JP2017160395A - Organic-inorganic composite zinc-rich coating composition - Google Patents

Organic-inorganic composite zinc-rich coating composition Download PDF

Info

Publication number
JP2017160395A
JP2017160395A JP2016048686A JP2016048686A JP2017160395A JP 2017160395 A JP2017160395 A JP 2017160395A JP 2016048686 A JP2016048686 A JP 2016048686A JP 2016048686 A JP2016048686 A JP 2016048686A JP 2017160395 A JP2017160395 A JP 2017160395A
Authority
JP
Japan
Prior art keywords
zinc
coating composition
organic
inorganic
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016048686A
Other languages
Japanese (ja)
Other versions
JP6055133B1 (en
Inventor
久信 橋本
Hisanobu Hashimoto
久信 橋本
井上 貴雄
Takao Inoue
貴雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PAINT BOSHOKU COATINGS KK
Original Assignee
NIPPON PAINT BOSHOKU COATINGS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PAINT BOSHOKU COATINGS KK filed Critical NIPPON PAINT BOSHOKU COATINGS KK
Priority to JP2016048686A priority Critical patent/JP6055133B1/en
Application granted granted Critical
Publication of JP6055133B1 publication Critical patent/JP6055133B1/en
Publication of JP2017160395A publication Critical patent/JP2017160395A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aqueous zinc-rich coating composition which can secure anticorrosion and weather resistance of a coating film, and prevents cracks even when coated with a thick film.SOLUTION: There is provided an aqueous organic-inorganic composite zinc-rich coating composition used for forming an anticorrosive coating film covering a surface of a metal base material which contains an emulsion resin (A), inorganic colloid (B) and zinc powder (C), where the inorganic colloid (B) is formed by coupling a siloxane resin to silica sol, a solid content mass ratio ((A)/(B)) of the emulsion resin (A) to the inorganic colloid (B) is in a range of 1/9 to 2/3, and the zinc powder (C) is more than 50 pts.mass and less than 98 pts.mass based on 100 pts.mass of the total solid content of the coating composition and has a PH of 3.0-7.0.SELECTED DRAWING: None

Description

本発明は、有機無機複合ジンクリッチ塗料組成物に関する。   The present invention relates to an organic-inorganic composite zinc-rich coating composition.

従来、ジンクリッチ塗料組成物は、重防食塗装系の防食下地として、鉄塔、橋梁、タンク等の陸上構造物や、船舶、海洋構造物等に広く用いられている。このようなジンクリッチ塗料組成物として、無機ジンクリッチ塗料組成物と有機ジンクリッチ塗料組成物が知られている。   Conventionally, zinc-rich paint compositions have been widely used in land structures such as steel towers, bridges, tanks, ships, marine structures and the like as heavy-duty anticorrosion coatings. As such zinc rich paint compositions, inorganic zinc rich paint compositions and organic zinc rich paint compositions are known.

有機ジンクリッチ塗料組成物としては、例えば、エポキシ樹脂をビヒクルとした2液1粉末形や2液形のものが知られている。このような有機ジンクリッチ塗料組成物は、無機ジンクリッチ塗料組成物と比較して鉄等の素地に対する付着性の面で優れている。しかし、有機ジンクリッチ塗料組成物により形成された塗膜は、電気化学的持続時間が短く、紫外線により劣化しやすい。従って、耐候性及び長期防食性の高い塗膜を得るためには、無機ジンクリッチ塗料組成物を使用することが好ましい。また環境負荷の低減の観点から、塗料組成物は水系であることが好ましい。   As an organic zinc rich paint composition, for example, a two-component one-powder type or two-component type using an epoxy resin as a vehicle is known. Such an organic zinc rich coating composition is superior in terms of adhesion to a substrate such as iron as compared with an inorganic zinc rich coating composition. However, the coating film formed by the organic zinc rich coating composition has a short electrochemical duration and is easily deteriorated by ultraviolet rays. Therefore, in order to obtain a coating film having high weather resistance and long-term corrosion resistance, it is preferable to use an inorganic zinc rich coating composition. From the viewpoint of reducing environmental burden, the coating composition is preferably water-based.

水系の無機ジンクリッチ塗料組成物としては、例えば、アルカリシリケートをビヒクルとした1液1粉末のものが一般的に知られている。このような無機ジンクリッチ塗料組成物は、有機ジンクリッチ塗料組成物よりも防食性に優れ、且つ、防食性が長期にわたって持続する利点を有する。   As a water-based inorganic zinc-rich coating composition, for example, a one-pack, one-powder composition using alkali silicate as a vehicle is generally known. Such an inorganic zinc-rich coating composition is superior in anticorrosion properties to the organic zinc-rich coating composition, and has the advantage that the anticorrosion properties last for a long time.

しかし、無機ジンクリッチ塗料組成物は、有機ジンクリッチ塗料組成物と比較すると形成される塗膜が硬く脆い性質であるため、鉄等の素地に対する付着性が十分ではなく、ブラスト等による高度な素地調整が必要となる等の問題がある。従って、ビヒクルとしてアンモニウムシリケートを合成樹脂エマルションで変性したものを用い、素地との付着性を改善した無機ジンクリッチ塗料組成物に関する発明が提案されている(例えば、後述の特許文献1参照)。   However, the inorganic zinc rich paint composition has a hard and brittle property compared to the organic zinc rich paint composition, so that it does not have sufficient adhesion to a base material such as iron, and has a high base material such as blast. There are problems such as the need for adjustment. Therefore, an invention relating to an inorganic zinc-rich coating composition in which ammonium silicate modified with a synthetic resin emulsion is used as a vehicle and adhesion to the substrate is improved has been proposed (for example, see Patent Document 1 described later).

特開昭61−76556号公報JP-A-61-76556

特許文献1に記載された無機ジンクリッチ塗料組成物はプライマーとしての使用を前提としたものであるが、長期防食性を確保するためには厚膜での塗装を要する。厚膜で塗装を行う場合、特許文献1に記載された無機ジンクリッチ塗料組成物は、塗膜の経時変化によりクラックが生じやすい問題がある。また、構造物が複雑な形状である等、過膜厚となりやすい箇所では塗装時にクラックが生じる問題がある。従って、塗膜厚や適用箇所が限られる問題があった。   The inorganic zinc-rich coating composition described in Patent Document 1 is premised on the use as a primer, but needs to be coated with a thick film to ensure long-term corrosion resistance. When coating with a thick film, the inorganic zinc-rich coating composition described in Patent Document 1 has a problem that cracks are likely to occur due to changes over time of the coating film. In addition, there is a problem that cracks occur at the time of painting at a place where an excessive film thickness tends to be formed, such as a complicated structure. Therefore, there has been a problem that the coating thickness and application location are limited.

本発明は、上記に鑑みてなされたものであり、塗膜の防食性、耐候性を確保でき、且つ、厚膜での塗装を行ってもクラックが生じない水系のジンクリッチ塗料組成物を提供することを目的とする。   The present invention has been made in view of the above, and provides a water-based zinc-rich coating composition that can ensure corrosion resistance and weather resistance of a coating film and that does not cause cracks even when it is coated with a thick film. The purpose is to do.

本発明は、金属基材の表面を被覆する防食塗膜を形成するために用いられる、水系の有機無機複合ジンクリッチ塗料組成物であって、エマルション樹脂(A)と、無機コロイド(B)と、亜鉛末(C)と、を含み、前記無機コロイド(B)は、シリカゾルにシロキサン樹脂が結合したものであり、前記無機コロイド(B)に対する前記エマルション樹脂(A)の固形分質量比((A)/(B))は、1/9〜2/3の範囲内であり、前記亜鉛末(C)は、前記塗料組成物の全固形分100質量部に対して50質量部より多く、98質量部未満であり、PHが3.0〜7.0である有機無機複合ジンクリッチ塗料組成物に関する。   The present invention is a water-based organic-inorganic composite zinc-rich coating composition used for forming a corrosion-resistant coating film that covers the surface of a metal substrate, comprising an emulsion resin (A), an inorganic colloid (B), and , Zinc powder (C), and the inorganic colloid (B) is a silica sol bonded with a siloxane resin, and the solid content mass ratio of the emulsion resin (A) to the inorganic colloid (B) (( A) / (B)) is in the range of 1/9 to 2/3, and the zinc dust (C) is more than 50 parts by mass with respect to 100 parts by mass of the total solid content of the coating composition, The present invention relates to an organic-inorganic composite zinc-rich paint composition having a pH of less than 98 parts by mass and a pH of 3.0 to 7.0.

前記無機コロイド(B)は、エポキシ基及びアミノ基のうち少なくともいずれか一方を有することが好ましい。   The inorganic colloid (B) preferably has at least one of an epoxy group and an amino group.

前記エマルション樹脂(A)はアクリルエマルション樹脂であることが好ましい。   The emulsion resin (A) is preferably an acrylic emulsion resin.

本発明によれば、塗膜の防食性、耐候性を確保でき、且つ、厚膜での塗装を行ってもクラックが生じない水系のジンクリッチ塗料組成物を提供できる。   According to the present invention, it is possible to provide a water-based zinc-rich paint composition that can ensure the corrosion resistance and weather resistance of a coating film and that does not cause cracks even when a thick film is applied.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.

<金属基材>
本発明に係る有機無機複合ジンクリッチ塗料組成物によって防食塗膜が形成される対象としては、例えば鉄塔、金属橋、店舗、煙突、貯蔵タンク等の屋外鋼構造物、沖合い掘削リグ、油用スーパータンカー、パイル、油及び水用のパイプライン、船体及び桟橋等のその他の海洋構造物、機械、コイル状金属、電車、自動車の足まわり部材等が挙げられる。なお、形成される塗膜は、厚膜においても好ましいクラック耐性を有するため、鉄塔の金具部等、厚膜となりやすい複雑な形状を有する対象であっても好ましく用いる事ができる。
<Metal base material>
Examples of the object on which the anticorrosion coating film is formed by the organic-inorganic composite zinc rich paint composition according to the present invention include outdoor steel structures such as steel towers, metal bridges, stores, chimneys, storage tanks, offshore drilling rigs, supermarkets for oil Other marine structures such as tankers, piles, oil and water pipelines, hulls and piers, machines, coiled metals, trains, automobile suspension members, and the like. In addition, since the formed coating film has preferable crack resistance also in a thick film, even if it is the object which has a complicated shape which tends to become a thick film, such as a metal fitting part of a steel tower, it can be preferably used.

金属基材は、密着性を確保するため素地調整されたものであることが好ましい。なお、このような素地調整としては、一般的な無機ジンクリッチ塗料を適用するためにはブラスト法による第1種ケレンによる素地調整が必要であるが、本実施形態に係る有機無機複合ジンクリッチ塗料組成物は、電動工具等による第2種ケレンによる素地調整を行った素地に対しても適用可能である。   It is preferable that the metal base material is prepared in order to ensure adhesion. In addition, as such a substrate adjustment, in order to apply a general inorganic zinc rich paint, it is necessary to adjust the substrate by the first type kelen by the blast method, but the organic-inorganic composite zinc rich paint according to the present embodiment The composition can also be applied to a substrate that has been subjected to substrate adjustment with the second type keren using an electric tool or the like.

<有機無機複合ジンクリッチ塗料組成物>
本実施形態に係る有機無機複合ジンクリッチ塗料組成物は、水系の塗料組成物であり、エマルション樹脂(A)と、無機コロイド(B)と、亜鉛末(C)と、を含む。塗料組成物がこれらの成分を含有することにより、従来の無機ジンクリッチ塗料組成物により形成される塗膜と同等の高い防食性及び耐候性を有しながらも、クラック耐性に優れた防食塗膜を形成できる。
また、塗料組成物のpHは3.0〜7.0である。pHが上記範囲内であることにより、安定した塗料液性状が得られる。塗料組成物のpHが3.0未満の場合、エマルション樹脂(A)が安定化せず塗料組成物としての体をなさない。塗料組成物のpHが7.0を超える場合、塗料組成物中にゲル物や浮遊物、沈殿物等の固体が生じて塗料組成物としての体をなさない。
<Organic / inorganic composite zinc-rich coating composition>
The organic-inorganic composite zinc-rich coating composition according to this embodiment is a water-based coating composition, and includes an emulsion resin (A), an inorganic colloid (B), and zinc dust (C). When the coating composition contains these components, the anticorrosion coating film has excellent anti-cracking properties while having high anticorrosion properties and weather resistance equivalent to the coating film formed by the conventional inorganic zinc-rich coating composition. Can be formed.
Moreover, pH of a coating composition is 3.0-7.0. When the pH is within the above range, stable paint liquid properties can be obtained. When the pH of the coating composition is less than 3.0, the emulsion resin (A) is not stabilized and does not form a body as a coating composition. When the pH of the coating composition exceeds 7.0, solids such as gels, suspended matters, and precipitates are generated in the coating composition and do not form a body as the coating composition.

[エマルション樹脂(A)]
エマルション樹脂(A)は、塗料組成物中におけるバインダー成分であり、塗料組成物中に含有されることで塗料硬化時の硬化応力が低減され、形成される塗膜のクラックが抑制される。
エマルション樹脂(A)としては、特に制限されないが、後述の無機コロイド(B)の塗料組成物中における安定性を確保するため、酸性であることが好ましい。このような酸性エマルション樹脂としては、例えば、アクリルエマルション樹脂が挙げられる。
[Emulsion resin (A)]
The emulsion resin (A) is a binder component in the coating composition, and by containing it in the coating composition, the curing stress at the time of curing the coating is reduced, and cracks in the formed coating film are suppressed.
Although it does not restrict | limit especially as emulsion resin (A), In order to ensure the stability in the coating composition of the below-mentioned inorganic colloid (B), it is preferable that it is acidic. Examples of such acidic emulsion resin include acrylic emulsion resin.

アクリルエマルション樹脂としては、例えば、α,β−エチレン性不飽和モノマー混合物を乳化重合して得られる種々のものが用いられる。α,β−エチレン性不飽和モノマーとしては、アクリル酸、メタクリル酸、アクリル酸二量体、クロトン酸、2−アクリロイルオキシエチルフタル酸、2−アクリロイルオキシエチルコハク酸、2−アクリロイルオキシエチルアシッドフォスフェート、2−アクリルアミド−2−メチルプロパンスルホン酸、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレート、イソクロトン酸、α−ハイドロ−ω−((1−オキソ−2−プロペニル)オキシ)ポリ(オキシ(1−オキソ−1,6−ヘキサンジイル))、マレイン酸、フマル酸、イタコン酸、3−ビニルサリチル酸、3−ビニルアセチルサリチル酸等の酸基含有モノマー、また、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、アリルアルコール、メタクリルアルコール、(メタ)アクリル酸ヒドロキシエチルとε−カプロラクトンとの付加物等の水酸基含有モノマーが挙げられる。   As the acrylic emulsion resin, for example, various resins obtained by emulsion polymerization of an α, β-ethylenically unsaturated monomer mixture are used. Examples of the α, β-ethylenically unsaturated monomer include acrylic acid, methacrylic acid, acrylic acid dimer, crotonic acid, 2-acryloyloxyethylphthalic acid, 2-acryloyloxyethyl succinic acid, and 2-acryloyloxyethyl acid phosphate. Fate, 2-acrylamido-2-methylpropanesulfonic acid, ω-carboxy-polycaprolactone mono (meth) acrylate, isocrotonic acid, α-hydro-ω-((1-oxo-2-propenyl) oxy) poly (oxy ( 1-oxo-1,6-hexanediyl)), acid group-containing monomers such as maleic acid, fumaric acid, itaconic acid, 3-vinylsalicylic acid, 3-vinylacetylsalicylic acid, hydroxyethyl (meth) acrylate, ( (Meth) hydroxypropyl acrylate, (meth) acrylic acid Examples thereof include hydroxyl group-containing monomers such as droxybutyl, allyl alcohol, methacryl alcohol, and adducts of hydroxyethyl (meth) acrylate and ε-caprolactone.

α,β−エチレン性不飽和モノマー混合物の乳化重合は、従来公知の方法により行われる。具体的には、水又は必要に応じてアルコール等の有機溶剤を含む水性媒体中に乳化剤を溶解させ、加熱撹拌しながら上述のα,β−エチレン性不飽和モノマー混合物及び重合開始剤を滴下することにより乳化重合が行われる。このとき、α,β−エチレン性不飽和モノマー混合物は、乳化剤で予め乳化してから滴下してもよい。   The emulsion polymerization of the α, β-ethylenically unsaturated monomer mixture is performed by a conventionally known method. Specifically, the emulsifier is dissolved in water or an aqueous medium containing an organic solvent such as alcohol as necessary, and the above α, β-ethylenically unsaturated monomer mixture and the polymerization initiator are added dropwise while stirring with heating. Thus, emulsion polymerization is performed. At this time, the α, β-ethylenically unsaturated monomer mixture may be added dropwise after previously emulsifying with an emulsifier.

上記乳化重合に用いられる乳化剤としては、当業者に通常使用されているものを用いることができる。例えば、アントックス(Antox)MS−60(日本乳化剤社製)、エレミノールJS−2(三洋化成工業社製)、アデカリアソープNE−20(旭電化社製)及びアクアロンHS−10(第一工業製薬社製)等が挙げられる。また、分子量を調節するために、ラウリルメルカプタンのようなメルカプタン及びα−メチルスチレンダイマー等のような連鎖移動剤を必要に応じて用いることができる。   As the emulsifier used in the emulsion polymerization, those usually used by those skilled in the art can be used. For example, Antox MS-60 (manufactured by Nippon Emulsifier Co., Ltd.), Eleminol JS-2 (manufactured by Sanyo Kasei Kogyo Co., Ltd.), Adekaria Soap NE-20 (manufactured by Asahi Denka Co., Ltd.) and Aqualon HS-10 (Daiichi Kogyo) And the like). In order to adjust the molecular weight, a mercaptan such as lauryl mercaptan and a chain transfer agent such as α-methylstyrene dimer can be used as necessary.

上記乳化重合に用いられる重合開始剤としては、アゾ系の油性化合物(例えば、アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)及び2,2’−アゾビス(2,4−ジメチルバレロニトリル)等)、及び水性化合物(例えば、アニオン系の4,4’−アゾビス(4−シアノ吉草酸)、2,2−アゾビス(N−(2−カルボキシエチル)−2−メチルプロピオンアミジン及びカチオン系の2,2’−アゾビス(2−メチルプロピオンアミジン));並びにレドックス系の油性過酸化物(例えば、ベンゾイルパーオキサイド、パラクロロベンゾイルパーオキサイド、ラウロイルパーオキサイド及びt−ブチルパーベンゾエート等)、及び水性過酸化物(例えば、過硫酸カリ及び過硫酸アンモニウム等)が挙げられる。   Examples of the polymerization initiator used in the emulsion polymerization include azo oily compounds (for example, azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), and 2,2′-azobis (2 , 4-dimethylvaleronitrile) and the like, and aqueous compounds (for example, anionic 4,4′-azobis (4-cyanovaleric acid), 2,2-azobis (N- (2-carboxyethyl) -2- Methylpropionamidine and cationic 2,2′-azobis (2-methylpropionamidine)); and redox oily peroxides (eg, benzoyl peroxide, parachlorobenzoyl peroxide, lauroyl peroxide and t-butyl) Perbenzoate), and aqueous peroxides (for example, potassium persulfate and ammonium persulfate). .

[無機コロイド(B)]
無機コロイド(B)は、シリカゾルにシロキサン樹脂が結合したものであり、優れた水分散性を有する。
無機コロイド(B)は、エマルション樹脂(A)と同様、塗料組成物中におけるバインダー成分である。無機コロイド(B)が塗料組成物中に含有されることで、防食性及び耐候性に優れた塗膜を形成できる。
また、無機コロイド(B)は、実質的にVOC(揮発性有機化合物)を含有しないものであることが、環境負荷抑制の観点から好ましい。
[Inorganic colloid (B)]
The inorganic colloid (B) is obtained by bonding a siloxane resin to silica sol and has excellent water dispersibility.
Similar to the emulsion resin (A), the inorganic colloid (B) is a binder component in the coating composition. By containing the inorganic colloid (B) in the coating composition, a coating film having excellent corrosion resistance and weather resistance can be formed.
Moreover, it is preferable from a viewpoint of environmental impact suppression that an inorganic colloid (B) is a thing which does not contain VOC (volatile organic compound) substantially.

無機コロイド(B)は、エポキシ基及びアミノ基のうち少なくともいずれか一方を有することが好ましい。無機コロイド(B)が、エポキシ基及びアミノ基のうち少なくともいずれか一方を有することにより、形成される塗膜は、素地や上塗塗膜に対する優れた密着性を有する。
上記のような無機コロイド(B)は、エポキシ基又はアミノ基を有するシラン化合物を縮合し、シリカゾルに結合することで得られる。シラン化合物としては、アルコキシシランが挙げられる。
The inorganic colloid (B) preferably has at least one of an epoxy group and an amino group. When the inorganic colloid (B) has at least one of an epoxy group and an amino group, the coating film formed has excellent adhesion to the substrate and the top coating film.
The inorganic colloid (B) as described above can be obtained by condensing a silane compound having an epoxy group or an amino group and bonding it to a silica sol. Examples of the silane compound include alkoxysilane.

上記エポキシ基を有するシラン化合物としては、例えば以下のような構造を有するω−グリシジルオキシアルキルアルコキシシランが挙げられる。
[化1]
X−Si(R(OR3−x (1)
〔式中、Xは、2−(3,4−エポキシシクロヘキシル)エチル基、1−グリシジルオキシメチル基、2−グリシジルオキシエチル基、3−グリシジルオキシプロピル基又は3−グリシジルオキシイソブチル基を表し、R並びにRは互いに独立して、炭素原子1〜4個を有する線状又は分枝鎖状のアルキル基であり、且つは0又は1に等しい〕
Examples of the silane compound having an epoxy group include ω-glycidyloxyalkylalkoxysilane having the following structure.
[Chemical 1]
X-Si (R 2) x (OR 1) 3-x (1)
[Wherein, X represents a 2- (3,4-epoxycyclohexyl) ethyl group, a 1-glycidyloxymethyl group, a 2-glycidyloxyethyl group, a 3-glycidyloxypropyl group or a 3-glycidyloxyisobutyl group, R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms, and x is equal to 0 or 1.

上記アミノ基を有するシラン化合物としては、例えば以下のような構造を有するビス(アルコキシシリルアルキル)アミンが挙げられる。
[化2]
(ORSi−A−Si(OR (2)
〔式中、基Rは同じか又は異なり、且つRは、炭素原子1〜4個を有する線状又は分枝鎖状のアルキル基であり、且つAは、式3
[化3]
−(CH−[NH(CHNH[(CHf*NH]g*−(CHi*− (3)
で示されるビスアミノ官能基を表し、
ここで、i*f*又はg*は同じか又は異なり、及び/又はi*=1、2、3又は4、及び/又はf*=1又は2、及び/又はg*=0又は1であり、好ましくは及びi*は3に等しく、並びに及びg*は0に等しく、且つRはメチル及び/又はエチルを表す〕
Examples of the silane compound having an amino group include bis (alkoxysilylalkyl) amine having the following structure.
[Chemical formula 2]
(OR 1 ) 3 Si-A-Si (OR 1 ) 3 (2)
Wherein the groups R 1 are the same or different and R 1 is a linear or branched alkyl group having 1 to 4 carbon atoms, and A is a group of formula 3
[Chemical formula 3]
- (CH 2) i - [ NH (CH 2) f] g NH [(CH 2) f * NH] g * - (CH 2) i * - (3)
Represents a bisamino functional group represented by
Where i , i * , f , f * , g or g * are the same or different, i and / or i * = 1, 2, 3 or 4, f and / or f * = 1 or 2, g And / or g * = 0 or 1, preferably i and i * are equal to 3, and g and g * are equal to 0 and R 1 represents methyl and / or ethyl)

無機コロイド(B)は、上記シラン化合物としてのアルコキシシランの加水分解等によって、シラノール基を有することが好ましい。無機コロイド(B)がシラノール基を有することにより、無機コロイド(B)は好ましい水分散性を得るため、無機コロイド(B)を含む塗料組成物を水系化することができる。また、アルコキシシラン等を実質的に完全に加水分解し、且つ、加水分解の際に生じたアルコール等を除去する事により、無機コロイド(B)を、実質的にVOC(揮発性有機化合物)を含有しないものとすることが好ましい。   The inorganic colloid (B) preferably has a silanol group by hydrolysis of alkoxysilane as the silane compound. Since the inorganic colloid (B) has a silanol group, the inorganic colloid (B) obtains a preferable water dispersibility, so that the coating composition containing the inorganic colloid (B) can be made water-based. Further, by substantially completely hydrolyzing alkoxysilane and the like, and removing alcohol generated during the hydrolysis, inorganic colloid (B) is substantially converted to VOC (volatile organic compound). It is preferable not to contain.

上記無機コロイド(B)は、例えば以下のような方法で製造される。
まず、使用されるシラン化合物を基準として、モル過剰量の水を準備し、酸性のpH値となるように有機酸又は無機酸を添加すると共にシリカゾルを添加する。次に、上述のエポキシ基含有シラン化合物及びアミノ基含有シラン化合物のうち少なくともいずれか一方を添加し、加熱することで加水分解反応を進行させる。次に、加水分解反応により生じたアルコールを減圧下で除去する。
The inorganic colloid (B) is produced, for example, by the following method.
First, a molar excess amount of water is prepared based on the silane compound to be used, and an organic acid or an inorganic acid is added together with a silica sol so as to obtain an acidic pH value. Next, at least one of the above-described epoxy group-containing silane compound and amino group-containing silane compound is added and heated to advance the hydrolysis reaction. Next, the alcohol produced by the hydrolysis reaction is removed under reduced pressure.

本実施形態に係る有機無機複合ジンクリッチ塗料組成物において、無機コロイド(B)に対する前記エマルション樹脂(A)の固形分質量比((A)/(B))は、1/9〜2/3の範囲内であることが好ましい。((A)/(B))が1/9未満である場合、形成される塗膜の好ましいクラック耐性が得られない。また、((A)/(B))が2/3以上である場合、優れた防食性及び耐候性を有する塗膜を形成できない。((A)/(B))は、1/7〜3/7であることがより好ましい。   In the organic-inorganic composite zinc rich paint composition according to this embodiment, the solid content mass ratio ((A) / (B)) of the emulsion resin (A) to the inorganic colloid (B) is 1/9 to 2/3. It is preferable to be within the range. When ((A) / (B)) is less than 1/9, preferable crack resistance of the formed coating film cannot be obtained. Moreover, when ((A) / (B)) is 2/3 or more, a coating film having excellent corrosion resistance and weather resistance cannot be formed. ((A) / (B)) is more preferably 1/7 to 3/7.

[亜鉛末(C)]
亜鉛末(C)は、ジンクリッチペイントにおいて通常使用されているものが同様に使用可能である。
亜鉛末(C)の平均粒子径は、上記エマルション樹脂(A)と、上記無機コロイド(B)との混合作業性の向上、亜鉛末の耐沈降性の向上、混合後における可使時間の長期化、並びに塗膜の防錆性及び強度(可撓性)の向上の観点から、好ましくは1〜12μm、より好ましくは2〜10μm、更に好ましくは3〜9μmである。上記亜鉛末の平均粒子径が1μm以上であると、顔料の混合作業性が向上する、混合後における可使時間が長くなるという利点がある。12μm以下であると、亜鉛末の耐沈降性が良好になり混合作業性が向上する、塗膜の防錆性及び強度(可撓性)が向上するという利点がある。
ここで、亜鉛末の平均粒子径とは体積基準の平均粒子径であり、亜鉛末の分散液中での粒度分布に基づき、亜鉛末の全体積を100%として累積を求めたとき、その累積体積が50%となる点の粒径を意味する。当該平均粒子径は、レーザー回折・散乱法による粒子径分布測定装置にて測定することができる。具体的には、亜鉛末の平均粒子径は、実施例に記載の方法によって測定することができる。
本実施形態における亜鉛末(C)の具体的な製品としては、東洋亜鉛社製の亜鉛末シリーズ、UMICORE社製の亜鉛末シリーズ、日本ペイント防食コーティングス社製の亜鉛末シリーズ等を挙げることができる。
[Zinc powder (C)]
As the zinc powder (C), those commonly used in zinc rich paint can be used as well.
The average particle size of the zinc powder (C) is improved in the workability of mixing the emulsion resin (A) and the inorganic colloid (B), improved in settling resistance of the zinc powder, and long in pot life after mixing. From the viewpoint of improving the rust resistance and strength (flexibility) of the coating film, it is preferably 1 to 12 μm, more preferably 2 to 10 μm, and further preferably 3 to 9 μm. When the average particle size of the zinc powder is 1 μm or more, there are advantages that the mixing workability of the pigment is improved and the pot life after mixing becomes long. When it is 12 μm or less, there is an advantage that the settling resistance of zinc powder is improved and mixing workability is improved, and the rust prevention and strength (flexibility) of the coating film are improved.
Here, the average particle diameter of the zinc powder is the volume-based average particle diameter, and when the accumulation is determined with the total volume of zinc powder as 100% based on the particle size distribution in the dispersion of zinc powder, the accumulation It means the particle size at which the volume is 50%. The average particle size can be measured with a particle size distribution measuring apparatus using a laser diffraction / scattering method. Specifically, the average particle diameter of zinc powder can be measured by the method described in the examples.
Specific examples of the zinc powder (C) in this embodiment include a zinc powder series manufactured by Toyo Zinc Co., Ltd., a zinc powder series manufactured by UMICORE, a zinc powder series manufactured by Nippon Paint Anticorrosion Coatings, and the like. it can.

本実施形態の有機無機複合ジンクリッチ塗料組成物中における、亜鉛末(C)の含有量は、上記エマルション樹脂(A)と、上記無機コロイド(B)との混合作業性の向上、亜鉛末の耐沈降性の向上、混合後における可使時間の長期化、並びに塗膜の防錆性及び強度(可撓性)の向上の観点から、前記エマルション樹脂(A)と、無機コロイド(B)と、亜鉛末(C)の合計固形分100質量部に対する、亜鉛末(C)の固形分質量が50質量部より多く、98質量部未満であることが好ましく、85質量部より多く、97質量部未満であることがより好ましい。亜鉛末(C)の固形分質量が50質量部未満の場合、塗膜の防食性及びクラック膜厚性が劣る。亜鉛末(C)の固形分質量が98質量部以上の場合、塗膜としての体をなさない。   The content of zinc powder (C) in the organic-inorganic composite zinc rich paint composition of the present embodiment is improved in workability of mixing the emulsion resin (A) with the inorganic colloid (B), From the viewpoints of improving the settling resistance, extending the pot life after mixing, and improving the rust prevention and strength (flexibility) of the coating film, the emulsion resin (A) and the inorganic colloid (B) The solid mass of zinc dust (C) is preferably more than 50 parts by mass and less than 98 parts by mass, more than 85 parts by mass, and 97 parts by mass with respect to 100 parts by mass of the total solid content of zinc dust (C) More preferably, it is less. When the solid content of the zinc powder (C) is less than 50 parts by mass, the corrosion resistance and crack film thickness of the coating film are inferior. When the solid content of the zinc dust (C) is 98 parts by mass or more, the body as a coating film is not formed.

また、亜鉛末(C)には、タルク、二酸化チタン、及び、シリカ等の微粉末が含有されていてもよい。
これらの微粉末が亜鉛末(C)に含有されることで、混合時の作業性及び混合後における塗装作業性及び可使時間が向上し、塗膜の防食性及び強度(可撓性)を向上させることができる。加えて、亜鉛末同士の二次凝集を抑制できるため、亜鉛末の耐凝集性が向上する。
亜鉛末に対する微粉末の含有量は、亜鉛末100質量部に対して、0.01〜20.0質量部が好ましく、0.1〜6.0質量部がより好ましい。
The zinc powder (C) may contain fine powders such as talc, titanium dioxide, and silica.
When these fine powders are contained in zinc dust (C), the workability during mixing and the paint workability and pot life after mixing are improved, and the corrosion resistance and strength (flexibility) of the coating film are improved. Can be improved. In addition, since secondary aggregation between zinc powders can be suppressed, the aggregation resistance of zinc powder is improved.
0.01-20.0 mass parts is preferable with respect to 100 mass parts of zinc powder, and, as for content of the fine powder with respect to zinc powder, 0.1-6.0 mass parts is more preferable.

本実施形態に係る有機無機複合ジンクリッチ塗料組成物には、少なくとも前述のエマルション樹脂(A)を含有させるため、媒体として水が含有される。また、前述したように無機コロイド(B)は実質的にVOC(揮発性有機化合物)を含有せずに構成できるため、塗料組成物としても実質的にVOCを含有せずに構成することができる。塗料組成物が実質的にVOCを含有しないことで、環境負荷が抑制される。
有機無機複合ジンクリッチ塗料組成物中における溶媒としての水の総量は、混合作業性の向上、亜鉛末の耐沈降性の向上、混合後における可使時間の長期化、並びに塗膜の防食性及び強度(可撓性)の向上の観点から、亜鉛末(C)100質量部に対して、好ましくは5〜100質量部、より好ましくは10〜80質量部である。
Since the organic-inorganic composite zinc rich paint composition according to this embodiment contains at least the emulsion resin (A) described above, water is contained as a medium. Further, as described above, since the inorganic colloid (B) can be constituted substantially without containing VOC (volatile organic compound), the coating composition can also be constituted without substantially containing VOC. . An environmental burden is suppressed because a coating composition does not contain VOC substantially.
The total amount of water as a solvent in the organic-inorganic composite zinc-rich coating composition is improved in mixing workability, improved settling resistance of zinc powder, prolonged use time after mixing, and anticorrosiveness of the coating film and From the viewpoint of improving strength (flexibility), the amount is preferably 5 to 100 parts by mass, more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the zinc powder (C).

また、本実施形態に係る有機無機複合ジンクリッチ塗料組成物には、上記成分以外に、発明の効果を阻害しない範囲内でその他の成分が含まれていてもよい。例えば、顔料、体質顔料等や、アルキド樹脂、ウレタン樹脂等の改質用樹脂、分散剤、消泡剤、防腐剤、フラッシュラスト抑制剤、増粘剤、造膜助剤等の添加剤等が含まれていてもよい。
上記顔料としては防錆顔料や着色顔料等が挙げられ、上記体質顔料としては、例えば、バリタ粉、沈降性硫酸バリウム、炭酸バリウム、炭酸カルシウム、石膏、クレー、ホワイトカーボン、珪藻土、炭酸マグネシウム、アルミナホワイト、グロスホワイト、タンカル等が挙げられる。
Moreover, the organic-inorganic composite zinc rich paint composition according to the present embodiment may contain other components in addition to the above components within a range not impairing the effects of the invention. For example, additives such as pigments, extender pigments, modifying resins such as alkyd resins and urethane resins, dispersants, antifoaming agents, preservatives, flash last inhibitors, thickeners, film-forming aids, etc. It may be included.
Examples of the pigment include rust preventive pigments and colored pigments, and examples of the extender pigment include, for example, baryta powder, precipitated barium sulfate, barium carbonate, calcium carbonate, gypsum, clay, white carbon, diatomaceous earth, magnesium carbonate, and alumina. Examples include white, gloss white, and tancal.

本実施形態に係る有機無機複合ジンクリッチ塗料組成物は、上記エマルション樹脂(A)と、無機コロイド(B)と、を含む液体と、上記亜鉛末(C)を含む紛体と、からなる1液1粉型の有機無機複合ジンクリッチ塗料組成物であることが好ましい。
このように1液1粉型の有機無機複合ジンクリッチ塗料組成物とすることにより、亜鉛末(C)を含む紛体を、エマルション樹脂(A)と、無機コロイド(B)と、を含む液体とは別に保管することができ、塗料組成物の保存中における沈降物の発生が抑制される。
このように別に保管した1液1粉型の有機無機複合ジンクリッチ塗料組成物は、使用時に混合して調製される。調製方法としては特に制限されず、ハンドミキサーやスタティックミキサー等、通常用いられる方法により調製することができる。
The organic-inorganic composite zinc rich paint composition according to the present embodiment is a one-component solution comprising a liquid containing the emulsion resin (A) and an inorganic colloid (B), and a powder containing the zinc dust (C). A one-powder type organic-inorganic composite zinc-rich coating composition is preferred.
Thus, by setting it as 1 liquid 1 powder type organic-inorganic composite zinc-rich paint composition, the powder containing zinc dust (C), the liquid containing emulsion resin (A) and inorganic colloid (B), It can be stored separately, and the occurrence of sediment during storage of the coating composition is suppressed.
The one-component one-powder type organic-inorganic composite zinc-rich paint composition thus stored separately is prepared by mixing at the time of use. It does not restrict | limit especially as a preparation method, It can prepare by the method used normally, such as a hand mixer and a static mixer.

<塗装方法>
本実施形態に係る有機無機複合ジンクリッチ塗料組成物の塗装方法は、基材面へ塗料組成物の塗装を行い乾燥させることで、亜鉛を含む防食塗膜を形成する方法である。
塗装方法としては、特に限定されないが、刷毛塗り塗装、ローラー塗装、スプレー塗装、エアレススプレー塗装等により塗装することができ、用途に応じて、乾燥膜厚として15〜100μmとなるように塗装される。
乾燥方法としては、特に限定されないが、屋外に設置された構造物に対して塗装を行った場合、自然条件で放置することにより乾燥させ塗膜を形成させる。
<Coating method>
The coating method of the organic-inorganic composite zinc rich coating composition according to the present embodiment is a method of forming an anticorrosive coating film containing zinc by coating the coating composition on a substrate surface and drying it.
Although it does not specifically limit as a coating method, It can apply by brush painting, roller painting, spray painting, airless spray painting, etc., and it is painted so that it may become 15-100 micrometers as a dry film thickness according to a use. .
Although it does not specifically limit as a drying method, When it coats with respect to the structure installed outdoors, it dries by leaving it in natural conditions, and forms a coating film.

<塗膜>
上記有機無機複合ジンクリッチ塗料組成物により形成される塗膜は、金属基材の表面を被覆する防食塗膜である。本実施形態に係る塗膜は、プライマーとして金属基材表面上に形成され、上層に上塗り塗膜が形成されるものであってもよいが、高防食性と高耐候性を有することから単膜で使用することもできる。
<Coating film>
The coating film formed by the organic-inorganic composite zinc rich paint composition is an anticorrosion coating film that covers the surface of the metal substrate. The coating film according to this embodiment may be formed on the surface of a metal substrate as a primer, and an overcoating film may be formed on the upper layer. However, since it has high corrosion resistance and high weather resistance, it is a single film. Can also be used.

上記ジンクリッチ塗膜の膜厚は、15〜100μmであることが好ましい。ジンクリッチ塗膜の膜厚が15μm未満であると、防食性が低下する傾向にある。ジンクリッチ塗膜の膜厚が100μmを超えると、だれ性が低下する傾向にある。ジンクリッチ塗膜をプライマーとして用いる場合、15〜20μm程度の膜厚とすることが好ましく、ジンクリッチ塗膜を単膜で用いる場合、50〜100μm程度の膜厚とすることが好ましい。   The film thickness of the zinc rich coating film is preferably 15 to 100 μm. When the film thickness of the zinc rich coating film is less than 15 μm, the corrosion resistance tends to be lowered. When the film thickness of the zinc rich coating film exceeds 100 μm, the dripping property tends to decrease. When using a zinc rich coating film as a primer, it is preferable to set it as a film thickness of about 15-20 micrometers, and when using a zinc rich coating film with a single film, it is preferable to set it as a film thickness of about 50-100 micrometers.

本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。例えば、エマルション樹脂(A)はアクリルエマルション樹脂に限定されず、塗膜硬化時の応力を低減でき、塗料組成物のpHを3.0〜7.0とするのに好適な種々のエマルション樹脂が用いられる。   The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention. For example, the emulsion resin (A) is not limited to the acrylic emulsion resin, and various emulsion resins suitable for reducing the stress at the time of curing the coating film and adjusting the pH of the coating composition to 3.0 to 7.0 are available. Used.

次に、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれに限定されるものではない。なお、特に断りのない限り、「部」及び「%」は、全て質量基準である。   Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto. Unless otherwise specified, “part” and “%” are all based on mass.

[実施例1〜9、比較例1〜5]
表1に示す配合量(固形分含有量、単位は「質量部」)にてエマルション樹脂(A)、無機コロイド(B)、亜鉛末(C)を混合し、均一に撹拌することにより実施例1〜9及び比較例1〜5の塗料組成物を調製した。
[Examples 1-9, Comparative Examples 1-5]
The emulsion resin (A), inorganic colloid (B), and zinc dust (C) were mixed in the blending amounts shown in Table 1 (solid content, unit is “parts by mass”), and stirred uniformly. The coating compositions of 1-9 and Comparative Examples 1-5 were prepared.

Figure 2017160395
Figure 2017160395

表1に示した、エマルション樹脂(A)、無機コロイド(B)、亜鉛末(C)としては下記のものを用いた。
有機アクリルエマルション1:ボンコートCP−8380(DIC株式会社製、pH3.0)
有機アクリルエマルション2:ボンコートSFC−55(DIC株式会社製、pH4.0)
有機アクリルエマルション3:ボンコート9435Z(DIC株式会社製、pH7.0)
有機アクリルエマルション4:カネビノールKD−11(ヘンケルジャパン株式会社製、pH9.0)
有機酢ビエマルション5:ボンコート6620EF(DIC株式会社製、pH5.0)
無機コロイド(B):「Dynasylan SIVO 140」(エボニックジャパン株式会社製)
亜鉛末(C):亜鉛末LS−4(日本ペイント防食コーティングス社製)
As emulsion resin (A), inorganic colloid (B), and zinc dust (C) shown in Table 1, the following were used.
Organic acrylic emulsion 1: Boncoat CP-8380 (DIC Corporation, pH 3.0)
Organic acrylic emulsion 2: Boncoat SFC-55 (DIC Corporation, pH 4.0)
Organic acrylic emulsion 3: Boncoat 9435Z (DIC Corporation, pH 7.0)
Organic acrylic emulsion 4: Kanebinol KD-11 (manufactured by Henkel Japan, pH 9.0)
Organic Vinegar Emulsion 5: Boncoat 6620EF (DIC Corporation, pH 5.0)
Inorganic colloid (B): “Dynasylan SIVO 140” (manufactured by Evonik Japan Co., Ltd.)
Zinc Powder (C): Zinc Powder LS-4 (manufactured by Nippon Paint Anticorrosion Coatings)

<塗料液性状の評価>
上記により得られた実施例1〜9、比較例1〜5の塗料組成物をポリプロプレン製の密閉容器に入れ、23℃で30日間貯蔵した後、均一性及び、浮遊物、ゲル物の有無について下記基準に従って目視にて評価し、A、Bを合格、Cを不合格と判定した。結果を表1に示す。
(評価基準)
A:均一な液体である
B:分離した液体であるが、撹拌により均一な液体となる
C:ゲル物や浮遊物、沈殿物等の固体があり均一でない
<Evaluation of paint liquid properties>
After putting the coating compositions of Examples 1 to 9 and Comparative Examples 1 to 5 obtained as described above into a closed container made of polypropylene and storing them at 23 ° C. for 30 days, the uniformity and the presence or absence of suspended matter or gel matter Was evaluated visually according to the following criteria, and A and B were determined to be acceptable and C was determined to be unacceptable. The results are shown in Table 1.
(Evaluation criteria)
A: A uniform liquid B: A separated liquid, which becomes a uniform liquid by stirring C: There are solids such as gels, suspended matters, and precipitates, which are not uniform

<防食性試験>
基材として、SS400鋼板(150×70×3.2mm)を用意した。次いで、表面の酸化層及び汚染層を取り除き十分な表面粗さを得るため、前処理としてショットブラストを行った。
実施例1〜9、比較例1〜5の塗料組成物に2%の水道水を加えて希釈後、上記基材に対し乾燥膜厚100μmとなるようにエアスプレーによって塗布し試験体を作成した。試験体は23℃で7日間養生し、養生後、試験体の下半分にJIS K 5600−7−9 7.5a)に規定されるスクラッチを入れ、JIS K 5600−7−1の耐中性塩水噴霧試験に従って2000時間試験を行った。試験機は塩水噴霧試験機SQ−1000−ST(板橋理化工業株式会社製)を用いた。試験後の試験体に生じた錆を、JIS K 5600−8−3に従って錆びた部分の面積分率に応じて等級づけRi(degree of rusting)を行い、A、Bを合格、Cを不合格と判定した。結果を表1に示す。
(評価基準)
A:Ri0
B:Ri1
C:Ri2
<Anti-corrosion test>
As a base material, an SS400 steel plate (150 × 70 × 3.2 mm) was prepared. Next, shot blasting was performed as a pretreatment in order to remove the oxide layer and the contamination layer on the surface and obtain a sufficient surface roughness.
After adding and diluting 2% tap water to the coating compositions of Examples 1 to 9 and Comparative Examples 1 to 5, a test specimen was prepared by applying the coating material by air spray so that the dry film thickness was 100 μm. . The specimen was cured at 23 ° C. for 7 days, and after curing, a scratch specified in JIS K 5600-7-9 7.5a) was placed in the lower half of the specimen, and the medium resistance of JIS K 5600-7-1 was measured. The test was conducted for 2000 hours according to the salt spray test. As the tester, a salt spray tester SQ-1000-ST (manufactured by Itabashi Rika Kogyo Co., Ltd.) was used. The rust generated on the test specimen after the test is graded according to the area fraction of the rusted part according to JIS K 5600-8-3, and Ri (degree of rusting) is performed, A and B are passed, and C is rejected. It was determined. The results are shown in Table 1.
(Evaluation criteria)
A: Ri0
B: Ri1
C: Ri2

<耐候性試験>
実施例1〜9、比較例1〜5の塗料組成物を用い、上記防食性試験に用いたものと同様の基材及び条件で、塗布及び養生を行い、同様に試験体の下半分にJIS K 5600−7−9 7.5a)に規定されるスクラッチを入れ、JIS K 5600−7−7のサイクルAの規定に従って促進耐候性試験を2000時間行った。試験機はスーパーキセノンテスターXER−W75(岩崎電気株式会社製)を用いた。試験後、試験体の塗膜表面を目視及び顕微鏡(実体顕微鏡SMZ−U、Nikon社製、30倍)で観察し、下記の基準により評価し、A、Bを合格、Cを不合格と判定した。結果を表1に示す。
(評価基準)
A:目視及び顕微鏡でクラックが確認されない
B:目視ではクラックが確認されないが、顕微鏡でクラックが確認される
C:目視でクラックが確認される
<Weather resistance test>
Using the coating compositions of Examples 1-9 and Comparative Examples 1-5, coating and curing were performed under the same base materials and conditions as those used in the anticorrosion test, and JIS was similarly applied to the lower half of the specimen. The scratch specified in K5600-7-9 7.5a) was put, and the accelerated weather resistance test was conducted for 2000 hours according to the cycle A of JIS K5600-7-7. A super xenon tester XER-W75 (manufactured by Iwasaki Electric Co., Ltd.) was used as a test machine. After the test, the coating surface of the specimen was observed visually and with a microscope (stereomicroscope SMZ-U, manufactured by Nikon, 30 times), evaluated according to the following criteria, and passed A and B, and C was determined to be rejected. did. The results are shown in Table 1.
(Evaluation criteria)
A: Cracks are not confirmed visually and under a microscope B: Cracks are not confirmed visually, but cracks are confirmed under a microscope C: Cracks are confirmed visually

<造膜性評価試験>
実施例1〜9、比較例1〜5の塗料組成物を用い、上記防食性試験及び耐候性試験に用いたものと同様の基材及び条件で塗布を行った後、試験体を23℃で2日間養生し、養生後、塗膜をタオル地の布で擦り、布への色移りや塗膜の欠損の有無を観察し、下記の条件により評価し、A、Bを合格、Cを不合格と判定した。結果を表1に示す。
(評価基準)
A:布への色移り、塗膜の欠損が無い
B:布への色移りが多少あるが、塗膜の欠損が無い
C:塗膜の欠損がある
<Film-forming evaluation test>
After applying the coating compositions of Examples 1 to 9 and Comparative Examples 1 to 5 using the same base materials and conditions as those used in the anticorrosion test and the weather resistance test, the test specimens were used at 23 ° C. After curing for 2 days, rub the paint film with towel cloth, observe the color transfer to the cloth and the presence or absence of film loss, evaluate under the following conditions, pass A, B, fail C It was determined. The results are shown in Table 1.
(Evaluation criteria)
A: There is no color transfer to the cloth and no film loss B: There is some color transfer to the cloth, but there is no film loss C: There is a film defect

<クラック膜厚評価試験>
実施例1〜9、比較例1〜5の塗料組成物を用い、上記防食性試験、耐候性試験及び造膜性評価試験に用いたものと同様の基材に対して乾燥膜厚500μmとなるようにエアスプレーによって塗布し試験体を作成した。試験体は23℃で7日間養生し、養生後、塗膜表面を目視及び顕微鏡(実体顕微鏡SMZ−U、Nikon社製、30倍)で観察し、下記の条件により評価し、A、Bを合格、Cを不合格と判定した。結果を表1に示す。
(評価基準)
A:目視及び顕微鏡でクラックが確認されない
B:目視ではクラックが確認されないが、顕微鏡でクラックが確認される
C:目視でクラックが確認される
<Crack film thickness evaluation test>
Using the coating compositions of Examples 1 to 9 and Comparative Examples 1 to 5, the dry film thickness is 500 μm with respect to the same substrate as used in the anticorrosion test, weather resistance test and film forming property evaluation test. A test specimen was prepared by air spraying. The specimen was cured at 23 ° C. for 7 days, and after curing, the surface of the coating film was observed visually and with a microscope (stereomicroscope SMZ-U, manufactured by Nikon, 30 times), evaluated under the following conditions, and A and B were Pass and C were determined to be unacceptable. The results are shown in Table 1.
(Evaluation criteria)
A: Cracks are not confirmed visually and under a microscope B: Cracks are not confirmed visually, but cracks are confirmed under a microscope C: Cracks are confirmed visually

実施例1〜9と、比較例1との比較から、塗料組成物中にエマルション樹脂(A)を含む実施例1〜9の塗料組成物により形成した塗膜は、エマルション樹脂(A)を含まない比較例1の塗料組成物により形成した塗膜と比較してクラック膜厚評価試験の結果に優れることが分かった。この結果から、有機無機複合ジンクリッチ塗料組成物中にエマルション樹脂(A)が含まれることで、形成される塗膜のクラック発生が抑制されることが確認された。   From the comparison between Examples 1 to 9 and Comparative Example 1, the coating film formed by the coating composition of Examples 1 to 9 containing the emulsion resin (A) in the coating composition contains the emulsion resin (A). It was found that the result of the crack film thickness evaluation test was superior to the coating film formed by the coating composition of Comparative Example 1 that was not present. From this result, it was confirmed that the occurrence of cracks in the formed coating film is suppressed when the emulsion resin (A) is contained in the organic-inorganic composite zinc rich paint composition.

実施例1〜9と、比較例2との比較から、塗料組成物のpHが3.0〜7.0である実施例1〜9の塗料組成物は、塗料組成物のpHが上記範囲外である比較例2の塗料組成物と比較して塗料液性状の評価試験結果に優れることが分かった。この結果から、有機無機複合ジンクリッチ塗料組成物のpHが3.0〜7.0の範囲内であることで、塗料液性状の安定性が得られることが確認された。   From the comparison between Examples 1 to 9 and Comparative Example 2, the coating compositions of Examples 1 to 9 in which the pH of the coating composition is 3.0 to 7.0, the pH of the coating composition is outside the above range. It was found that the coating liquid property evaluation test result was superior as compared with the coating composition of Comparative Example 2 as described above. From this result, it was confirmed that the stability of the coating liquid property can be obtained when the pH of the organic-inorganic composite zinc-rich coating composition is in the range of 3.0 to 7.0.

実施例1〜9と、比較例3との比較から、無機コロイド(B)に対するエマルション樹脂(A)の固形分質量比((A)/(B))が1/9〜2/3の範囲内である実施例1〜9の塗料組成物により形成した塗膜は、((A)/(B))が上記範囲外である比較例3の塗料組成物により形成した塗膜と比較して、防食性試験及び耐候性試験の結果に優れることが分かった。この結果から、有機無機複合ジンクリッチ塗料組成物における上記((A)/(B))が1/9〜2/3の範囲内であることで、形成される塗膜の優れた防食性及び耐候性が得られることが確認された。   From the comparison between Examples 1 to 9 and Comparative Example 3, the solid content mass ratio ((A) / (B)) of the emulsion resin (A) to the inorganic colloid (B) is in the range of 1/9 to 2/3. The coating film formed from the coating compositions of Examples 1 to 9 in the comparison with the coating film formed from the coating composition of Comparative Example 3 in which ((A) / (B)) is outside the above range. The results of the corrosion resistance test and the weather resistance test were found to be excellent. From this result, the above-mentioned ((A) / (B)) in the organic-inorganic composite zinc rich paint composition is in the range of 1/9 to 2/3, so that the excellent anticorrosive property of the formed coating film and It was confirmed that weather resistance was obtained.

実施例1〜9と、比較例4との比較から、実施例1〜9の塗料組成物により形成した塗膜は、比較例4の塗料組成物により形成した塗膜と比較して、耐候性試験、造膜性試験、及びクラック膜厚評価試験の結果に優れることが分かった。この結果から、有機無機複合ジンクリッチ塗料組成物における亜鉛末(C)の含有量が塗料組成物の全固形分100質量部に対して98質量部未満であることで、形成される塗膜の優れた耐候性、造膜性、及び耐クラック性が得られることが確認された。   From the comparison between Examples 1 to 9 and Comparative Example 4, the coating film formed from the coating composition of Examples 1 to 9 was more weather resistant than the coating film formed from the coating composition of Comparative Example 4. It turned out that it is excellent in the result of a test, a film-forming property test, and a crack film thickness evaluation test. From this result, the content of zinc powder (C) in the organic-inorganic composite zinc-rich coating composition is less than 98 parts by mass with respect to 100 parts by mass of the total solid content of the coating composition. It was confirmed that excellent weather resistance, film-forming property, and crack resistance were obtained.

実施例1〜9と、比較例5との比較から、実施例1〜9の塗料組成物により形成した塗膜は、比較例5の塗料組成物により形成した塗膜と比較して、防食性試験及びクラック膜厚性試験の結果に優れることが分かった。この結果から、有機無機複合ジンクリッチ塗料組成物における亜鉛末(C)の含有量が塗料組成物の全固形分100質量部に対して50質量部より多いことで、形成される塗膜の優れた防食性及び耐クラック性が得られることが確認された。   From the comparison between Examples 1 to 9 and Comparative Example 5, the coating film formed with the coating composition of Examples 1 to 9 was more anticorrosive than the coating film formed with the coating composition of Comparative Example 5. It turned out that it is excellent in the result of a test and a crack film thickness property test. From this result, when the content of zinc powder (C) in the organic-inorganic composite zinc rich coating composition is more than 50 parts by mass with respect to 100 parts by mass of the total solid content of the coating composition, the coating film formed is excellent. It was confirmed that corrosion resistance and crack resistance were obtained.

Claims (3)

金属基材の表面を被覆する防食塗膜を形成するために用いられる、水系の有機無機複合ジンクリッチ塗料組成物であって、
エマルション樹脂(A)と、無機コロイド(B)と、亜鉛末(C)と、を含み、
前記無機コロイド(B)は、シリカゾルにシロキサン樹脂が結合したものであり、
前記無機コロイド(B)に対する前記エマルション樹脂(A)の固形分質量比((A)/(B))は、1/9〜2/3の範囲内であり、
前記亜鉛末(C)は、前記塗料組成物の全固形分100質量部に対して50質量部より多く、98質量部未満であり、
PHが3.0〜7.0である有機無機複合ジンクリッチ塗料組成物。
A water-based organic-inorganic composite zinc-rich paint composition used for forming an anticorrosive coating for coating the surface of a metal substrate,
An emulsion resin (A), an inorganic colloid (B), and zinc dust (C),
The inorganic colloid (B) is a silica sol bonded with a siloxane resin,
The solid content mass ratio ((A) / (B)) of the emulsion resin (A) to the inorganic colloid (B) is in the range of 1/9 to 2/3,
The zinc dust (C) is more than 50 parts by mass and less than 98 parts by mass with respect to 100 parts by mass of the total solid content of the coating composition.
An organic-inorganic composite zinc-rich paint composition having a pH of 3.0 to 7.0.
前記無機コロイド(B)は、エポキシ基及びアミノ基のうち少なくともいずれか一方を有する、請求項1に記載の有機無機複合ジンクリッチ塗料組成物。   The organic-inorganic composite zinc-rich coating composition according to claim 1, wherein the inorganic colloid (B) has at least one of an epoxy group and an amino group. 前記エマルション樹脂(A)は、アクリルエマルション樹脂である、請求項1又は2に記載の有機無機複合ジンクリッチ塗料組成物。   The organic-inorganic composite zinc-rich coating composition according to claim 1 or 2, wherein the emulsion resin (A) is an acrylic emulsion resin.
JP2016048686A 2016-03-11 2016-03-11 Organic-inorganic composite zinc-rich coating composition Active JP6055133B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048686A JP6055133B1 (en) 2016-03-11 2016-03-11 Organic-inorganic composite zinc-rich coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048686A JP6055133B1 (en) 2016-03-11 2016-03-11 Organic-inorganic composite zinc-rich coating composition

Publications (2)

Publication Number Publication Date
JP6055133B1 JP6055133B1 (en) 2016-12-27
JP2017160395A true JP2017160395A (en) 2017-09-14

Family

ID=57582284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048686A Active JP6055133B1 (en) 2016-03-11 2016-03-11 Organic-inorganic composite zinc-rich coating composition

Country Status (1)

Country Link
JP (1) JP6055133B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500764A (en) * 2020-11-16 2021-03-16 无锡华东锌盾科技有限公司 Solvent-free epoxy zinc-rich anticorrosive paint and preparation method thereof
CN113717553A (en) * 2021-09-13 2021-11-30 江苏德威涂料有限公司 Liquid water-based inorganic zinc-rich powder slurry and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108410296A (en) * 2018-04-19 2018-08-17 合肥博创机械制造有限公司 A kind of mechanical equipment anticorrosive paint and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608261B2 (en) * 1974-10-05 1985-03-01 大日本塗料株式会社 Coating composition
JPS51123229A (en) * 1975-04-22 1976-10-27 Kansai Paint Co Ltd Inorganic composition for use in forming surface coating film
JPS5847429B2 (en) * 1976-01-22 1983-10-22 関西ペイント株式会社 Film-forming composition
JPS5294331A (en) * 1976-02-04 1977-08-08 Kansai Paint Co Ltd Film forming composition
JPH07133442A (en) * 1993-11-08 1995-05-23 Dainippon Toryo Co Ltd Zinc-rich paint
JP2001098215A (en) * 1999-09-30 2001-04-10 Nisshin Steel Co Ltd Plated steel plate surface-treating agent having excellent storage stability, and treating method
JP6159102B2 (en) * 2013-03-04 2017-07-05 株式会社プラザ・オブ・レガシー Primer for heavy rust prevention
JP5577475B1 (en) * 2014-03-03 2014-08-20 日本ペイント株式会社 Water-based organic zinc-rich coating composition, antirust coating film forming method and multilayer coating film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500764A (en) * 2020-11-16 2021-03-16 无锡华东锌盾科技有限公司 Solvent-free epoxy zinc-rich anticorrosive paint and preparation method thereof
CN113717553A (en) * 2021-09-13 2021-11-30 江苏德威涂料有限公司 Liquid water-based inorganic zinc-rich powder slurry and preparation method thereof

Also Published As

Publication number Publication date
JP6055133B1 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
KR101619099B1 (en) A steel coating method of using friendly heavy duty steel paint composition
JP5259109B2 (en) Painting method
RU2741551C2 (en) Weld-through primer
JP6055133B1 (en) Organic-inorganic composite zinc-rich coating composition
WO2011118792A1 (en) Water-based coating composition and process for formation of coating film
JP7210218B2 (en) paint composition
JP5165904B2 (en) Water-based paint composition
JP2015189995A (en) sealing treatment agent
JP2010131897A (en) Aqueous rustproof coating film
JP4033970B2 (en) Anodized electrodeposition coating composition with excellent scratch resistance
KR101553120B1 (en) A manufacturing method of a fatty acid and a silane coupling agent modified epoxy resin, and coating composition for ship containing the modified epoxy resin
KR102092402B1 (en) Rust-resistant coating composition
JPH11293200A (en) Zinc-rich paint composition
JP7094973B2 (en) A method for manufacturing a water-based rust-preventive paint composition, a rust-preventive coating film, a base material with a rust-preventive coating film, and a base material with a rust-preventive coating film.
JP4904624B2 (en) Paint composition
JP3846692B2 (en) Enamel particle dispersion, method for producing the same, and multicolor pattern coating composition
CN110218492A (en) Aqueous woodware paint
KR20210030122A (en) Aqueous acrylic emulsion resin and method for preparing the same
JP5207632B2 (en) Synthetic resin emulsion and aqueous coating composition using the same
JP7198961B1 (en) Undercoat paint composition and coating film
AU2018256588A1 (en) Compositions based on aqueous polymer dispersions comprising n-alkylpyrrolidones, аnd use thereof
JP2019519631A (en) Water dispersible primer enamel and method for obtaining the same
JP2020084138A (en) Coating composition
JP5614876B2 (en) Water-based anticorrosive coating composition and use thereof
JP2004292795A (en) Aqueous resin composition and aqueous coating material composition containing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161201

R150 Certificate of patent or registration of utility model

Ref document number: 6055133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350