JP2017157978A - 読取装置および画像データ生産方法 - Google Patents

読取装置および画像データ生産方法 Download PDF

Info

Publication number
JP2017157978A
JP2017157978A JP2016038362A JP2016038362A JP2017157978A JP 2017157978 A JP2017157978 A JP 2017157978A JP 2016038362 A JP2016038362 A JP 2016038362A JP 2016038362 A JP2016038362 A JP 2016038362A JP 2017157978 A JP2017157978 A JP 2017157978A
Authority
JP
Japan
Prior art keywords
document
image
unit
singular
movement amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016038362A
Other languages
English (en)
Inventor
斉藤 剛
Tsuyoshi Saito
剛 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016038362A priority Critical patent/JP2017157978A/ja
Publication of JP2017157978A publication Critical patent/JP2017157978A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Editing Of Facsimile Originals (AREA)

Abstract

【課題】原稿の搬送速度を調整しなくても画像を補正する。【解決手段】原稿を搬送する搬送機構と、搬送された前記原稿の画像を取得するセンサーと、前記原稿の画像の内、搬送速度が変動する位置である特異領域の内外で異なる角度の画素情報を用いて画像変換を行う画像変換回路とを備える。また、当該画像変換後の画像データを生成する。【選択図】図2

Description

本発明は、読取装置および画像データ生産方法に関する。
オートドキュメントフィード(以下、ADF)式スキャナーは、原稿を搬送する搬送機構を備え、搬送する原稿に表された画像を、イメージセンサーを用いて読み取る読取装置である。原稿の搬送状態に応じて負荷が変化するので、原稿の搬送速度が変動することがある。搬送速度の変動は、読み取られる画像において、ある特異領域を境に単位長あたりの画素数が異なる原因として考えられる。特許文献1に記載の画像読取装置は、原稿の位置に応じて搬送速度を調整して読み取られる画素数の変動を抑制していた。
特開2015−46809号公報
従来の読取装置では、単位長さあたりの画素数を調整するために、搬送機構を駆動するモーターの回転速度を変化させる。そのため、回転速度の変化に応じてモーターの動作音が変動する。動作音の変動は、異音として認識されることがある。他方、原稿の大きさ、厚み、強度などの条件に応じて搬送速度を厳密に調整することは一般に困難である。また、原稿を搬送しながら回転速度を調整すると読み取られる画像には位置や濃度のばらつきが生じることがある。
本発明は、前記の点に鑑みてなされたものであり、原稿の搬送速度を調整しなくても画像を補正することができる読取装置および画像データ生産方法を提供することを目的とする。
本発明は上記課題の少なくとも一つを解決するためになされたものであり、本発明の一態様は、原稿を搬送する搬送機構と、搬送された前記原稿の画像を取得するセンサーと、前記原稿の画像の内、搬送速度が変動する位置である特異領域の内外で異なる角度の画素情報を用いて画像変換を行う画像変換回路と、を備えた読取装置である。
この構成により、原稿の画像の内、搬送速度が変動する位置である特異領域の内外で異なる角度の画素情報を用いて画像変換が行われる。これにより、原稿の搬送速度を調整しなくても画像を補正することができる。
本発明の一態様は、読取装置において、前記原稿の範囲を判定する原稿範囲判定部と、前記原稿の範囲に基づいて前記特異領域を定める特異領域設定部と、を備える。
この構成により、判定された原稿の範囲に基づいて特異領域が定められる。これにより、搬送される原稿の範囲に関わらず、原稿の搬送速度を調整しなくても取得した画像を補正することができる。
本発明の一態様は、読取装置において、前記特異領域の内部の前記画素情報の画素間隔は、前記特異領域の外部の画素情報の画素間隔と比べて、前記搬送の方向の成分が小さい。
この構成により、特異領域の内部の画素情報の画素間隔として、特異領域の外部の画素情報の画素間隔よりも、搬送の方向の成分が小さい画素情報の画素間隔を用いて画像変換が行われる。これにより、原稿の搬送速度が特異領域の外部よりも高くなる特異領域の内部の領域において、より小さい移動量で搬送の方向について変位した位置に次の出力画素の座標が定められる。そのため、特異領域の内部における搬送の方向への画像の縮小が緩和もしくは解消する。
本発明の一態様は、読取装置において、共通の前記画像変換回路に対して、前記画像変換に用いるパラメーターとして、前記特異領域の内外で第1のパラメーターと第2のパラメーターを切り替えて設定する。
この構成により、特異領域の内外で異なる角度の画素情報として第1のパラメーターと第2のパラメーターを用いて画像変換が行われる。これにより、原稿の搬送速度を調整せずにパラメーターの切り替えにより画像を補正することができる。
本発明の一態様は、搬送機構が搬送した原稿の画像を入力する入力ステップと、入力された前記画像の内、搬送速度が変動する位置である特異領域の内外で異なる角度の画素情報を用いて画像変換を行って当該画像変換後の画像データを生成する変換ステップと、を有する画像データ生産方法である。
この構成により、原稿の画像の内、搬送速度が変動する位置である特異領域の内外で異なる角度の画素情報を用いて画像変換が行われる。これにより、原稿の搬送速度を調整しなくても画像を補正することができる。
以上のように、本発明に係る読取装置および画像データ生産方法によれば、原稿の搬送速度を調整しなくても画像を補正することができる。
本実施形態に係る読取装置の搬送機構を示す側面図である。 本実施形態に係る読取装置の機能構成を示すブロック図である。 本実施形態に係る読取装置の搬送機構における原稿の搬送状態の第1の例を示す側面図である。 本実施形態に係る読取装置の搬送機構における原稿の搬送状態の第2の例を示す側面図である。 本実施形態に係る読取装置の搬送機構における原稿の搬送状態の第3の例を示す側面図である。 本実施形態に係る主走査ポインタ移動量の例を示す図である。 本実施形態に係る副走査ポインタ移動量の例を示す図である。 本実施形態に係るポインタ移動量の傾き補正の一例を示す図である。 本実施形態に係るポインタ移動量の傾き補正の他の例を示す図である。 本実施形態に係る出力画素の設定例を示す図である。 本実施形態に係るポインタ移動量の切替制御の一例を示す図である。 本実施形態に係るポインタ移動量の切替制御の他の例を示す図である。 本実施形態に係る出力画素と近傍の入力画素の配置例を示す図である。 本実施形態に係る出力画像の画素位置範囲と補間処理において参照される入力画素の例を示す図である。 本実施形態に係るバイキュービックテーブルの例を示す図である。 本実施形態に係る画像読取処理を示すフローチャートである。
本発明の実施形態について図面を参照して詳細に説明する。
なお、使用する図面は、説明する部分が容易に認識可能な状態となるように、適宜拡大または縮小して表示している。
本実施形態の一構成例である読取装置は、原稿を搬送する搬送機構を備え、搬送された原稿の画像を取得するイメージセンサーと、取得した画像を変換する画像変換回路とを備えるADF式スキャナーである。まず、読取装置の搬送機構について説明し、読取装置の機能構成、原稿の搬送状態、画像変換、出力画素の設定、読取処理と順次説明する。
<読取装置の搬送機構>
図1は、本実施形態に係る読取装置1の搬送機構を示す側面図である。
読取装置1は、給紙トレイ2、給送ローラー3、分離ローラー4、検出センサー5、搬送ローラー対6、画像取得部8および排出ローラー対9を含んで構成される。搬送機構は、給送ローラー3、分離ローラー4、搬送ローラー対6および排出ローラー対9を含んで構成される。図1に示す例では、搬送経路Aにおいて原稿Bが搬送されている。原稿Bの近傍の太い矢印は、原稿Bの搬送方向Cを示す。
給紙トレイ2には、原稿Bが載置される。給紙トレイ2よりも搬送方向Cに隣接した位置に給送ローラー3が備えられる。給送ローラー3は、分離ローラー4に当接した状態で回転可能である。この回転により、給紙トレイ2に載置された複数の原稿から1枚の原稿Bが分離され分離された原稿Bは搬送ローラー対6である搬送方向Cに送出する。
検出センサー5は、給送ローラー3と分離ローラー4よりも搬送方向Cに隣接した位置に備えられる。検出センサー5は、送信部5aと受信部5bを含んで構成される。送信部5aと受信部5bは、搬送経路Aを挟んで相対した位置に設置される。送信部5aは、受信部5bに向けて信号を送信する。受信部5bは、送信部5aから送信された信号を受信する。検出センサー5は、送信部5aが送信する信号の強度と受信部5bにおいて受信される信号の強度とで与えられる減衰率に基づいて原稿Bの有無や原稿Bの枚数を検出することができる。従って、検出センサー5は、給送ローラー3と分離ローラー4から搬送された原稿Bのうち、初めて検出される部位である先端部を検出することができる。さらに、検出センサー5は、原稿Bのうち、給送ローラー3と分離ローラー4とが当接されるニップ部を離れて検出されなくなる部位である後端部を検出することができる。検出センサー5は、原稿Bの先端部ならびに後端部の位置に係る搬送方向Cの座標は、搬送方向Cとの直交方向であって、原稿Bに平行な方向Rxの各座標について検出する。検出された座標は、原稿BのRx方向の幅や、搬送方向Cを基準とする原稿Bの傾き方向を判定するために用いることが可能である。方向Rxは、図1において手前から奥に向かう方向に表されている。以下、この方向を主読取方向Rxまたは単にRx方向と呼ぶ。これにより、搬送される原稿Bが1枚毎に検出される。送信部5aは、例えば、発光ダイオード(LED)などの発光部である。受信部5bは、例えば、フォトトランジスターなどの受光部である。
搬送ローラー対6は、検出センサー5よりも原稿Bの搬送方向に隣接して備えられる。搬送ローラー対6は、搬送駆動ローラー6aと搬送従動ローラー6bを含んで構成される。搬送駆動ローラー6aは、搬送従動ローラー6bに当接した状態で回転駆動することにより、原稿Bを搬送経路Aに沿って送出する。
画像取得部8は、搬送ローラー対6よりも搬送方向Cに隣接した位置に備えられる。画像取得部8は、第1画像取得部8aと第2画像取得部8bとを含んで構成される。第1画像取得部8aと第2画像取得部8bは、搬送経路Aを挟んで相対した位置に設置される。第1画像取得部8a、第2画像取得部8bは、搬送される原稿Bの表面、裏面に表される画像をそれぞれ読み取る。読み取られる画像を形成する入力画素は、主読取方向Rxに所定間隔で配列される。また、原稿Bの搬送方向Cへの移動に応じて、画像が読み取られる位置が、搬送方向Cと反対の方向Ryに移動する。この方向を、副読取方向Ryまたは単にRy方向と呼ぶ。
排出ローラー対9は、画像取得部8よりも搬送方向Cに隣接した位置に備えられる。排出ローラー対9は、排出駆動ローラー9aと排出従動ローラー9bを含んで構成される。排出駆動ローラー9aは、排出従動ローラー9bに当接した状態で回転駆動することにより、原稿Bを排出する。
なお、原稿Bの負荷がかけられていない状態では、給送ローラー3よりも搬送駆動ローラー6aの回転速度が高くなるように駆動され、搬送駆動ローラー6aよりも排出駆動ローラー9aの回転速度が高くなるように駆動される。これにより、原稿Bは、緩まずにまっすぐに張られた状態で搬送経路A上において搬送される。
<読取装置の機能構成>
次に、本実施形態に係る読取装置1の機能構成について説明する。
図2は、本実施形態に係る読取装置1の機能構成を示すブロック図である。
読取装置1は、上述した検出センサー5および画像取得部8の他、制御部20、モータードライバー23、モーター24、インターフェイス25および画像変換部30を含んで構成される。
検出センサー5は、搬送される原稿Bの先端部および後端部の位置を制御部20に出力する。
入力部7は、ユーザーの操作に応じて所定の機能を指示する操作信号を生成し、生成した操作信号を制御部20に出力する。操作信号には、例えば、原稿Bの画像の読取を示す操作信号、原稿Bの回転方向を示す操作信号などがある。入力部7は、例えば、ボタン、レバーなどの物理的な部材を含んで構成される。入力部7は、ユーザーの操作を検出する操作検出部とユーザーへの案内情報を表示する表示部とを含んだユーザーインターフェイスとして構成されてもよい。操作検出部は、例えば、タッチセンサーである。表示部は、例えば、ディスプレイである。
画像取得部8を構成する第1画像取得部8aおよび第2画像取得部8bは、それぞれ発光部21とイメージセンサー22を備える。発光部21は、原稿Bの表面または裏面の所定の読取領域に光を照射する。発光部21は、例えば、LEDを含んで構成される。
イメージセンサー22は、原稿Bの表面または裏面に予め設定された読取領域内の読取ポイントである入力画素毎の画像の輝度を検出し、検出した輝度を制御部20に出力する。
なお、以下の説明では、制御部20ならびに画像変換部30は、原稿Bの表面から読み取られた画像と、裏面から読み取られた画像について同様の処理を行うことを例とする。
制御部20は、原稿範囲判定部26、回転方向設定部27および画像形成部28を含んで構成される。
原稿範囲判定部26は、原稿Bの搬送速度と検出センサー5が検出した奥行方向毎の原稿Bの先端部または後端部の座標から原稿Bの範囲を判定する。また、原稿範囲判定部26は、判定した原稿Bの範囲に基づいて原稿Bの傾き方向を判定する。原稿範囲判定部26は、判定した原稿Bの範囲と傾き方向の情報を画像変換部30に出力する。
回転方向設定部27は、入力部7から原稿Bの回転方向を示す操作信号が入力され、当該操作信号が示す回転方向を画像変換部30に設定する。
画像形成部28は、イメージセンサー22が輝度を検出する読取ポイントである入力画素毎に輝度を検出するタイミングを制御し、入力画素毎に検出された輝度値を示す画像データを形成する。ここで、画像形成部28は、主読取方向Rxに配列された画素のうち輝度を検出する画素を示すポインタを一端から他端の方向に隣接した画素に順次切り替える(主走査)。入力画素間の間隔が主読取方向の入力画素単位(後述)に相当する。一端から他端までの主走査により1ライン分の入力画素毎の輝度が検出される。画像形成部28は、ポインタが他端に達した後、再度ポインタの位置を一端に戻す。その間、原稿Bが搬送方向Cに搬送されるので、原稿Bから輝度が検出される位置が原稿Bの搬送方向Cとは逆方向である副読取方向Ryに変位する(副走査)。また、この変位量が副読取方向の入力画素単位(後述)に相当する。画像形成部28は、主走査の繰り返しを原稿Bの搬送中に行うことで、原稿Bの搬送方向を副走査方向として各ラインの入力画素毎の輝度のセットが検出される。画像形成部28は、各ラインの入力画素毎の輝度のセットを副走査方向に配置して、1枚の画像を表す入力画素毎の輝度値を示す画像データを形成する。画像形成部28は、1枚毎に形成した画像データを画像変換部30に出力する。
なお、制御部20は、読取装置1の動作全体を制御する。制御部20は、画像の読み取りを示す操作信号が入力されるとき、モータードライバー23にモーター24の駆動開始を指示する。制御部20は、検出センサー5から原稿Bの後端部の位置を検出した後、いかなる原稿も検出されない時間が所定時間(例えば、1〜3秒)以上経過するとき、モータードライバー23にモーター24の駆動停止を指示する。モーター24に駆動開始を指示してから、駆動停止を停止するまでの間、モーター24は回転して原稿Bが所定の搬送速度で搬送される。
モータードライバー23は、制御部20から駆動開始が指示されてから駆動停止が指示されるまでの間、駆動信号として所定の時間毎のパルスからなるパルス列を生成する。モータードライバー23は、生成した駆動信号をモーター24に出力する。
モーター24は、モータードライバー23から駆動信号が入力される間、所定の回転速度で回転する。モーター24の回転は、駆動機構(図示せず)を介して給送ローラー3、搬送駆動ローラー6aおよび排出駆動ローラー9aに伝達される(図1)。モーター24は、例えば、ステッピングモーターである。
インターフェイス25は、パーソナルコンピュータ(PC)などの外部機器と有線または無線で接続して、各種のデータを入出力する。インターフェイス25は、例えば、データ入出力インターフェイスである。
画像変換部30は、特異領域設定部31、座標設定部32および信号値算出部33を含んで構成される。画像変換部30は、傾き補正、拡大縮小補正および補間処理を行うことができる画像処理回路として構成されてもよい。画像変換部30は、例えば、FPGA(Field Programmable Gate Array)である。画像変換部30は、制御部20など他の構成部と一体の単一の回路として構成されてもよいが、他の構成部と独立の回路として構成されてもよい。これにより、画像処理が、他の構成部の動作のパフォーマンスに与える影響を回避することができる。
特異領域設定部31は、原稿範囲判定部26が判定した原稿Bの範囲と、画像取得部8のイメージセンサー22と給送ローラー3が分離ローラー4(図1)に当接する点との距離に基づいて特異線を定める。特異線は、より後端部に近い領域において原稿Bの搬送速度が高くなる時点において原稿Bから画像が読み取られる座標点である特異点からなる線である。特異線は、後述する特異領域の内外の境界線に相当する。特異領域設定部31は、特異線を表す特異領域情報を座標設定部32に出力する。特異領域情報は、予め座標設定部32に設定されていてもよい。特異線については、出力画素の設定例の説明において例示する。
座標設定部32は、主読取方向から原稿範囲判定部26が判定した原稿Bの傾き方向に傾いた方向を主走査方向とし、副読取方向から原稿Bの傾き方向に傾いた方向を副走査方向として定める。原稿Bの傾き方向に応じて主読取方向、副読取方向から主走査方向、副走査方向に補正することを傾き補正と呼ぶ。傾き補正、傾き方向は、それぞれスキュー補正、スキュー補正方向とも呼ばれる。
座標設定部32は、原稿範囲判定部26が判定した原稿Bの範囲のうち、特異領域情報が示す特異線で区切られる特異領域の内部に属する領域におけるポインタ移動量1を定める。特異領域もしくは特異領域の内部とは、原稿Bの範囲のうち特異線よりも副読取方向Ryの領域である。特異領域の外部とは、原稿Bの範囲のうち特異線よりも副読取方向Ryとは逆方向の領域である。座標設定部32は、特異領域の外部に属する領域におけるポインタ移動量2を定める。ポインタ移動量1、2は、パラメーターとして主走査ポインタ移動量と副走査ポインタ移動量とを含む。ポインタ移動量1、2を定める方法については、後述する。
座標設定部32は、定めたポインタ移動量1とポインタ移動量2を用いて画像を構成する各出力画素の位置を所定のスタートポイント(起点)から順次に定める。座標設定部32は、その時点において定めた出力画素を示すポインタが特異領域の内部にあるとき次の出力画素の座標を定める際にポインタ移動量1を用い、ポインタが特異領域の外部にあるとき次の出力画素の座標を定める際にポインタ移動量2を用いる。座標設定部32は、出力画素毎の座標を示す出力画素情報を信号値算出部33に出力する。出力画素の設定例については、後述する。
信号値算出部33には、座標設定部32から出力画素情報が入力され、画像形成部28から入力画素毎の輝度値を示す画像データが入力される。信号値算出部33は、出力画素情報が示す出力画素のそれぞれについて、当該出力画素から所定の範囲内の入力画素に対応する輝度値を補間して、当該出力画素の輝度値を算出する。信号値算出部33は、出力画素毎の輝度値を示す画像データを変換後の画像を表す画像データとしてインターフェイス25を介して、読取装置1の外部に出力する。輝度値の補間処理については、後述する。
<原稿の搬送状態>
次に、読取装置1の搬送機構における原稿Bの搬送状態の例について図3〜図5を用いて説明する。搬送機構にかかる負荷は、搬送される原稿Bの搬送状態によって変化する。図3は、原稿Bに表される画像の読取が開始される時点における搬送状態の例を示す。この時点では、原稿Bは、給送ローラー3と分離ローラー4との間と、搬送駆動ローラー6aと搬送従動ローラー6bとの間に挟持され、先端部よりも後端部に近い領域が給紙トレイ2上に載置されている。原稿Bが搬送されていない状態では給送ローラー3よりも搬送駆動ローラー6aの方が回転速度が高いが、図3に示す搬送状態では、給送ローラー3の回転速度に相当する速度で原稿Bが搬送される。
図4は、原稿Bの後端部が給紙トレイ2から離れる時点における搬送状態の例を示す。この時点では、原稿Bは、給送ローラー3と分離ローラー4との間と、搬送駆動ローラー6aと搬送従動ローラー6bとの間と、さらに排出駆動ローラー9aと排出従動ローラー9bとの間に挟持されている。原稿Bが搬送されていない状態では、給送ローラー3よりも搬送駆動ローラー6aの方が回転速度が高く、搬送駆動ローラー6aよりも排出駆動ローラー9aと方が回転速度が高いが、図3に示す搬送状態では、給送ローラー3の回転速度に相当する速度で原稿Bが搬送される。
図5は、原稿Bの後端部が検出センサー5により検出された後における搬送状態の例を示す。この時点では、原稿Bは、搬送駆動ローラー6aと搬送従動ローラー6bとの間と、排出駆動ローラー9aと排出従動ローラー9bとの間に挟持されているが、給送ローラー3と分離ローラー4との間から離れている。この搬送状態では、搬送駆動ローラー6aの回転速度に相当する速度で原稿Bが搬送される。このことは、原稿Bが給送ローラー3と分離ローラー4との間から離れることで、図3、図4に示す搬送状態よりも搬送速度が高くなることを意味する。従って、上述した特異線は、原稿Bが給送ローラー3と分離ローラー4の間から離れる時点において画像取得部8が原稿Bにおいて表された画像を読み取る位置である特異点の集合に相当する。つまり、この時点における読取ポイントである入力画素の位置が、原稿Bの搬送速度が急に高くなる特異点となる。
<画像変換>
画像変換部30が行う画像変換の処理のうち、傾き補正は、主読取方向、副読取方向からそれぞれ原稿Bの傾き方向に傾いた方向を主走査方向、副走査方向として定めることによって実現される。拡大縮小補正は、主走査方向に隣接する出力画素間の間隔である主走査ポインタ移動量と副走査方向に隣接する出力画素間の間隔である副走査ポインタ移動量を変更することによって実現される。その具体例について図6、図7を用いて説明する。図6、図7において、塗りつぶしの格子点は入力画素を示す。O、Aの文字が表された円は、ある時点で設定される出力画素であるポインタの例、その次に設定される出力画素の例をそれぞれ示す。入力画素単位は、主読取方向または副読取方向に互いに隣接する入力画素間の間隔である。入力画素単位は、ピッチとも呼ばれる。図6、図7に示す例では、入力画素単位は、0x8000である。「0x8000」のうち「0x」は、後続する「8000」が16進数であることを示す記号である。Rx、Ryは、それぞれ主読取方向、副読取方向を示す。副読取方向は、原稿Bの搬送方向Cとは逆方向に相当し、主読取方向と直交する方向である。以下の説明では、主読取方向Rx、副読取方向Ryの座標値をRx座標、Ry座標と呼ぶことがある。
拡大縮小補正を行う場合には、座標設定部32は、式(1)に示すように主走査ポインタ移動量の大きさLx、副走査ポインタ移動量の大きさLyとして、それぞれ入力画素単位を拡大縮小倍率α、βで除算して得られる値に定める。
Figure 2017157978
α、βは、それぞれ入力画素単位に対する主走査方向への倍率である主倍率、副走査方向への倍率である副倍率を示す。
拡大縮小補正を行わない場合には、座標設定部32は、入力画素単位を主走査ポインタ移動量の大きさLx、副走査ポインタ移動量の大きさLyとして定める。
傾き補正を行う場合には、座標設定部32は、式(2)に示すように主走査ポインタ移動量の方向(主走査方向)を、Rx方向から原稿Bの傾き角θで傾いた方向に定め、副走査ポインタ移動量の方向(主走査方向)を、Ry方向から原稿Bの傾き角θで傾いた方向に定める。
Figure 2017157978
式(2)において、Rx、Raxは、主走査ポインタ移動量のRx方向、Ry方向それぞれの成分を示す。式(2)において、Ry、Rayは、副走査ポインタ移動量のRy方向、Rx方向それぞれの成分を示す。また、式(2)においてθの単位は、度(deg)である。
例えば、主倍率50%、副倍率200%、傾き角20度、入力画素単位0x8000である場合、主走査ポインタ移動量Lx、副走査ポインタ移動量Ly、主走査ポインタ移動量のRx方向の成分Rx、Ry方向の成分Rax、副走査ポインタ移動量のRy方向の成分Ry、Rx方向の成分Rayは、それぞれ0xFFFF(65535)、0x4000(16384)、0xF08E(61582)、0x578E(22414)、0x3C23(15395)、0x15E3(5603)となる。カッコ内の数値は、直前に記載の16進数を10進数で表した値である。
傾き補正を行わない場合には、座標設定部32は、主走査ポインタ移動量のRx方向の成分Rx、Ry方向の成分Raxを、それぞれ主走査ポインタ移動量の大きさLx、0と定める。また、その場合には、座標設定部32は、副走査ポインタ移動量のRy方向の成分Ry、Rx方向の成分Rayを、それぞれ副走査ポインタ移動量の大きさLy、0と定める。
Figure 2017157978
図8、図9は、それぞれ矢印Lx、Lyで主走査ポインタ移動量、副走査ポインタ移動量の例を示す。図8に示す例は、スタートポイントから原稿Bの先端部への方向がX方向よりも右回りに傾き角θだけ傾いた右肩下がりの状態を示す。図9に示す例は、スタートポイントから原稿Bの先端部への方向がRx方向よりも左回りに傾き角θだけ傾いた右肩上がりの状態を示す。
<特異領域の内外によるポインタ移動量の変更>
上述したように、画像の読取ポイントである入力画素の位置が副読取方向Ryに向かって特異線を超える時点では、超える前よりも原稿Bの搬送速度が高くなる。そのため、原稿Bにおいて副読取方向Ryに隣接する入力画素間の間隔が大きくなる。その場合には、座標設定部32は、特異線よりも副読取方向Ry方向の領域である特異領域の内部の領域に用いられる主走査ポインタ移動量、副走査ポインタ移動量のうち副読取方向Ryの成分(つまり、搬送方向Cの成分)の設定値として、特異領域の外部の領域に用いられる副走査方向の成分の設定値よりも小さい設定値を設定する。座標設定部32は、例えば、式(4)に示す例では、特異領域の内部における主走査ポインタ移動量、副走査ポインタ移動量それぞれの副読取Ry方向の成分であるRax’、Ry’を、特異領域の外部における主走査ポインタ移動量、副走査ポインタ移動量それぞれの副読取Ry方向の成分であるRax、Ryの0.99倍に定め、その他の成分については、そのままの値として定める。
Figure 2017157978
式(4)に示す例の0.99倍とは、搬送速度が約1%(=1/0.99−1)高くなる場合に相当する。より一般的には、座標設定部32は、Rax’、Ry’としてRax、Ryの1/(1+Δv)倍の値を用いる。Δvは、画像の読取点が特異線を超える前から超えた後の搬送速度の変化率を示す。主走査ポインタ移動量(Rx,Rax)と副走査ポインタ移動量(Ray,Ry)が上述のポインタ移動量2に相当し、主走査ポインタ移動量(Rx’,Rax’)と副走査ポインタ移動量(Ray’,Ry’)が上述のポインタ移動量1に相当する。
<出力画素の設定>
次に、図10を用いて原稿Bにおける出力画素の設定例について説明する。Rx方向、Ry方向は、それぞれ右方、下方に表されている。原稿Bの方向が右肩下がりである場合を例にする。図10において、右肩下がりの矩形の格子の外縁は主走査ポインタ移動量、副走査ポインタ移動量が一定であると仮定して形成される原稿Bの範囲を示す。主走査方向はRx方向よりも右肩下がりの方向であり、副走査方向はRy方向よりも左に傾いた方向である。主走査方向、副走査方向の各方向への格子間の間隔は、それぞれ主走査ポインタ移動量の大きさ、副走査ポインタ移動量の大きさに相当する。原稿Bの左上の黒丸印は、スタートポイントTPを示す。座標設定部32は、出力画像を形成する際のスタートポイントとなる出力画素を原稿Bの左上端に設定する。図10に示すように、原稿Bの傾きが右肩下がりである場合には、スタートポイントは原稿Bの先端部となる。先端部は、原稿BのうちRy座標が最も小さい部位である。原稿Bの傾きが右肩上がりである場合には、スタートポイントは原稿Bの左端部となる。左端部は、原稿BのうちRx座標が最も小さい部位である。
図10に示す例では、特異線は、副読取方向の座標値(Ry座標)が一定である特異点の集合である。言い換えれば、特異線は、原稿Bの後端点EPからRy方向とは逆方向に所定距離離れた点を通りRx方向に平行な線分である。所定距離は、画像取得部8のイメージセンサー22と、給送ローラー3が分離ローラー4(図1)に当接する点との距離に相当する。原稿Bの後端点EPが、給送ローラー3が分離ローラー4に当接する点から離れる時点において、特異点上の画像がイメージセンサー22により読み取られる。図10において、破線で囲まれる領域は、特異領域を示す。特異領域の内部から画像が読み取られるとき、特異領域の外部から画像が読み取られるときよりも搬送速度が高くなる。主走査が所定時間毎に行われるので、Ry方向の入力画素単位が大きくなる。
出力画素の設定において、座標設定部32は、次の処理を行う。
(1)座標設定部32は、注目する出力画素であるポインタの座標に主走査ポインタ移動量を加えて得られる座標を主走査方向に隣接する出力画素の座標として定め、座標を定めた出力画素にポインタを移動する処理を、所定の回数繰り返す。この回数は、1ラインに含まれる出力画素数に相当する。出力画素数として、原稿Bの大きさと解像度に応じて指定される指定画素数が用いられてもよい。例えば、座標設定部32は、指定画素数をを原稿Bの一辺の長さを主走査ポインタ移動量の大きさで除算して予め算出しておいてもよい。これにより1ライン分の出力画素が設定される。
(2)座標設定部32は、注目するラインの起点の出力画素の座標に副走査ポインタ移動量を加えて得られる座標を、副走査方向に隣接するラインのスタートポイントの出力画素の座標として定める。座標設定部32は、座標を定めた出力画素にポインタを移動する。これにより、ポインタが主走査のスタート位置である次のラインのスタートポイントの出力画素に移される。
(3)座標設定部32は、(1)、(2)の処理を、最終ラインに達するまで繰り返す。(1)、(2)の繰り返し回数として、原稿Bの大きさと解像度に応じて指定される指定ライン数が用いられてもよい。例えば、座標設定部32は、指定ライン数を、原稿Bの他辺の長さを副走査ポインタ移動量の大きさで除算して予め算出しておいてもよい。
但し、この処理のループにおいて、ポインタの位置が特異線よりもRy方向とは逆方向の特異領域の外部にあるとき、座標設定部32は、ポインタ移動量2の主走査ポインタ移動量または副走査ポインタ移動量を用いる。ポインタの位置が特異線よりもRy方向の特異領域の内部にあるとき、座標設定部32は、ポインタ移動量1の主走査ポインタ移動量または副走査ポインタ移動量を用いる。上述の例では、図11に示すように、特異線の方向が出力座標pt03を通るRx方向に向けられている。座標設定部32は、ポインタが出力座標pt01、pt02にある場合には、出力座標pt02、pt03の座標を定める際にポインタ移動量2の主走査ポインタ移動量を用いる。これに対し、座標設定部32は、ポインタが出力座標pt03にある場合には、出力座標pt04の座標を定める際にポインタ移動量1の主走査ポインタ移動量を用いる。
従って、図10において破線で示される特異線よりもRy方向の領域において主走査ポインタ移動量、副走査ポインタ移動量のRy方向の成分が、特異線よりもRy方向の逆方向の領域での99%に圧縮される。そのため、画像の読取時に搬送速度が高くなることによってRy方向に圧縮された画像がその方向に伸長される。よって、座標設定部32は、定めた主走査ポインタ移動量、副走査ポインタ移動量を用いて、設定した出力画素の分布を設定することで搬送速度の変化による画素の歪みを補正することができる。
上述した画像変換は、ポインタ移動量の設定により原稿の負荷状態による搬送速度の変動の影響を補正することができる。当該画像変換は、傾き補正、拡大縮小などの処理と共通の回路を用い、これらの処理と併せた一回の画像処理で実現できる。そのため、画像処理が複数回行われる場合よりも画質の劣化を抑制または防止することができる。また、搬送速度を調整するよりも精密に画像を補正することができる。さらに、搬送機構を駆動するモーターの動作音の変動を生じさせないので、ユーザーに違和感を与えることを回避することができる。なお、原稿の負荷状態に応じて搬送速度を調整する手段を備える必要がないので、その手段の開発設計や種々のパラメーター調整に係るコストを低減することができる。
<出力画像の回転>
回転方向設定部27が回転方向を設定する場合、座標設定部32は、定めた各出力画素の座標をその回転方向に回転させる。座標設定部32は、回転させた各出力画素の座標を表す出力画素情報を信号値算出部33に出力する。その場合、座標設定部32は、画像形成部28が形成した画像データに係る各入力画素の座標をその回転方向に回転させ、回転後の座標と回転前の輝度値とを対応付ける。座標設定部32は、座標値を回転した入力画素毎の輝度値を表す画像データを再構成し、再構成した画像データを信号値算出部33に出力する。
設定される回転方向は、例えば、回転なし、右90度回転、右180度回転、右270度回転である。回転前の座標を(X,Y)とすると、右90度回転、右180度回転、右270度回転が設定される場合、回転後の座標はそれぞれ(Y,Xmax−X)、(Xmax−X,Ymax−Y)、(Ymax−Y,X)となる。Xmax、Ymaxは、原稿Bが占める範囲のX座標の最大値、Y座標の最大値を示す。本例では、Xmax、Ymaxを加算することで、回転後の座標値に負値を生させないようにしている。
また、回転方向設定部27が回転方向を設定する場合、特異領域設定部31は、設定した特異領域を形成する特異点の座標をその回転方向に回転させる。そして、座標設定部32は、ポインタの位置が特異線よりもRy方向から設定された回転方向に回転させた領域にあるか否かにより、ポインタ移動量1、2を使い分ける。
例えば、回転方向が右270度回転である場合には、図12に示すように特異線が分布する方向はRy方向となる。この方向は、特異点のRx座標が一定であ方向である。回転前のRy方向を回転させた方向はRx方向となる。この場合、座標設定部32は、ポインタが出力座標pt11、pt12にある場合には、出力座標pt12、pt13の座標を定める際にポインタ移動量2の主走査ポインタ移動量を用いる。これに対し、座標設定部32は、ポインタが出力座標pt13にある場合には、出力座標pt14の座標を定める際にポインタ移動量1の主走査ポインタ移動量を用いる。
<補間処理>
信号値算出部33は、設定された出力画素から所定範囲内の入力画素に対応する輝度値を補間して当該出力画素に対応する輝度値を算出する。出力画素の位置は、いずれの入力画素の位置とも合致しないことがあるためである。信号値算出部33は、補間処理において例えば、バイキュービック法を用いる。この場合、信号値算出部33は、前処理として出力画素の座標値を量子化して量子化座標値を算出する。図13に示す例では、出力画素の座標値は、入力画素単位をRx方向ならびにRy方向に64分割したRx座標、Ry座標である分割位置であるIndex Main、Index Subに量子化される。
信号値算出部33には、64個の分割位置それぞれのバイキュービック係数のセットを示すバイキュービックテーブルを予め設定しておく。バイキュービック係数のセットは、出力画素から所定範囲内の入力画素として、当該出力画素よりもRx方向の逆方向またはRy方向の逆方向に2番目に近接する入力画素、Rx方向の逆方向またはRy方向の逆方向に最も近接する入力画素、出力画素よりもRx方向またはRy方向に最も近接する入力画素、Rx方向またはRy方向に2番目に近接する入力画素それぞれの輝度値に対する重み係数である係数1〜係数4からなる。図14に示す例では、バイキュービックテーブルは、分割位置を示すインデックス(Index)毎に係数1〜係数4のセットが対応付けられている。インデックス(Index)は、64等分に分割された分割位置の座標軸毎の座標値を正規化した整数である。その値の範囲は、0〜63である。係数1〜係数4は、最小値(−128)〜最大値(128)の間で正規化された値である。インデックス(Index)の値が小さいほど、係数2が他の係数よりも相対的に大きく、インデックス(Index)の値が大きいほど、係数3が他の係数よりも相対的に小さくなる。これらの係数は、目的値である輝度値の近似精度として座標値の誤差について3次の精度が得られるように算出される。
信号値算出部33は、注目する出力画素から所定の範囲内の入力画素として、Rx座標、Ry座標のそれぞれ4つの入力画素、計16個の入力画素(図14参照)それぞれの輝度値を所定の重み係数を乗じて得られる乗算値の総和を算出する。式(5)に示す例では、信号値算出部33は、算出した総和に所定の定数8192を加算して得られる値に、所定の正規化係数16384で除算して得られる値を当該注目する出力画素の輝度値D”として算出する。
Figure 2017157978
式(5)において、D’(n−1,m−1)等は、参照される入力画素(n−1,m−1)の輝度値を示す。n、mは、注目する入力画素からRx方向もしくはRx方向の逆方向ならびにRy方向もしくはRy方向の逆方向に隣接する入力画素を特定する符号である。n、mの値は、各座標値が大きい。Cm1、Cs1は、それぞれRx座標、Ry座標のインデックス(Index)に対応する係数1を示し、Cm2、Cs2は、それぞれRx座標、Ry座標のインデックス(Index)に対応する係数2を示し、Cm3、Cs3は、それぞれRx座標、Ry座標のインデックス(Index)に対応する係数3を示し、Cm4、Cs4は、それぞれRx座標、Ry座標のインデックス(Index)に対応する係数4を示す。これらのインデックス(Index)は、図15において塗りつぶされた領域内に所在する出力画素の量子化座標を表す。即ち、信号値算出部33は、参照される出力画素の重み係数として、その出力画素のRx座標のインデックス(Index)に対応する係数と、Ry座標のインデックス(Index)に対応する係数をインデックステーブルから読み取り、読み取った二つの係数を乗じて得られる値を用いる。
<読取処理>
次に、本実施形態に係る読取処理について説明する。図16は、本実施形態に係る読取処理を示すフローチャートである。図16に示す処理は、ステップS101〜S117を有する。そのうち、ステップS110〜S114は、主走査ループL1を形成する。主走査ループL1とステップS115〜S117は、副走査ループL2を形成する。
(ステップS101)特異領域設定部31は、回転方向設定部27が設定した回転方向に応じて特異点が分布する特異点方向を設定する。特異点方向を副読取方向に定めるとき(ステップS101 副)、ステップS102に進む。分布方向を主読取方向に定めるとき(ステップS101 主)、ステップS103に進む。
(ステップS102)特異領域設定部31は、副読取方向に分布する各特異点の座標を設定する。その後、ステップS104に進む。
(ステップS103)特異領域設定部31は、主読取方向に分布する各特異点の座標を設定する。その後、ステップS104に進む。
(ステップS104)座標設定部32は、原稿範囲判定部26が判定した画像の傾き方向(スキュー補正方向)を取得する。スキュー補正方向が右肩下がりの方向である場合(ステップS104 右肩下がり)、ステップS105に進む。スキュー補正方向が右上がりの方向である場合(ステップS104 右肩上がり)、ステップS106に進む。
(ステップS105)座標設定部32は、スキュー補正方向に応じたポインタ移動量1、2を設定する。座標設定部32は、出力画素のスタートポイントを原稿Bの先端部に設定する。その後、ステップS107に進む。
(ステップS106)座標設定部32は、スキュー補正方向に応じたポインタ移動量1、2を設定する。座標設定部32は、出力画素のスタートポイントを原稿Bの左端部に設定する。その後、ステップS107に進む。
(ステップS107)座標設定部32は、原稿Bの大きさと入力画素単位に基づいて、主読取方向の指定画素数と副読取方向の指定ライン数を設定する。その後、ステップS108に進む。
(ステップS108)座標設定部32は、出力画素の設定点であるポインタをスタートポイントに設定する。その後、ステップS109に進む。
(ステップS109)座標設定部32は、補正処理をスタートするか否かを判定する。座標設定部32は、画像形成部28から原稿Bの画像の読み取りが完了したことを示す読取フラグが入力されるとき、補正処理をスタートすると判定する。座標設定部32は、読取フラグが入力されるまでは、補正処理をスタートしないと判定する。補正処理をスタートする場合(ステップS109 YES)、ステップS110に進む。補正処理をスタートしない場合(ステップS109 NO)、所定時間(例えば、1秒)後にステップS109の処理を繰り返す。
(ステップS110)座標設定部32は、ポインタの位置が特異線を副読取方向Ryに超えた特異領域の内部にあるか否かを判定する。特異領域の内部にあると判定する場合(ステップS110 YES)、ステップS111に進む。特異領域の外部にあると判定する場合(ステップS110 NO)、ステップS112に進む。
(ステップS111)座標設定部32は、ポインタ移動量としてポインタ移動量1を選択する。その後、ステップS113に進む。
(ステップS112)座標設定部32は、ポインタ移動量としてポインタ移動量2を選択する。その後、ステップS113に進む。
(ステップS113)座標設定部32は、選択した主走査ポインタ移動量だけ主走査方向にシフトした位置にポインタの位置を1回移動させる。座標設定部32は、移動したポインタの位置を新たな出力画素の位置として定める。その後、ステップS114に進む。
(ステップS114)座標設定部32は、終了した主走査方向へのポインタの移動回数が指定画素数に達したか否かを判定する。達したと判定する場合(ステップS114 YES)、ステップS115に進む。達していないと判定する場合(ステップS114 NO)、ステップS110に戻る。
(ステップS115)座標設定部32は、終了した副走査方向へのポインタの移動の回数が指定ライン数に達したか否かを判定する。達したと判定する場合(ステップS115 YES)、図16に示す処理を終了する。達していないと判定する場合(ステップS115 NO)、ステップS116に進む。
(ステップS116)座標設定部32は、その時点における処理対象のラインのスタートポイントである主走査スタート位置にポインタを移動させる。その後、ステップS117に進む。
(ステップS117)座標設定部32は、ポインタの位置を、その位置において選択した副走査ポインタ移動量だけ副走査方向にシフトした位置にポインタを1回移動させる。座標設定部は、この位置を出力画素の座標として定める。その後、ステップS110に戻る。
以上に説明したように、本実施形態の一構成例である読取装置1は、原稿を搬送する搬送機構と、搬送された原稿の画像を取得するイメージセンサー22と、画像変換回路である画像変換部30を備える。画像変換部30は、原稿の画像の内、搬送速度が変動する位置である特異領域の内外で異なる角度の画素情報を用いて画像変換を行う。
この構成によれば、原稿の搬送速度を負荷状態に応じて調整せずに取得した画像を補正することができる。そのため、搬送機構を駆動するモーターの動作音の変動によるユーザーへの違和感を解消することができる。また、負荷状態に応じて搬送速度を調整する手段を備える必要がないため、その手段の開発設計や調整にかかるコストを低減することができる。さらに、画像変換は取得された画像について行われるため、搬送速度を調整するよりも厳密に画像を補正することができる。
また、本実施形態の一構成例である読取装置1は、画像を読み取る原稿の範囲を判定する原稿範囲判定部26と、判定された原稿の範囲に基づいて特異領域を定める特異領域設定部31と、を備える。
この構成によれば、判定された原稿の範囲に応じた特異領域が定められる。そのため、搬送される原稿の範囲に関わらず、原稿の搬送速度を調整せずに取得した画像を補正することができる。
また、本実施形態の一構成例において、特異領域の内部のポインタ移動量について、特異領域の外部のポインタ移動量と比べて、原稿の搬送の方向の成分が小さい。
この構成によれば、特異領域の内部のポインタ移動量として、特異領域の外部のポインタ移動量よりも、原稿の搬送の方向の成分が小さいポインタ移動量を用いて画像変換が行われる。そのため、原稿の搬送速度が特異領域の外部よりも高くなる特異領域の内部の領域において、より小さいポインタ移動量で搬送の方向に変位した位置に次の出力画素の座標が定められる。そのため、特異領域の内部における搬送の方向への画像の縮小が緩和もしくは解消する。
なお、上述した構成例では、読取装置1が専用のスキャナーである場合を例にしたが、これには限られない。読取装置1は、画像を印刷する印刷機構を備えたプリンタもしくはコピー機、読み取った画像の画像データを通信路を介して送信先の機器に送信する機能である送信機能を備えた複合機として実現されてもよい。
また、上述した構成例では、画像取得部8は第1画像取得部8aおよび第2画像取得部8bをいずれも備える場合を例にしたが、これには限られない。画像取得部8は第1画像取得部8aおよび第2画像取得部8bのいずれか一方を備え、他方が省略されてもよい。
また、読取装置1は、搬送機構により搬送される原稿からイメージセンサー22により取得される画像について、画像変換処理を行う画像変換部30として縮小もしくは拡大、傾き補正と共通の画像変換回路を備えてもよい。読取装置1は、画像変換に用いるパラメーターとして、特異領域の内外で第1のパラメーターである第1のポインタ移動量と第2のパラメーターである第2のパラメーターとを切り替えて設定する。この構成によっても、原稿の搬送速度を原稿の負荷状態に応じて調整せずに取得される画像を補正することができる。
また、以上に説明した読取装置1における任意の構成部の機能を実現するためのプログラムを、コンピューター読み取り可能な記録媒体に記録し、そのプログラムをコンピューターシステムに読み込ませて実行するようにしてもよい。なお、ここでいう「コンピューターシステム」とは、OS(Operating System)や周辺機器等のハードウェアを含むものとする。また、「コンピューター読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD(Compact Disc)(登録商標)−ROM等の可搬媒体、コンピューターシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピューター読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバーやクライアントとなるコンピューターシステム内部の揮発性メモリー(例えば、RAM)のように、一定時間プログラムを保持しているものも含むものとする。
また、上記のプログラムは、このプログラムを記憶装置等に格納したコンピューターシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピューターシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
また、上記のプログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、上記のプログラムは、前述した機能をコンピューターシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1…読取装置、2…給紙トレイ、3…給送ローラー、4…分離ローラー、5…検出センサー、5a…送信部、5b…受信部、6…搬送ローラー対、6a…搬送駆動ローラー、6b…搬送従動ローラー、8…画像取得部、8a…第1画像取得部、8b…第2画像取得部、9…排出ローラー対、9a…排出駆動ローラー、9b…排出従動ローラー、20…制御部、21…発光部、22…イメージセンサー、23…モータードライバー、24…モーター、25…インターフェイス、26…原稿範囲判定部、27…回転方向設定部、28…画像形成部、30…画像変換部、31…特異領域設定部、32…座標設定部、33…信号値算出部

Claims (5)

  1. 原稿を搬送する搬送機構と、
    搬送された前記原稿の画像を取得するセンサーと、
    前記原稿の画像の内、搬送速度が変動する位置である特異領域の内外で異なる角度の画素情報を用いて画像変換を行う画像変換回路と、
    を備えた読取装置。
  2. 前記原稿の範囲を判定する原稿範囲判定部と、
    前記原稿の範囲に基づいて前記特異領域を定める特異領域設定部と、
    を備えた請求項1に記載の読取装置。
  3. 前記特異領域の内部の前記画素情報の画素間隔は、前記特異領域の外部の画素情報の画素間隔と比べて、前記搬送の方向の成分が小さい
    請求項1または請求項2に記載の読取装置。
  4. 共通の前記画像変換回路に対して、前記画像変換に用いるパラメーターとして、前記特異領域の内外で第1のパラメーターと第2のパラメーターを切り替えて設定する
    請求項1から請求項3のいずれか一項に記載の読取装置。
  5. 搬送機構が搬送した原稿の画像を入力する入力ステップと、
    入力された前記画像の内、搬送速度が変動する位置である特異領域の内外で異なる角度の画素情報を用いて画像変換を行って当該画像変換後の画像データを生成する変換ステップと、
    を有する画像データ生産方法。
JP2016038362A 2016-02-29 2016-02-29 読取装置および画像データ生産方法 Pending JP2017157978A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038362A JP2017157978A (ja) 2016-02-29 2016-02-29 読取装置および画像データ生産方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038362A JP2017157978A (ja) 2016-02-29 2016-02-29 読取装置および画像データ生産方法

Publications (1)

Publication Number Publication Date
JP2017157978A true JP2017157978A (ja) 2017-09-07

Family

ID=59810464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038362A Pending JP2017157978A (ja) 2016-02-29 2016-02-29 読取装置および画像データ生産方法

Country Status (1)

Country Link
JP (1) JP2017157978A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155962A (ja) * 2019-03-20 2020-09-24 株式会社Pfu 画像読取装置、画像処理システム、制御方法及び制御プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155962A (ja) * 2019-03-20 2020-09-24 株式会社Pfu 画像読取装置、画像処理システム、制御方法及び制御プログラム
JP7104650B2 (ja) 2019-03-20 2022-07-21 株式会社Pfu 画像読取装置、画像処理システム、制御方法及び制御プログラム

Similar Documents

Publication Publication Date Title
JP6332081B2 (ja) 読取装置及びこれを備えた画像形成装置
JP5911406B2 (ja) 画像読取装置及び画像処理システム
US9998624B2 (en) Image reading apparatus and image reading method
JP2014058356A (ja) 媒体搬送装置
JP6671927B2 (ja) 画像読取装置、画像読取方法
US10447885B2 (en) Scanner system and image data generating method
JP2019080152A (ja) 画像読取装置
US11706367B2 (en) Device for reading images on both sides of a document in parallel, recording medium, and controlling method thereof
JP5841972B2 (ja) 画像読取装置
CN107925709B (zh) 图像读取装置以及图像形成装置
JP2017157978A (ja) 読取装置および画像データ生産方法
US20130135700A1 (en) Image processing apparatus, image processing method, and storage medium
JP2020086186A (ja) テストチャートおよび画像形成装置
JP2006109408A (ja) 画像読み取り装置の調整方法、これを用いる画像読み取り装置及び画像形成装置
JP2021100220A (ja) 画像処理装置及び画像処理方法
JP2022012616A (ja) 画像読取装置
JP2018203450A (ja) 画像読取装置、その制御方法、及びプログラム
JP5991066B2 (ja) 画像読取装置
JP5966279B2 (ja) 画像読取装置、及び、画像形成装置
US12003679B2 (en) Medium conveying apparatus for generating image based on pulse signal whose cycle varies according to rotation of DC motor
US20210188589A1 (en) Medium conveying apparatus for generating image based on pulse signal whose cycle varies according to rotation of dc motor
JP2019097029A (ja) 画像形成装置
JP6822431B2 (ja) 画像読取装置
JP2017147592A (ja) 画像読取装置
JP6447755B2 (ja) 画像処理装置および画像処理方法

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181026