電流を可変し、X線管から出射されるX線量を制御することで、複数のX線センサに入力されるX線量を設定している。   The X-ray dose setting means 90 sets the X-ray doses input to the plurality of X-ray sensors so that the maximum value Amax falls within the appropriate range according to the comparison result of the comparison means 80. In this example, it is assumed that the X-ray source of the X-ray generation unit 22 is a hot cathode X-ray tube or a lattice-controlled hot cathode X-ray tube, the tube current is changed, and the X-ray emitted from the X-ray tube is emitted. By controlling the dose, the X-ray dose input to the plurality of X-ray sensors is set.

X線管の管電流を制御する場合、そのフィラメント電流を減少させる方向に変化させると放出電子数が減少してX線量が減り、格子制御型のX線管の場合には、フィラメント電流の減少の他に、負の格子電圧の絶対値を大きくすると電子の流れが抑制されてX線量が減ることになる。   When controlling the tube current of the X-ray tube, if the filament current is changed in a decreasing direction, the number of emitted electrons decreases and the X-ray dose decreases. In the case of a lattice-controlled X-ray tube, the filament current decreases. In addition, if the absolute value of the negative lattice voltage is increased, the flow of electrons is suppressed and the X-ray dose is reduced.

なお、X線管の管電圧の絶対値を大きくした場合、X線の平均的なエネルギーは高くなり、管電圧の絶対値を小さくした場合、X線の平均的なエネルギーは低くなる。このような特性があるので、被検査物の材質と厚みに応じた管電圧を選択するのが一般的である。このため、上記のX線量の設定にあたり、管電流の制御だけでなく、管電圧の制御、または管電流と管電圧の両方の制御を行なうようにしてもよい。   When the absolute value of the tube voltage of the X-ray tube is increased, the average energy of the X-ray is increased, and when the absolute value of the tube voltage is decreased, the average energy of the X-ray is decreased. Because of such characteristics, it is common to select a tube voltage according to the material and thickness of the object to be inspected. For this reason, in setting the X-ray dose, not only the tube current but also the tube voltage or both the tube current and the tube voltage may be controlled.

このX線量の設定は、最大値Amax と、これを適正範囲に設定するのに必要なフィラメント電流、格子電圧、管電圧等の制御量との関係を表すテーブルや数式を予め求めておき、得られた最大値Amax に応じた制御量で適正範囲内に自動制御する方式、良品サンプルを連続的に通過させている間に、最大値Amax が適正範囲に近づく方向に順次可変する方式、あるいは、比較手段80の比較結果をランプ等で表示させておき、良品サンプルを連続的に通過させている間に、ランプの表示が適正範囲を表すまで作業者が手動で管電流等を可変する方式等が採用できる。   The X-ray dose is set by obtaining in advance a table or a mathematical expression showing the relationship between the maximum value Amax and the control amount such as the filament current, the grid voltage, and the tube voltage necessary for setting the X-ray dose within an appropriate range. A method of automatically controlling within the appropriate range with a control amount corresponding to the maximum value Amax, a method of sequentially changing the maximum value Amax in the direction approaching the appropriate range while continuously passing non-defective samples, or The comparison result of the comparison means 80 is displayed with a lamp or the like, and the operator manually changes the tube current or the like until the display of the lamp indicates an appropriate range while the good sample is continuously passed. Can be adopted.

この構成の異物検出装置20であれば、前記したパイルアップ現象が発生する確率を低く抑えることができ、被検査物の厚さや材質等に関わらず、異物の検出を高精度に行なうことができる。   With the foreign object detection device 20 having this configuration, the probability of occurrence of the above-described pile-up phenomenon can be suppressed to a low level, and foreign object detection can be performed with high accuracy regardless of the thickness or material of the inspection object. .

なお、上記説明では、X線量設定手段90が、X線発生部22から出射されるX線量を制御する例を示したが、X線センサ31〜31のX線入射面の面積を可動式の遮蔽板で可変させることで、X線センサ31〜31に入力されるX線量を設定してもよい。 In the above description, the example in which the X-ray dose setting unit 90 controls the X-ray dose emitted from the X-ray generation unit 22 has been shown, but the area of the X-ray incident surface of the X-ray sensors 31 1 to 31 N is movable. The X-ray dose input to the X-ray sensors 31 1 to 31 N may be set by varying the value using the shielding plate of the formula.

また、複数の透過画像データの保存形式は任意であるが、波高値の領域ごとに異なる色を割当て、その領域に割り当てた色の輝度を、パルス信号の累積数に対応させることで、透過画像を観察する場合に観測者が分かりやすくなる。   The storage format of the plurality of transmission image data is arbitrary, but a different color is assigned to each peak value area, and the brightness of the color assigned to the area is made to correspond to the cumulative number of pulse signals, thereby transmitting the transmission image. The observer becomes easier to understand when observing

例えば、波高値の領域を3つとし、各領域に赤(R)、緑(G)、青(B)の3原色を割当て、それぞれの色の輝度値にパルス累積数を割当てる。ただし、各色の輝度に割り当てる値は例えば8ビットで表せる範囲(0〜255)とし、実際のパルス累積数の範囲が8ビットで表せる範囲内に収まるように正規化(圧縮処理または伸長処理)する。この場合、3つの透過画像データを1つのRGBカラー画像データとして保存することができる。このため、透過画像データの記憶領域を節約することができる。また、データ形式が、一般的なRGBカラー画像データであるため、画像処理や画像表示が容易に行なえる。   For example, there are three peak value areas, three primary colors of red (R), green (G), and blue (B) are assigned to each area, and the cumulative number of pulses is assigned to the luminance value of each color. However, the value assigned to the luminance of each color is, for example, a range (0 to 255) that can be represented by 8 bits, and is normalized (compression processing or decompression processing) so that the actual range of pulse accumulation is within the range that can be represented by 8 bits. . In this case, three pieces of transmission image data can be stored as one RGB color image data. For this reason, it is possible to save the storage area of the transmission image data. Further, since the data format is general RGB color image data, image processing and image display can be easily performed.

また、このように各領域に異なる色を割当て、その色の輝度をパルス信号の累積数で表すデータ保存形式を用いれば、各領域の透過画像をそれぞれ異なる色の画像で表すことができ、それらを図示しない表示装置に並列的に並べて表示する場合の識別性が非常に高くなる。   In addition, by assigning different colors to each area and using a data storage format in which the luminance of the color is represented by the cumulative number of pulse signals, the transmitted images in each area can be represented by images of different colors. When the images are displayed side by side in parallel on a display device (not shown), the discrimination is very high.

20……異物検出装置、21……搬送装置、22……X線発生部、30……ラインセンサ、31〜31……X線センサ、40……透過画像データ生成手段、41〜41……A/D変換器、42〜42……波高値検出手段、43〜43……領域判定手段、44〜44……領域別累積手段、45……透過画像データメモリ、50……判定手段、60……モード切替手段、70……最大パルス数算出手段、80……比較手段、90……X線量設定手段 20 ...... foreign substance detecting device, 21 ...... conveying device, 22 ...... X-ray generating unit, 30 ...... line sensor, 31 1 to 31 N ...... X-ray sensor, 40 ...... transmission image data generating unit, 41 1 ~ 41 N ... A / D converter, 42 1 to 42 N ... Peak value detection means, 43 1 to 43 N ... Area determination means, 44 1 to 44 N. Data memory 50... Judging means 60... Mode switching means 70... Maximum pulse number calculating means 80.

Claims (5)

被検査物が通過する通過路にX線を出射するX線発生部(22)と、
前記X線発生部から前記通過路に出射されて被検査物を透過したX線を受ける位置で、被検査物の通過方向と交差する方向に並ぶように配置され、それぞれがX線を受けて電気信号に変換する複数のX線センサ(31〜31)と、
前記X線発生部と前記複数のX線センサとの間を被検査物が通過している間に前記複数のX線センサからそれぞれ出力される信号を所定期間ずつ区切って所定の信号処理を行い、被検査物の通過方向と前記X線センサの並び方向とで決まる2次元の位置の情報と、該位置毎の信号処理結果からなる被検査物の透過画像データを生成する透過画像データ生成手段(40)と、
前記透過画像データ生成手段によって生成された透過画像データに基づいて、被検査物内の異物の有無を判定する判定手段(50)とを有する異物検出装置において、
前記X線センサは、X線の光子が入力される毎に該光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型であって、
前記透過画像データ生成手段は、
前記各X線センサについて、該X線センサから前記所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、前記所定期間内のパルス信号入力数を前記領域毎に累積し、該領域毎の累積結果を用いて、X線透過エネルギーが異なる複数の透過画像データを生成するように構成され、
前記判定手段は、前記透過画像データ生成手段で得られた複数の透過画像データに対してサブトラクション処理を含む所定の画像処理を行なうことで、被検査物の異物の有無を判定することを特徴する異物検出装置。
An X-ray generator (22) for emitting X-rays to a passageway through which the inspection object passes;
The X-ray generation unit is arranged to receive X-rays that are emitted from the X-ray generation unit and pass through the inspection object so as to be arranged in a direction intersecting the passing direction of the inspection object. A plurality of X-ray sensors (31 1 to 31 N ) that convert electrical signals;
While a test object passes between the X-ray generation unit and the plurality of X-ray sensors, signals output from the plurality of X-ray sensors are divided for a predetermined period and predetermined signal processing is performed. Transmission image data generating means for generating transmission image data of an inspection object comprising information on a two-dimensional position determined by a passing direction of the inspection object and an arrangement direction of the X-ray sensors and a signal processing result for each position (40)
In the foreign object detection device having the determination means (50) for determining the presence or absence of the foreign substance in the inspection object based on the transmission image data generated by the transmission image data generation means,
The X-ray sensor is a photon detection type that outputs a pulse signal having a peak value corresponding to the energy of the photon every time an X-ray photon is input,
The transmission image data generation means includes
For each of the X-ray sensors, it is determined whether the peak value of the pulse signal output from the X-ray sensor within the predetermined period falls within a predetermined range of the predetermined range, and within the predetermined period Is configured to generate a plurality of transmission image data having different X-ray transmission energies, using the accumulation result for each region.
The determination unit is configured to determine the presence or absence of foreign matter on the inspection object by performing predetermined image processing including subtraction processing on the plurality of transmission image data obtained by the transmission image data generation unit. Foreign object detection device.
当該異物検出装置の動作モードを、異物を含まない良品サンプルを前記X線発生部と前記複数のX線センサの間に通過させて動作を確認する準備モードと、異物の有無の検出が必要な被検査物を前記X線発生部と前記複数のX線センサとの間に通過させて異物検出処理を行なう検査モードのいずれかに切り替えるモード切替手段(60)と、
前記準備モードの際に、前記良品サンプルを前記X線発生部と前記複数のX線センサの間に通過させたときに得られる前記透過画像データから、前記X線センサが前記所定期間に出力するパルス信号の数の最大値を求める最大パルス数算出手段(70)と、
前記最大パルス数算出手段によって求めた最大値と、前記X線センサが前記所定期間に出力することができる規格上の最大パルス数に対して予め設定された適正範囲とを比較する比較手段(80)と、
前記比較手段の比較結果に応じて、前記最大値が前記適正範囲に入るように、前記複数のX線センサに入力されるX線量を設定するX線量設定手段(90)とを有しており、
前記準備モードで設定されたX線量を用いて、前記検査モードの検査を行なうことを特徴とする請求項1記載の異物検出装置。
It is necessary to detect the operation mode of the foreign object detection apparatus, a preparation mode in which a non-defective sample that does not contain foreign objects is passed between the X-ray generation unit and the plurality of X-ray sensors to check the operation, and the presence or absence of foreign objects is detected. Mode switching means (60) for switching the inspection object to one of inspection modes in which foreign matter detection processing is performed by passing an object between the X-ray generation unit and the plurality of X-ray sensors;
In the preparation mode, the X-ray sensor outputs the non-defective sample during the predetermined period from the transmission image data obtained when the non-defective sample is passed between the X-ray generator and the plurality of X-ray sensors. Maximum pulse number calculating means (70) for obtaining the maximum value of the number of pulse signals;
Comparing means (80) for comparing the maximum value obtained by the maximum pulse number calculating means with an appropriate range preset for the maximum number of pulses according to the standard that the X-ray sensor can output during the predetermined period. )When,
X-ray dose setting means (90) for setting X-ray doses input to the plurality of X-ray sensors so that the maximum value falls within the appropriate range according to the comparison result of the comparison means. ,
The foreign object detection apparatus according to claim 1, wherein the inspection in the inspection mode is performed using the X-ray dose set in the preparation mode.
前記X線発生部には、加熱したフィラメントから放出される電子を加速して陽極のターゲットに衝突させてX線を放出させる熱陰極X線管が用いられ、
前記X線量設定手段は、前記熱陰極X線管の管電流または管電圧の少なくとも一方を可変して、前記X線センサに入射されるX線量を設定することを特徴とする請求項2記載の異物検出装置。
The X-ray generator uses a hot cathode X-ray tube that accelerates electrons emitted from a heated filament to collide with an anode target and emits X-rays.
The X-ray dose setting means sets an X-ray dose incident on the X-ray sensor by varying at least one of a tube current and a tube voltage of the hot cathode X-ray tube. Foreign object detection device.
前記X線量設定手段は、前記複数のX線センサの受光面積を可変して、該複数のX線センサに入射されるX線量を設定することを特徴とする請求項2記載の異物検出装置。   The foreign substance detection apparatus according to claim 2, wherein the X-ray dose setting unit sets an X-ray dose incident on the plurality of X-ray sensors by changing a light receiving area of the plurality of X-ray sensors. X線発生部(22)から被検査物が通過する通過路にX線を出射する段階と、
前記通過路に出射されて被検査物を透過したX線を、被検査物の通過方向と交差する方向に並んだ複数のX線センサ(31〜31)で受けて電気信号に変換する段階と、
前記X線発生部と前記複数のX線センサとの間を被検査物が通過している間に前記複数のX線センサからそれぞれ出力される信号を所定期間ずつ区切って所定の信号処理を行い、被検査物の通過方向と前記X線センサの並び方向とで決まる2次元の位置の情報と、該位置毎の信号処理結果からなる被検査物の透過画像データを生成する段階と、
前記生成された透過画像データに基づいて、被検査物内の異物の有無を判定する段階とを含む異物検出方法において、
前記X線センサとして、X線の光子が入力される毎に、該光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型を用い、
前記透過画像データを生成する段階では、前記各X線センサについて、該X線センサから前記所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、前記所定期間内のパルス信号入力数を前記領域毎に累積し、該領域毎の累積結果を用いて、X線透過エネルギーが異なる複数の透過画像データを生成し、
前記被検査物内の異物の有無を判定する段階では、前記生成された複数の透過画像データに対してサブトラクション処理を含む所定の画像処理を行なうことで、被検査物の異物の有無を判定することを特徴する異物検出方法。
Emitting X-rays from the X-ray generator (22) to a passage through which the inspection object passes;
The X-rays emitted to the passage and transmitted through the inspection object are received by a plurality of X-ray sensors (31 1 to 31 N ) arranged in a direction intersecting the inspection object's passing direction and converted into an electrical signal. Stages,
While a test object passes between the X-ray generation unit and the plurality of X-ray sensors, signals output from the plurality of X-ray sensors are divided for a predetermined period and predetermined signal processing is performed. Generating two-dimensional position information determined by the direction of passage of the inspection object and the arrangement direction of the X-ray sensors, and transmission image data of the inspection object comprising signal processing results for each position;
In the foreign matter detection method including the step of determining the presence or absence of foreign matter in the inspection object based on the generated transmission image data,
As the X-ray sensor, each time an X-ray photon is input, a photon detection type that outputs a pulse signal having a peak value corresponding to the energy of the photon is used.
In the step of generating the transmission image data, for each of the X-ray sensors, the peak value of the pulse signal output from the X-ray sensor within the predetermined period is any one of the regions in which the predetermined range is divided into a plurality of ranges in advance. Determine whether to enter, accumulate the number of pulse signal input within the predetermined period for each region, and use the accumulated result for each region to generate a plurality of transmission image data having different X-ray transmission energy,
In the step of determining the presence or absence of foreign matter in the inspection object, the presence or absence of foreign matter in the inspection object is determined by performing predetermined image processing including subtraction processing on the plurality of generated transmission image data. A foreign matter detection method characterized by that.
JP2016046977A 2016-03-10 2016-03-10 Foreign object detection device and foreign object detection method Active JP6491125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016046977A JP6491125B2 (en) 2016-03-10 2016-03-10 Foreign object detection device and foreign object detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016046977A JP6491125B2 (en) 2016-03-10 2016-03-10 Foreign object detection device and foreign object detection method

Publications (2)

Publication Number Publication Date
JP2017161396A true JP2017161396A (en) 2017-09-14
JP6491125B2 JP6491125B2 (en) 2019-03-27

Family

ID=59856944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016046977A Active JP6491125B2 (en) 2016-03-10 2016-03-10 Foreign object detection device and foreign object detection method

Country Status (1)

Country Link
JP (1) JP6491125B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110342034A (en) * 2019-08-01 2019-10-18 南京专注智能科技有限公司 A kind of photon type parcel lacks branch detection device and its system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217689A (en) * 1992-02-06 1993-08-27 Matsushita Electric Ind Co Ltd Method and device for x-ray photographing
JP2010091483A (en) * 2008-10-09 2010-04-22 Anritsu Sanki System Co Ltd Method and device for detecting foreign matter
JP2011021920A (en) * 2009-07-14 2011-02-03 Shimadzu Corp X-ray inspection apparatus
JP2011024773A (en) * 2009-07-24 2011-02-10 National Institute Of Advanced Industrial Science & Technology X-ray component measuring apparatus
US20110188727A1 (en) * 2008-09-24 2011-08-04 Kromek Limited Radiograpic Data Interpretation
JP2013516610A (en) * 2009-12-30 2013-05-13 ゼネラル・エレクトリック・カンパニイ Method and apparatus for acquiring radiation data
WO2015111728A1 (en) * 2014-01-23 2015-07-30 株式会社ジョブ X-ray inspection apparatus and x-ray inspection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217689A (en) * 1992-02-06 1993-08-27 Matsushita Electric Ind Co Ltd Method and device for x-ray photographing
US20110188727A1 (en) * 2008-09-24 2011-08-04 Kromek Limited Radiograpic Data Interpretation
JP2010091483A (en) * 2008-10-09 2010-04-22 Anritsu Sanki System Co Ltd Method and device for detecting foreign matter
JP2011021920A (en) * 2009-07-14 2011-02-03 Shimadzu Corp X-ray inspection apparatus
JP2011024773A (en) * 2009-07-24 2011-02-10 National Institute Of Advanced Industrial Science & Technology X-ray component measuring apparatus
JP2013516610A (en) * 2009-12-30 2013-05-13 ゼネラル・エレクトリック・カンパニイ Method and apparatus for acquiring radiation data
WO2015111728A1 (en) * 2014-01-23 2015-07-30 株式会社ジョブ X-ray inspection apparatus and x-ray inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110342034A (en) * 2019-08-01 2019-10-18 南京专注智能科技有限公司 A kind of photon type parcel lacks branch detection device and its system

Also Published As

Publication number Publication date
JP6491125B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
US10718725B2 (en) X-ray inspection apparatus and correction method for X-ray inspection apparatus
US20170038314A1 (en) Image acquisition device and image acquisition method
US9091772B2 (en) Scintillation detector gain control
JP6663374B2 (en) X-ray inspection equipment
EP3365665B1 (en) High dynamic range radiographic imaging system
US10048393B2 (en) Gain stabilization of photomultipliers
CN109804239B (en) X-ray inspection apparatus
JP7001327B2 (en) Foreign matter detection device and foreign matter detection method
JP6625470B2 (en) Foreign object detection device and foreign object detection method
US10775320B2 (en) Afterglow detection device and afterglow detection method
JP6274938B2 (en) X-ray inspection equipment
JP6491125B2 (en) Foreign object detection device and foreign object detection method
US11079344B2 (en) Radiation detection device, radiation image acquisition device, and radiation image acquisition method
JP2011043474A (en) X-ray detector and x-ray inspection device
CN109313275A (en) For the dead time calibration of radiation detector
JP7060446B2 (en) X-ray line sensor and X-ray foreign matter detection device using it
JP6797539B2 (en) Foreign matter detection device and foreign matter detection method
JP5356184B2 (en) Inspection equipment
JP6606454B2 (en) Foreign object detection device and foreign object detection method
US20160070020A1 (en) Method For Autonomous Self-Blanking by Radiation Portal Monitors to Minimize the Interference From Pulsed X-Rays Radiation
JP6655570B2 (en) Article inspection apparatus and method of switching inspection target varieties
JP6587645B2 (en) Article inspection apparatus and inspection condition switching method thereof
JP2023056656A (en) X-ray inspection device and program
KR20230003484A (en) Radiation image processing method, learned model, radiation image processing module, radiation image processing program, radiation image processing system, and machine learning method
TW202234049A (en) Radiographic image acquiring device, radiographic image acquiring system, and radiographic image acquisition method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190228

R150 Certificate of patent or registration of utility model

Ref document number: 6491125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250