JP2017159720A - Method for detecting ground fault in ac-side connection wire of rectifier for dc feeding - Google Patents

Method for detecting ground fault in ac-side connection wire of rectifier for dc feeding Download PDF

Info

Publication number
JP2017159720A
JP2017159720A JP2016044194A JP2016044194A JP2017159720A JP 2017159720 A JP2017159720 A JP 2017159720A JP 2016044194 A JP2016044194 A JP 2016044194A JP 2016044194 A JP2016044194 A JP 2016044194A JP 2017159720 A JP2017159720 A JP 2017159720A
Authority
JP
Japan
Prior art keywords
rectifier
ground fault
ground
current
substation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016044194A
Other languages
Japanese (ja)
Other versions
JP6599802B2 (en
Inventor
川原 敬治
Takaharu Kawahara
敬治 川原
和彦 伊東
Kazuhiko Ito
和彦 伊東
正司 松井
Shoji Matsui
正司 松井
康之 西村
Yasuyuki Nishimura
康之 西村
森田 岳
Takeshi Morita
岳 森田
英樹 今村
Hideki Imamura
英樹 今村
前田 宏
Hiroshi Maeda
宏 前田
敏明 西川
Toshiaki Nishikawa
敏明 西川
正樹 長森
Masaki Nagamori
正樹 長森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUDA ELECTRIC METERS CO Ltd
Railway Technical Research Institute
West Japan Railway Co
Original Assignee
TSUDA ELECTRIC METERS CO Ltd
Railway Technical Research Institute
West Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUDA ELECTRIC METERS CO Ltd, Railway Technical Research Institute, West Japan Railway Co filed Critical TSUDA ELECTRIC METERS CO Ltd
Priority to JP2016044194A priority Critical patent/JP6599802B2/en
Publication of JP2017159720A publication Critical patent/JP2017159720A/en
Application granted granted Critical
Publication of JP6599802B2 publication Critical patent/JP6599802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/50Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the appearance of abnormal wave forms, e.g. ac in dc installations
    • H02H3/52Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the appearance of abnormal wave forms, e.g. ac in dc installations responsive to the appearance of harmonics

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting a ground fault in an ac-side connection wire of a rectifier for DC feeding capable of reducing impacts on train operation in response to occurrence of a ground fault in an electric cable way (AC side) between a transformer for a rectifier in a substation for DC electric trains, by providing a method to detect the fault as well as to separate a position where the fault exists from a secondary side (DC side) of the rectifier, and by quickly searching and removing the fault point, to restore power generation at the substation.SOLUTION: A method for detecting a ground fault in an AC-side connection wire of a rectifier for DC feeding comprises: measuring a current flowing in a ground wire 10 with which a shield layer 9s of a connection wire 9 between a transformer 7 for a rectifier and a rectifier 8 at a substation 2 for DC electric trains; extracting a third harmonic component from harmonic components for a commercial frequency of the current; and detecting a ground fault in the connection wire 9 between the transformer 7 for the rectifier and the rectifier 8 at the substation 2 on the basis of a change in magnitude of the third harmonic component.SELECTED DRAWING: Figure 3

Description

本発明は直流き電用整流器の交流側接続線の地絡故障検出方法に関するものであり、詳細には、直流電鉄用変電所の整流器用変圧器と整流器との間の接続線での地絡故障が発生したときにそれを検出する直流き電用整流器の交流側接続線の地絡故障検出方法に関する。   The present invention relates to a method for detecting a ground fault in an AC side connection line of a DC feeder rectifier, and more particularly, to a ground fault in a connection line between a rectifier transformer and a rectifier in a DC railway substation. The present invention relates to a ground fault detection method for an AC side connection line of a DC feeding rectifier that detects a fault when it occurs.

従来より直流電鉄用変電所において、直流母線の地絡故障が発生した場合にはその多大な地絡電流により変電所機器の焼損等の障害が発生する。そこで、本出願人は鋭意研究により、下記特許文献(特開2010−42784号公報)に示すように、変電所の接地マットと帰線間の電圧を検知し、できる限り速やかに変電所を停電し、変電所設備への損傷を抑え、変電所を保護する地絡故障検出方法を実現する直流高圧接地継電器を発明し、実用化されるに至っている。   Conventionally, in a DC railway substation, when a ground fault of a DC bus occurs, a fault such as burning of the substation equipment occurs due to the large ground fault current. Therefore, as a result of diligent research, the present applicant, as shown in the following patent document (Japanese Patent Laid-Open No. 2010-42784), detects the voltage between the grounding mat of the substation and the return line, and shuts down the substation as quickly as possible. However, a DC high-voltage grounded relay that realizes a ground fault detection method that suppresses damage to substation equipment and protects the substation has been invented and put into practical use.

図6は従来の直流高圧接地継電器の構成を示す図である。図6に示す直流高圧接地継電器90は、変電所の接地マット91と帰線92の間に設置され、その間の電位差を測定する電位差測定部93を有し、この電位差測定部93が閾値以上の電圧を検出するときに交流遮断器95Aおよび直流高速度遮断器95に遮断信号を送って直流母線94への電力供給を遮断させるものである。なお、96は整流器用変圧器、97は整流器、98は接地線、99は真の大地、96Aは整流器用変圧器96と整流器97を接続する接続線、96Bはこの接続線96Aの遮蔽層、98Rは接続線96Aと遮蔽層96Bの間の絶縁抵抗である。   FIG. 6 is a diagram showing a configuration of a conventional DC high-voltage grounded relay. A DC high-voltage grounding relay 90 shown in FIG. 6 is installed between a grounding mat 91 and a return line 92 of a substation, and has a potential difference measuring unit 93 that measures a potential difference therebetween, and the potential difference measuring unit 93 is greater than or equal to a threshold value. When the voltage is detected, a cut-off signal is sent to the AC breaker 95A and the DC high-speed breaker 95 to cut off the power supply to the DC bus 94. 96 is a rectifier transformer, 97 is a rectifier, 98 is a ground wire, 99 is a true ground, 96A is a connection line connecting the rectifier transformer 96 and the rectifier 97, 96B is a shielding layer of the connection line 96A, 98R is an insulation resistance between the connection line 96A and the shielding layer 96B.

前記構成の直流高圧接地継電器90を用いた地絡故障検出方法は、接地マット91と帰線92の間の電圧を検出する電位差測定部93を設けて、変電所内での直流母線94の地絡故障を検出する。つまり、直流母線94に地絡故障が発生すると、帰線92に対して接地マット91が正(+)極性の電位となるため、電位差測定部93でこれを検出し、交流遮断器95Aに遮断信号を出力する。交流遮断器95Aはこの遮断信号によって電力供給を遮断することにより、速やかに変電所を停電し、変電所設備等を保護することができる。   The ground fault detection method using the DC high-voltage ground relay 90 having the above-described configuration includes a potential difference measuring unit 93 that detects a voltage between the ground mat 91 and the return line 92, and the ground fault of the DC bus 94 in the substation. Detect failure. In other words, when a ground fault occurs in the DC bus 94, the grounding mat 91 has a positive (+) polarity potential with respect to the return line 92. Therefore, the potential difference measuring unit 93 detects this and interrupts the AC circuit breaker 95A. Output a signal. The AC circuit breaker 95A can quickly shut down the substation by protecting the power supply by this interruption signal, thereby protecting the substation equipment and the like.

特開2010−42784号公報JP 2010-42784 A

しかしながら、従来の直流高圧接地継電器90における地絡故障検出方法では、直流変電所用変電所の整流器97の2次側電路(直流側)の地絡故障だけでなく、整流器用変圧器96と整流器97の間の1次側電路(交流側)の地絡故障によっても動作する特性があり、これらを判別できないという問題があった。   However, in the conventional ground fault detection method for the DC high-voltage grounded relay 90, not only the ground fault of the secondary electric circuit (DC side) of the rectifier 97 of the DC substation substation, but also the rectifier transformer 96 and the rectifier 97 are provided. There is a problem that the operation is caused by a ground fault in the primary side electric circuit (AC side) between them, and these cannot be distinguished.

その背景として、直流電鉄用変電所に設けられている直流高圧接地継電器90では整流器用変圧器96と整流器97は変電所機器の配置上、近接して配置されることが多いため、ブスバーやアルミより線等の裸導体で接続されることが多かったが、近年は安全上の理由により裸導体で接続されることは少なくなり、遮蔽層96B付ケーブル等により接続されるようになったという状況がある。この為、ケーブルの端末処理の劣化等により雨水等が侵入し、ケーブルが絶縁劣化を起こし、これにより地絡故障につながる場合がある。また、ケーブルのこのような地絡故障は裸導体の場合に比べて目視で発見しにくく、故障点を速やかに見いだすことは困難であった。   As a background, in the DC high-voltage grounded relay 90 provided in the DC railway substation, the rectifier transformer 96 and the rectifier 97 are often arranged close to each other in terms of the arrangement of the substation equipment. Although it was often connected with a bare conductor such as a stranded wire, in recent years, it is less likely to be connected with a bare conductor for safety reasons, and it is now connected with a cable with a shielding layer 96B, etc. There is. For this reason, rainwater or the like may enter due to deterioration of the terminal treatment of the cable and the cable may cause insulation deterioration, which may lead to a ground fault. In addition, such a ground fault in the cable is harder to detect visually than in the case of a bare conductor, and it is difficult to quickly find the failure point.

このため、直流高圧接地継電器90が動作した場合に、復旧担当の作業員は整流器97の2次側の直流回路における地絡故障を重点的に探索するため、整流器97の1次側電路が地絡故障した場合には前記の状況と重なり故障点の探索・除去や変電所の復電に多くの時間が必要となり、列車の運行に多大な影響を与えるという問題があった。   For this reason, when the DC high-voltage grounding relay 90 is operated, the worker in charge of restoration mainly searches for a ground fault in the DC circuit on the secondary side of the rectifier 97, so that the primary side circuit of the rectifier 97 is grounded. In the case of a fault, there is a problem that the above situation overlaps with the above situation, and it takes a lot of time to search for and remove the failure point and to recover the power at the substation, which greatly affects the operation of the train.

なお、図7は健全状態での整流器用変圧器96と整流器97の間の接続線の遮蔽層が接続された接地線98に流れる電流の高調波成分を示す図である。送配電線などの一般の3相交流において故障が発生していない健全状態では、3相一括接地されていれば接地線98にはほとんど電流が流れないが、本箇所は帰線92と整流器97のダイオードを介して真の大地と電気的に接続された特殊な接地系となっているため対地電位は正負非対称の歪み波形となる。このため健全状態においても整流器97の1次側に起因する基本波電流や第5次高調波電流や第7次高調波電流、2次側の整流リップルに起因する第6次高調波電流の整数倍の高調波電流など様々な電流が流れる。加えて、変電所機器および支持金物は近接する電路等からの誘導の影響を受けるため、これによる電流も前記に加えて接地線に流れることになる。   FIG. 7 is a diagram showing harmonic components of the current flowing through the ground line 98 to which the shielding layer of the connection line between the rectifier transformer 96 and the rectifier 97 is connected in a healthy state. In a healthy state where no failure has occurred in a general three-phase alternating current such as a transmission / distribution line, almost no current flows through the grounding wire 98 if the three-phase collective grounding is performed, but this point is the return line 92 and the rectifier 97. The ground potential is a positive and negative asymmetric distortion waveform because it is a special grounding system that is electrically connected to the true ground via the diode. For this reason, even in a healthy state, the fundamental wave current, the fifth harmonic current, the seventh harmonic current, and the sixth harmonic current caused by the rectification ripple on the secondary side are caused by the primary side of the rectifier 97. Various currents such as double harmonic currents flow. In addition, since the substation equipment and the support hardware are influenced by induction from nearby electric circuits and the like, the current due to this also flows to the ground line in addition to the above.

本発明は上述の事柄を考慮に入れてなされたものであり、その目的は、直流電鉄用変電所の整流器用変圧器と整流器の間の接続線で地絡故障が発生した場合と直流母線での地絡故障を切り分ける方法を提供し、故障点の探索を容易とし、変電所の復電を速やかに実施させ、列車の運行への影響を最小限に抑えることができる直流き電用整流器の交流側接続線の地絡故障検出方法を提供することにある。   The present invention has been made in consideration of the above-mentioned matters, and the purpose of the present invention is the case where a ground fault occurs in the connection line between the rectifier transformer and the rectifier of the DC railway substation and the DC bus. DC power supply rectifiers that provide a method of isolating ground faults in the vehicle, facilitate the search for failure points, quickly implement power recovery at substations, and minimize the impact on train operation An object of the present invention is to provide a ground fault detection method for an AC side connection line.

前記課題を解決するため、第1発明は、直流電鉄用変電所の整流器用変圧器と整流器の間の接続線の電路支持具あるいは接続線の遮蔽層が接続された接地線に流れる電流を測定し、この電流の商用周波数に対する高調波成分の内、第3次高調波成分を抽出し、この第3次高調波成分の大きさの変化によって、直流電鉄用変電所の整流器用変圧器と整流器との間の接続線における地絡故障を検出することを特徴とする直流き電用整流器の交流側接続線の地絡故障検出方法を提供する。(請求項1)   In order to solve the above-mentioned problem, the first invention measures the current flowing through the grounding line to which the electric line support of the connecting line between the rectifier transformer and the rectifier of the DC railway substation or the shielding layer of the connecting line is connected. Then, the third harmonic component is extracted from the harmonic components of the current with respect to the commercial frequency, and the rectifier transformer and the rectifier of the substation for the DC railway are changed by the change in the magnitude of the third harmonic component. A ground fault detection method for an AC side connection line of a DC feeding rectifier is provided. (Claim 1)

一般的に直流高圧接地継電器は直流電鉄用変電所において、整流器の2次側電路(直流側)の地絡故障の保護を目的とするものであるが、整流器用変圧器と整流器の間の整流器の1次側電路(交流側)の地絡故障によっても動作する。   In general, DC high-voltage grounded relays are intended to protect ground faults in the secondary side of the rectifier (DC side) in DC substations. It operates also by the ground fault of the primary side electric circuit (AC side).

図8は、図6に示す整流器の1次側電路(交流側)で地絡故障が発生した場合に流れる電流の流れを示す図である。図8に示されるように、整流器97の1次側電路(交流側)で地絡故障が発生した場合には、地絡抵抗98R’および接地線98を通って接地マット91、さらに接地抵抗91Rと真の大地99、レール漏れ抵抗92Rとレール、そして、帰線92、整流器97に戻る電流の回路が構成される。この為、整流器97の各整流素子の方向から接地マット91が正(+)極性の電位となるので整流器の交流側電路の地絡故障であっても直流高圧接地継電器90が動作する特性がある。   FIG. 8 is a diagram illustrating a flow of current that flows when a ground fault occurs in the primary side electric circuit (AC side) of the rectifier illustrated in FIG. 6. As shown in FIG. 8, when a ground fault occurs in the primary side electric circuit (AC side) of the rectifier 97, the grounding mat 91 and the grounding resistance 91R pass through the grounding resistance 98R ′ and the grounding wire 98. And the true ground 99, the rail leakage resistance 92R and the rail, the return line 92, and the circuit of the current returning to the rectifier 97 are configured. For this reason, since the grounding mat 91 has a positive (+) polarity potential from the direction of each rectifying element of the rectifier 97, there is a characteristic that the DC high-voltage grounding relay 90 operates even if there is a ground fault in the AC side circuit of the rectifier. .

図9は、図8における整流器用変圧器96と整流器97の間の接続線の遮蔽層が接続された接地線98に流れる電流の周波数分析の結果を示すものであり、この結果から接地線98に流れる電流には商用周波数の電流(基本波電流)の他に第3次高調波成分の電流や整流器97の整流作用に付随する高調波電流等が流れることが分かる。そして、図7と比較すると明らかなように、第3次高調波電流は整流器の1次側で地絡故障がなければ、ほとんど存在しない電流である。   FIG. 9 shows the result of frequency analysis of the current flowing in the ground line 98 to which the shielding layer of the connection line between the rectifier transformer 96 and the rectifier 97 in FIG. 8 is connected. It can be seen that, in addition to the current of the commercial frequency (fundamental wave current), the current of the third harmonic component, the harmonic current associated with the rectifying action of the rectifier 97, and the like flow. As is clear from comparison with FIG. 7, the third harmonic current is almost nonexistent if there is no ground fault on the primary side of the rectifier.

第1発明の直流き電用整流器の交流側接続線の地絡故障検出方法は第3次高調波成分に着目し、この第3次高調波成分を指標として、整流器の1次側電路(交流側)の地絡故障を検出することに利用するものであり、これによって整流器の1次側の地絡故障を高精度に判別することができる。   The ground fault detection method for the AC side connection line of the DC feeding rectifier of the first invention pays attention to the third harmonic component, and using the third harmonic component as an index, the primary side electric circuit (AC) of the rectifier This is used to detect a ground fault on the primary side of the rectifier, whereby the ground fault on the primary side of the rectifier can be determined with high accuracy.

整流器用変圧器と整流器の間の接続線の電路支持具あるいは接続線の遮蔽層が接続された接地線に流れる電流を計測し、この電流の第3次高調波成分の大きさの変化(閾値を超えて大きくなる)によって、整流器用変圧器と整流器との間の接続線における地絡故障を検出することができる。また、直流高圧接地継電器が動作した場合の原因が整流器の直流側にあるのか、交流側(すなわち、整流器用変圧器と整流器の間の接続線)にあるのかが判別できることにより、故障点探索時間を短縮し、変電所の復電を速やかに行い、列車の運行への影響を低減することができる。また、第1発明の地絡故障検出方法により整流器用変圧器と整流器の間の接続線の地絡故障を検知した場合に、整流器用変圧器の1次側の交流遮断器のみを遮断させ、かつ直流高圧接地継電器よりも早く遮断信号を発信するように連動を構成することで、同故障発生時の停電範囲を必要最小限にするとともに変電所の鎖錠を防止することができるため列車運行への影響を最小限に留めることができる。   Measure the current flowing in the grounding line connected to the electrical circuit support of the connecting line between the transformer for rectifier and the rectifier or to the shielding layer of the connecting line, and change the magnitude of the third harmonic component of this current (threshold value) Therefore, a ground fault in the connection line between the rectifier transformer and the rectifier can be detected. In addition, it is possible to determine whether the cause of the operation of the DC high-voltage grounding relay is on the DC side of the rectifier or on the AC side (that is, the connection line between the rectifier transformer and the rectifier), so that the failure point search time can be determined. The power station can be shortened, the substation can be restored quickly, and the impact on train operation can be reduced. In addition, when a ground fault of the connection line between the rectifier transformer and the rectifier is detected by the ground fault detection method of the first invention, only the AC breaker on the primary side of the rectifier transformer is shut off, In addition, by configuring the interlock so that the interruption signal is transmitted earlier than the DC high-voltage grounding relay, train operation is possible because the power outage range at the time of the failure can be minimized and the substation can be locked. Can be kept to a minimum.

第2発明は、直流電鉄用変電所の整流器用変圧器と整流器の間の接続線の電路支持具あるいは接続線の遮蔽層が接続された接地線に流れる電流を測定し、この電流の商用周波数に対する高調波成分を解析し、少なくとも一つの高調波成分の前記接地線に流れる電流の実効値に対する含有率の変化によって、直流電鉄用変電所の整流器用変圧器と整流器との間の接続線における地絡故障を検出することを特徴とする直流き電用整流器の交流側接続線の地絡故障検出方法を提供する。(請求項2)   The second aspect of the invention measures the current flowing through the grounding line to which the electric circuit support of the connecting line between the rectifier transformer and the rectifier of the DC railway substation or the shielding layer of the connecting line is connected, and the commercial frequency of this current In the connection line between the rectifier transformer and the rectifier of the substation for DC railway, by analyzing the content ratio of the at least one harmonic component with respect to the effective value of the current flowing in the ground line There is provided a ground fault detection method for an AC side connection line of a DC feeding rectifier characterized by detecting a ground fault. (Claim 2)

第2発明は地絡故障時に整流器用変圧器と整流器の間の接続線の電路支持具あるいは接続線の遮蔽層が接続された接地線に流れる電流の高調波成分の含有率に着目し、この高調波成分の含有率の変化を指標として、整流器の1次側電路(交流側)の地絡故障を検出することに利用するものであり、これによって整流器の1次側電路の地絡故障を高精度に判別することができる。   2nd invention pays attention to the content rate of the harmonic component of the electric current which flows into the earthing line to which the electrical circuit support tool of the connection line between the transformer for rectifiers or the shield layer of the connection line was connected at the time of a ground fault, and this This is used to detect a ground fault in the primary side circuit (AC side) of the rectifier using the change in the content of harmonic components as an index. It can be determined with high accuracy.

整流器用変圧器と整流器の間の接続線の電路支持具あるいは接続線の遮蔽層が接続された接地線に流れる電流を計測し、この電流の高調波成分を解析し、少なくとも一つの高調波成分の接地線に流れる電流の実効値に対する含有率の変化によって、整流器用変圧器と整流器の間の接続線における地絡故障が発生していることを検出できる。なお、健全状態では接地線に流れる電流の実効値に対する第3次高調波成分の含有率はきわめて少なく、第6高調波成分の含有率は基本波成分より大きいが、地絡故障が発生すると、第3次高調波成分の含有率が増大し、第6次高調波成分の含有率は減少するので、この含有率の変化を用いて整流器用変圧器と整流器の間の接続線における地絡故障を検知できる。また、第2発明の地絡故障検出方法により整流器用変圧器と整流器の間の接続線の地絡故障を検知した場合に、整流器用変圧器の1次側の交流遮断器のみを遮断させ、かつ直流高圧接地継電器よりも早く遮断信号を発信するように連動を構成することで、同故障発生時の停電範囲を必要最小限にするとともに変電所の鎖錠を防止することができるため列車運行への影響を最小限に留めることができる。   At least one harmonic component is measured by measuring the current flowing through the ground wire connected to the electrical circuit support of the connection line between the transformer for rectifier and the rectifier or the shield layer of the connection line, and analyzing the harmonic component of this current. It is possible to detect that a ground fault has occurred in the connection line between the rectifier transformer and the rectifier by the change in the content ratio with respect to the effective value of the current flowing in the ground line. In the healthy state, the content of the third harmonic component with respect to the effective value of the current flowing through the grounding wire is very small and the content of the sixth harmonic component is larger than the fundamental component, but when a ground fault occurs, Since the content ratio of the third harmonic component increases and the content ratio of the sixth harmonic component decreases, a ground fault in the connection line between the rectifier transformer and the rectifier is used by using the change in the content ratio. Can be detected. In addition, when a ground fault of the connection line between the rectifier transformer and the rectifier is detected by the ground fault detection method of the second invention, only the AC breaker on the primary side of the rectifier transformer is shut off, In addition, by configuring the interlock so that the interruption signal is transmitted earlier than the DC high-voltage grounding relay, train operation is possible because the power outage range at the time of the failure can be minimized and the substation can be locked. Can be kept to a minimum.

前述したように、第1発明の直流き電用整流器の交流側接続線の地絡故障検出方法によれば、整流器の1次側電路(交流側)で回路が地絡故障を起こした場合に接地線に流れる地絡電流に特徴的に含まれる第3次高調波成分を用いて地絡故障が整流器の交流側電路において生じたことを高精度に検出することができる。これにより整流器の1次側電路での地絡故障における故障点の探索および除去を容易とし、変電所の復電を速やかに行い、列車の運行への影響を最小限に抑えることができる。   As described above, according to the ground fault detection method for the AC side connection line of the DC feeding rectifier of the first invention, when the circuit has a ground fault in the primary side circuit (AC side) of the rectifier, It is possible to detect with high accuracy that a ground fault has occurred in the AC side circuit of the rectifier using a third harmonic component characteristically included in the ground fault current flowing in the ground line. This facilitates the search and removal of the fault point in the case of a ground fault in the primary side circuit of the rectifier, promptly recovers the substation, and minimizes the influence on the train operation.

第2発明の直流き電用整流器の交流側接続線の地絡故障検出方法によれば、整流器の1次側電路(交流側)の地絡故障によって生じる各高調波成分の地絡電流の実効値に対する含有率の変化をとらえて、整流器用変圧器と整流器の間の接続線における地絡故障の発生を、精度良く検出することができるので、整流器の交流側電路での地絡故障における故障点の探索および除去を容易とし、変電所の復電を速やかに行い、列車の運行への影響を最小限に抑えることができる。また、第1発明または第2発明の地絡故障検出方法により整流器用変圧器と整流器の間の接続線の地絡故障を検知した場合に、変電所の配電盤に故障検知情報を伝送することで、変電所の連動に本故障情報を考慮した制御を組み込むことができる。これにより健全部分(例えば、他の整流回路等)に対する復電操作を抑止しないように連動構成を行えば早期の復電を達成することができる。   According to the ground fault detection method for the AC side connection line of the DC feeding rectifier of the second invention, the effective of the ground fault current of each harmonic component caused by the ground fault of the primary side circuit (AC side) of the rectifier. Since it is possible to accurately detect the occurrence of a ground fault in the connection line between the rectifier transformer and the rectifier by grasping the change in the content ratio with respect to the value, the fault in the ground fault in the AC side circuit of the rectifier This makes it easy to search for and remove points, quickly restore power at substations, and minimize the impact on train operations. In addition, when a ground fault in the connection line between the rectifier transformer and the rectifier is detected by the ground fault detection method of the first invention or the second invention, the fault detection information is transmitted to the distribution board of the substation. In addition, it is possible to incorporate control that takes this fault information into account for substation linkage. As a result, an early power recovery can be achieved if the interlocking configuration is performed so as not to suppress the power recovery operation for a healthy portion (for example, another rectifier circuit or the like).

第1実施形態の直流き電用整流器の交流側接続線の地絡故障検出方法を実施する電鉄直流変電所の構成を示す図である。It is a figure which shows the structure of the railway DC substation which implements the ground fault detection method of the alternating current side connection line of the rectifier for DC feeding of 1st Embodiment. 第1実施形態の直流き電用整流器の交流側接続線の地絡故障検出方法を実施する地絡故障検出装置の構成を示す図である。It is a figure which shows the structure of the ground fault detection apparatus which implements the ground fault detection method of the alternating current side connection line of the DC feeding rectifier of 1st Embodiment. 第1実施形態の直流き電用整流器の交流側接続線の地絡故障検出方法を説明する図である。It is a figure explaining the ground-fault fault detection method of the alternating current side connection line of the rectifier for direct current feeding of 1st Embodiment. 第2実施形態の直流き電用整流器の交流側接続線の地絡故障検出方法を実施する地絡故障検出装置の構成を示す図である。It is a figure which shows the structure of the ground fault detection apparatus which implements the ground fault detection method of the alternating current side connection line of the direct current feeding rectifier of 2nd Embodiment. 第2実施形態の直流き電用整流器の交流側接続線の地絡故障検出方法を説明する図である。It is a figure explaining the ground-fault fault detection method of the alternating current side connection line of the rectifier for direct current feeding of 2nd Embodiment. 従来の直流高圧接地継電器が設置される直流電鉄用変電所の構成を示す図である。It is a figure which shows the structure of the substation for DC railways in which the conventional DC high voltage grounding relay is installed. 健全状態体時に接地線に流れる電流の高調波成分を示す図である。(接地線電流の実効値に対する各高周波成分の含有率を示す。)It is a figure which shows the harmonic component of the electric current which flows into a ground line at the time of a healthy state body. (Shows the content of each high-frequency component with respect to the effective value of the ground line current.) 直流電鉄用変電所の整流器用変圧器と整流器間の接続線(交流側)で地絡故障が発生したときの電流の流れを説明する図である。It is a figure explaining the flow of an electric current when a ground fault has generate | occur | produced in the connection line (AC side) between the transformer for rectifiers of a DC railway substation, and a rectifier. 直流電鉄用変電所の整流器用変圧器と整流器間の接続線(交流側)で地絡故障が発生したときに接地線に流れる電流の高調波成分を示す図である。(接地線電流の実効値に対する各高調波成分の含有率を示す。)It is a figure which shows the harmonic component of the electric current which flows into a ground line, when a ground fault has generate | occur | produced in the connection line (AC side) between the transformer for rectifiers of a DC railway substation, and a rectifier. (Shows the content of each harmonic component with respect to the effective value of the ground line current.)

以下、図1〜図3を用いて、本発明の第1実施形態に係る直流き電用整流器の交流側接続線の地絡故障検出方法の具体的な実施形態について、図面を参照しつつ詳細に説明する。図1に示すように、直流高圧接地継電器Rは、変電所2の接地マット3と帰線4の間に設けられ、接地マット3と帰線4の間の電位差を測定する電位差測定部5と、測定された電位差を用いて地絡故障を判定する地絡判定出力部6を有するものである。なお、3rは接地マット3の接地抵抗、4rは帰線4およびレールと真の大地Gの間にあるレール漏れ抵抗である。   Hereinafter, a specific embodiment of the ground fault detection method for the AC side connection line of the DC feeding rectifier according to the first embodiment of the present invention will be described in detail with reference to the drawings using FIGS. Explained. As shown in FIG. 1, the DC high-voltage ground relay R is provided between the ground mat 3 and the return line 4 of the substation 2, and has a potential difference measuring unit 5 that measures the potential difference between the ground mat 3 and the return line 4. A ground fault determination output unit 6 that determines a ground fault using the measured potential difference is provided. 3r is a grounding resistance of the grounding mat 3, and 4r is a return line 4 and a rail leakage resistance between the rail and the true ground G.

また、7は整流器用変圧器、7Aは前記地絡判定出力部6が地絡故障を判定するときに整流器用変圧器7への給電を停止させる交流遮断器、8は整流器、9は整流器用変圧器7と整流器8の間の接続線、10は接続線9の遮蔽層9sが接続された接地線である。なお、前記接続線9は芯線となる導体と、この導体を保護する絶縁物からなる被覆9iと、この被覆9iの外側を覆うように設けた前記遮蔽層9sとこの遮蔽層9sを保護する高分子材料からなる外装被覆9pを備えるケーブルである。したがって、導体と遮蔽層9sの間は被覆9iによる大きな絶縁抵抗10rを介して接続されるが、接続線9に地絡故障が発生したときには導体と遮蔽層9sの間はより小さい地絡抵抗10r’によって接続される。   7 is a rectifier transformer, 7A is an AC circuit breaker that stops power supply to the rectifier transformer 7 when the ground fault determination output unit 6 determines a ground fault, 8 is a rectifier, and 9 is a rectifier. A connection line 10 between the transformer 7 and the rectifier 8 is a ground line to which the shielding layer 9s of the connection line 9 is connected. The connecting wire 9 includes a conductor serving as a core wire, a coating 9i made of an insulating material for protecting the conductor, the shielding layer 9s provided so as to cover the outside of the coating 9i, and a high level for protecting the shielding layer 9s. This is a cable provided with an outer sheath 9p made of a molecular material. Therefore, the conductor and the shielding layer 9s are connected via the large insulation resistance 10r by the covering 9i, but when a ground fault occurs in the connection line 9, the conductor and the shielding layer 9s have a smaller grounding resistance 10r. Connected by '.

図2に示すように、本発明の直流き電用整流器の交流側接続線の地絡故障検出方法に係る地絡故障検出装置1は、前記接地線10に流れる電流を測定する電流測定部11と、この電流測定部11に接続された例えばフィルタ回路からなる第3次高調波抽出部12と、この第3次高調波抽出部12に接続された交流側地絡判定出力部13と、この交流側地絡判定出力部13が接続された交流側地絡表示部14とを備え、本実施形態における各部材12〜14は一つの地絡故障ユニット1a内に形成されている。また、15は直流母線、16は直流高速度遮断器である。   As shown in FIG. 2, the ground fault detection apparatus 1 according to the ground fault detection method for the AC side connection line of the DC feeding rectifier of the present invention includes a current measuring unit 11 that measures the current flowing through the ground line 10. A third harmonic extraction unit 12 composed of, for example, a filter circuit connected to the current measurement unit 11, an AC side ground fault determination output unit 13 connected to the third harmonic extraction unit 12, The AC side ground fault determination output unit 13 is connected to the AC side ground fault display unit 14, and each member 12 to 14 in the present embodiment is formed in one ground fault unit 1a. Further, 15 is a DC bus, and 16 is a DC high speed circuit breaker.

図3に示すように、本実施形態の直流き電用整流器の交流側接続線の地絡故障検出方法は、まず前記接地線10に流れる電流を電流測定部11によって測定する(ステップS1)。なお、電流測定部11は例えば交流変流器のようなものを用いて形成されることが好ましく、以下のステップS2〜が時系列的に実行されるとしても連続的に電流測定するものであることが好ましい。   As shown in FIG. 3, in the ground fault detection method for the AC side connection line of the DC feeding rectifier of this embodiment, first, the current flowing through the ground line 10 is measured by the current measuring unit 11 (step S <b> 1). The current measuring unit 11 is preferably formed using an AC current transformer, for example, and continuously measures current even if the following steps S2 to S2 are executed in time series. It is preferable.

次に、前記第3次高調波抽出部12を用いて測定した電流の商用周波数に対する高調波成分の内、第3次高調波成分を抽出する(ステップS2)。第3次高調波成分は例えばフィルタ回路などハードウェアを用いて行なうことにより電流の測定と同時にリアルタイムに行なうことができるので好ましいが、電流の測定値を一端デジタル信号に変換して演算処理部に取り込み、この演算処理部によって実行可能なソフトウェア処理によって実現してもよく、この場合、第3次高調波抽出部12は演算処理部および第3次高調波抽出プログラムからなる。   Next, the third harmonic component is extracted from the harmonic components for the commercial frequency of the current measured using the third harmonic extraction unit 12 (step S2). The third harmonic component is preferable because it can be performed in real time simultaneously with the current measurement by using hardware such as a filter circuit, for example. However, the measured current value is converted into a digital signal at one time to the arithmetic processing unit. The third harmonic extraction unit 12 may include an arithmetic processing unit and a third harmonic extraction program.

さらに、交流側地絡判定出力部13によって第3次高調波成分が閾値を超過するときを検知することにより、第3次高調波成分の大きさの変化によって、変電所2の整流器用変圧器7と整流器8との間の接続線9における地絡故障を検出する(ステップS3)、このステップS3において、第3次高調波成分が閾値以上でないと判定したときには、前記ステップS1に戻って、閾値以上となるまでステップS1〜S3を繰り返す。なお、このステップS3の処理も比較器のようなハードウェアを用いて同時に連続的に行なうことが好ましいが、前記演算処理部によって実行可能なソフトウェア処理によって実現してもよく、この場合、交流側地絡判定出力部13は演算処理部および交流側地絡判定出力プログラムからなる。   Further, by detecting when the third harmonic component exceeds the threshold by the AC side ground fault determination output unit 13, the transformer for the rectifier of the substation 2 is detected by the change in the magnitude of the third harmonic component. A ground fault in the connection line 9 between the rectifier 7 and the rectifier 8 is detected (step S3). When it is determined in this step S3 that the third harmonic component is not equal to or greater than the threshold value, the process returns to the step S1. Steps S1 to S3 are repeated until the threshold value is exceeded. The processing in step S3 is also preferably performed simultaneously and continuously using hardware such as a comparator, but may be realized by software processing that can be executed by the arithmetic processing unit. The ground fault determination output unit 13 includes an arithmetic processing unit and an AC side ground fault determination output program.

前記ステップS3において第3次高調波成分が閾値以上であると判定したときには、整流器の1次側(交流側)における地絡故障を交流側地絡表示器14に表示する(ステップS4)。なお、交流側地絡表示器14は変電所の制御電源が失われた際にも表示内容を保持可能なものであることが好ましい。   When it is determined in step S3 that the third harmonic component is equal to or greater than the threshold value, a ground fault on the primary side (AC side) of the rectifier is displayed on the AC side ground fault indicator 14 (step S4). In addition, it is preferable that the AC side ground fault indicator 14 can hold the display contents even when the control power of the substation is lost.

上述のように直流き電用整流器の交流側接続線の地絡故障検出方法を実施することにより、整流器8の1次側(整流器用変圧器7と整流器8の間)において地絡故障が発生したときに、これを表示器14に表示させることができるので、交流遮断器7Aならびに直流高速度遮断器16が遮断した後に、この遮断の原因となる地絡故障の発生位置が整流器8の1次側電路であることを確認できる。   As described above, a ground fault is detected on the primary side of the rectifier 8 (between the rectifier transformer 7 and the rectifier 8) by performing the ground fault detection method for the AC side connection line of the DC feeding rectifier. Since this can be displayed on the display 14, after the AC circuit breaker 7 </ b> A and the DC high-speed circuit breaker 16 are interrupted, the occurrence position of the ground fault causing the interruption is 1 of the rectifier 8. It can be confirmed that this is the secondary electric circuit.

すなわち、前記整流器8の1次側電路で地絡故障が発生した場合、地絡電流が地絡抵抗10r’および接地線10を介して接地マット3に流れ、さらに接地抵抗3rを介して真の大地Gに、そしてレール漏れ抵抗4rを介して帰線4、整流器8という回路で地絡電流が流れるため、接地マット3と帰線4の間に接続される電位差測定部5の両端には接地マット3から帰線4までのインピーダンスによって接地マット3が正(+)極性の電位となって直流高圧接地継電器Rが動作するので、交流遮断器7Aおよび直流高速度遮断器16が遮断して変電所2の直流母線への給電が停止する。   That is, when a ground fault occurs in the primary side circuit of the rectifier 8, a ground fault current flows to the ground mat 3 via the ground fault resistor 10r ′ and the ground line 10, and further true through the ground resistor 3r. Since a ground fault current flows to the ground G and through the circuit of the return line 4 and the rectifier 8 via the rail leakage resistance 4r, the potential difference measuring unit 5 connected between the grounding mat 3 and the return line 4 is grounded at both ends. Since the grounding mat 3 becomes a positive (+) polarity potential due to the impedance from the mat 3 to the return line 4, the DC high-voltage grounding relay R operates, so that the AC circuit breaker 7A and the DC high-speed circuit breaker 16 are cut off to transform the power. Power supply to the DC bus at station 2 stops.

また、地絡電流には第3次高調波電流が含まれるので、この第3次高調波成分があらかじめ設定された閾値を超過することにより、本発明の直流き電用整流器の交流側接続線の地絡故障検出方法によって整流器用変圧器と整流器間の電路(交流側)の地絡故障が検出されて、交流側地絡表示部14に表示される。したがって、復旧を行なう作業者は交流側地絡表示部14の表示を確認するときに地絡故障が整流器8の1次側(変圧器7と整流器8の間、すなわち交流側)における地絡故障であることを容易に判別できるので、早期復電を達成することができる。   Further, since the third harmonic current is included in the ground fault current, when the third harmonic component exceeds a preset threshold, the AC side connecting line of the DC feeder rectifier of the present invention is used. The ground fault of the electric circuit (AC side) between the rectifier transformer and the rectifier is detected by the ground fault detection method of, and displayed on the AC side ground fault display unit 14. Therefore, when the operator who performs restoration checks the display on the AC side ground fault display unit 14, the ground fault occurs on the primary side of the rectifier 8 (between the transformer 7 and the rectifier 8, that is, the AC side). Therefore, early power recovery can be achieved.

他方、整流器8の2次側電路(直流側)が地絡した場合には電流測定部による電流測定値に第3次高調波成分の電流はほとんど存在せず、第3次高調波抽出部12からの出力がほとんどないので、交流側地絡判定出力部13が交流側地絡判定を行うこともなく、交流側地絡表示部14への表示も行われることがない。したがって、復旧担当の作業員は交流側地絡表示部14の表示がないことから、地絡故障が整流器8の2次側(直流側)で発生したことを確認でき、直流側回路の故障探索に集中することができる。   On the other hand, when the secondary side circuit (DC side) of the rectifier 8 is grounded, there is almost no third harmonic component current in the current measurement value by the current measurement unit, and the third harmonic extraction unit 12 is present. Therefore, the AC side ground fault determination output unit 13 does not perform the AC side ground fault determination, and the display on the AC side ground fault display unit 14 is not performed. Therefore, since the worker in charge of restoration does not have the display on the AC side ground fault display section 14, it can confirm that a ground fault has occurred on the secondary side (DC side) of the rectifier 8, and search for a fault in the DC side circuit. Can concentrate on.

図4、図5は第2実施形態の直流き電用整流器の交流側接続線の地絡故障検出方法を説明する図であり、図4は本発明の第2実施形態の直流き電用整流器の交流側接続線の地絡故障検出方法を実施する地絡故障検出装置20の構成を示す図、図5は第2実施形態の直流き電用整流器の交流側接続線の地絡故障検出方法の一例を説明する図である。なお、これらの図において、図1〜図3と同じ符号を付した部材は同一または同等の部分であるから、その詳細な説明を省略する。   4 and 5 are diagrams for explaining a ground fault detection method for an AC side connection line of a DC feeding rectifier according to the second embodiment, and FIG. 4 is a DC feeding rectifier according to the second embodiment of the present invention. The figure which shows the structure of the ground fault detection apparatus 20 which implements the ground fault detection method of the AC side connection line of FIG. 5, FIG. 5 is the ground fault detection method of the AC side connection line of the rectifier for DC feeding of 2nd Embodiment. It is a figure explaining an example. In these drawings, members denoted by the same reference numerals as those in FIGS. 1 to 3 are the same or equivalent parts, and thus detailed description thereof is omitted.

図4に示す地絡故障検出装置20は電流測定部11によって測定された電流の高調波成分を解析するFFT部(高速フーリエ変換:Fast Fourier Transform)21と、このFFT部21によって解析された高調波成分の接地線電流の実効値に対する含有率の変化を検知して整流器用変圧器と整流器間の電路(交流側)の地絡故障を判定する交流側地絡判定部22とを備える。なお、これらの部材21,22,14は地絡判定ユニット20aを構成するものであり、その大部分をワンチップマイコンなどの演算処理部によって実現してもよい。この場合、例えばFFT部21と交流側地絡判定部22は演算処理部とこの演算処理部によって実行可能な交流側地絡判定プログラムによって実現される。   The ground fault detection device 20 shown in FIG. 4 includes an FFT unit (Fast Fourier Transform) 21 that analyzes the harmonic component of the current measured by the current measuring unit 11, and the harmonics analyzed by the FFT unit 21. An AC-side ground fault determination unit 22 that detects a change in the content ratio of the wave component with respect to the effective value of the ground line current and determines a ground fault in the electric circuit (AC side) between the rectifier transformer and the rectifier. These members 21, 22, and 14 constitute the ground fault determination unit 20a, and most of them may be realized by an arithmetic processing unit such as a one-chip microcomputer. In this case, for example, the FFT unit 21 and the AC side ground fault determination unit 22 are realized by an arithmetic processing unit and an AC side ground fault determination program that can be executed by the arithmetic processing unit.

図5において、ステップS1によって測定された電流は、FFTなどの周波数解析を実施することにより高調波成分の含有率を明らかにする(ステップS5)。なお、本発明はマイコン等を用いたFFTに限定されるものではなく、少なくとも交流側地絡によって飛躍的に増加する第3次高調波成分および/または交流側地絡によって減少する第6次高調波成分を抽出するフィルタ回路などのハードウェアによって形成することも考えられる。   In FIG. 5, the current measured in step S1 clarifies the content of harmonic components by performing frequency analysis such as FFT (step S5). The present invention is not limited to FFT using a microcomputer or the like, but at least a third harmonic component that dramatically increases due to an AC side ground fault and / or a sixth harmonic that decreases due to an AC side ground fault. It is also conceivable to form it by hardware such as a filter circuit for extracting a wave component.

次いで、解析された高調波成分の接地線電流の実効値に対する含有率が、交流側地絡故障を特徴づけるような変化を示すかどうかによって、交流側地絡故障の発生を検出する(ステップS6)。なお、このステップS6において変化なしと判定した場合は、ステップS1に戻って、ステップS1,S5,S6の処理を繰り返し、変化ありと判定した場合には、次のステップS4を実行する。   Next, the occurrence of the AC side ground fault is detected depending on whether the content ratio of the analyzed harmonic component to the effective value of the ground line current shows a change that characterizes the AC side ground fault (step S6). ). If it is determined in step S6 that there is no change, the process returns to step S1, and the processes in steps S1, S5, and S6 are repeated. If it is determined that there is a change, the next step S4 is executed.

また、判定基準は種々の変形が考えられるが、例えば、交流側の接続線で地絡故障が起こると接地線電流には基本波成分が最も多くなり、次いで第3次高調波成分が多くなるので、基本波成分と第3次高調波成分の含有率が共に大きくなることを指標とする、または、接地線電流に含まれる整流リップルの割合が相対的に減少するとため、第3次高調波成分、第5次高調波成分の含有率が第6次高調波成分の含有率より大きくなることを指標とする、あるいは高調波電流の含有率の評価を接地線電流の実効値に対する割合ではなく、接地線電流の基本波成分に対する割合でおこなうなどが考えられる。   In addition, various criteria can be considered. For example, when a ground fault occurs in the connection line on the AC side, the ground wave current has the largest fundamental wave component, and then the third harmonic component increases. Therefore, since the index is that both the contents of the fundamental wave component and the third harmonic component increase, or the ratio of the rectification ripple contained in the ground line current is relatively reduced, the third harmonic The content ratio of the component and the fifth harmonic component is larger than the content ratio of the sixth harmonic component, or the evaluation of the harmonic current content rate is not a ratio to the effective value of the ground line current. It is conceivable to carry out at a ratio to the fundamental wave component of the ground line current.

上述のように、第2実施形態の直流き電用整流器の交流側接続線の地絡故障検出方法によっても交流側における地絡故障発生を精度よく判定することができるので、速やかな復電に貢献できる。   As described above, it is possible to accurately determine the occurrence of the ground fault on the AC side even by the ground fault detection method for the AC side connection line of the DC feeding rectifier according to the second embodiment. Can contribute.

1,20 直流き電用整流器の地絡故障検出装置
2 変電所
3 接地マット
4 帰線
7 整流器用変圧器
8 整流器
9 接続線
9s 遮蔽層
10 接地線
11 電流測定部
12 第3次高調波抽出部
14 交流側地絡表示部
1,20 DC feeding rectifier ground fault detection device 2 Substation 3 Grounding mat 4 Return line 7 Rectifier transformer 8 Rectifier 9 Connection line 9s Shielding layer 10 Grounding line 11 Current measurement unit 12 Third harmonic extraction Part 14 AC side ground fault display part

Claims (2)

直流電鉄用変電所の整流器用変圧器と整流器の間の接続線の電路支持具あるいは接続線の遮蔽層が接続された接地線に流れる電流を測定し、この電流の商用周波数に対する高調波成分の内、第3次高調波成分を抽出し、この第3次高調波成分の大きさの変化によって、直流電鉄用変電所の整流器用変圧器と整流器との間の接続線における地絡故障を検出することを特徴とする直流き電用整流器の交流側接続線の地絡故障検出方法。   Measure the current flowing through the grounding line connected to the circuit support of the connecting line or the shielding layer of the connecting line between the rectifier transformer and the rectifier of the DC railway substation, and the harmonic component of this current with respect to the commercial frequency Among them, the third harmonic component is extracted, and a ground fault in the connection line between the rectifier transformer and the rectifier of the DC railway substation is detected by the change in the magnitude of the third harmonic component. A ground fault detection method for an AC side connecting line of a DC feeding rectifier. 直流電鉄用変電所の整流器用変圧器と整流器の間の接続線の電路支持具あるいは接続線の遮蔽層が接続された接地線に流れる電流を測定し、この電流の商用周波数に対する高調波成分を周波数解析し、少なくとも一つの高調波成分の前記接地線に流れる電流の実効値に対する含有率の変化によって、直流電鉄用変電所の整流器用変圧器と整流器との間の接続線における地絡故障を検出することを特徴とする直流き電用整流器の交流側接続線の地絡故障検出方法。   Measure the current flowing in the grounding line connected to the circuit support of the connection line between the rectifier transformer and the rectifier of the DC railway substation or the shield layer of the connection line, and determine the harmonic component of this current relative to the commercial frequency. By analyzing the frequency and changing the content ratio of the at least one harmonic component with respect to the effective value of the current flowing in the ground line, a ground fault in the connection line between the rectifier transformer and the rectifier of the substation for DC railways is detected. A method for detecting a ground fault in an AC side connection line of a rectifier for DC feeding, characterized by detecting the ground fault.
JP2016044194A 2016-03-08 2016-03-08 Ground fault detection method for AC side connection line of DC feeding rectifier Active JP6599802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016044194A JP6599802B2 (en) 2016-03-08 2016-03-08 Ground fault detection method for AC side connection line of DC feeding rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016044194A JP6599802B2 (en) 2016-03-08 2016-03-08 Ground fault detection method for AC side connection line of DC feeding rectifier

Publications (2)

Publication Number Publication Date
JP2017159720A true JP2017159720A (en) 2017-09-14
JP6599802B2 JP6599802B2 (en) 2019-10-30

Family

ID=59853485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016044194A Active JP6599802B2 (en) 2016-03-08 2016-03-08 Ground fault detection method for AC side connection line of DC feeding rectifier

Country Status (1)

Country Link
JP (1) JP6599802B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163651A (en) * 2016-03-08 2017-09-14 西日本旅客鉄道株式会社 High voltage ground relay for dc railway substation
CN107962982A (en) * 2017-12-05 2018-04-27 西南交通大学 A kind of three-phase traction electric power system
CN108109332A (en) * 2017-12-20 2018-06-01 国网北京市电力公司 Ground-wire monitoring method and apparatus
CN108594031A (en) * 2017-12-26 2018-09-28 奥克斯空调股份有限公司 A kind of detection method and device of electrical equipment electrical power contacts state
CN108828385A (en) * 2018-05-17 2018-11-16 西南交通大学 The diagnostic method of subway Rectification Power Factor diode open-circuit failure based on input current
CN109596918A (en) * 2018-12-07 2019-04-09 江苏智臻能源科技有限公司 A kind of wall-breaking machine non-intruding discrimination method
CN109596910A (en) * 2018-11-19 2019-04-09 江苏智臻能源科技有限公司 A kind of dust catcher non-intruding discrimination method based on triple-frequency harmonics time domain changing rule
EP3496222A1 (en) * 2017-12-01 2019-06-12 LSIS Co., Ltd. Earth leakage circuit breaker based on the ratio of a specific harmonic current component to the fundamental wave current component
JP2019104373A (en) * 2017-12-12 2019-06-27 株式会社東芝 Ground fault protection device
CN114475370A (en) * 2022-03-14 2022-05-13 西南交通大学 Short circuit sectional protection method for contact network of cable through power supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009786A (en) * 1998-06-19 2000-01-14 Miwa Electric Co Ltd Ground fault detection method for secondary power cable of main transformer
JP2000333359A (en) * 1999-05-21 2000-11-30 Meidensha Corp Grounding fault-detecting device for mechanically/ electrically integrated system
JP2010042784A (en) * 2008-08-18 2010-02-25 West Japan Railway Co Direct current high-voltage grounding relay and circuit for preventing malfunction of relay
JP2010273478A (en) * 2009-05-22 2010-12-02 Kansai Electric Power Co Inc:The Method and system for detection of line-to-ground fault in dc and ac circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009786A (en) * 1998-06-19 2000-01-14 Miwa Electric Co Ltd Ground fault detection method for secondary power cable of main transformer
JP2000333359A (en) * 1999-05-21 2000-11-30 Meidensha Corp Grounding fault-detecting device for mechanically/ electrically integrated system
JP2010042784A (en) * 2008-08-18 2010-02-25 West Japan Railway Co Direct current high-voltage grounding relay and circuit for preventing malfunction of relay
JP2010273478A (en) * 2009-05-22 2010-12-02 Kansai Electric Power Co Inc:The Method and system for detection of line-to-ground fault in dc and ac circuit

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163651A (en) * 2016-03-08 2017-09-14 西日本旅客鉄道株式会社 High voltage ground relay for dc railway substation
US10742018B2 (en) 2017-12-01 2020-08-11 Lsis Co., Ltd Earth leakage circuit breaker
EP3496222A1 (en) * 2017-12-01 2019-06-12 LSIS Co., Ltd. Earth leakage circuit breaker based on the ratio of a specific harmonic current component to the fundamental wave current component
CN110011271A (en) * 2017-12-01 2019-07-12 Ls产电株式会社 Earth leakage breaker
CN110011271B (en) * 2017-12-01 2021-06-04 Ls产电株式会社 Earth leakage circuit breaker
CN107962982A (en) * 2017-12-05 2018-04-27 西南交通大学 A kind of three-phase traction electric power system
CN107962982B (en) * 2017-12-05 2023-10-13 西南交通大学 Three-phase traction power supply system and vehicle-mounted power supply system
JP7076998B2 (en) 2017-12-12 2022-05-30 株式会社東芝 Ground fault protection device
JP2019104373A (en) * 2017-12-12 2019-06-27 株式会社東芝 Ground fault protection device
CN108109332A (en) * 2017-12-20 2018-06-01 国网北京市电力公司 Ground-wire monitoring method and apparatus
CN108594031A (en) * 2017-12-26 2018-09-28 奥克斯空调股份有限公司 A kind of detection method and device of electrical equipment electrical power contacts state
CN108828385A (en) * 2018-05-17 2018-11-16 西南交通大学 The diagnostic method of subway Rectification Power Factor diode open-circuit failure based on input current
CN108828385B (en) * 2018-05-17 2019-10-18 西南交通大学 The diagnostic method of subway Rectification Power Factor diode open-circuit failure based on input current
WO2020103638A1 (en) * 2018-11-19 2020-05-28 江苏智臻能源科技有限公司 Non-intrusive vacuum cleaner identification method based on third harmonic time-domain change law
CN109596910A (en) * 2018-11-19 2019-04-09 江苏智臻能源科技有限公司 A kind of dust catcher non-intruding discrimination method based on triple-frequency harmonics time domain changing rule
CN109596918B (en) * 2018-12-07 2020-06-19 江苏智臻能源科技有限公司 Non-invasive identification method for wall breaking machine
CN109596918A (en) * 2018-12-07 2019-04-09 江苏智臻能源科技有限公司 A kind of wall-breaking machine non-intruding discrimination method
CN114475370A (en) * 2022-03-14 2022-05-13 西南交通大学 Short circuit sectional protection method for contact network of cable through power supply system
CN114475370B (en) * 2022-03-14 2023-04-07 西南交通大学 Short circuit sectional protection method for contact network of cable through power supply system

Also Published As

Publication number Publication date
JP6599802B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6599802B2 (en) Ground fault detection method for AC side connection line of DC feeding rectifier
CN103001187B (en) Frequency converter and the method for recognizing and blocking fault current in frequency converter
EP2485354B1 (en) Protection System for an Electrical Power Network Based on the inductance of a network section
RU2358273C2 (en) Technique and device for registration of transient fault to ground
CN104538940B (en) A kind of single-ended guard method of extra high voltage direct current transmission line
Bo et al. A new technique for transformer protection based on transient detection
US11143715B2 (en) Broken conductor detection in a multiple-phase electric power delivery system
SE536143C2 (en) Method for detecting earth faults in three-phase electric power distribution network
CN108321780A (en) It is a kind of to protect the small resistance grounding system inverse time lag zero sequence excess current earthing protecting method laterally coordinated based on each outlet
JP6543587B2 (en) High voltage earthing relay for DC railway substation
CN106655121A (en) Low-impedance adaptive protection method of micro-grid bus
Guerrero et al. Ground fault detection method for variable speed drives
EP3364201A1 (en) Method of identifying a fault in a railway electrification system
Conti Protection issues and state of the art for microgrids with inverter-interfaced distributed generators
CN105375447B (en) A kind of three-phase time sequence of coincidence setting method in reduction ac and dc systems apart from false protection rate
CN106655113A (en) Fault recognition and fault protection method of buscouple dead zone
JP2006200898A (en) Interrupt insulation measuring device
JP2018036054A (en) Earth detector, ground fault protection device, and method for detecting ground fault
JP2004239863A (en) Grounding method for transformer
Bapat et al. Advanced concepts in high resistance grounding
CN102830327A (en) Judging method and device of single-phase grounding fault line of small-current grounding system
JP5163452B2 (en) Fine ground fault detection device and fine ground fault detection method
Link Minimizing electric bearing currents in adjustable speed drive systems
JP7233322B2 (en) Ground fault detection method and device
JP4921246B2 (en) Ground fault distance relay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191003

R150 Certificate of patent or registration of utility model

Ref document number: 6599802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250