JP6543587B2 - High voltage earthing relay for DC railway substation - Google Patents

High voltage earthing relay for DC railway substation Download PDF

Info

Publication number
JP6543587B2
JP6543587B2 JP2016044193A JP2016044193A JP6543587B2 JP 6543587 B2 JP6543587 B2 JP 6543587B2 JP 2016044193 A JP2016044193 A JP 2016044193A JP 2016044193 A JP2016044193 A JP 2016044193A JP 6543587 B2 JP6543587 B2 JP 6543587B2
Authority
JP
Japan
Prior art keywords
ground fault
rectifier
ground
current
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016044193A
Other languages
Japanese (ja)
Other versions
JP2017163651A (en
Inventor
川原 敬治
敬治 川原
和彦 伊東
和彦 伊東
朋広 渡辺
朋広 渡辺
正司 松井
正司 松井
康之 西村
康之 西村
大輔 岡
大輔 岡
前田 宏
宏 前田
敏明 西川
敏明 西川
正樹 長森
正樹 長森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West Japan Railway Co
Original Assignee
West Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West Japan Railway Co filed Critical West Japan Railway Co
Priority to JP2016044193A priority Critical patent/JP6543587B2/en
Publication of JP2017163651A publication Critical patent/JP2017163651A/en
Application granted granted Critical
Publication of JP6543587B2 publication Critical patent/JP6543587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は直流電鉄変電所用高圧接地継電器に関するものであり、詳細には、直流電鉄用変電所の整流器用変圧器と整流器の間の整流器の1次側電路(交流側)または2次側電路(直流側)で地絡故障が発生した場合に動作し、地絡故障の発生個所が整流器の1次側(交流側)であるかあるいは2次側(直流側)であるかを判別する機能を有する直流電鉄変電所用高圧接地継電器に関する。   The present invention relates to a high voltage grounding relay for a DC power iron substation, and in detail, a primary side electrical path (AC side) or a secondary side electrical path of a rectifier between a rectifier transformer and a rectifier of a DC power iron substation Operates when a ground fault occurs on the DC side) and determines whether the ground fault location is on the primary side (AC side) or secondary side (DC side) of the rectifier. The present invention relates to a high voltage ground relay for a DC railway substation having the same.

従来より鉄道が電化され、整流器を使用するようになって以来、直流電鉄用変電所において、直流母線の地絡故障が発生した場合にはその多大な地絡電流により変電所機器の焼損等の障害が発生する。そこで、本出願人は鋭意研究により、下記特許文献(特開2010−42784号公報)に示すように、変電所の接地マットと帰線間の電圧を検知し、できる限り速やかに変電所を停電し、変電所設備への損傷を抑え、変電所を保護するための直流高圧接地継電器を発明し、実用化されるに至っている。   Since the railway has been electrified in the past and rectifiers have been used, if a ground fault occurs in the DC bus at the DC railway substation, the large current in the ground will cause the substation equipment to burn out. A failure occurs. Therefore, the present applicant has keenly researched and detected the voltage between the grounding mat of the substation and the return line as shown in the following patent document (Japanese Patent Laid-Open No. 2010-42784), and power failure of the substation as soon as possible. In addition, we have invented and put into practical use DC high-voltage grounding relays to reduce damage to substation facilities and to protect substations.

図12は従来の直流高圧接地継電器の構成を示す図である。図12に示す直流高圧接地継電器90は、変電所の接地マット91と帰線92の間に設置され、その間の電位差を測定する電位差測定部93を有し、この電位差測定部93が閾値以上の電圧を検出するときに交流遮断器95Aおよび直流高速度遮断器95に遮断信号を送って直流母線94への電力供給を遮断させるものである。   FIG. 12 is a diagram showing the configuration of a conventional direct current high voltage grounding relay. The DC high-voltage grounding relay 90 shown in FIG. 12 is installed between the grounding mat 91 of the substation and the return wire 92, and has a potential difference measuring unit 93 for measuring the potential difference between them. When a voltage is detected, a shutoff signal is sent to the AC circuit breaker 95A and the DC high speed circuit breaker 95 to shut off the power supply to the DC bus 94.

なお、図13は健全状態での整流器用変圧器96と整流器97の間の接続線の遮蔽層が接続された接地線98に流れる電流の高調波成分を示す図である。一般的な3相交流においては故障が発生していない健全状態では、3相一括接地されていれば接地線98にはほとんど電流が流れないが、本箇所は帰線92と整流器97のダイオードを介して真の大地と電気的に接続された特殊な接地系となっているため対地電位は正負非対称の歪み波形となる。このため健全状態においても図13に示すような整流器97の1次側に起因する基本波電流や第5次高調波電流や第7次高調波電流、2次側の整流リップルに起因する第6次高調波電流の整数倍の高調波電流など様々な電流が流れる。加えて、変電所機器および支持金物は近接する電路等からの誘導の影響を受けるため、これによる電流も前記に加えて接地線に流れることになる。また、98Rは接続線96Aと遮蔽層96Bの間の絶縁抵抗であり、98R’は地絡抵抗、99は真の大地である。   FIG. 13 is a diagram showing a harmonic component of the current flowing through the ground line 98 to which the shield layer of the connection line between the rectifier transformer 96 and the rectifier 97 is connected in the normal state. In a general three-phase alternating current, in the normal state where no failure occurs, almost no current flows through the ground wire 98 if the three-phase collective grounding is used, but the diode of the return wire 92 and the rectifier 97 Since it is a special grounding system electrically connected to the true earth via it, the ground potential becomes a distorted waveform of positive / negative asymmetry. For this reason, even in the sound state, the sixth current caused by the fundamental wave current, the fifth harmonic current, the seventh harmonic current, and the secondary side rectification ripple due to the primary side of the rectifier 97 as shown in FIG. Various currents flow such as harmonic currents that are integral multiples of second harmonic currents. In addition, since the substation equipment and the support hardware are affected by the induction from the nearby electric path or the like, the current due to this also flows to the ground line. Further, 98R is an insulation resistance between the connection line 96A and the shielding layer 96B, 98R 'is a ground resistance, and 99 is a true ground.

前記構成の直流高圧接地継電器90は変電所の接地マット91と帰線92の間に設置され、その電圧を検出する電位差測定部93を設けて、変電所内での直流母線94の地絡故障を検出する。つまり、直流母線94に地絡故障が発生すると、帰線92に対して接地マット91が正(+)極性の電位となるため電位差測定部93でこれを検出し、交流遮断器95Aに遮断信号を出力する。交流遮断器95Aはこの遮断信号によって電力供給を遮断することにより、速やかに変電所を停電し、変電所設備等を保護することができる。   The DC high voltage ground relay 90 of the above configuration is disposed between the ground mat 91 of the substation and the return wire 92, and a potential difference measurement unit 93 for detecting the voltage is provided to prevent a ground fault of the DC bus 94 within the substation. To detect. That is, when a ground fault occurs in the DC bus 94, the ground mat 91 becomes positive (+) potential with respect to the return wire 92, so that the potential difference measurement unit 93 detects this and the AC breaker 95A cuts off the signal Output The AC breaker 95A can cut off the power supply promptly by cutting off the power supply based on the shutoff signal, thereby protecting the substation equipment and the like.

特開2010−42784号公報Unexamined-Japanese-Patent No. 2010-42784

しかしながら、従来の直流高圧接地継電器90は、直流電鉄用変電所の整流器97の2次側電路(直流側)の地絡故障だけでなく、整流器用変圧器96と整流器97の間の1次側電路(交流側)の地絡故障によっても動作する特性があり、これらを判別できないという問題があった。   However, the conventional DC high voltage earthing relay 90 is not only a ground fault on the secondary side electric path (DC side) of the rectifier 97 of the DC power iron substation, but also the primary side between the rectifier transformer 96 and the rectifier 97. There is a characteristic that the circuit also operates due to a ground fault on the electric path (AC side), and there is a problem that these can not be determined.

その背景として、直流電鉄用変電所では整流器用変圧器96と整流器97は変電所機器の配置上、近接して配置されることが多いため、ブスバーやアルミより線等の裸導体で接続されることが多かったが、近年は安全上の理由により裸導体で接続されることは少なくなり、遮蔽層付ケーブル等により接続されるようになったという状況がある。この為、ケーブルの端末処理の劣化等により雨水等が侵入し、ケーブルが絶縁劣化を起こし、これにより地絡故障につながる場合がある。また、ケーブルのこのような地絡故障は裸導体の場合に比べて目視で発見しにくく、故障点を速やかに見いだすことは困難であった。   As the background, since DC transformer substations often have rectifier transformers 96 and rectifiers 97 placed close to each other due to the arrangement of substation equipment, they are connected by bare conductors such as bus bars or aluminum strands. There were many cases, but in recent years there has been a situation where the connection with bare conductors is reduced for safety reasons, and the connection with cables with shielding layers etc. has started. For this reason, rainwater etc. may intrude by degradation of the terminal processing of a cable etc., a cable may cause insulation degradation, and it may lead to a ground fault by this. In addition, such a ground fault of the cable is more difficult to visually detect than in the case of a bare conductor, and it is difficult to quickly find a fault point.

このため、直流高圧接地継電器90が動作した場合に、復旧担当の作業員は整流器97の2次側の直流回路における地絡故障を重点的に探索するため、整流器97の1次側電路に地絡故障が発生した場合には前記状況と重なり故障点の探索・除去や変電所の復電に多くの時間が必要となり、列車の運行に多大な影響を与えるという問題があった。   For this reason, when the DC high voltage grounding relay 90 is operated, the worker in charge of restoration mainly searches the ground fault in the DC circuit on the secondary side of the rectifier 97. When a fault occurs, a lot of time is required to search and remove the fault point and to restore the substation, and there is a problem that the operation of the train is greatly affected.

本発明は上述の事柄を考慮に入れてなされたものであり、その目的は、直流電鉄用変電所の整流器用変圧器と整流器の間の接続線で地絡故障が発生した場合と直流母線で地絡故障が発生した場合の切り分けを行い、故障点の探索・除去や変電所の復電を速やかに実施させ、列車の運行への影響を最小限に抑えることができる直流電鉄変電所用高圧接地継電器を提供することにある。   The present invention has been made in consideration of the above-mentioned matters, and the purpose thereof is the case where a ground fault occurs in the connecting wire between the rectifier transformer and the rectifier of the DC railway substation and the DC bus High-voltage earthing for DC railway substations that can be isolated in the event of a ground fault, and can quickly search for and eliminate fault points and restore power to substations, thus minimizing the impact on train operation. It is to provide a relay.

前記課題を解決するため、第1発明は、直流電鉄用変電所の接地マットと帰線の間に設けられ、接地マットと帰線の間の電位差を測定する電位差測定部を有し、測定された電位差を用いて地絡故障を判定する直流高圧接地継電器において、整流器用変圧器と整流器の間の接続線の電路支持具または接続線の遮蔽槽が接続された接地線に流れる電流を測定する電流測定部と、この電流の測定値から第3次高調波成分の抽出を行う第3次高調波抽出部と、この抽出された第3次高調波成分が閾値を超過するときに整流器の1次側電路(交流側)の地絡故障を判定する交流側地絡判定出力部と、この交流側地絡判定を表示する交流側地絡表示部とを備えることを特徴とする直流電鉄変電所用高圧接地継電器を提供する。(請求項1)   In order to solve the above problems, the first invention is provided with a potential difference measurement unit provided between the ground mat and return line of the DC railway substation and measuring the potential difference between the ground mat and return line In a DC high-voltage grounding relay that uses a potential difference to determine a ground fault, measure the current flowing to the grounding conductor connected to the conductor support of the connecting wire between the rectifier transformer and the rectifier or the shielding tank of the connecting wire. A current measurement unit, a third harmonic extraction unit for extracting a third harmonic component from a measured value of the current, and one of the rectifiers when the extracted third harmonic component exceeds a threshold value An AC-side ground fault determination output unit that determines a ground fault on the next-side electrical path (AC side), and an AC-side ground fault display unit that displays this AC-side ground fault determination Provide a high voltage grounded relay. (Claim 1)

一般的に直流高圧接地継電器は直流電鉄用変電所において、整流器の2次側電路の地絡故障の保護を目的とするものであるが、整流器用変圧器と整流器の間の整流器の1次側電路(交流側)の地絡故障によっても動作する。   In general, a DC high voltage grounding relay is intended for protection of a ground fault on the secondary side of the rectifier in a DC power station substation, but the primary side of the rectifier between the rectifier transformer and the rectifier It also operates due to a ground fault on the power path (AC side).

図14は、図12に示す整流器の1次側電路(交流側)で地絡故障が発生した場合に流れる電流の流れを示す図である。図14に示されるように、整流器97の1次側電路(交流側)で地絡故障が発生した場合には、地絡抵抗98R’および接地線98を通って接地マット91、さらに接地抵抗91Rと真の大地99、レール漏れ抵抗92Rとレール、そして、帰線92、整流器97に戻る電流の回路が構成される。この為、整流器97の各整流素子の方向から接地マット91が正(+)極性の電位となるので整流器の1次側電路(交流側)の地絡故障であっても直流高圧接地継電器90が動作する特性がある。   FIG. 14 is a diagram showing the flow of current flowing when a ground fault occurs on the primary side electrical path (AC side) of the rectifier shown in FIG. As shown in FIG. 14, when a ground fault occurs on the primary side electrical path (AC side) of the rectifier 97, the ground mat 91 passes through the ground fault resistance 98R 'and the ground wire 98, and further, the ground resistance 91R. And a true ground 99, a rail leakage resistance 92R and a rail, and a return circuit 92, a circuit of current returning to the rectifier 97. For this reason, since the ground mat 91 has a positive (+) potential from the direction of each rectifying element of the rectifier 97, even if there is a ground fault in the primary side electrical path (AC side) of the rectifier, the DC high voltage ground relay 90 There is a characteristic to operate.

図15は、図14における整流器用変圧器96と整流器97の間の接続線の遮蔽層が接続された接地線98に流れる電流の周波数分析の結果を示すものであり、この結果から接地線98に流れる電流には商用周波数の電流(基本波電流)の他に第3次高調波成分の電流や整流器97の整流作用に付随する高調波電流等が流れることが分かる。そして、図13と比較すると明らかなように、第3次高調波電流は整流器の1次側電路で地絡故障がなければ、ほとんど存在しない電流である。   FIG. 15 shows the result of frequency analysis of the current flowing in the ground wire 98 to which the shield layer of the connecting wire between the rectifier transformer 96 and the rectifier 97 in FIG. 14 is connected. It is understood that, in addition to the current of the commercial frequency (fundamental wave current), a current of the third harmonic component, a harmonic current accompanying the rectifying action of the rectifier 97, and the like flow through the current flowing through the And, as apparent from comparison with FIG. 13, the third harmonic current is a current which hardly exists unless there is a ground fault in the primary side electrical path of the rectifier.

本発明はこの第3次高調波成分に着目し、この第3次高調波成分を指標として、整流器の1次側電路(交流側)の地絡故障を検出することに利用するものであり、これによって整流器の1次側電路の地絡故障を高精度に判別することができる。   The present invention focuses on the third harmonic component, and uses this third harmonic component as an index to detect a ground fault on the primary side electrical path (AC side) of the rectifier, This makes it possible to determine a ground fault on the primary side of the rectifier with high accuracy.

第1発明の直流電鉄変電所用高圧接地継電器は整流器の1次側電路(交流側)の地絡故障によって、整流器用変圧器と整流器の間の接続線の電路支持具または接続線の遮蔽層が接続された接地線に流れる電流を電流測定部が測定し、第3次高調波抽出部が前記電流の第3次高調波成分を抽出することにより、この抽出された第3次高調波成分が閾値を超過するときには、交流側地絡判定出力部が整流器の1次側電路(交流側)の地絡故障を判別し、交流側地絡表示部は交流側地絡判定を表示することができる。   The high voltage earthing relay for a DC electric iron substation according to the first invention has a shielding layer of an electric path support or connecting line of a connecting wire between a rectifier transformer and a rectifier due to a ground fault on the primary side electric path (AC side) of the rectifier. The current measurement unit measures the current flowing through the connected ground line, and the third harmonic extraction unit extracts the third harmonic component of the current, whereby the extracted third harmonic component is When the threshold value is exceeded, the AC side ground fault determination output unit can determine a ground fault on the primary side electrical path (AC side) of the rectifier, and the AC side ground fault display unit can display the AC side ground fault determination. .

交流側地絡表示部に交流側地絡判定が表示されるので、直流電鉄変電所用高圧接地継電器が動作した場合に原因が整流器の直流側(すなわち、直流母線)にあるのか、交流側(すなわち、整流器用変圧器と整流器の間の接続線)にあるのかが判別できることにより、故障点探索時間を短縮でき、変電所の復電を速やかに行い、列車の運行への影響を低減することができる。   Since the AC side ground fault judgment is displayed on the AC side ground fault display section, it is likely that the cause is on the DC side (ie, DC bus) of the rectifier or the AC side (ie, when the high voltage grounding relay for the DC power iron substation operates). And the ability to determine if there is a connecting wire between the rectifier transformer and the rectifier, so that the time to search for a failure point can be shortened, and a power recovery of the substation can be promptly performed to reduce the influence on the operation of the train. it can.

なお、前記直流電鉄変電所用高圧接地継電器は整流器の1次側電路(交流側)の地絡故障発生を検出するための電流測定部、第3次高調波抽出部、交流側地絡判定出力部および交流側地絡表示部を備える直流電鉄変電所用高圧接地継電器を、従来の直流高圧接地継電器と別体として構成してもよく、既存の直流高圧接地継電器に付加して整流器の1次側電路(交流側)の地絡故障の判定を行うことができる。   The high-voltage grounding relay for the DC railway substation is a current measuring unit for detecting the occurrence of a ground fault on the primary side electric path (AC side) of the rectifier, a third harmonic extraction unit, an AC side ground fault judgment output unit And a high voltage earthing relay for a DC power iron substation provided with an AC side ground fault indicator may be configured separately from a conventional DC high voltage earthing relay, or may be added to an existing DC high voltage earthing relay to form a primary side of the rectifier It is possible to determine a ground fault on the (AC side).

第2発明は、直流電鉄用変電所の接地マットと帰線の間に設けられ、接地マットと帰線の間の電位差を測定する電位差測定部を有し、測定された電位差を用いて地絡故障を判定する直流高圧接地継電器において、前記電位差の測定値から第3次高調波成分の抽出を行う第3次高調波抽出部と、この抽出された第3次高調波成分が閾値を超過するときに整流器の1次側電路(交流側)の地絡故障を判定する交流側地絡判定出力部と、この交流側地絡判定を表示する交流側地絡表示部とを備えることを特徴とする直流電鉄変電所用高圧接地継電器を提供する。(請求項2)   A second invention has a potential difference measurement unit provided between a ground mat and a return line of a DC railway substation and measuring a potential difference between the ground mat and the return line, and using the measured potential difference to ground In a DC high-voltage grounding relay for determining a failure, a third harmonic extraction unit for extracting a third harmonic component from a measured value of the potential difference, and the extracted third harmonic component exceed a threshold An AC side ground fault determination output unit that determines a ground fault on the primary side electrical path (AC side) of the rectifier, and an AC side ground fault display unit that displays the AC side ground fault determination. High voltage earthing relay for DC railway substation. (Claim 2)

整流器の1次側電路(交流側)の地絡故障によって接地線に流れる第3次高調波電流は、接地マットおよび接地抵抗を介して真の大地へと流れ、レール漏れ抵抗を介してレールに還流する。これにより接地マットと帰線との間に接続される直流電鉄変電所用高圧接地継電器の両端に第3次高調波電圧を発生させる。この電圧を第3次高調波抽出部によって抽出し、抽出された第3次高調波成分が閾値を超過するときに交流側地絡判定出力部が整流器の1次側電路での地絡故障を速やかに判定し、交流側地絡判定を出力する。ついで、交流側地絡表示部は交流側地絡判定を表示する。従って、復旧に携わる作業者は直流電鉄変電所用高圧接地継電器が動作した場合に原因が整流器の直流側にあるのか、交流側にあるのかが判別できることにより、故障点探索時間を短縮でき、変電所の復電を速やかに行い、列車の運行への影響を低減することができる。   The third harmonic current that flows to the ground line due to a ground fault on the primary side of the rectifier (AC side) flows to the true ground via the ground mat and the ground resistance, and to the rail via the rail leakage resistance. Reflux. As a result, the third harmonic voltage is generated at both ends of the high voltage earthing relay for a DC railway substation connected between the grounding mat and the return line. This voltage is extracted by the third harmonic extraction unit, and when the extracted third harmonic component exceeds the threshold value, the AC side ground fault judgment output unit generates a ground fault in the primary side electrical path of the rectifier. Judgment promptly, and output AC side ground fault judgment. Next, the AC side ground fault display unit displays the AC side ground fault determination. Therefore, it is possible to shorten the failure point search time by allowing the worker involved in restoration to determine whether the cause is on the DC side or the AC side of the rectifier when the high voltage earthing relay for DC railway substation operates. Can be quickly recovered to reduce the impact on train operations.

第3発明は、直流電鉄用変電所の接地マットと帰線の間に設けられ、接地マットと帰線の間の電位差を測定する電位差測定部を有し、測定された電位差を用いて地絡故障を判定する直流高圧接地継電器において、前記測定された電位差の第3次高調波成分の抽出を行う第3次高調波抽出部と、整流器用変圧器と整流器の間の接続線の電路支持具または接続線の遮蔽層が接続された接地線に流れる電流を測定する電流測定部と、この電流の測定値および前記抽出された第3次高調波成分が共に閾値を超過するときに整流器の1次側電路(交流側)の地絡故障を判定する交流側地絡判定出力部と、この交流側地絡判定を表示する交流側地絡表示部とを備えることを特徴とする直流電鉄変電所用高圧接地継電器を提供する。(請求項3)   A third invention has a potential difference measurement unit provided between a ground mat and a return wire of a DC railway substation and measuring a potential difference between the ground mat and the return wire, and using the measured potential difference to ground A third harmonic extraction unit for extracting a third harmonic component of the measured potential difference in a direct current and high voltage grounding relay for determining a failure, and an electrical path support of a connecting wire between a transformer for a rectifier and a rectifier Or a current measurement unit that measures the current flowing to the ground wire to which the shield layer of the connection wire is connected, and one of the rectifiers when the measured value of this current and the extracted third harmonic component both exceed a threshold An AC-side ground fault determination output unit that determines a ground fault on the next-side electrical path (AC side), and an AC-side ground fault display unit that displays this AC-side ground fault determination Provide a high voltage grounded relay. (Claim 3)

整流器の1次側電路(交流側)の地絡故障によって接地線に流れる電流は、接地マットおよび接地抵抗を介して真の大地に流れ、レール漏れ抵抗を介してレールに還流することにより接地マットと帰線との間に接続される直流電鉄変電所用高圧接地継電器の両端に電圧を発生させる。この電圧から抽出した第3次高調波成分を閾値と比較して地絡判定を行うことにより整流器の1次側電路での地絡故障を速やかに判別するものである。   A current that flows to the ground line due to a ground fault on the primary side of the rectifier (AC side) flows to the true ground via the ground mat and the ground resistance, and then returns to the rail via the rail leakage resistance to the ground mat. A voltage is generated across the high voltage earthing relay for a DC railway substation connected between H. and the return line. The third harmonic component extracted from this voltage is compared with a threshold value to perform ground fault determination, thereby rapidly determining a ground fault on the primary side electrical path of the rectifier.

しかしながら、電位差測定部によって測定された電位差の第3次高調波成分は隣接変電所における整流器の1次側電路の地絡故障の影響を受ける。隣接変電所の整流器の1次側電路に地絡故障が発生した場合には、第3次高調波成分を含む地絡電流が隣接変電所内の地絡電流の還流する回路を流れるが、その際に第3次高調波成分を含むレール電位が発生する。このレール電位が伝搬し本願発明の電位差測定部が影響を受けるので、前記接地線に流れる電流があらかじめ設定された閾値を越えていることにより自変電所の接地線に地絡電流が流れていることを検出し、加えて、電位差測定部に接続された第3次高調波抽出部の出力があらかじめ設定された閾値を越えていることを共に満たすことによって、より確実に整流器の1次側電路(交流側)の地絡故障を検出し、またこれを表示することができる。これにより直流電鉄変電所用高圧接地継電器が動作した場合に原因が整流器の直流側にあるのか、交流側にあるのかが判別できることにより故障点探索時間を短縮でき、変電所の復電を速やかに行い、列車の運行への影響を低減することができる。   However, the third harmonic component of the potential difference measured by the potentiometric measurement unit is affected by the ground fault of the primary side of the rectifier in the adjacent substation. When a ground fault occurs on the primary side of the rectifier of the adjacent substation, the ground current including the third harmonic component flows in the circuit where the ground current in the adjacent substation returns, but in that case Generates a rail potential including the third harmonic component. Since the rail potential is propagated and the potentiometric measurement unit of the present invention is affected, the ground current is flowing to the ground line of the own substation because the current flowing to the ground line exceeds a preset threshold. By detecting that the output of the third harmonic extraction unit connected to the potentiometric measurement unit exceeds a preset threshold together, thereby more reliably ensuring the primary side of the rectifier A ground fault on the (AC side) can be detected and displayed. As a result, when it is possible to determine whether the cause is on the DC side or the AC side of the rectifier when the high voltage ground relay for the DC rail substation operates, the failure point search time can be shortened, and power recovery of the substation is promptly performed. Can reduce the impact on train operations.

第4発明は、直流電鉄用変電所の接地マットと帰線の間に設けられ、接地マットと帰線の間の電位差を測定する電位差測定部を有し、測定された電位差を用いて地絡故障を判定する直流高圧接地継電器において、前記帰線に流れる電流を測定する帰線電流測定部と、測定された帰線電流の第3次高調波成分の抽出を行う第3次高調波抽出部と、この抽出された第3次高調波成分が閾値を超過するときに整流器の1次側電路の地絡故障を判定する交流側地絡判定出力部と、この交流側地絡判定を表示する交流側地絡表示部とを備えることを特徴とする直流電鉄変電所用高圧接地継電器を提供する。(請求項4)   A fourth invention has a potential difference measurement unit provided between the ground mat and the return wire of the DC railway substation and measuring a potential difference between the ground mat and the return wire, and using the measured potential difference to ground In the DC high-voltage grounding relay for determining a failure, a return current measurement unit that measures the current flowing to the return, and a third harmonic extraction unit that extracts the third harmonic component of the measured return current And an AC side ground fault determination output unit that determines a ground fault on the primary side electrical path of the rectifier when the extracted third harmonic component exceeds a threshold, and the AC side ground fault determination A high voltage ground relay for a direct current railway substation characterized by comprising: an AC side ground fault display unit. (Claim 4)

整流器の1次側電路(交流側)の地絡故障によって発生する地絡電流は、地絡抵抗を介して接地線と接地マットに流れ、接地抵抗を介して真の大地に、また、レール漏れ抵抗を介してレールおよび帰線から整流器に還流するので、帰線電流測定部を帰線に設け、第3次高調波抽出部が測定された帰線電流の第3次高調波成分の抽出を行い、この第3次高調波成分が閾値を超過するときに整流器の1次側電路(交流側)の地絡故障を検出し、交流側地絡表示部に表示することができる。ゆえに復旧に携わる作業者は直流電鉄変電所用高圧接地継電器が動作した場合に原因が整流器の直流側にあるのか、交流側にあるのかが判別できることにより故障点探索時間を短縮でき、変電所の復電を速やかに行い、列車の運行への影響を低減することができる。   The ground fault current generated by the ground fault on the primary side of the rectifier (AC side) flows to the ground wire and the ground mat via the ground fault resistance, and to the true earth via the ground resistance, and also to the rail leak Since the current is returned to the rectifier from the rail and return via resistance, the return current measurement unit is provided for return, and the third harmonic extraction unit extracts the third harmonic component of the measured return current. It is possible to detect a ground fault on the primary side electrical path (AC side) of the rectifier when the third harmonic component exceeds the threshold value, and display it on the AC side ground fault display unit. Therefore, a worker involved in restoration can shorten the failure point search time by being able to determine whether the cause is on the DC side or the AC side of the rectifier when the high voltage earthing relay for the DC railway substation operates, and the fault point search time can be shortened. Power can be delivered quickly to reduce the impact on train operations.

また、整流器の1次側電路(交流側)では、小動物等により地絡故障が発生する場合もある。この場合には地絡電流は筐体や支持金物等を介して接地マットに流れることもあるので、接続線の電路支持具または接続線の遮蔽層が接続された接地線を流れない場合がある。このため電流測定部を接地線に設けても前記地絡電流を検出できないこともあるが、接地マット以降は同様の還流が発生するので、整流器の1次側電路に遮蔽層付ケーブルを用いた場合と同様の現象が発生する。従って、帰線に電流測定部を設けることにより、整流器の1次側電路(交流側)の地絡故障の状況に関係なく、この部分における地絡故障を判別することができる。   In addition, a ground fault may occur due to a small animal or the like on the primary side electrical path (AC side) of the rectifier. In this case, the ground fault current may flow to the ground mat through the housing or the support metal, etc., so it may not flow through the ground line connected to the electrical path support of the connection line or the shield layer of the connection line. . For this reason, even if the current measurement unit is provided on the grounding wire, the ground fault current may not be detected, but similar refluxing occurs after the grounding mat, so a cable with a shielding layer is used for the primary side electrical path of the rectifier. The same phenomenon occurs as in the case. Therefore, by providing the current measurement portion in the return line, it is possible to determine the ground fault in this portion regardless of the state of the ground fault in the primary side electrical path (AC side) of the rectifier.

前述したように、第1発明の直流電鉄変電所用高圧接地継電器によれば、整流器の1次側電路(交流側)で地絡故障が発生した場合に接地線に流れる地絡電流に特徴的に含まれる第3次高調波成分を用いて地絡故障が整流器の交流側において生じたことを確実に検出することができる。これにより整流器の1次側電路での地絡故障を速やかに検出し、表示できるので故障点探索時間を短縮でき、変電所の復電を速やかに行い、列車の運行への影響を低減することができる。   As described above, according to the high voltage earthing relay for DC power transmission line substation of the first invention, the characteristic of the ground electric current flowing to the ground line when the ground electric fault occurs in the primary side electric path (AC side) of the rectifier The included third harmonic component can be used to reliably detect that a ground fault has occurred on the AC side of the rectifier. As a result, ground faults on the primary side of the rectifier can be promptly detected and displayed, so that the failure point search time can be shortened, power restoration of the substation can be promptly performed, and the influence on train operation can be reduced. Can.

第2発明の直流電鉄変電所用高圧接地継電器によれば、整流器の1次側電路(交流側)の地絡故障によって接地線に特徴的に流れる第3次高調波電流により、接地マットと帰線との間に接続される直流電鉄変電所用高圧接地継電器の両端に発生する第3次高調波電圧を抽出して交流側地絡判定出力部で判別できることで整流器の1次側電路での地絡故障を速やかに判別し、表示できるので故障点探索時間を短縮でき、変電所の復電を速やかに行い、列車の運行への影響を低減することができる。   According to the second invention, the high voltage earthing relay for the DC electric iron substation according to the present invention, the ground mat and the return wire are generated by the third harmonic current which flows characteristically to the earthing wire due to the earth fault on the primary side electric path (AC side) of the rectifier. The third harmonic voltage generated at both ends of the high voltage earthing relay for DC power iron substations connected between them can be extracted and distinguished by the AC side ground fault judgment output unit, so that the ground fault on the primary side electric path of the rectifier Since the failure can be promptly determined and displayed, the failure point search time can be shortened, and the power recovery of the substation can be promptly performed to reduce the influence on the operation of the train.

第3発明の直流電鉄変電所用高圧接地継電器によれば、整流器の1次側電路(交流側)の地絡故障によって接地線に流れる第3次高調波電流により、接地マットと帰線との間に接続される直流電鉄変電所用高圧接地継電器の両端に特徴的に発生する第3次高調波電圧を抽出して交流側地絡判定出力部で判別できる。加えて、整流器用変圧器と整流器の間の接続線の電路支持具または接続線の遮蔽層が接続された接地線に設けられた電流測定部の出力があらかじめ設定された閾値を超過することを共に満たすことによって、隣接変電所の整流器用変圧器と整流器の間の整流器の1次側電路(交流側)の地絡故障によって発生するレール電位の影響による誤動作を抑制し、精度よく自変電所の整流器の1次側電路(交流側)の地絡故障を検出し、表示することができるので、直流電鉄変電所用高圧接地継電器が動作した場合に原因が整流器の直流側にあるのか、交流側にあるのかが判別できることにより故障点探索時間を短縮でき、変電所の復電を速やかに行い、列車の運行への影響を低減することができる。   According to the high-voltage ground relay for a direct current railway substation of the third invention, between the ground mat and the return wire by the third harmonic current flowing to the ground wire due to the ground fault of the primary side electric path (AC side) of the rectifier. The third harmonic voltage characteristically generated at both ends of the high voltage earthing relay for the DC power iron substation connected to can be extracted and discriminated by the AC side ground fault judgment output unit. In addition, the output of the current measuring unit provided on the grounding wire connected to the electric path support of the connecting wire between the rectifier transformer and the rectifier or the shielding layer of the connecting wire exceeds a preset threshold value. By filling both, malfunction due to the influence of the rail potential generated by the ground fault on the primary side electrical path (AC side) of the rectifier between the rectifier transformer and the rectifier in the adjacent substation is suppressed, and the own substation with high accuracy. Since a ground fault on the primary side of the rectifier (AC side) can be detected and displayed, whether the cause is on the DC side of the rectifier when the high voltage grounding relay for DC iron substation operates, the AC side It is possible to shorten the failure point search time by being able to determine whether it is in, to quickly recover power in the substation, and to reduce the influence on the operation of the train.

第4発明の直流電鉄変電所用高圧接地継電器によれば、整流器の1次側電路(交流側)で回路が地絡故障を起こした場合に接地線に流れる地絡電流および筐体を介して直接接地マットに流れる地絡電流に含まれる第3次高調波成分を帰線側で検出することができる。これにより整流器の1次側電路での地絡故障を速やかに検出し、表示できるので故障点探索時間を短縮でき、変電所の復電を速やかに行い、列車の運行への影響を低減することができる。   According to the high-voltage earthing relay for a DC electric iron substation according to the fourth invention, when the circuit causes a ground fault on the primary side electric path (AC side) of the rectifier, the earth current flowing in the ground line and the housing directly The third harmonic component contained in the ground current flowing to the ground mat can be detected on the return line side. As a result, ground faults on the primary side of the rectifier can be promptly detected and displayed, so that the failure point search time can be shortened, power restoration of the substation can be promptly performed, and the influence on train operation can be reduced. Can.

第1実施形態にかかる直流電鉄変電所用高圧接地継電器が設置される直流電鉄用変電所の構成を示す図である。It is a figure which shows the structure of the substation for direct current irons in which the high voltage | pressure earthing relay for direct current electric wire substations concerning 1st Embodiment is installed. 第1実施形態にかかる直流電鉄変電所用高圧接地継電器の回路構成を示す図である。It is a figure which shows the circuit structure of the high voltage | pressure earthing relay for direct current electric wire substations concerning 1st Embodiment. 第2実施形態にかかる直流電鉄変電所用高圧接地継電器の回路構成を示す図である。It is a figure which shows the circuit structure of the high voltage | pressure earthing relay for direct current electric wire substations concerning 2nd Embodiment. 第3実施形態のかかる直流電鉄変電所用高圧接地継電器の回路構成を示す図である。It is a figure which shows the circuit structure of the high voltage | pressure earthing relay for DC electric iron substations of this 3rd Embodiment. 図4の変形例となる直流電鉄変電所用高圧接地継電器の回路構成を示す図である。It is a figure which shows the circuit structure of the high voltage | pressure earthing relay for direct current electric wire substations which becomes a modification of FIG. 第4実施形態にかかる直流電鉄変電所用高圧接地継電器が設置される直流電鉄用変電所の構成を示す図である。It is a figure which shows the structure of the substation for direct current irons in which the high voltage | pressure earthing relay for direct current electric wire substations concerning 4th Embodiment is installed. 第4実施形態にかかる直流電鉄変電所用高圧接地継電器の回路構成を示す図である。It is a figure which shows the circuit structure of the high voltage | pressure earthing relay for direct current electric wire substations concerning 4th Embodiment. 第5実施形態にかかる直流電鉄変電所用高圧接地継電器の回路構成を示す図である。It is a figure which shows the circuit structure of the high voltage | pressure earthing relay for direct current electric wire substations concerning 5th Embodiment. 第6実施形態にかかる直流電鉄変電所用高圧接地継電器の回路構成を示す図である。It is a figure which shows the circuit structure of the high voltage | pressure earthing relay for direct current electric wire substations concerning 6th Embodiment. 第7実施形態にかかる直流電鉄変電所用高圧接地継電器の回路構成を示す図である。It is a figure which shows the circuit structure of the high voltage | pressure earthing relay for direct current electric wire substations concerning 7th Embodiment. 第8実施形態にかかる直流電鉄変電所用高圧接地継電器の回路構成を示す図である。It is a figure which shows the circuit structure of the high voltage | pressure earthing relay for direct current electric wire substations concerning 8th Embodiment. 従来の直流高圧接地継電器が設置される直流電鉄用変電所の構成を示す図である。It is a figure which shows the structure of the DC railway substation where the conventional DC high voltage | pressure earthing relay is installed. 健全状態時に接地線に流れる電流の高調波成分を示す図である。(接地線電流の実効値に対する各高調波成分の含有率を示す。)It is a figure which shows the harmonic component of the electric current which flows into a grounding wire at the time of a healthy state. (Indicates the content of each harmonic component to the effective value of the ground wire current.) 直流鉄道用変電所の整流器用変圧器と整流器の間の接続線(交流側)で地絡故障が発生したときの電流の流れを説明する図である。It is a figure explaining the flow of electric current when a ground fault occurs in the connection line (AC side) between the transformer for rectifiers of a direct current railway substation, and a rectifier. 直流鉄道用変電所の整流器用変圧器と整流器の間の接続線(交流側)で地絡故障が発生したときに接地線に流れる電流の高調波成分を示す図である。(接地線電流の実効値に対する各高調波成分の含有率を示す。)It is a figure which shows the harmonic component of the electric current which flows into a ground wire, when a ground fault generate | occur | produces in the connection line (AC side) between the transformer for rectifiers and rectifier of DC rail substation. (Indicates the content of each harmonic component to the effective value of the ground wire current.)

以下、図1〜図2を用いて、本発明の第1実施形態に係る直流電鉄変電所用高圧接地継電器の具体的な実施形態について、図面を参照しつつ詳細に説明する。図1に示すように、直流電鉄変電所用高圧接地継電器1は、変電所2の接地マット3と帰線4の間に設けられ、接地マット3と帰線4の間の電位差を測定する電位差測定部5と、測定された電位差を用いて地絡故障を判定する地絡判定出力部6を有する。   Hereinafter, a specific embodiment of a high voltage earthing relay for a direct current iron substation according to a first embodiment of the present invention will be described in detail with reference to the drawings, using FIGS. 1 to 2. As shown in FIG. 1, the high voltage earthing relay 1 for DC railway substation is provided between the ground mat 3 and the return wire 4 of the substation 2 and is a potentiometric measurement for measuring the potential difference between the ground mat 3 and the return wire 4 It has the part 5 and the ground fault determination output part 6 which determines a ground fault using the measured electrical potential difference.

図2に示すように、直流母線における地絡故障を検知する直流側地絡故障用の地絡判定出力部6Aと、整流用変圧器7と整流器8の間の回路上における地絡故障を検知する交流側地絡故障用の地絡判定出力部6Bとを有する。すなわち、本実施形態の直流電鉄変電所用高圧接地継電器1は、変電所2の整流器用変圧器7と整流器8の間の接続線9の遮蔽層9sが接続された接地線10に流れる電流を測定する電流測定部11と、この電流の測定値から第3次高調波成分の抽出を行う例えばフィルタ回路からなる第3次高調波抽出部12とを有し、前記交流側地絡判定出力部6Bは抽出された第3次高調波成分が閾値を超過するきに整流器の1次側電路の地絡故障を判定する。なお、前記接続線9は芯線となる導体と、この導体を保護する絶縁物からなる被覆9iと、この被覆9iの外側を覆うように設けた遮蔽層9sとこの遮蔽層9sを保護する外装被覆9pを備えるケーブルである。したがって、導体と遮蔽層9sの間は被覆9iによる大きな絶縁抵抗10rを介して接続されるが、接続線9に地絡故障が発生したときには導体と遮蔽層9sの間はより小さい地絡抵抗10r’によって接続される。   As shown in FIG. 2, a ground fault judgment output unit 6A for DC ground fault detecting a ground fault in a DC bus, and a ground fault on a circuit between the rectifying transformer 7 and the rectifier 8 are detected. And a ground fault judgment output unit 6B for AC ground fault. That is, the high voltage earthing relay 1 for a DC power iron substation according to the present embodiment measures the current flowing in the ground wire 10 to which the shielding layer 9s of the connecting wire 9 between the rectifier transformer 7 and the rectifier 8 of the substation 2 is connected. And a third harmonic extraction unit 12 comprising a filter circuit for extracting a third harmonic component from the measured value of the current, and the AC side ground fault judgment output unit 6B When the extracted third harmonic component exceeds the threshold value, the ground fault of the primary side of the rectifier is determined. The connecting wire 9 is a conductor serving as a core, a coating 9i made of an insulating material for protecting the conductor, a shielding layer 9s provided so as to cover the outside of the coating 9i, and an outer coating for protecting the shielding layer 9s. It is a cable provided with 9p. Therefore, the conductor and the shield layer 9s are connected via the large insulation resistance 10r by the coating 9i, but when a ground fault occurs in the connection line 9, the ground resistor 10r is smaller between the conductor and the shield layer 9s. Connected by '.

13は前記地絡判定出力部6からの地絡故障判定を表示する地絡表示部であり、13Aは直流側地絡故障用の地絡判定出力部6Aが出力する地絡故障判定を表示する直流側地絡表示部、13Bは交流側地絡故障用の地絡判定出力部6Bが整流用変圧器7と整流器8の間(整流器8の1次側)における地絡故障の判定を出力するときに地絡故障判定を表示する交流側地絡表示部である。   Reference numeral 13 denotes a ground fault display unit for displaying the ground fault judgment from the ground fault judgment output unit 6, and 13A displays the ground fault judgment output from the ground fault judgment output unit 6A for the DC side ground fault failure. The DC side ground fault display unit 13B outputs the ground fault judgment between the rectifying transformer 7 and the rectifier 8 (the primary side of the rectifier 8) of the ground fault judgment output unit 6B for the AC side ground fault. It is an AC side ground fault display unit that displays a ground fault determination when it occurs.

なお、図1,2に示す、Gは真の大地、3rは接地マット3の接地抵抗、5rは電位差測定部の分圧抵抗、4rは帰線4およびレールと真の大地Gの間にあるレール漏れ抵抗、5dは逆流防止用のダイオードであり、前記地絡判定出力部6が地絡故障判定を出力するときに交流遮断器7Aおよび直流高速度遮断器14が回路を遮断して直流母線15への給電を停止する。   As shown in FIGS. 1 and 2, G is a true ground, 3r is a ground resistance of the ground mat 3, 5r is a voltage dividing resistance of the potential difference measurement unit, 4r is between the return wire 4 and the rail and the true ground G. Rail leakage resistance 5d is a diode for backflow prevention, and when the ground fault judgment output unit 6 outputs a ground fault judgment, the AC breaker 7A and the DC high speed breaker 14 shut off the circuit and the DC bus Stop the power supply to 15.

図1、図2に示す直流電鉄変電所用高圧接地継電器1が従来の直流高圧接地継電器と異なる点は、整流器用変圧器7と整流器8の間の接続線9の遮蔽層9sが接続された接地線10に流れる電流を電流測定部11が測定し、その第3次高調波成分を第3次高調波抽出部12が抽出して常時監視するので、整流器8の1次側電路(交流側)が地絡故障を起こした場合、第3次高調波成分があらかじめ設定された閾値を超過することにより、交流側地絡判定出力部6Bが整流器8の1次側電路で地絡故障が発生したことを判別して、交流側地絡判定を出力し、交流側地絡表示部13Bに表示することができる点である。   1 and 2 differs from the conventional DC high voltage grounding relay 1 in that the high voltage grounding relay 1 for DC power iron substation differs from the conventional DC high voltage grounding relay in that the shielding layer 9s of the connecting wire 9 between the rectifier transformer 7 and the rectifier 8 is connected Since the current measurement unit 11 measures the current flowing through the line 10 and the third harmonic extraction unit 12 extracts and constantly monitors the third harmonic component, the primary side electrical path (AC side) of the rectifier 8 When the ground fault occurs, the third harmonic component exceeds a preset threshold value, causing the ground fault in the AC side ground fault judgment output unit 6B in the primary side electrical path of the rectifier 8 , And outputs the AC ground fault determination, which can be displayed on the AC ground fault display unit 13B.

他方、整流器8の2次側電路(直流側)に地絡故障が発生した場合には電流測定器による電流測定値に第3次高調波成分の電流はほとんど存在せず、第3次高調波抽出部12からの出力がほとんどないので、交流側地絡判定出力部6Bが交流側地絡判定の出力を行うこともなく、交流側地絡表示部13Bへの表示も行われることがない。   On the other hand, when a ground fault occurs in the secondary side electric path (DC side) of the rectifier 8, the current of the third harmonic component hardly exists in the current measurement value by the current measuring instrument, and the third harmonic Since there is almost no output from the extraction unit 12, the AC-side ground fault determination output unit 6B does not output the AC-side ground fault determination, and the display on the AC-side ground fault display unit 13B is not performed.

すなわち、図2において、符号1eによって示す仮想線で囲った部分は本発明における直流高圧接地継電器の拡張回路であり、これらの部材11,12,6B,13Bからなる拡張回路1eを備えることにおいて、従来の直流高圧接地継電器と異なっている。なお、この拡張回路1eは本発明の直流電鉄変電所用高圧接地継電器1として一体的に形成されるものであることが好ましいが、従来の直流高圧接地継電器に添えるように設けられて従来の直流高圧接地継電器を拡張するものであってもよいことはいうまでもない。   That is, in FIG. 2, a portion surrounded by a virtual line indicated by reference numeral 1e is an extension circuit of the DC high-voltage grounding relay in the present invention, and in providing the extension circuit 1e including these members 11, 12, 6B, 13B, It differs from the conventional direct current high voltage grounding relay. Although this extended circuit 1e is preferably integrally formed as the high voltage earthing relay 1 for a DC power iron substation according to the present invention, it is provided to accompany a conventional DC high voltage earthing relay to provide a conventional DC high voltage earthing relay. It goes without saying that the grounding relay may be extended.

上述したように、本発明にかかる直流電鉄変電所用高圧接地継電器1は電位差測定部5が測定する電位差があらかじめ設定された閾値を超過するときに地絡判定出力部6(直流側地絡判定出力部6A)が地絡故障の判定出力を出し、これを直流側地絡表示部13Aに表示すると共に交流遮断器7Aおよび直流高速度遮断器14を遮断して故障電流の流れを遮断するという従来の直流高圧接地継電器と同様の整流器の直流側の地絡故障の検出動作を行うと共に、この地絡故障の発生部位が整流器8の1次側電路(交流側)であるときには、地絡判定出力部6(交流側地絡判定出力部6B)から出力を行なうと共に交流側地絡表示部13Bにこれを表示することができるので、変電所の復電をより迅速に行うために有用である。   As described above, when the potential difference measured by the potential difference measurement unit 5 exceeds the threshold set in advance, the high voltage ground relay 1 for a DC power iron substation according to the present invention outputs the ground fault determination output unit 6 (DC side ground fault determination output In the related art, the section 6A) outputs a determination output of a ground fault and displays it on the DC side ground fault display unit 13A and also shuts off the AC breaker 7A and the DC high speed breaker 14 to shut off the flow of fault current. While detecting the ground fault on the DC side of the rectifier similar to the DC high voltage ground relay, and when the site where this ground fault occurs is the primary side electrical path (AC side) of the rectifier 8, the ground fault judgment output Since the output from the part 6 (AC side ground fault judgment output part 6B) can be made and the same can be displayed on the AC side ground fault display part 13B, it is useful for performing the restoration of the substation more quickly.

図3は本発明の第2実施形態の直流電鉄変電所用高圧接地継電器の回路構成を示す図である。図3において、20は第2実施形態の直流電鉄変電所用高圧接地継電器である。なお、図3において、図1〜図2と同じ符号を付した部材は同一または同等の部材であるから、その詳細な説明を省略する。   FIG. 3 is a diagram showing a circuit configuration of a high voltage ground relay for a DC power transmission iron substation according to a second embodiment of the present invention. In FIG. 3, reference numeral 20 denotes a high voltage ground relay for a DC railway substation according to the second embodiment. In addition, in FIG. 3, since the member which attached | subjected the code | symbol same as FIG. 1-FIG. 2 is the same or equivalent member, the detailed description is abbreviate | omitted.

本実施形態の直流電鉄変電所用高圧接地継電器20の第3次高調波抽出部12は前記電位差測定部5によって測定された接地マット3と帰線4の間の電位差の測定値から第3次高調波成分を抽出するものであり、交流側地絡判定出力部6Bは抽出された電位差の第3次高調波成分が所定の閾値を超えるときに、整流器の交流側における地絡故障の判定を行い、交流側地絡出力と交流側地絡判定を交流側地絡表示部13Bに表示させるものである。   The third harmonic extraction unit 12 of the high voltage ground relay 20 for a direct current railway substation according to the present embodiment uses the measurement value of the potential difference between the ground mat 3 and the return wire 4 measured by the potential difference measurement unit 5 to obtain the third harmonic. The AC side ground fault judgment output unit 6B judges the ground fault on the AC side of the rectifier when the third harmonic wave component of the extracted potential difference exceeds a predetermined threshold. The AC side ground fault display unit 13B displays the AC side ground fault output and the AC side ground fault determination.

上記構成の直流電鉄変電所用高圧接地継電器20では、整流器8の1次側電路で地絡故障が発生した場合、地絡電流が地絡抵抗10r’および接地線10を介して接地マット3に流れ、さらに接地抵抗3rを介して真の大地Gに、そしてレール漏れ抵抗4rを介して帰線4、整流器8という回路で地絡電流が流れるので、接地マット3と帰線4の間に接続される電位差測定部5の両端には接地マット3から帰線4までのインピーダンスによって電位が発生する。   In the high-voltage ground relay 20 for DC power iron substations configured as described above, when a ground fault occurs on the primary side electrical path of the rectifier 8, the ground current flows to the ground mat 3 via the ground resistor 10r 'and the ground wire 10. Furthermore, since a ground fault current flows in a circuit such as a return wire 4 and a rectifier 8 via the ground resistance 3r to the true ground G, and the rail leak resistance 4r, the ground mat 3 is connected to the return wire 4 A potential is generated at both ends of the potential difference measurement unit 5 due to the impedance from the ground mat 3 to the return wire 4.

また、地絡電流には第3次高調波電流が含まれるので、電位差測定部5の両端にも第3次高調波電圧が発生する。したがって、電位差測定部5の出力から第3次高調波成分を抽出して交流側地絡判定出力部6Bで常時監視できるので、整流器8の1次側電路が地絡故障を起こした場合、前記第3次高調波成分があらかじめ設定された閾値を超過することで整流器8の1次側電路に地絡故障が発生したことを検出でき、これを交流側地絡表示部13Bに表示させることができる。   Further, since the ground current includes the third harmonic current, the third harmonic voltage is also generated at both ends of the potential difference measurement unit 5. Therefore, since the third harmonic component can be extracted from the output of the potentiometric measurement unit 5 and constantly monitored by the AC side ground fault judgment output unit 6B, the ground side fault of the primary side electrical path of the rectifier 8 can be generated. The occurrence of a ground fault on the primary side electrical path of the rectifier 8 can be detected by the third harmonic component exceeding a preset threshold value, and this can be displayed on the AC side ground fault display unit 13B. it can.

整流器8の2次側電路(直流側)に地絡故障が発生した場合には、第3次高調波成分(電圧検出)はほとんど存在せず、第3次高調波抽出部12からの出力もほとんどないので、地絡判定の出力も表示も行われない。この結果、電位差測定部5に接続された直流側地絡判定出力部6Aによりあらかじめ設定された閾値を超過することで地絡判定出力を出すという従来の直流高圧接地継電器と同様の整流器の直流側の地絡故障の検出動作を行うことができる。   When a ground fault occurs in the secondary side electric path (DC side) of the rectifier 8, the third harmonic component (voltage detection) hardly exists, and the output from the third harmonic extraction unit 12 is also There is almost no output or display of the ground fault judgment. As a result, the DC side of the same rectifier as the conventional DC high-voltage earthing relay that outputs a ground fault judgment output by exceeding the threshold value preset by the DC side ground fault judgment output unit 6A connected to the potential difference measurement unit 5 Ground fault detection operation can be performed.

なお、本実施形態においても電位差測定部5の出力から第3次高調波成分を抽出する第3次高調波抽出部12、交流側地絡判定出力部6Bおよび交流側地絡表示部13Bが直流電鉄変電所用高圧接地継電器20の交流側地絡判定を行う拡張回路(図2の拡張回路1e参照)であり、これらの拡張回路を一体的に形成するか別体とするか(この場合、部材5r、5d、5はもう一対設ける必要がある)は任意に設計変更可能であることはいうまでもない。   Also in the present embodiment, the third harmonic extraction unit 12 for extracting the third harmonic component from the output of the potential difference measurement unit 5, the AC side ground fault judgment output unit 6B and the AC side ground fault display unit 13B It is an expansion circuit (refer to the expansion circuit 1e in FIG. 2) for judging the AC side ground fault of the high voltage ground relay 20 for the railway substation, and whether these expansion circuits are integrally formed or separated (in this case, members It is needless to say that 5r, 5d, 5 need to be provided in another pair) and design change is possible arbitrarily.

図4は本発明の第3実施形態にかかる直流電鉄変電所用高圧接地継電器30の構成を示す図である。図4において、図1〜図3と同じ符号を付した部材は同一または同等の部材であるから、その詳細な説明を省略する。   FIG. 4 is a view showing the configuration of a high voltage ground relay 30 for a direct current electric wire substation according to a third embodiment of the present invention. In FIG. 4, members given the same reference numerals as in FIGS. 1 to 3 are the same or equivalent members, and thus detailed description thereof will be omitted.

図4に示される直流電鉄変電所用高圧接地継電器30の構成は、図3に示される直流電鉄変電所用高圧接地継電器20の他に整流器用変圧器7と整流器8の間の接続線9の遮蔽層9sが接続された接地線10の電流を検出する電流測定部11を有している点において異なっており、電位差測定部5からの出力の第3次高調波成分を第3次高調波抽出部12で抽出して常時監視し、あらかじめ設定された閾値を超過するときに、整流器8の1次側電路で地絡故障したことを検出することにおいて同一である。   The configuration of the high voltage ground relay 30 for DC power iron substation shown in FIG. 4 is a shield layer of the connecting wire 9 between the rectifier transformer 7 and the rectifier 8 in addition to the high voltage ground relay 20 for DC power iron substation shown in FIG. It differs in that it has the current measurement unit 11 that detects the current of the ground wire 10 to which the 9s is connected, and the third harmonic component of the output from the potential difference measurement unit 5 is converted to the third harmonic extraction unit It is identical in detecting a ground fault in the primary side electrical path of the rectifier 8 when the extraction is performed at 12 and the constant monitoring is performed and the preset threshold value is exceeded.

前記電位差測定部5によって測定した電位差の第3次高調波成分は、隣接変電所における整流器の1次側電路の地絡故障による影響を受け、隣接変電所の整流器の1次側電路に地絡故障が発生した場合には第3次高調波成分を含む地絡電流が隣接変電所内の地絡電流の還流する回路を流れるが、その際に真の大地G、レール漏れ抵抗4r、レールおよび帰線4を通るので第3次高調波成分を含むレール電位が発生する。   The third harmonic component of the potential difference measured by the potential difference measurement unit 5 is affected by the ground fault of the primary side electrical path of the rectifier in the adjacent substation, and the ground fault in the primary side electrical path of the rectifier of the adjacent substation In the event of a failure, the ground fault current including the third harmonic component flows in the circuit where the ground fault current in the adjacent substation returns, but at that time the true ground G, the rail leak resistance 4r, the rail and the return As it passes through the line 4, a rail potential including the third harmonic component is generated.

次いで、前記レール電位が伝搬し、帰線4に接続されている本発明品の電位差測定部5が影響を受けるので、その出力にある第3次高調波成分も影響を受けることが考えられる。本実施形態では、この隣接変電所の影響による誤動作を抑制するために整流器用変圧器7と整流器8の間の接続線9の遮蔽層9sが接続された接地線10に電流測定部11を設け、接地線10に流れる接地線電流の実効値を常時監視し、その出力があらかじめ設定された閾値を超過するときに、直流電鉄変電所用高圧接地継電器30を取り付けた変電所2の接地線10に地絡電流が流れたものと判定し第3次高調波成分の出力とAND条件が成り立つときに、隣接変電所からのレール電位による影響を抑制し、確実に整流器8の1次側電路(交流側)の地絡故障を検出することが可能となる。   Then, since the potential of the rail is propagated and the potentiometric measurement unit 5 of the present invention connected to the return wire 4 is affected, it is considered that the third harmonic component at the output is also affected. In the present embodiment, in order to suppress a malfunction due to the influence of the adjacent substation, the current measurement unit 11 is provided on the ground wire 10 to which the shielding layer 9s of the connection wire 9 between the transformer 7 for the rectifier and the rectifier 8 is connected. , Constantly monitor the effective value of the ground wire current flowing through the ground wire 10, and when the output exceeds a preset threshold value, to the ground wire 10 of the substation 2 to which the high voltage ground relay 30 for DC railway substation is attached When it is determined that the ground fault current has flowed and the output of the third harmonic component and the AND condition hold, the influence of the rail potential from the adjacent substation is suppressed, and the primary side electrical path of the rectifier 8 (AC Side) ground fault can be detected.

また、整流器の2次側電路(直流側)に地絡故障が発生した場合には電位差測定部5の出力に第3次高調波成分はほとんど存在せず、第3次高調波抽出部12からの出力もほとんどないので、交流側地絡判定出力も交流側地絡表示も行われない。この結果、本実施形態の直流電鉄変電所用高圧接地継電器では電位差測定部5に接続された直流側地絡判定出力部6Aによりあらかじめ設定された閾値を超過することで地絡判定を出力するという従来の直流高圧接地継電器と同様の整流器の直流側の地絡故障の検出動作を行うことができる。   In addition, when a ground fault occurs in the secondary side electric path (DC side) of the rectifier, the third harmonic component hardly exists in the output of the potentiometric measurement unit 5, and the third harmonic extraction unit 12 The AC ground fault determination output and the AC ground fault display are not performed. As a result, in the conventional high voltage grounding relay for a direct current electric wire substation according to the present embodiment, a conventional ground judgment is output by exceeding a threshold preset by the DC side ground fault judgment output unit 6A connected to the potential difference measurement unit 5 It is possible to perform a detection operation of a ground fault on the DC side of the rectifier similar to the DC high voltage ground relay of

図5は図4に示す直流電鉄変電所用高圧接地継電器30の変形例を示す図である。図5に示す直流電鉄変電所用高圧接地継電器40は電流測定部11によって測定された電流の第3次高調波成分を前記第3次高調波抽出部12によって抽出して交流側地絡判定部6Bに入力する点において、図4に示す直流電鉄変電所用高圧接地継電器30と異なっており、これによって整流器用変圧器7と整流器8の間の接続線9の遮蔽層9sが接続された接地線10に設けられる電流測定部11によって測定される電流の第3次高調波電流を常時監視している。このように接地線10に地絡電流が流れたことを判定する方法として接地線電流の実効値ではなく第3次高調波電流を用いてもよい。   FIG. 5 is a view showing a modified example of the high voltage earthing relay 30 for a direct current railway substation shown in FIG. The high voltage earthing relay 40 for the DC electric iron substation shown in FIG. 5 extracts the third harmonic component of the current measured by the current measurement unit 11 by the third harmonic extraction unit 12 and determines the AC side ground fault judging unit 6B. 4 is different from the high voltage grounding relay 30 for a DC power iron substation shown in FIG. 4, thereby the grounding wire 10 to which the shielding layer 9s of the connecting wire 9 between the rectifier transformer 7 and the rectifier 8 is connected. The third harmonic current of the current measured by the current measurement unit 11 provided in the is constantly monitored. As described above, as a method of determining that the ground fault current has flowed to the ground line 10, the third harmonic current may be used instead of the effective value of the ground line current.

図6,図7は本発明の第4実施形態を説明する図であって、図6は第4実施形態にかかる直流電鉄変電所用高圧接地継電器50が設置される直流鉄道用変電所の構成を示す図、図7はその直流電鉄変電所用高圧接地継電器50の回路構成を示す図である。これらの図において、図1〜図5と同じ符号を付した部材は同一または同等の部材であるから、その詳細な説明を省略する。   6 and 7 are views for explaining the fourth embodiment of the present invention, and FIG. 6 shows the configuration of a DC railway substation in which the high voltage ground relay 50 for a DC railway substation according to the fourth embodiment is installed. FIG. 7 is a diagram showing a circuit configuration of the high voltage earthing relay 50 for the DC railway substation. In these figures, members given the same reference numerals as in FIGS. 1 to 5 are the same or equivalent members, and therefore detailed description thereof will be omitted.

本実施形態にかかる直流電鉄変電所用高圧接地継電器50は、変電所2の帰線4に帰線電流を検出する帰線電流測定部51を設け、前記第3次高調波抽出部12は帰線電流測定部51によって測定された帰線電流の第3次高調波成分を抽出するものであることにおいて、図1,図2に示す第1実施形態と異なっている。   The high voltage earthing relay 50 for a DC electric iron substation according to the present embodiment is provided with a return current measuring unit 51 for detecting a return current in the return wire 4 of the substation 2, and the third harmonic extraction unit 12 is a return wire. The third embodiment differs from the first embodiment shown in FIGS. 1 and 2 in that the third harmonic component of the retrace current measured by the current measurement unit 51 is extracted.

すなわち、整流器8の1次側電路で地絡故障が発生した場合、地絡抵抗10r’、接地線10を介して接地マット3に流れ、接地抵抗3r、真の大地G、レール漏れ抵抗4rを介して帰線4、整流器8へと流れるという回路で地絡電流が流れるので、帰線4に帰線電流測定部51を設けた場合にも、この帰線電流測定部51によって測定される帰線電流には、整流器8の1次側電路(交流側)で地絡故障が発生したときに生じる第3次高調波成分が多く流れるという特徴が表れる。   That is, when a ground fault occurs on the primary side electric path of the rectifier 8, it flows to the ground mat 3 through the ground resistor 10r 'and the ground wire 10, and the ground resistor 3r, the true ground G, and the rail leak resistance 4r Since the ground fault current flows in a circuit that flows to the retrace 4 and the rectifier 8 via the circuit, the return current measured by the retrace current measuring unit 51 is also provided when the retrace current measuring unit 51 is provided in the retrace 4 The line current is characterized in that a large number of third harmonic components occur when a ground fault occurs on the primary side electrical path (AC side) of the rectifier 8.

また、整流器の1次側電路(交流側)では、小動物等により地絡故障が発生する場合もある。この場合、地絡電流は筐体や支持金物等を介して接地マット3に流れる場合もあり、接地マット3以後、接地抵抗3r、真の大地、レール漏れ抵抗4rを介して帰線4、整流器8へと流れるという回路で地絡電流が流れる。従って、本実施形態のように帰線4に帰線電流測定部51を設けたことにより、整流器用変圧器7と整流器8の間の接続線9の地絡故障の状況に関係なく、帰線電流測定部51によって測定される帰線電流には、整流器8の1次側電路における地絡故障独特の特徴が表れるので、この部分における地絡故障の発生を確実に判定することができる。   In addition, a ground fault may occur due to a small animal or the like on the primary side electrical path (AC side) of the rectifier. In this case, the ground fault current may flow to the ground mat 3 through the housing and the support metal, etc. After the ground mat 3, the ground resistance 3r, the true ground, the return wire 4 through the rail leak resistance 4r, and the rectifier A ground fault current flows in a circuit that flows to 8. Therefore, by providing the return current measurement unit 51 in the return line 4 as in the present embodiment, the return line is independent of the ground fault condition of the connection line 9 between the rectifier transformer 7 and the rectifier 8. Since the characteristic unique to the ground fault in the primary side electrical path of the rectifier 8 appears in the retrace current measured by the current measuring unit 51, the occurrence of the ground fault in this portion can be determined with certainty.

この帰線電流の第3次高調波成分を常時監視することにより、整流器8の1次側電路で地絡故障が発生した場合に、第3次高調波成分があらかじめ設定された閾値を超過することでこの地絡故障判定を行うことができ、交流側地絡判定出力と交流側地絡判定表示を行うことができる。なお、整流器の2次側電路(直流側)に地絡故障が発生した場合には第3次高調波電流はほとんど存在せず、第3次高調波抽出部からの出力もほとんどないので交流側地絡判定出力も交流側地絡判定表示も行われない。   By constantly monitoring the third harmonic component of the return current, the third harmonic component exceeds a preset threshold value when a ground fault occurs in the primary side electrical path of the rectifier 8 This ground fault determination can be performed, and the AC side ground fault determination output and the AC side ground fault determination display can be performed. When a ground fault occurs on the secondary side electrical path (DC side) of the rectifier, there is almost no third harmonic current and there is almost no output from the third harmonic extraction unit, so the AC side Neither the ground fault judgment output nor the AC side ground fault judgment display is performed.

この結果、第4実施形態にかかる直流電鉄変電所用高圧接地継電器50は電位差測定部5に接続された直流側地絡判定出力部6Aによりあらかじめ設定された閾値を超過するときに、直流側地絡判定を出力するという従来の直流高圧接地継電器と同様の整流器の直流側の地絡故障の検出動作を行うことができる。   As a result, when the high voltage earthing relay 50 for a DC electric wire substation according to the fourth embodiment exceeds the threshold preset by the DC side ground detection output unit 6A connected to the potential difference measurement unit 5, the DC side ground leakage is detected. It is possible to perform a detection operation of a ground fault on the DC side of the rectifier similar to that of the conventional DC high voltage ground relay that outputs a determination.

上述の各実施形態において、地絡表示部13は、整流器の直流側の地絡故障を表示する直流側地絡表示部13Aと、整流器の交流側の地絡故障を表示する交流側地絡表示部13Bの2種類の出力を備えている例を示しており、これによって、どの部位で地絡故障が発生しているのかを一目瞭然に判断できる故に好ましいが、本発明はこの点に限定されるものではないことはいうまでもない。すなわち、地絡表示部13は交流側における地絡故障発生時と直流側における地絡故障発生において異なる表示を行う単一のものを用いてもよい。   In each of the above-described embodiments, the ground fault display unit 13 includes a DC side ground fault display unit 13A that displays a ground fault on the DC side of the rectifier, and an AC side ground fault display that displays the ground fault on the AC side of the rectifier. Although the example which has two types of outputs of section 13B is shown and it is possible to judge at which site a ground fault has occurred at a glance by this, it is preferable, but the present invention is limited to this point It is needless to say that it is not a thing. That is, the ground fault display unit 13 may use a single display that performs different display when the ground fault occurs on the AC side and the ground fault occurs on the DC side.

また、本発明の各実施形態において、整流器の1次側電路(交流側)に地絡故障が発生した場合には交流側地絡判定出力部6Bのみならず直流側地絡判定出力部6Aも動作する特性があるが、例えば直流側地絡判定出力部6Aのみが動作した場合には整流器の直流側電路の地絡故障と判定し、直流側地絡判定部6Aの出力と交流側地絡判定部6Bのどちらも動作した場合には整流器の交流側電路の地絡故障と判定し、交流側地絡判定部6Bのみが動作した場合には整流器の交流側電路の絶縁劣化等の損耗と判定して点検が必要な警報として変電設備の保全にも利用可能である。したがって、地絡判定出力部6を交流側、直流側に分ける必要はなく、一つに纏めても良いことはいうまでもない。   In each embodiment of the present invention, when a ground fault occurs on the primary side electrical path (AC side) of the rectifier, not only the AC side ground fault judgment output unit 6B but also the DC side ground fault judgment output unit 6A Although there is a characteristic that operates, for example, when only the DC side ground fault judgment output unit 6A operates, it is judged as a ground fault of the DC side electric path of the rectifier, the output of the DC side ground fault judgment unit 6A and the AC side ground fault When both of the determination units 6B operate, it is determined that there is a ground fault in the AC side of the rectifier, and when only the AC side ground determination unit 6B operates, wear and damage such as insulation deterioration of the AC side of the rectifier and It can also be used for maintenance of substation equipment as an alarm that requires judgment and inspection. Therefore, it is needless to say that the ground fault judgment output unit 6 does not have to be divided into the alternating current side and the direct current side, and may be integrated into one.

図8は本発明の第5実施形態にかかる直流電鉄変電所用高圧接地継電器60の構成を示す図であり、本例の直流電鉄変電所用高圧接地継電器60は、図1,図2に示される第1実施形態の整流器用変圧器7と整流器8の間の接続線9の地絡故障を判定して地絡表示部13Bに表示させるもの(図1に示すような交流遮断器7Aを動作させる信号を出力しない地絡検出器であってもよい)である。なお、その構成は図1,図2において既に詳述したものと同等であるからその詳細な説明を省略する。   FIG. 8 is a diagram showing the configuration of a high voltage earthing relay 60 for a DC electric wire substation according to a fifth embodiment of the present invention, and the high voltage earthing relay 60 for a DC electric steel transformer station of this example is the first shown in FIGS. What determines the ground fault of the connecting wire 9 between the transformer 7 for a rectifier of one embodiment and the rectifier 8 and displays it on the ground fault display section 13B (a signal for operating the AC breaker 7A as shown in FIG. 1 Ground detector may not be output). In addition, since the structure is equivalent to what was already explained in full detail in FIG. 1, FIG. 2, the detailed description is abbreviate | omitted.

本実施形態の直流電鉄変電所用高圧接地継電器60は整流器用変圧器7と整流器8の間の接続線9の遮蔽層9sが接続された接地線10に流れる電流の第3次高調波成分を常時監視できるので、整流器8の1次側電路が地絡故障を起こした場合、第3次高調波成分があらかじめ設定された閾値を超過することにより整流器8の1次側電路で地絡故障が発生したことを検出し、交流側地絡判定出力と交流側地絡表示を行うことができる。   The high voltage earthing relay 60 for a DC electric iron substation according to the present embodiment always keeps the third harmonic component of the current flowing in the earthing wire 10 to which the shielding layer 9s of the connecting wire 9 between the rectifier transformer 7 and the rectifier 8 is connected. Since it can be monitored, if a ground fault occurs in the primary side electrical path of the rectifier 8, the ground fault occurs in the primary side electrical path of the rectifier 8 when the third harmonic component exceeds a preset threshold value Can be detected, and the AC side ground fault determination output and the AC side ground fault display can be performed.

図9は本発明の第6実施形態にかかる直流電鉄変電所用高圧接地継電器70の構成を示す図であり、本例の直流電鉄変電所用高圧接地継電器70は、図3に示される第2実施形態の整流器用変圧器7と整流器8の間の接続線9の地絡故障を判定して交流側地絡表示部13Bに表示させるもの(交流遮断器7A等を動作させる信号を出力しない地絡故障検出器であってもよい)である。なお、その構成は図3において既に詳述したものと同等であるからその詳細な説明を省略する。   FIG. 9 is a view showing the configuration of a high voltage earthing relay 70 for a DC electric wire substation according to a sixth embodiment of the present invention, and the high voltage earthing relay 70 for DC electric steel transformer station of this example is a second embodiment shown in FIG. For determining a ground fault on the connection line 9 between the rectifier transformer 7 and the rectifier 8 and displaying on the AC side ground fault display unit 13B (a ground fault that does not output a signal for operating the AC breaker 7A or the like) (May be a detector). In addition, since the structure is equivalent to what was already explained in full detail in FIG. 3, the detailed description is abbreviate | omitted.

本実施形態の直流電鉄変電所用高圧接地継電器70は電位差測定部5の出力から第3次高調波成分を抽出し、この抽出された第3次高調波電圧の大きさを常時監視できるので、整流器の1次側電路が地絡故障を起こした場合、第3次高調波成分があらかじめ設定された閾値を超過することで整流器の1次側電路で地絡故障が発生したことを検出し、交流側地絡判定出力と交流側地絡表示を行うことができる。   The high voltage earthing relay 70 for the DC power iron substation according to the present embodiment extracts the third harmonic component from the output of the potentiometric measurement unit 5 and can constantly monitor the magnitude of the extracted third harmonic voltage. When the primary side electrical path of the ground fault occurs, the third harmonic component exceeds a preset threshold to detect that the ground fault has occurred on the primary side electrical path of the rectifier, and Side ground fault determination output and AC side ground fault display can be performed.

図10は本発明の第7実施形態にかかる直流電鉄変電所用高圧接地継電器80の構成を示す図であり、本例の直流電鉄変電所用高圧接地継電器80は、図4に示される第3実施形態の整流器用変圧器7と整流器8の間の接続線9の地絡故障を判定して交流側地絡表示部13Bに表示させるもの(交流遮断器7A等を動作させる信号を出力しない地絡故障検出器であってもよい)である。なお、その構成は図4において既に詳述したものと同等であるからその詳細な説明を省略する。   FIG. 10 is a diagram showing the configuration of a high voltage earthing relay 80 for a DC electric wire substation according to a seventh embodiment of the present invention, and the high voltage earthing relay 80 for DC electric steel transformer station of this example is the third embodiment shown in FIG. For determining a ground fault on the connection line 9 between the rectifier transformer 7 and the rectifier 8 and displaying on the AC side ground fault display unit 13B (a ground fault that does not output a signal for operating the AC breaker 7A or the like) (May be a detector). In addition, since the structure is equivalent to what was already explained in full detail in FIG. 4, the detailed description is abbreviate | omitted.

本実施形態の直流電鉄変電所用高圧接地継電器80は整流器用変圧器7と整流器8の間の接続線9の遮蔽層9sが接続された接地線10の電流を検出する電流測定部11を有し、電位差測定部5からの出力の第3次高調波成分を抽出し、この抽出された第3次高調波電圧と前記電流の大きさを交流側地絡判定出力部6Bで常時監視し、あらかじめ設定された閾値を共に超過することで整流器の1次側電路で地絡故障が発生したことを検出するものであるから、整流器の1次側電路が地絡故障を起こした場合に、交流側地絡判定出力と交流側地絡表示を行うことができる。   The high voltage earthing relay 80 for a direct current electric wire substation according to the present embodiment has a current measuring unit 11 for detecting the current of the earthing wire 10 to which the shielding layer 9s of the connecting wire 9 between the rectifier transformer 7 and the rectifier 8 is connected. The third harmonic component of the output from the potential difference measurement unit 5 is extracted, and the magnitudes of the extracted third harmonic voltage and the current are constantly monitored by the AC side ground fault judgment output unit 6B. Since the occurrence of a ground fault on the primary side electrical path of the rectifier is detected by exceeding the set threshold together, the AC side is detected when the primary side electrical path of the rectifier causes a ground fault. Ground fault determination output and AC side ground fault display can be performed.

図11は本発明の第8実施形態にかかる直流電鉄変電所用高圧接地継電器85の構成を示す図であり、本例の直流電鉄変電所用高圧接地継電器85は、図6,図7に示される第4実施形態の整流器用変圧器7と整流器8の間の接続線9の地絡故障を判定して交流側地絡表示部13Bに表示させるもの(交流遮断器7A等を動作させる信号を出力しない地絡故障検出器であってもよい)である。なお、その構成は図7において既に詳述したものと同等であるからその詳細な説明を省略する。   FIG. 11 is a diagram showing the configuration of a high voltage earthing relay 85 for a DC electric wire substation according to an eighth embodiment of the present invention, and the high voltage earthing relay 85 for DC electric steel transformer station of this example is the first shown in FIGS. 4. A ground fault of the connection line 9 between the rectifier transformer 7 and the rectifier 8 of the fourth embodiment is determined and displayed on the AC side ground fault display unit 13B (does not output a signal for operating the AC breaker 7A or the like) It may be a ground fault detector). In addition, since the structure is equivalent to what was already explained in full detail in FIG. 7, the detailed description is abbreviate | omitted.

本実施形態の直流電鉄変電所用高圧接地継電器85は帰線4に流れる帰線電流の第3次高調波成分を抽出して交流側地絡判定出力部6Bで常時監視し、あらかじめ設定された閾値を超過することで整流器の1次側で地絡故障が発生したことを検出するものであるから、整流器の1次側電路の地絡故障が小動物などによるものであったとしても、あるいは遮蔽層付ケーブルの絶縁劣化によるものであったとしても、その状況に関係なく、地絡故障を起こした場合に、交流側地絡判定出力と交流側地絡表示を行うことができる。   The high voltage earthing relay 85 for the DC electric iron substation according to the present embodiment extracts the third harmonic component of the return current flowing to the return wire 4 and constantly monitors it by the AC side ground fault judgment output unit 6B, and sets a preset threshold. Is to detect the occurrence of a ground fault on the primary side of the rectifier, so even if the ground fault on the primary side of the rectifier is due to a small animal or the like, or the shield layer Even if it is due to the insulation deterioration of the attached cable, the AC side ground fault determination output and the AC side ground fault display can be performed when a ground fault occurs regardless of the situation.

1,20,30,40,50,60,70,80,85 直流電鉄変電所用高圧接地継電器
2 変電所
3 接地マット
4 帰線
5 電位差測定部
6 地絡判定出力部
6A 直流側地絡判定出力部
6B 交流側地絡判定出力部
7 整流器用変圧器
8 整流器
9 接続線
9s 遮蔽層
10 接地線
11 電流測定部
12 第3次高調波抽出部
13 地絡表示部
13A 直流側地絡表示部
13B 交流側地絡表示部
51 帰線電流測定部

1, 20, 30, 40, 50, 60, 70, 80, 85 High-voltage grounding relay for DC power iron substation 2 substation 3 grounding mat 4 return 5 potential difference measuring unit 6 ground fault judgment output unit 6A DC side ground fault judgment output Part 6B AC side ground fault judgment output part 7 Transformer for rectifier 8 Rectifier 9 Connection wire 9s Shielding layer 10 Ground wire 11 Current measurement part 12 3rd harmonic extraction part 13 Ground fault display part 13A DC side ground fault display part 13B AC side ground fault display unit 51 Return current measurement unit

Claims (4)

直流電鉄用変電所の接地マットと帰線の間に設けられ、接地マットと帰線の間の電位差を測定する電位差測定部を有し、測定された電位差を用いて地絡故障を判定する直流高圧接地継電器において、整流器用変圧器と整流器の間の接続線の電路支持具または接続線の遮蔽層が接続された接地線に流れる電流を測定する電流測定部と、この電流の測定値から第3次高調波成分の抽出を行う第3次高調波抽出部と、この抽出された第3次高調波成分が閾値を超過するときに整流器用変圧器と整流器の間の整流器の1次側電路(交流側)の地絡故障を判定する交流側地絡判定出力部と、この交流側地絡判定を表示する交流側地絡表示部とを備えることを特徴とする直流電鉄変電所用高圧接地継電器。   A direct current determination circuit provided between the ground mat and the return line of the DC railway substation for measuring a potential difference between the ground mat and the return line, and determining a ground fault by using the measured potential difference. In a high voltage grounding relay, a current measuring unit for measuring a current flowing to a ground wire to which a wire support of a connecting wire between a rectifier transformer and a rectifier is connected or a shielding layer of the connecting wire is connected; A third harmonic extraction unit for extracting a third harmonic component, and a primary circuit of a rectifier between the rectifier transformer and the rectifier when the extracted third harmonic component exceeds a threshold An AC side ground fault determination output unit that determines a ground fault on the (AC side), and an AC side ground fault display unit that displays this AC side ground fault determination . 直流電鉄用変電所の接地マットと帰線の間に設けられ、接地マットと帰線の間の電位差を測定する電位差測定部を有し、測定された電位差を用いて地絡故障を判定する直流高圧接地継電器において、前記電位差の測定値から第3次高調波成分の抽出を行う第3次高調波抽出部と、この抽出された第3次高調波成分が閾値を超過するときに整流器用変圧器と整流器の間の整流器の1次側電路(交流側)の地絡故障を判定する交流側地絡判定出力部と、この交流側地絡判定を表示する交流側地絡表示部とを備えることを特徴とする直流電鉄変電所用高圧接地継電器。   A direct current determination circuit provided between the ground mat and the return line of the DC railway substation for measuring a potential difference between the ground mat and the return line, and determining a ground fault by using the measured potential difference. In a high voltage grounded relay, a third harmonic extraction unit for extracting a third harmonic component from a measured value of the potential difference, and transformer transformation for when the extracted third harmonic component exceeds a threshold value. An AC-side ground fault determination output unit that determines a ground fault on the primary side electrical path (AC side) of a rectifier between the inverter and the rectifier, and an AC-side ground fault display unit that displays this AC-side ground fault determination High-voltage grounding relay for DC railway substation characterized by 直流電鉄用変電所の接地マットと帰線の間に設けられ、接地マットと帰線の間の電位差を測定する電位差測定部を有し、測定された電位差を用いて地絡故障を判定する直流高圧接地継電器において、前記測定された電位差の第3次高調波成分の抽出を行う第3次高調波抽出部と、整流器用変圧器と整流器の間の接続線の電路支持具または接続線の遮蔽層が接続された接地線に流れる電流を測定する電流測定部と、この電流の測定値および前記抽出された第3次高調波成分が共に閾値を超過するときに整流器用変圧器と整流器の間の整流器の1次側電路(交流側)の地絡故障を判定する交流側地絡判定出力部と、この交流側地絡判定を表示する交流側地絡表示部とを備えることを特徴とする直流電鉄変電所用高圧接地継電器。   A direct current determination circuit provided between the ground mat and the return line of the DC railway substation for measuring a potential difference between the ground mat and the return line, and determining a ground fault by using the measured potential difference. In a high voltage grounded relay, a third harmonic extraction unit for extracting a third harmonic component of the measured potential difference, and shielding of an electric path support or a connecting wire of a connecting wire between a rectifier transformer and a rectifier Between the rectifier transformer and the rectifier when the measured value of the current and the extracted third harmonic component both exceed the threshold value, and a current measuring unit that measures the current flowing to the ground wire to which the layer is connected An AC-side ground fault determination output unit that determines a ground fault on the primary-side electrical path (AC side) of the rectifier, and an AC-side ground fault display unit that displays the AC-side ground fault determination. High-voltage grounding relay for DC railway substations. 直流電鉄用変電所の接地マットと帰線の間に設けられ、接地マットと帰線の間の電位差を測定する電位差測定部を有し、測定された電位差を用いて地絡故障を判定する直流高圧接地継電器において、前記帰線に流れる電流を測定する帰線電流測定部と、測定された帰線電流の第3次高調波成分の抽出を行う第3次高調波抽出部と、この抽出された第3次高調波成分が閾値を超過するときに整流器用変圧器と整流器の間の整流器の1次側電路(交流側)の地絡故障を判定する交流側地絡判定出力部と、この交流側地絡判定を表示する交流側地絡表示部とを備えることを特徴とする直流電鉄変電所用高圧接地継電器。   A direct current determination circuit provided between the ground mat and the return line of the DC railway substation for measuring a potential difference between the ground mat and the return line, and determining a ground fault by using the measured potential difference. In the high-voltage grounded relay, a retrace current measuring unit for measuring the current flowing to the retrace, a third harmonic extraction unit for extracting the third harmonic component of the measured retrace current, and the third harmonic extraction unit An AC side ground fault determination output unit that determines a ground fault on the primary side electrical path (AC side) of the rectifier between the rectifier transformer and the rectifier when the third harmonic component exceeds the threshold value; What is claimed is: 1. A high voltage grounding relay for a direct current railway substation, comprising: an alternating current side ground fault display unit for displaying an alternating current side ground fault determination.
JP2016044193A 2016-03-08 2016-03-08 High voltage earthing relay for DC railway substation Active JP6543587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016044193A JP6543587B2 (en) 2016-03-08 2016-03-08 High voltage earthing relay for DC railway substation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016044193A JP6543587B2 (en) 2016-03-08 2016-03-08 High voltage earthing relay for DC railway substation

Publications (2)

Publication Number Publication Date
JP2017163651A JP2017163651A (en) 2017-09-14
JP6543587B2 true JP6543587B2 (en) 2019-07-10

Family

ID=59854259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016044193A Active JP6543587B2 (en) 2016-03-08 2016-03-08 High voltage earthing relay for DC railway substation

Country Status (1)

Country Link
JP (1) JP6543587B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108162803B (en) * 2018-01-19 2023-07-18 中铁二院工程集团有限责任公司 Combined directional conduction reflux device
CN108162809B (en) * 2018-01-19 2023-07-18 中铁二院工程集团有限责任公司 Directional conduction reflux device
CN114624492B (en) * 2022-04-22 2023-04-07 西南交通大学 Method for measuring potential difference of two remote transformer substation ground grids caused by direct current
CN114942358B (en) * 2022-05-16 2023-05-05 西南交通大学 Multi-electric-quantity synchronous test method for subway power supply system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631320A (en) * 1979-08-22 1981-03-30 Mitsubishi Electric Corp Grounddfault current detector
JPS5674022A (en) * 1979-11-19 1981-06-19 Meidensha Electric Mfg Co Ltd Dc load circuit grounddfault protecting system
JP5311920B2 (en) * 2008-08-18 2013-10-09 西日本旅客鉄道株式会社 DC high-voltage ground relay
CN101387682A (en) * 2008-10-27 2009-03-18 清华大学 Single-phase earth fault detecting method based on residual current harmonic component
JP2010276377A (en) * 2009-05-26 2010-12-09 Kansai Electric Power Co Inc:The Ground fault detection system for dc circuit
JP6599802B2 (en) * 2016-03-08 2019-10-30 西日本旅客鉄道株式会社 Ground fault detection method for AC side connection line of DC feeding rectifier

Also Published As

Publication number Publication date
JP2017163651A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP6599802B2 (en) Ground fault detection method for AC side connection line of DC feeding rectifier
CN103782509B (en) For detecting system, computer program and the method for the internal winding failure of synchronous generator
RU2542494C2 (en) Device and method for detection of ground short-circuit
US8842401B2 (en) Protection system for an electrical power network
US7772857B2 (en) System and method to determine the impedance of a disconnected electrical facility
JP6543587B2 (en) High voltage earthing relay for DC railway substation
RU2557017C2 (en) Fault identification and directional detection in three-phase power system
KR20130060715A (en) A detection device of insulation resistance for non-interruption of electric power and hot-line
JP4871511B2 (en) Interrupt insulation measuring device
Selkirk et al. The dangers of grounding resistor failure
JP2018036054A (en) Earth detector, ground fault protection device, and method for detecting ground fault
JP2006200898A5 (en)
JP2010187446A (en) Power cable ground fault detecting apparatus and power cable ground fault protection device
JP5121585B2 (en) Sheath earth circuit monitoring device
Farughian et al. Intermittent earth fault passage indication in compensated distribution networks
JP5163452B2 (en) Fine ground fault detection device and fine ground fault detection method
Selkirk et al. Why neutral-grounding resistors need continuous monitoring
JP4121979B2 (en) Non-grounded circuit insulation monitoring method and apparatus
Cooley et al. Guide to substation grounding and bonding for mine power systems
JP2013113632A (en) Ground fault detecting method
Spencer et al. Arc-flash risks in switchgear metering compartments
Mirodil et al. PROBLEMS OF DETECTING SINGLE-PHASE GROUNDING IN LOW VOLTAGE NETWORKS
TWI231079B (en) Insulation diagnostic device
JP7341070B2 (en) Ground fault location system and method
Paul et al. A review of phase-ground fault current relay type and settings in an hrg medium-voltage mining power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R150 Certificate of patent or registration of utility model

Ref document number: 6543587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250