JP2017158455A - Oil-in-water emulsion - Google Patents

Oil-in-water emulsion Download PDF

Info

Publication number
JP2017158455A
JP2017158455A JP2016043960A JP2016043960A JP2017158455A JP 2017158455 A JP2017158455 A JP 2017158455A JP 2016043960 A JP2016043960 A JP 2016043960A JP 2016043960 A JP2016043960 A JP 2016043960A JP 2017158455 A JP2017158455 A JP 2017158455A
Authority
JP
Japan
Prior art keywords
oil
fat
water emulsion
water
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016043960A
Other languages
Japanese (ja)
Other versions
JP6846112B2 (en
Inventor
花澤智仁
Tomohito Hanazawa
魚住知弘
Tomohiro Uozumi
小杉達也
Tatsuya Kosugi
黒岩由来子
Yukiko Kuroiwa
岡崎正典
Masanori Okazaki
久保内宏晶
Hiroaki Kubouchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP2016043960A priority Critical patent/JP6846112B2/en
Publication of JP2017158455A publication Critical patent/JP2017158455A/en
Application granted granted Critical
Publication of JP6846112B2 publication Critical patent/JP6846112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an oil-in-water emulsion that has a short whipping time, an air-containing capacity, and good melting in the mouth while having a low fat content.SOLUTION: An oil-in-water emulsion comprises 15% or more and 35% or less of milk fat, and behenic acid of 0.1g or more and 2g or less per oil and fat 100 g.SELECTED DRAWING: None

Description

本発明は、低脂肪の水中油型乳化物に関する。   The present invention relates to a low fat oil-in-water emulsion.

乳化物の安定性や、ホイップ時の取り扱いのしやすさから、バターなどの乳脂肪を乳化して調製した水中油型乳化物は生クリームの代替物として広く用いられている。さらに近年の食品のカロリー低減の要望の高まりから、水中油型乳化物においても低脂肪化が求められている。   Oil-in-water emulsions prepared by emulsifying milk fat such as butter are widely used as an alternative to fresh cream because of the stability of the emulsion and ease of handling during whipping. Furthermore, due to the recent increase in demand for reducing calories in foods, oil-in-water emulsions are also required to be reduced in fat.

水中油型乳化物をホイップすると、取り込まれた泡の周囲に脂肪球による界面構造が形成されると共に、水中油型乳化物内部においても脂肪球同士の凝集によるネットワーク構造が形成される。ホイップされた水中油型乳化物の硬さはこの脂肪球のネットワーク構造によりもたらされることが知られている(非特許文献1)。   When the oil-in-water emulsion is whipped, an interface structure is formed by fat globules around the taken-in foam, and a network structure is formed by aggregation of fat globules inside the oil-in-water emulsion. It is known that the hardness of a whipped oil-in-water emulsion is brought about by the network structure of fat globules (Non-patent Document 1).

しかしながら、低脂肪の水中油型乳化物においては脂肪球の総量が不足する。そのため、従来の低脂肪の水中油型乳化物は、所定の硬さとするために長時間のホイップが必要となる、もしくは、長時間ホイップしても目的とする硬さの水中油型乳化物が得らないという問題点があった。   However, a low fat oil-in-water emulsion lacks the total amount of fat globules. Therefore, the conventional low-fat oil-in-water emulsion requires a long-time whipping to obtain a predetermined hardness, or an oil-in-water emulsion having the desired hardness even if whipped for a long time. There was a problem of not getting.

脂肪球中の脂肪酸組成の調整が比較的容易な植物性油脂を利用した植物脂肪を用いた低脂肪の水中油型乳化物においては、植物性脂肪やその加工油脂を複数用いて混合した油脂を使用して水中油型乳化物を調製することが可能であるが、乳脂肪を用いた水中油型乳化物においては、脂肪源が乳脂肪に限定されるため油脂を構成する脂肪酸組成やその特性を自由にコントロールすることは極めて困難である。   In low-fat oil-in-water emulsions using vegetable fats that use vegetable fats and fats that are relatively easy to adjust the fatty acid composition in fat globules, the fats and oils mixed using multiple vegetable fats and processed fats and oils are mixed. It is possible to prepare an oil-in-water emulsion using it, but in an oil-in-water emulsion using milk fat, since the fat source is limited to milk fat, the fatty acid composition and characteristics of the fat It is extremely difficult to freely control

化学処理による硬化バターオイルや、融点の違いを利用した分画によって得られる高融点バターオイルなどを用いることも技術的には可能であるが、それらの油脂は一般的に非常に高価であり商業上の利用に著しい制限をもたらすのみならず、硬化バターオイルや高融点バターオイルを用いることによる口解けの悪化や風味の低下は避けられないという問題点があった。   Although it is technically possible to use hardened butter oil by chemical treatment or high melting point butter oil obtained by fractionation using the difference in melting point, these fats and oils are generally very expensive and commercially available. In addition to causing significant restrictions on the above use, there has been a problem that deterioration of taste and flavor are unavoidable due to the use of hardened butter oil and high melting point butter oil.

一方、醗酵セルロースを含有するホイップクリーム用安定剤を使用する方法(特許文献1)、ヒアルロン酸及び/又はその塩を利用する方法(特許文献2)などの安定剤を用いる方法なども開示されているが、これらの方法では水中油型乳化物の粘度は変化してしまい生クリームや乳脂肪クリーム本来の物性的な特徴は損なわれてしまう。
さらに、それを用いて調製したホイップドクリームは、本来、脂肪球同士の凝集によってもたらされるべきホイップドクリームの構造を水溶液中の安定剤の増粘によって補っているに過ぎないため、やはりホイップドクリームが本来持つべき食感や風味は著しく変化してしまうという問題点があった。
On the other hand, methods using stabilizers such as a method using a stabilizer for whipped cream containing fermented cellulose (Patent Document 1) and a method using hyaluronic acid and / or a salt thereof (Patent Document 2) are also disclosed. However, in these methods, the viscosity of the oil-in-water emulsion changes, and the original physical characteristics of fresh cream and milk fat cream are impaired.
Furthermore, the whipped cream prepared using the whipped cream is merely supplemented by the thickening of the stabilizer in the aqueous solution to the structure of the whipped cream that should originally be brought about by the aggregation of fat globules. There is a problem in that the texture and flavor that the cream should originally have change remarkably.

野田正幸、(1988)、生水中油型乳化物とそのホイッピング現 象、調理学会 Vol.21(3)、142−153Noda Masayuki, (1988), Raw oil-in-water emulsion and its whipping phenomenon, Cooking Society Vol. 21 (3), 142-153

特開2011−193814JP2011-193814A 特開2013−13393JP2013-13393

本発明は、上記のような問題を解決し、低脂肪でありながら、短いホイップ時間と、含気能力と、口解けを兼ね備えた水中油型乳化物を提供することを課題とする。   This invention solves the above problems, and makes it a subject to provide the oil-in-water type emulsion which has short whipping time, an aeration capability, and a mastication, although it is low fat.

上記課題を解決するため、本発明には以下の構成が含まれる。
(1)15重量%以上35重量%以下の乳脂肪と、油脂100g中換算で0.1g以上2g以下のベヘン酸と、を含むことを特徴とする水中油型乳化物。
(2)水中油型乳化物に含まれる油脂の20℃における貯蔵弾性率と損失弾性率が1Pa以上であることを特徴とする(1)に記載の水中油型乳化物。
(3)水中油型乳化物に含まれる油脂の40℃における固体脂量が0.5%以上1.5%以下であることを特徴とする(1)又は(2)のいずれかひとつに記載の水中油型乳化物。
(4)さらに、水中油型乳化物に含まれる油脂の30℃における固体脂量が7%程度、20℃における固体脂量が23%程度、10℃における固体脂量が50%程度であることを特徴とする(1)から(3)のいずれかひとつに記載の水中油型乳化物。
(5)オーバーランが7分以内に150%以上となることを特徴とする(1)から(4)のいずれかひとつに記載の水中油型乳化物。
(6)乳脂肪とベヘン酸残基を含む乳化剤とを混合して油相を調製する工程と、水と水溶性原材料とを混合する工程と、前記油相と前記水相とを混合する工程と、前記油相と前記水相とを混合して得られた混合物を均質化する工程と、前記油相と前記水相とを混合して得られた混合物を殺菌する工程と、を含むことを特徴とする水中油型乳化物の製造方法。
In order to solve the above problems, the present invention includes the following configurations.
(1) An oil-in-water emulsion comprising 15% by weight or more and 35% by weight or less of milk fat and 0.1 g or more and 2 g or less of behenic acid in terms of 100 g of fats and oils.
(2) The oil-in-water emulsion according to (1), wherein the oil and fat contained in the oil-in-water emulsion has a storage elastic modulus and loss elastic modulus at 20 ° C. of 1 Pa or more.
(3) The solid fat amount at 40 ° C. of the fat contained in the oil-in-water emulsion is 0.5% or more and 1.5% or less, as described in any one of (1) and (2) Oil-in-water emulsion.
(4) Furthermore, the solid fat amount at 30 ° C. of the fat contained in the oil-in-water emulsion is about 7%, the solid fat amount at 20 ° C. is about 23%, and the solid fat amount at 10 ° C. is about 50%. The oil-in-water emulsion according to any one of (1) to (3).
(5) The oil-in-water emulsion according to any one of (1) to (4), wherein the overrun is 150% or more within 7 minutes.
(6) A step of preparing an oil phase by mixing milk fat and an emulsifier containing a behenic acid residue, a step of mixing water and a water-soluble raw material, and a step of mixing the oil phase and the aqueous phase And homogenizing the mixture obtained by mixing the oil phase and the aqueous phase, and sterilizing the mixture obtained by mixing the oil phase and the aqueous phase. A method for producing an oil-in-water emulsion characterized by the above.

本発明は、低脂肪でありながら、短いホイップ時間と、含気能力と、口解けを兼ね備えた水中油型乳化物を提供するものである。   The present invention provides an oil-in-water emulsion that has a low fat while having a short whipping time, an aeration capability, and a mouthfeel.

本発明の水中油型乳化物について以下に詳細に説明する。
本発明者らは、ベヘン酸がエステル結合した脂肪及び/又は親油性乳化剤を含み、かつ、油脂100g中換算でベヘン酸を0.1g以上2g以下含む水中油型乳化物は、冷却時に高い温度から結晶化が始まることにより脂肪球内部に強固な脂肪結晶構造が構築されるため、ホイップ時間が短く、含気能力を有し、さらに、低温域での固体脂比率は乳脂肪と変わらないため口どけも併せ持つことを見出し、本発明を完成させるに至った。
The oil-in-water emulsion of the present invention will be described in detail below.
The present inventors include a fat and / or lipophilic emulsifier in which behenic acid is ester-linked, and an oil-in-water emulsion containing 0.1 to 2 g of behenic acid in terms of 100 g of fat and oil has a high temperature during cooling. Since a strong fat crystal structure is built inside the fat sphere when crystallization starts from, the whip time is short, it has an aeration capacity, and the solid fat ratio in the low temperature range is not different from milk fat It has been found that it also has a mouthpiece, and the present invention has been completed.

本発明の水中油型乳化物の原材料について説明する。
本発明の水中油型乳化物に用いる乳脂肪源は、乳脂肪を含むものであればよく、牛乳、生クリーム、バター、バターオイル、ホエイ、全脂粉乳等から選択される1種又はこれらを複数含むものを用いることができる。
これらの原材料を用いて水中油型乳化物の脂肪分が15重量%以上35重量%以下となるように調整すればよい。
The raw material of the oil-in-water emulsion of the present invention will be described.
The milk fat source used in the oil-in-water emulsion of the present invention may be any milk fat source, and may be one selected from milk, fresh cream, butter, butter oil, whey, whole milk powder or the like. A thing containing two or more can be used.
What is necessary is just to adjust so that the fat content of an oil-in-water emulsion may be 15 to 35 weight% using these raw materials.

本発明の水中油型乳化物に用いるベヘン酸がエステル結合した脂肪及び/又は親油性乳化剤は、乳脂肪中にはベヘン酸がエステル結合した油脂はほとんど含まれないことから、ベヘン酸がエステル結合した親油性乳化剤を用いることが好ましい。
乳化剤はベヘン酸がエステル結合した親油性乳化剤であれば特に限定する必要はなく、例えば、脂肪酸モノグリセリド、脂肪酸ジグリセリド、脂肪酸トリグリセリド、脂肪酸ポリグリセリド、ショ糖脂肪酸エステル、脂肪酸プロピレングリコール、ソルビタン脂肪酸エステルなどが挙げられ、これらの1種又は複数を混合して用いることができる。
Since the fat and / or lipophilic emulsifier embedding behenic acid used in the oil-in-water emulsion of the present invention contains almost no fats and oils that are ester-bonded with behenic acid, the behenic acid is ester-bonded. It is preferable to use a lipophilic emulsifier.
The emulsifier is not particularly limited as long as it is a lipophilic emulsifier in which behenic acid is ester-bonded. For example, fatty acid monoglyceride, fatty acid diglyceride, fatty acid triglyceride, fatty acid polyglyceride, sucrose fatty acid ester, fatty acid propylene glycol, sorbitan fatty acid ester, etc. One or more of these can be mixed and used.

本発明の水中油型乳化物に用いるベヘン酸がエステル結合した親油性乳化剤の添加量は、水中油型乳化物の油脂100g中換算でベヘン酸量が最終的に0.1g以上2.0g以下となるように添加すればよい。   The amount of the lipophilic emulsifier in which behenic acid is ester-linked used in the oil-in-water emulsion of the present invention is such that the amount of behenic acid is finally 0.1 g or more and 2.0 g or less in terms of 100 g of oil / fat of the oil-in-water emulsion. What is necessary is just to add.

上記したベヘン酸量とすると、冷却の30℃以上の温度帯から、ベヘン酸やベヘン酸を脂肪酸とする親油性乳化剤の界面吸着層や逆ミセルを核とする脂肪結晶が油脂中に形成されはじめ、さらなる冷却に伴ってこの脂肪結晶が成長する。そのため、本発明に用いる油脂は硬さが付与され、温度が20℃、周波数が1Hzの条件において油脂の貯蔵弾性率及び損失弾性率は共に1Pa以上となる。   Assuming that the amount of behenic acid is as described above, from the cooling temperature range of 30 ° C. or higher, behenic acid or an interfacial adsorption layer of a lipophilic emulsifier containing behenic acid as a fatty acid or a fat crystal having a reverse micelle as a nucleus begins to form in the fat and oil. The fat crystals grow with further cooling. Therefore, the fats and oils used in the present invention are imparted with hardness, and the storage elastic modulus and loss elastic modulus of the fats and oils are both 1 Pa or more under the conditions of a temperature of 20 ° C. and a frequency of 1 Hz.

さらに、そのような特徴を持つ油脂を用いて調製された水中油型乳化物は、脂肪球の内部にベヘン酸やベヘン酸を脂肪酸とする親油性乳化剤の逆ミセルを核とする脂肪結晶が含まれるため、ホイップしたときに、気液界面や水相中でこの脂肪結晶を介した脂肪球の構造形成によってより強固な構造を形成することができる。その結果、低脂肪でありながら起泡性と良好な硬さを併せ持つホイップドクリームが調製可能となる。   Furthermore, oil-in-water emulsions prepared using fats and oils having such characteristics include fat crystals with behenic acid or lipophilic emulsifier reverse micelles containing behenic acid as fatty acids inside fat globules. Therefore, when whipped, a stronger structure can be formed by forming the structure of fat globules through the fat crystals in the gas-liquid interface or the aqueous phase. As a result, it is possible to prepare a whipped cream having both low foaming properties and good hardness.

一方で、脂肪酸組成全体に対するベヘン酸量は油脂100g中換算で0.1g以上2.0g以下であるため、温度変化に対する全脂肪含量に対する固体脂の比率(以下、SFCと記す)の値は、10℃以上40℃未満の範囲で乳脂肪とほとんど変わらない。そのため、脂肪含量が40〜45重量%程度の乳脂肪を用いた水中油型乳化物や生クリームと変わらない口解けを実現することができる。
唯一、40℃においてベヘン酸やベヘン酸を脂肪酸とする親油性乳化剤の逆ミセルを核とする脂肪結晶が残存するが、その量は1±0.5%と微量であるため水中油型乳化物の口解けなどの官能的な特徴には影響しない。
On the other hand, the amount of behenic acid with respect to the entire fatty acid composition is 0.1 g or more and 2.0 g or less in terms of 100 g of fat, so the value of the ratio of solid fat to the total fat content with respect to temperature change (hereinafter referred to as SFC) is It is almost the same as milk fat in the range of 10 ° C or more and less than 40 ° C. For this reason, it is possible to achieve a mouthfeel that is the same as that of an oil-in-water emulsion or fresh cream using milk fat having a fat content of about 40 to 45% by weight.
The only fat crystals with bemic acid or reverse micelles of lipophilic emulsifiers containing behenic acid as fatty acids remain at 40 ° C, but the amount is as small as 1 ± 0.5%, so the oil-in-water emulsion It does not affect the sensual features such as squeezing.

本発明の水中油型乳化物には、必要に応じて、脱脂粉乳、バターミルクパウダー、ホエイパウダー、乳タンパク質、乳糖やその分解物、でんぷん、デキストリン、液糖、増粘多糖類、リン酸塩、クエン酸塩、炭酸塩、カリウム塩、呈味物質、香料などを含有してもよい。また、ベヘン酸以外の脂肪酸残基を有する乳化剤等を用いることもできる。   In the oil-in-water emulsion of the present invention, if necessary, skim milk powder, buttermilk powder, whey powder, milk protein, lactose and its decomposition products, starch, dextrin, liquid sugar, thickening polysaccharide, phosphate , Citrates, carbonates, potassium salts, taste substances, fragrances and the like. Also, an emulsifier having a fatty acid residue other than behenic acid can be used.

本発明の水中油型乳化物の製造方法について説明する。
本発明の水中油型乳化物は、水と油脂とを60℃〜80℃程度で乳化させた後、高圧ホモゲナイザー等での均質化工程(0.5〜10MPa程度)、熱交換プレートや蒸気の吹き込みによる殺菌工程(75〜150℃程度)、冷却工程等を含む製造工程により得ることができる。
水溶性乳化剤を用いる場合は水に、油溶性乳化剤を用いる場合は油脂に添加しておくことが好ましい。また、必要に応じて粉乳、増粘多糖類、塩類、呈味物質、水溶性香料などを用いる場合は、これらを水に溶解して用いることが好ましい。油溶性香料を用いる場合は、これを油脂に溶解して用いることが好ましい。
The manufacturing method of the oil-in-water emulsion of this invention is demonstrated.
The oil-in-water emulsion of the present invention is obtained by emulsifying water and fats and oils at about 60 ° C. to 80 ° C., and then homogenizing with a high-pressure homogenizer (about 0.5 to 10 MPa), heat exchange plate and steam It can be obtained by a manufacturing process including a sterilization process (about 75 to 150 ° C.) by blowing and a cooling process.
When using a water-soluble emulsifier, it is preferable to add to water, and when using an oil-soluble emulsifier, it is added to fats and oils. Moreover, when using powdered milk, thickening polysaccharide, salt, a taste substance, a water-soluble fragrance | flavor, etc. as needed, it is preferable to melt | dissolve and use these. When using an oil-soluble fragrance | flavor, it is preferable to melt | dissolve and use this in fats and oils.

以下、本発明の実施例を詳細に説明するが、本発明はこれらに限定されるものではない。   Examples of the present invention will be described in detail below, but the present invention is not limited thereto.

無塩バターより得た乳脂肪30重量%を80℃に加温して溶解し、製品の油脂100g換算で0.5gのベヘン酸を含有するように油溶性のショ糖ベヘン酸エステルを0.3重量%添加した。さらに、大豆レシチン0.3重量%加えて、親油性乳化剤含有乳脂肪とした。
水64.9重量%を80℃に加温して脱脂粉乳4重量%、カゼインナトリウム0.5重量%を加えて溶かした後、親油性乳化剤含有脂肪を加えてホモミキサーで良く攪拌した後、高圧ホモゲナイザーで1段目4MPa、2段目1MPaの均質を行った。さらに熱交換プレートを用いて130℃2秒の殺菌処理の後、5℃まで冷却して脂肪分が30重量%の水中油型乳化物を得た。
30% by weight of milk fat obtained from unsalted butter is heated to 80 ° C. to dissolve it, and oil-soluble sucrose behenate is added to the product so that it contains 0.5 g of behenic acid in terms of 100 g of product fat. 3% by weight was added. Furthermore, 0.3% by weight of soybean lecithin was added to obtain a lipophilic emulsifier-containing milk fat.
After heating 64.9% by weight of water to 80 ° C. and adding 4% by weight of skimmed milk powder and 0.5% by weight of sodium caseinate, the mixture was added with lipophilic emulsifier-containing fat and stirred well with a homomixer. Using a high-pressure homogenizer, the first stage 4 MPa and the second stage 1 MPa were homogenized. Furthermore, after sterilizing at 130 ° C. for 2 seconds using a heat exchange plate, the mixture was cooled to 5 ° C. to obtain an oil-in-water emulsion having a fat content of 30% by weight.

無塩バターより得た乳脂肪30重量%を80℃に加温して溶解し、製品の油脂100g換算で0.5gのベヘン酸を含有するように油溶性のショ糖ベヘン酸エステル0.3重量%を加えて親油性乳化剤含有乳脂肪とした。
水65.2重量%を80℃に加温して脱脂粉乳4重量%、カゼインナトリウム0.5重量%を加えて溶かした後、親油性乳化剤含有脂肪を加えてホモミキサーで良く攪拌した後、高圧ホモゲナイザーで1段目4MPa、2段目1MPaの均質を行った。さらに熱交換プレートを用いて130℃2秒の殺菌処理の後、5℃まで冷却して脂肪分30重量%の水中油型乳化物を得た。
(比較例1)
30% by weight of milk fat obtained from unsalted butter is heated to 80 ° C to dissolve, and the oil-soluble sucrose behenate ester 0.3 so as to contain 0.5 g of behenic acid in terms of 100 g of product fat. % By weight was added to obtain a milk fat containing lipophilic emulsifier.
After heating 65.2% by weight of water to 80 ° C. and adding 4% by weight of skimmed milk powder and 0.5% by weight of sodium caseinate, the fat containing lipophilic emulsifier was added and stirred well with a homomixer. Using a high-pressure homogenizer, the first stage 4 MPa and the second stage 1 MPa were homogenized. Furthermore, after sterilizing at 130 ° C. for 2 seconds using a heat exchange plate, it was cooled to 5 ° C. to obtain an oil-in-water emulsion having a fat content of 30% by weight.
(Comparative Example 1)

無塩バターより得た乳脂肪30重量%を80℃に加温して溶解し、大豆レシチン0.3重量%加えて親油性乳化剤含有乳脂肪とした。
水65.2重量%を80℃に加温して脱脂粉乳4重量%、カゼインナトリウム0.5重量%を加えて溶かした後、親油性乳化剤含有脂肪を加えてホモミキサーで良く攪拌した後、高圧ホモゲナイザーで1段目4MPa、2段目1MPaの均質を行った。さらに熱交換プレートを用いて130℃2秒の殺菌処理の後、5℃まで冷却して脂肪分30重量%の水中油型乳化物を得た。
(比較例2)
30% by weight of milk fat obtained from unsalted butter was heated to 80 ° C. to dissolve, and 0.3% by weight of soy lecithin was added to obtain milk fat containing lipophilic emulsifier.
After heating 65.2% by weight of water to 80 ° C. and adding 4% by weight of skimmed milk powder and 0.5% by weight of sodium caseinate, the fat containing lipophilic emulsifier was added and stirred well with a homomixer. Using a high-pressure homogenizer, the first stage 4 MPa and the second stage 1 MPa were homogenized. Furthermore, after sterilizing at 130 ° C. for 2 seconds using a heat exchange plate, it was cooled to 5 ° C. to obtain an oil-in-water emulsion having a fat content of 30% by weight.
(Comparative Example 2)

無塩バターより得た乳脂肪30重量%を80℃に加温して溶解し、油溶性のショ糖ステアリン酸エステル0.3重量%、大豆レシチン0.3重量%加えて親油性乳化剤含有乳脂肪とした。
水64.9重量%を80℃に加温して脱脂粉乳4重量%、カゼインナトリウム0.5重量%を加えて溶かした後、親油性乳化剤含有脂肪を加えてホモミキサーで良く攪拌した後、高圧ホモゲナイザーで1段目4MPa、2段目1MPaの均質を行った。さらに熱交換プレートを用いて130℃2秒の殺菌処理の後、5℃まで冷却して乳脂肪分30重量%の水中油型乳化物を得た。
(試験例1)
30% by weight of milk fat obtained from unsalted butter is heated to 80 ° C. and dissolved, and 0.3% by weight of oil-soluble sucrose stearate and 0.3% by weight of soy lecithin are added, and a milk containing lipophilic emulsifier It was fat.
After heating 64.9% by weight of water to 80 ° C. and adding 4% by weight of skimmed milk powder and 0.5% by weight of sodium caseinate, the mixture was added with lipophilic emulsifier-containing fat and stirred well with a homomixer. Using a high-pressure homogenizer, the first stage 4 MPa and the second stage 1 MPa were homogenized. Furthermore, after sterilizing at 130 ° C. for 2 seconds using a heat exchange plate, it was cooled to 5 ° C. to obtain an oil-in-water emulsion having a milk fat content of 30% by weight.
(Test Example 1)

<油脂の抽出>
マジュニア脂肪抽出管に試料を1g、蒸留水5g、アンモニア水(1級、28%以上)2gを加えてよく振とうした。これに、エタノール(1級)10mLを加えてよく振とうした。次に、ジエチルエーテル(1級)25mLを加えてよく振とうした。さらに、石油エーテル(1級)25mLを加えてよく振とうした。これを抽出管に入れ、マジュニア遠心分離機を用いて600rpm5分間分離し、上層のエーテル層をガラスビーカーに移した。
下層にエタノール(1級)10mLを加えてよく振とうし、次に、ジエチルエーテル(1級)25mLを加えてよく振とうし、さらに、石油エーテル(1級)25mLを加えてよく振とうし、これを上記と同様の条件で遠心分離し、得られた上層のエーテル層をガラスビーカーに移した。
ガラスビーカーを70℃に暖めてエーテルを蒸発させて残った油脂を回収し、以下の測定に用いた。
なお、1本のマジュニア脂肪抽出管による抽出では分析に必要な油脂が足りない場合は、同一の水中油型乳化物サンプルについて複数のマジュニア脂肪抽出管を用いた油脂の抽出を行い、回収した油脂を混ぜ合わせて評価に使用した。
(試験例2)
<Oil extraction>
1 g of the sample, 5 g of distilled water, and 2 g of ammonia water (first grade, 28% or more) were added to the Maguni fat extraction tube and shaken well. To this, 10 mL of ethanol (first grade) was added and shaken well. Next, 25 mL of diethyl ether (primary) was added and shaken well. Further, 25 mL of petroleum ether (first grade) was added and shaken well. This was put in an extraction tube and separated using a junior centrifuge at 600 rpm for 5 minutes, and the upper ether layer was transferred to a glass beaker.
Shake well by adding 10 mL of ethanol (primary) to the lower layer, then shake well by adding 25 mL of diethyl ether (primary), and shake well by adding 25 mL of petroleum ether (primary). This was centrifuged under the same conditions as above, and the resulting upper ether layer was transferred to a glass beaker.
The glass beaker was heated to 70 ° C. to evaporate the ether, and the remaining oil was collected and used for the following measurements.
In addition, when the fats and oils necessary for the analysis are not enough in the extraction with a single junior fat extraction tube, the same oil-in-water emulsion sample is extracted using a plurality of junior fat extraction tubes, and the recovered fats and oils are extracted. Were used for evaluation.
(Test Example 2)

<水中油型乳化物の硬さの評価>
実施例1、2及び比較例1、2の水中油型乳化物より、試験例1と同様の方法で油脂の抽出を行った。
MCR302(アントンパール・ジャパン)を用いて動的粘弾性の測定を行った。専用の冶具(P−PTD200/62、アントンパール・ジャパン)を用いて測定装置に固定したディスポーザブルプレート(EMS/TEK500/600、アントンパール・ジャパン)に、80℃に加温した実施例1、2及び比較例1、2より抽出した油脂10mLを入れ、50mmの平板プレート(PP50, アントンパール・ジャパン)を用いて、ギャップ約2.5mm、Strain0.5%、Frequency 1Hzにて動的粘弾性を測定した。温度制御にはサンプル下部と上部のカバー型温調ユニットの両方を用い、80℃から0℃まで降温速度1℃/分で冷やした際の20℃における貯蔵弾性率及び損失弾性率を測定した。結果を表1に示す。
貯蔵弾性率及び損失弾性率が1Pa以上を適度な硬さとした。
<Evaluation of hardness of oil-in-water emulsion>
Oils and fats were extracted from the oil-in-water emulsions of Examples 1 and 2 and Comparative Examples 1 and 2 in the same manner as in Test Example 1.
The dynamic viscoelasticity was measured using MCR302 (Anton Paar Japan). Examples 1 and 2 heated to 80 ° C. on a disposable plate (EMS / TEK500 / 600, Anton Pearl Japan) fixed to a measuring device using a dedicated jig (P-PTD200 / 62, Anton Pearl Japan) And 10 mL of oil extracted from Comparative Examples 1 and 2, and using a 50 mm flat plate (PP50, Anton Paar Japan), with a gap of about 2.5 mm, a strain of 0.5%, and a frequency of 1 Hz. It was measured. For temperature control, both the lower and upper cover-type temperature control units were used, and the storage elastic modulus and loss elastic modulus at 20 ° C. when cooled from 80 ° C. to 0 ° C. at a temperature decrease rate of 1 ° C./min were measured. The results are shown in Table 1.
The storage elastic modulus and the loss elastic modulus were set to an appropriate hardness of 1 Pa or more.

(表1)水中油型乳化物より抽出した油脂の貯蔵弾性率と損失弾性率
(試験例3)
(Table 1) Storage elastic modulus and loss elastic modulus of oil extracted from oil-in-water emulsion
(Test Example 3)

<SFCの測定>
SFCの測定は核磁気共鳴装置(Minispec mq 20、 BrukerCo.)を用いて行った。80℃に加温した実施例1、2及び比較例1、2より抽出した油脂2.5mLをガラス管に入れて栓をした後、5℃として一晩静置し、さらに10℃、20℃、30℃、40℃の恒温槽中で30分間静置した後、SFCの測定を行った。なお比較として、生クリームより試験例1と同じ方法で抽出した油脂についてもSFCの測定を行った。結果を表2に示す。
<Measurement of SFC>
SFC measurement was performed using a nuclear magnetic resonance apparatus (Minispec mq 20, Bruker Co.). Oils and fats extracted from Examples 1 and 2 and Comparative Examples 1 and 2 heated to 80 ° C. were put into a glass tube and stoppered, and then left at 5 ° C. overnight, and further 10 ° C. and 20 ° C. After being left for 30 minutes in a constant temperature bath at 30 ° C. and 40 ° C., SFC was measured. For comparison, SFC was also measured for fats and oils extracted from fresh cream by the same method as in Test Example 1. The results are shown in Table 2.

(表2)水中油型乳化物より抽出した油脂のSFC

(試験例4)
(Table 2) SFC of fats and oils extracted from oil-in-water emulsions

(Test Example 4)

<水中油型乳化物の泡立て評価>
実施例1、2及び比較例1、2の水中油型乳化物(5℃)200gに対して、砂糖15gを加え、20℃の部屋で直径21cmのステンレス製の深底ボールと2軸式ハンドミキサーを用いてビーターの回転速度400rpmにて起泡した。
ホイップした水中油型乳化物は、直径5cm、深さ5cmのカップに入れ、直系2cmのステンレス製の円柱を1mm/秒の速度で1cm貫入させた際の最大応力を測定し、最大応力の値が40gとなるまでに要した時間を評価した。
さらに、ホイップ終了時の水中油型乳化物を直径5cm、深さ5cmのカップに入れて重量を測定し、以下の式よりオーバーランを計算した。
時間は7分以下を合格とした。オーバーランは150%以上を良好とした。また、官能により風味と色の評価を行った。結果を表3に示す。

A:単位体積あたりのホイップ前の水中油型乳化物の重量
B:単位体積あたりのホイップ後の水中油型乳化物の重量

オーバーラン(%)=(A−B)/B × 100
<Bubbling evaluation of oil-in-water emulsion>
15 g of sugar was added to 200 g of the oil-in-water emulsions (5 ° C.) of Examples 1 and 2 and Comparative Examples 1 and 2, and a stainless steel deep bottom ball with a diameter of 21 cm and a biaxial hand in a room at 20 ° C. Using a mixer, foaming was performed at a rotation speed of the beater of 400 rpm.
The whipped oil-in-water emulsion was placed in a cup with a diameter of 5 cm and a depth of 5 cm, and the maximum stress was measured when a stainless steel cylinder with a straight line of 2 cm was penetrated by 1 cm at a speed of 1 mm / sec. The time required to reach 40 g was evaluated.
Furthermore, the oil-in-water emulsion at the end of the whipping was placed in a cup having a diameter of 5 cm and a depth of 5 cm, the weight was measured, and the overrun was calculated from the following equation.
The time was set to be 7 minutes or less. Overrun was considered good at 150% or more. In addition, flavor and color were evaluated by sensuality. The results are shown in Table 3.

A: Weight of oil-in-water emulsion before whipping per unit volume B: Weight of oil-in-water emulsion after whipping per unit volume

Overrun (%) = (A−B) / B × 100

(表3)ホイップ時間、オーバーラン、及び官能評価の結果
(Table 3) Results of whipping time, overrun, and sensory evaluation

(表1)に示すように、実施例1と実施例2は20℃での油脂の貯蔵弾性率及び損失弾性率が共に1Pa以上となり、適度な硬さを有していた。
これは、油脂100g中換算でベヘン酸を0.1g以上2g以下含む水中油型乳化物は、ベヘン酸やベヘン酸を脂肪酸とする親油性乳化剤の界面吸着層や逆ミセルを核とする脂肪結晶が、水中油型乳化物の冷却時の30℃において局所的に形成されはじめ、さらなる冷却に伴ってこの脂肪結晶が成長することによるものと考えられる。
As shown in (Table 1), in Examples 1 and 2, both the storage elastic modulus and loss elastic modulus of fats and oils at 20 ° C. were 1 Pa or more, and they had appropriate hardness.
This is because oil-in-water emulsions containing 0.1 to 2 g of behenic acid in terms of 100 g of fats and oils are fat crystals with behenic acid or an interfacial adsorption layer of a lipophilic emulsifier containing behenic acid as a fatty acid or reverse micelles as the core. However, it is thought that this is due to the fact that this fat crystal grows locally with further cooling, starting to form locally at 30 ° C. during cooling of the oil-in-water emulsion.

また、(表3)に示すように、実施例1と実施例2はいずれもホイップ時間が7分以下と短く、かつオーバーラン150%以上となり良好であった。
これは、油脂100g中換算でベヘン酸を0.1g以上2g以下含む水中油型乳化物は、気泡界面においても強固な気液界面の脂肪球のネットワークを形成することによると考えられる。
Moreover, as shown in (Table 3), both Example 1 and Example 2 were good because the whipping time was as short as 7 minutes or less and the overrun was 150% or more.
This is considered to be because an oil-in-water emulsion containing 0.1 g to 2 g of behenic acid in terms of 100 g of fats and oils forms a strong gas-liquid interface fat globule network even at the bubble interface.

実施例1や実施例2のようなベヘン酸を核とする結晶生成は、生成された結晶の硬さと脂肪球内の脂肪結晶のネットワーク形成には影響するが(表1、表3)、脂肪内の固体脂の量を示すSFCにはほとんど影響がなかった(表2)。
特に40℃未満の温度域におけるSFCに全く影響しないため、ホイップした際に、口に含んだときの口解けや風味が良好な水中油型乳化物を得ることが出来る。
(試験例5)
Crystal formation with behenic acid as the core as in Example 1 and Example 2 affects the hardness of the crystal produced and the network formation of fat crystals in the fat sphere (Tables 1 and 3). There was almost no effect on the SFC indicating the amount of the solid fat (Table 2).
In particular, since SFC is not affected at all in a temperature range of less than 40 ° C., an oil-in-water emulsion having a good taste and flavor when contained in the mouth can be obtained when whipped.
(Test Example 5)

実施例1、2及び比較例1、2の水中油型乳化物より、試験例1と同様の方法で油脂の抽出を行った。
これを80℃に加温し、ネジ口試験管に採取し、0.5N NaOHメタノール溶液1.5mLを加えて密栓し、沸騰水中で9分間加温した。
冷却後、14%三フッ化ホウ素メタノール溶液2.0mLを加えて密栓し、沸騰水中で7分間加温した。冷却後、内部標準として5g/L C17メチルヘキサン溶液2.0mLを加え、さらに3.0mLヘキサン、3.0mL飽和食塩水を加えて密栓して1分間振トウした。
1時間の静置の後、上層100μLをバイアルに分取してヘキサン1.5mLを加えて16倍希釈し、Agilent6890NネットワークGC(Agilent Technologies、Inc)を用いてスプリット比5:1の条件でベヘン酸を定量した。
(表4)に示すとおり、実施例1と実施例2より抽出した油脂100g換算のベヘン酸量は0.5gであり、添加したベヘン酸量を上記した方法で定量が可能であった。また、構成脂肪酸としてベヘン酸を含まない乳化剤を用いた比較例1と比較例2より抽出した油脂は0.05g未満であり、このことからも定量法の妥当性が確認された。
Oils and fats were extracted from the oil-in-water emulsions of Examples 1 and 2 and Comparative Examples 1 and 2 in the same manner as in Test Example 1.
This was heated to 80 ° C., collected in a screw-cap test tube, added with 1.5 mL of 0.5N NaOH methanol solution, sealed, and heated in boiling water for 9 minutes.
After cooling, 2.0 mL of 14% boron trifluoride methanol solution was added and sealed, and heated in boiling water for 7 minutes. After cooling, 2.0 mL of a 5 g / L C17 methylhexane solution was added as an internal standard, 3.0 mL hexane and 3.0 mL saturated brine were further added, and the mixture was sealed and shaken for 1 minute.
After standing for 1 hour, 100 μL of the upper layer is dispensed into a vial, diluted with 16 mL of hexane by adding 1.5 mL of hexane, and behenen using an Agilent 6890N Network GC (Agilent Technologies, Inc) at a split ratio of 5: 1. The acid was quantified.
As shown in (Table 4), the amount of behenic acid in terms of 100 g of oil and fat extracted from Example 1 and Example 2 was 0.5 g, and the amount of added behenic acid could be determined by the method described above. Moreover, the fats and oils extracted from the comparative example 1 and the comparative example 2 which used the emulsifier which does not contain behenic acid as a constituent fatty acid are less than 0.05g, The validity of the quantitative method was confirmed also from this.

(表4)
(Table 4)

Claims (6)

15重量%以上35重量%以下の乳脂肪と、油脂100g中換算で0.1g以上2g以下のベヘン酸と、を含むことを特徴とする水中油型乳化物。   An oil-in-water emulsion comprising 15% to 35% by weight of milk fat and 0.1g to 2g of behenic acid in terms of 100g of oil. 水中油型乳化物に含まれる油脂の20℃における貯蔵弾性率と損失弾性率が1Pa以上であることを特徴とする請求項1に記載の水中油型乳化物。   The oil-in-water emulsion according to claim 1, wherein the oil and fat contained in the oil-in-water emulsion has a storage elastic modulus and a loss elastic modulus at 20 ° C of 1 Pa or more. 水中油型乳化物に含まれる油脂の40℃における固体脂量が0.5%以上1.5%以下であることを特徴とする請求項1又は請求項2のいずれか1項に記載の水中油型乳化物。   The amount of solid fat at 40 ° C of the fat contained in the oil-in-water emulsion is 0.5% or more and 1.5% or less, or the water according to any one of claims 1 and 2. Oil-type emulsion. さらに、水中油型乳化物に含まれる油脂の30℃における固体脂量が7%程度、20℃における固体脂量が23%程度、10℃における固体脂量が50%程度であることを特徴とする請求項1から請求項3のいずれか1項に記載の水中油型乳化物。   Furthermore, the solid fat amount at 30 ° C. of the fat contained in the oil-in-water emulsion is about 7%, the solid fat amount at 20 ° C. is about 23%, and the solid fat amount at 10 ° C. is about 50%. The oil-in-water emulsion according to any one of claims 1 to 3. オーバーランが7分以内に150%以上となることを特徴とする請求項1から請求項4のいずれか1項に記載の水中油型乳化物。   The oil-in-water emulsion according to any one of claims 1 to 4, wherein the overrun is 150% or more within 7 minutes. 乳脂肪とベヘン酸残基を含む乳化剤とを混合して油相を調製する工程と、水と水溶性原材料とを混合する工程と、前記油相と前記水相とを混合する工程と、前記油相と前記水相とを混合して得られた混合物を均質化する工程と、前記油相と前記水相とを混合して得られた混合物を殺菌する工程と、を含むことを特徴とする水中油型乳化物の製造方法。   A step of preparing an oil phase by mixing milk fat and an emulsifier containing a behenic acid residue, a step of mixing water and a water-soluble raw material, a step of mixing the oil phase and the aqueous phase, A step of homogenizing a mixture obtained by mixing an oil phase and the aqueous phase, and a step of sterilizing the mixture obtained by mixing the oil phase and the aqueous phase. A method for producing an oil-in-water emulsion.
JP2016043960A 2016-03-07 2016-03-07 Oil-in-water emulsion Active JP6846112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016043960A JP6846112B2 (en) 2016-03-07 2016-03-07 Oil-in-water emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016043960A JP6846112B2 (en) 2016-03-07 2016-03-07 Oil-in-water emulsion

Publications (2)

Publication Number Publication Date
JP2017158455A true JP2017158455A (en) 2017-09-14
JP6846112B2 JP6846112B2 (en) 2021-03-24

Family

ID=59852811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016043960A Active JP6846112B2 (en) 2016-03-07 2016-03-07 Oil-in-water emulsion

Country Status (1)

Country Link
JP (1) JP6846112B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322494A (en) * 1995-05-29 1996-12-10 Kao Corp Foaming oil-in-water type emulsion
JPH119214A (en) * 1997-06-26 1999-01-19 Fuji Oil Co Ltd Production of formable oil-in-water emulsified composition
JP2002034450A (en) * 2000-07-26 2002-02-05 Kanegafuchi Chem Ind Co Ltd Foaming oil-in-water type composition
JP2003093006A (en) * 2001-09-25 2003-04-02 Snow Brand Milk Prod Co Ltd Frozen whipped cream
JP2007236348A (en) * 2006-03-10 2007-09-20 Nisshin Oillio Group Ltd Oil and fat composition, method for producing the same, oil-in-water emulsified matter, and compound cream
JP2013516995A (en) * 2010-01-20 2013-05-16 ネステク ソシエテ アノニム Oil gel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322494A (en) * 1995-05-29 1996-12-10 Kao Corp Foaming oil-in-water type emulsion
JPH119214A (en) * 1997-06-26 1999-01-19 Fuji Oil Co Ltd Production of formable oil-in-water emulsified composition
JP2002034450A (en) * 2000-07-26 2002-02-05 Kanegafuchi Chem Ind Co Ltd Foaming oil-in-water type composition
JP2003093006A (en) * 2001-09-25 2003-04-02 Snow Brand Milk Prod Co Ltd Frozen whipped cream
JP2007236348A (en) * 2006-03-10 2007-09-20 Nisshin Oillio Group Ltd Oil and fat composition, method for producing the same, oil-in-water emulsified matter, and compound cream
JP2013516995A (en) * 2010-01-20 2013-05-16 ネステク ソシエテ アノニム Oil gel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"タカナシ 特選北海道純正生クリーム<47><42><35>", 食@新製品, JPN6019041542, 1 February 2010 (2010-02-01), ISSN: 0004306897 *

Also Published As

Publication number Publication date
JP6846112B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
US8722128B2 (en) Foamable oil-in-water emulsified oil composition for chilled-distribution whipped creams and whipped cream
JP6505479B2 (en) Foamable oil-in-water emulsion composition
TWI673005B (en) Stirring compound cream
JP6612491B2 (en) Edible cream and method for producing the same
JP6628606B2 (en) Whipped compound cream containing fresh cream
JP5471592B2 (en) Foamable oil-in-water emulsified oil composition for room temperature
JP6855272B2 (en) Emulsifier for foamable oil-in-water emulsified composition
MXPA02005669A (en) Heat treated, whippable oil in water emulsion.
JP6236935B2 (en) Production method of oil-in-water emulsion
JP6937582B2 (en) Oil composition for whipped cream
JP4382053B2 (en) Fresh cream manufacturing method
JP6846112B2 (en) Oil-in-water emulsion
JP4457568B2 (en) Acid emulsified food
JP2019195294A (en) Foamable oil-in-water type emulsified article and whipped cream using the same
JP2012019766A (en) Foaming oil-in-water emulsified oil and fat composition for chilled distribution whipped cream
JP6539034B2 (en) Novel whipped cream
JP5697133B2 (en) Method for producing foamable oil-in-water emulsified oil / fat composition for chilled whipped cream
JP6774216B2 (en) Edible foaming cream and edible whipped cream
JP6378512B2 (en) Plastic water-in-oil emulsified oil / fat composition for spread having fermented butter flavor
JP2011211925A (en) Method for producing fresh cream
JP2019037950A (en) Emulsification stabilizer for oil-in-water emulsion compositions
US20050220966A1 (en) Spoonable water-continuous acidified food product
JP7338110B2 (en) Foaming oil-in-water emulsion
JP7397613B2 (en) oil composition
JP2024049835A (en) Compound cream and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6846112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250