JP2017157794A - Stacked cooler - Google Patents

Stacked cooler Download PDF

Info

Publication number
JP2017157794A
JP2017157794A JP2016042448A JP2016042448A JP2017157794A JP 2017157794 A JP2017157794 A JP 2017157794A JP 2016042448 A JP2016042448 A JP 2016042448A JP 2016042448 A JP2016042448 A JP 2016042448A JP 2017157794 A JP2017157794 A JP 2017157794A
Authority
JP
Japan
Prior art keywords
flow path
pipe
flow
width
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016042448A
Other languages
Japanese (ja)
Inventor
慎吾 大野
Shingo Ono
慎吾 大野
智寛 島津
Tomohiro Shimazu
智寛 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016042448A priority Critical patent/JP2017157794A/en
Publication of JP2017157794A publication Critical patent/JP2017157794A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stacked cooler capable of improving distribution of refrigerant flow in a plurality of passage pipes, while ensuring the strength at a part thereof subjected to compressive load.SOLUTION: A plurality of passage pipes 30 constituting a stack S include a cylindrical projecting tube part 32 opening in the stacking direction of the stack S and projecting in the stacking direction, and a flat passage pipe formation part 31 extending in the longitudinal direction of the passage pipes 30, respectively. In each passage pipe 30, the load receiving width L of the passage pipe formation part 31 is set equal to or longer than the passage pipe height H, and the pipe diameter φ of the projecting tube part 32 is set equal to or longer than the length of the load receiving width L.SELECTED DRAWING: Figure 6

Description

本発明は、複数の発熱体を冷却する積層型冷却器に関する。   The present invention relates to a stacked cooler that cools a plurality of heating elements.

従来、冷媒が流通する流路管と発熱体を構成する電子部品とを交互に積層し、冷媒と電子部品との熱交換によって電子部品を冷却する積層型冷却器が知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a multilayer cooler is known that alternately stacks flow path tubes through which a refrigerant circulates and electronic components constituting a heating element, and cools the electronic components by heat exchange between the refrigerant and the electronic components (for example, Patent Document 1).

特許文献1に記載の積層型冷却器は、隣り合う流路管それぞれに、積層方向に突出する突出管部が設けられ、各流路管の突出管部同士が接合されることで各流路管同士が連通している。   In the stacked cooler described in Patent Document 1, each adjacent channel tube is provided with a protruding tube portion protruding in the stacking direction, and the protruding tube portions of each channel tube are joined to each other so that each channel The tubes communicate with each other.

また、特許文献1に記載の積層型冷却器は、発熱体と流路管とを密着させるために、隣り合う流路管同士の間に形成される隙間に発熱体を配置した状態で、流路管の積層方向に圧縮荷重を付与して、発熱体を流路管の両面で挟み込む構造となっている。   In addition, in the stacked cooler described in Patent Document 1, in order to make the heat generating body and the flow path pipe closely contact each other, the heat generating body is disposed in a gap formed between adjacent flow path pipes. The structure is such that a compressive load is applied in the stacking direction of the channel pipes, and the heating element is sandwiched between both sides of the channel pipes.

特開2007−53307号公報JP 2007-53307 A

この種の積層型冷却器は、冷却対象となる発熱体の個数に変更があった場合、発熱体の個数に応じて、積層する流路管の本数を増減することで対応することができるという特徴がある。例えば、冷却対象となる発熱体の個数が増えた場合、積層する流路管の本数を増やすことで対応することができる。   This type of stacked cooler can cope with a change in the number of heat generating elements to be cooled by increasing or decreasing the number of flow channel tubes to be stacked according to the number of heat generating elements. There are features. For example, when the number of heating elements to be cooled increases, it can be dealt with by increasing the number of channel tubes to be stacked.

ところで、特許文献1の如く、流路管の積層方向に圧縮荷重を付与して、発熱体を流路管の両面で挟み込む構造では、流路管における突出管部の根元部分に作用する負荷が最も大きくなる。   Incidentally, as in Patent Document 1, in a structure in which a compressive load is applied in the stacking direction of the flow path pipes and the heating element is sandwiched between both surfaces of the flow path pipes, the load acting on the root portion of the protruding pipe portion in the flow path pipes is reduced. Become the largest.

そこで、本発明者らは、突出管部の径を小さくして、流路管における積層方向への荷重を受ける突出管部の根元部分の幅を大きくすることを考えた。   Therefore, the present inventors considered reducing the diameter of the protruding tube portion and increasing the width of the root portion of the protruding tube portion that receives a load in the stacking direction in the flow channel tube.

しかしながら、本発明者らが考えた上述の構造では、流路管の突出管部の径が小さくなることで、突出管部の圧力損失が大きくなってしまう。このように、突出管部における圧力損失が大きくなる構造では、積層する流路管の本数が多くなると、冷媒流れ上流側の流路管の突出管部における圧力損失の影響によって、冷媒流れ下流側の流路管に冷媒が流れ難くなってしまう。すなわち、本発明者らが考えた上述の構造では、複数の流路管における冷媒の流量分配が悪化してしまう。   However, in the above-described structure considered by the present inventors, the diameter of the protruding tube portion of the flow channel tube is reduced, so that the pressure loss of the protruding tube portion is increased. As described above, in the structure in which the pressure loss in the protruding pipe portion increases, when the number of the channel pipes to be stacked increases, the refrigerant flow downstream side due to the influence of the pressure loss in the protruding pipe portion of the flow path pipe on the upstream side of the refrigerant flow. This makes it difficult for the refrigerant to flow through the flow pipe. That is, in the above-described structure considered by the present inventors, the flow rate distribution of the refrigerant in the plurality of flow path pipes deteriorates.

本発明は上記点に鑑みて、流路管における圧縮荷重を受ける部位の強度の確保しつつ、複数の流路管における冷媒の流量分配の改善を図ることが可能な積層型冷却器を提供することを目的とする。   In view of the above points, the present invention provides a stacked type cooler capable of improving the flow rate distribution of refrigerant in a plurality of flow channel pipes while ensuring the strength of a portion receiving a compressive load in the flow path tubes. For the purpose.

請求項1に係る発明は、複数の発熱体(2)を冷却する積層型冷却器を対象としている。上記目的を達成するため、請求項1に記載の発明は、複数の流路管(30)が、隣り合う流路管の間に発熱体を配置する隙間をあけた状態で積層された積層体(S)を備える。   The invention according to claim 1 is directed to a stacked type cooler that cools a plurality of heating elements (2). In order to achieve the above object, the invention according to claim 1 is a laminate in which a plurality of flow channel tubes (30) are stacked in a state where a gap for arranging a heating element is provided between adjacent flow channel tubes. (S) is provided.

複数の流路管それぞれは、積層体の積層方向に開口する共に積層方向に突出する筒状の一対の突出管部(32、33)と、流路管の長手方向に沿って延びる冷媒の流通路が内部に形成されると共に一対の突出管部の根元側にて積層方向に作用する圧縮荷重を受ける扁平形状の流路形成部(31)と、を含んで構成されている。また、隣り合う流路管は、互いの流路形成部の内部に形成された冷媒の流通路が一対の突出管部を介して連通するように、互いの一対の突出管部が接続されている。そして、流路形成部の平坦状の部位における流路管の短手方向の横幅を冷却領域幅(A)、流路形成部の積層方向の縦幅を流路高さ(H)、一対の突出管部における流路管の短手方向の横幅をパイプ径(φ)、流路形成部のうち、一対の突出管部の根元側の部位(317)における冷却領域幅からパイプ径を差し引いた幅を荷重受幅(L)としたときに、荷重受幅は、流路高さ以上の長さに設定されており、パイプ径は、荷重受幅以上の長さに設定されている。   Each of the plurality of flow path tubes has a pair of cylindrical projecting pipe portions (32, 33) that open in the stacking direction of the laminate and project in the stacking direction, and a refrigerant flow that extends along the longitudinal direction of the flow path tube. The passage is formed inside and includes a flat channel forming portion (31) that receives a compressive load acting in the stacking direction on the base side of the pair of protruding tube portions. Also, adjacent channel pipes are connected to each other so that the refrigerant flow passages formed inside the channel forming parts communicate with each other via the pair of protruding pipe parts. Yes. Then, the lateral width in the short direction of the flow path tube in the flat portion of the flow path forming portion is the cooling region width (A), the vertical width in the stacking direction of the flow path forming portion is the flow path height (H), The lateral width of the channel pipe in the short direction of the projecting pipe part is the pipe diameter (φ), and the pipe diameter is subtracted from the cooling region width in the base part (317) of the pair of projecting pipe parts in the channel forming part. When the width is the load receiving width (L), the load receiving width is set to a length equal to or greater than the flow path height, and the pipe diameter is set to a length equal to or greater than the load receiving width.

このように、流路形成部における一対の突出管部の根元側の部位の荷重受幅を流路高さ以上の長さに設定することで、流路形成部に圧縮荷重が作用した際の強度を高くすることができる。また、一対の突出管部のパイプ径を荷重受幅以上の長さに設定することで、突出管部における圧力損失を抑えられるので、積層体における冷媒流れ下流側の流路管の流路形成部にも冷媒が流れ易くなる。さらに、一対の突出管部のパイプ径を大きくすると、流路形成部における突出管部の根元側における周長さが長くなる。このため、流路形成部における突出管部の根元側における圧縮荷重を受ける部位の面積を確保することができる。   In this way, by setting the load bearing width of the base side portion of the pair of projecting tube portions in the flow path forming portion to a length that is greater than or equal to the flow channel height, when a compressive load is applied to the flow path forming portion Strength can be increased. Also, by setting the pipe diameter of the pair of projecting tube portions to be longer than the load receiving width, the pressure loss in the projecting tube portion can be suppressed, so that the flow path formation of the channel tube on the downstream side of the refrigerant flow in the laminate It becomes easy for the refrigerant to flow through the part. Furthermore, when the pipe diameter of the pair of protruding tube portions is increased, the circumferential length on the root side of the protruding tube portion in the flow path forming portion is increased. For this reason, the area of the site | part which receives the compressive load in the base side of the protrusion pipe | tube part in a flow-path formation part is securable.

従って、請求項1に記載の発明では、流路管における圧縮荷重を受ける部位の強度を確保しつつ、複数の流路管における冷媒の流量分配の改善を図ることが可能な積層型冷却器を実現することができる。   Therefore, according to the first aspect of the present invention, there is provided a stacked type cooler capable of improving the flow rate distribution of the refrigerant in the plurality of flow channel pipes while ensuring the strength of the portion receiving the compressive load in the flow path tubes. Can be realized.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係の一例を示すものである。   In addition, the code | symbol in the parenthesis of each means described in this column and the claim shows an example of a correspondence relationship with the specific means described in the embodiment described later.

第1実施形態の積層型冷却器を備える電力変換器の概略構成図である。It is a schematic block diagram of a power converter provided with the lamination type cooler of a 1st embodiment. 第1実施形態の積層型冷却器の模式的な断面図である。It is a typical sectional view of the lamination type cooler of a 1st embodiment. 図2のIII−III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 図3の矢印IVの方向における流路管の矢視図である。FIG. 4 is an arrow view of a flow path tube in the direction of arrow IV in FIG. 3. 図3のV−V断面図である。It is VV sectional drawing of FIG. 図3のVI−VI断面図である。It is VI-VI sectional drawing of FIG. 比較例の積層型冷却器における冷媒の流れを説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the flow of the refrigerant | coolant in the laminated cooler of a comparative example. 第1実施形態の積層型冷却器における冷媒の流れを説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the flow of the refrigerant | coolant in the lamination type cooler of 1st Embodiment. 第1実施形態の変形例1を示す積層型冷却器の要部断面図である。It is principal part sectional drawing of the laminated cooler which shows the modification 1 of 1st Embodiment. 第1実施形態の変形例2を示す積層型冷却器の要部断面図である。It is principal part sectional drawing of the laminated cooler which shows the modification 2 of 1st Embodiment. 第2実施形態の流路管の上面側を示す断面図である。It is sectional drawing which shows the upper surface side of the flow-path pipe | tube of 2nd Embodiment.

以下、発明を実施する形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts as those described in the preceding embodiments are denoted by the same reference numerals, and the description thereof may be omitted. Further, in the embodiment, when only a part of the constituent elements are described, the constituent elements described in the preceding embodiment can be applied to the other parts of the constituent elements. The following embodiments can be partially combined with each other even if they are not particularly specified as long as they do not cause any trouble in the combination.

(第1実施形態)
本実施形態について、図1〜図8を参照して説明する。本実施形態では、積層型冷却器3を電力変換装置1に適用した例について説明する。電力変換装置1は、車両に搭載されたDC−DCコンバータ等に採用される。
(First embodiment)
The present embodiment will be described with reference to FIGS. In the present embodiment, an example in which the stacked cooler 3 is applied to the power conversion device 1 will be described. The power conversion device 1 is employed in a DC-DC converter or the like mounted on a vehicle.

図1に示すように、電力変換装置1は、半導体ユニット10および半導体ユニット10を収容する筐体11を備える。半導体ユニット10は、スイッチング素子等の半導体素子を内蔵した複数の半導体モジュール2、および半導体モジュール2を冷却する積層型冷却器3で構成される。本実施形態では、半導体モジュール2が積層型冷却器3の冷却対象となる発熱体を構成する。なお、発熱体としては、半導体モジュール2以外にも、例えば、パワートランジスタ、パワーFET等が採用されていてもよい。   As shown in FIG. 1, the power conversion device 1 includes a semiconductor unit 10 and a housing 11 that houses the semiconductor unit 10. The semiconductor unit 10 includes a plurality of semiconductor modules 2 incorporating semiconductor elements such as switching elements, and a stacked cooler 3 that cools the semiconductor modules 2. In the present embodiment, the semiconductor module 2 constitutes a heating element to be cooled by the stacked cooler 3. In addition to the semiconductor module 2, for example, a power transistor, a power FET, or the like may be employed as the heating element.

筐体11は、外殻をなすハウジング部111を備える。ハウジング部111における積層体Sの積層方向の一端側の壁部には、後述する積層型冷却器3の供給パイプ部34および排出パイプ部35を外部に挿通させる一対の貫通穴111a、111bが形成されている。   The housing 11 includes a housing portion 111 that forms an outer shell. A pair of through holes 111a and 111b through which a supply pipe portion 34 and a discharge pipe portion 35 of the laminated cooler 3 described later are inserted to the outside are formed in the wall portion on one end side in the stacking direction of the stacked body S in the housing portion 111. Has been.

筐体11の内部には、積層型冷却器3のうち、供給パイプ部34と排出パイプ部35との間の部位を支持する冷却器支持部112がハウジング部111に対して一体に形成されている。   Inside the housing 11, a cooler support portion 112 that supports a portion of the stacked cooler 3 between the supply pipe portion 34 and the discharge pipe portion 35 is formed integrally with the housing portion 111. Yes.

また、筐体11の内部には、半導体ユニット10に対して積層方向へ圧縮荷重を付与する加圧部材113が配置されている。加圧部材113は、ハウジング部111のうち、冷却器支持部112に対向する他端側の壁部に接した状態で配置されている。   In addition, a pressure member 113 that applies a compressive load to the semiconductor unit 10 in the stacking direction is disposed inside the housing 11. The pressurizing member 113 is disposed in a state of being in contact with the wall portion on the other end side facing the cooler support portion 112 in the housing portion 111.

半導体ユニット10は、加圧部材113の圧縮荷重によって、積層方向に圧縮された状態で保持されている。なお、加圧部材113は、積層型冷却器3の流路管30と発熱体である半導体モジュール2との密着性を高めるために設けられている。   The semiconductor unit 10 is held in a state compressed in the stacking direction by the compression load of the pressure member 113. The pressurizing member 113 is provided in order to improve the adhesion between the flow path pipe 30 of the stacked cooler 3 and the semiconductor module 2 that is a heating element.

半導体モジュール2は、例えば、IGBT(絶縁ゲートバイポーラトランジスタ)、MOSFET(MOS型電界効果トランジスタ)等のスイッチング素子を内蔵したモジュールである。半導体モジュール2は、スイッチング素子を樹脂でモールドすることで、外殻が直方体形状に形成されている。   The semiconductor module 2 is a module incorporating a switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (MOS field effect transistor). The semiconductor module 2 has an outer shell formed in a rectangular parallelepiped shape by molding a switching element with resin.

図2に示すように、積層型冷却器3は、複数の流路管30が、隣り合う流路管30の間に発熱体である半導体モジュール2を配置する隙間をあけた状態で積層された積層体Sを備える。積層体Sは、流路管30の内部を流れる冷媒と流路管30の外側に配置された半導体モジュール2とを熱交換させる熱交換部を構成する。   As shown in FIG. 2, in the stacked cooler 3, a plurality of flow channel tubes 30 are stacked in a state where there is a gap between the adjacent flow channel tubes 30 in which the semiconductor module 2 that is a heating element is disposed. A laminate S is provided. The stacked body S constitutes a heat exchange unit that exchanges heat between the refrigerant flowing inside the flow channel tube 30 and the semiconductor module 2 disposed outside the flow channel tube 30.

ここで、冷媒としては、例えば、エチレングリコール系の不凍液を混入した水、水やアンモニア等の自然冷媒、HFC134a等のフロン系冷媒、メタノール等のアルコール系冷媒、アセトン等のケトン系冷媒を採用することができる。   Here, as the refrigerant, for example, water mixed with ethylene glycol antifreeze, natural refrigerant such as water or ammonia, chlorofluorocarbon refrigerant such as HFC134a, alcohol refrigerant such as methanol, or ketone refrigerant such as acetone is adopted. be able to.

図3および図4に示すように、積層体Sを構成する複数の流路管30は、長手方向に延びる冷媒の流通路が形成された流路形成部31、および積層体Sの積層方向に開口すると共に積層方向に突出する円筒状の一対の突出管部32、33を含んで構成されている。   As shown in FIG. 3 and FIG. 4, the plurality of flow path tubes 30 constituting the stacked body S include a flow path forming portion 31 in which a refrigerant flow path extending in the longitudinal direction is formed, and the stacking direction of the stacked body S. A pair of cylindrical projecting pipe portions 32 and 33 that open and project in the stacking direction are included.

流路形成部31は、流路管30における長手方向に延びる扁平形状の部位である。本実施形態の流路形成部31は、アルミニウムや銅等の熱伝導性に優れた金属製のプレートを積層した状態で接合して構成されている。   The flow path forming portion 31 is a flat portion extending in the longitudinal direction of the flow path tube 30. The flow path forming portion 31 of the present embodiment is configured by joining in a state where metal plates having excellent thermal conductivity such as aluminum and copper are stacked.

具体的には、流路形成部31は、図5に示すように、一対の外殻プレート311、312、および一対の外殻プレート311、312の間に配された中間プレート313を有する。そして、一対の外殻プレート311、312と中間プレート313との間には、流路管30の長手方向に延びる冷媒の流通路が形成され、当該流通路に半導体モジュール2と冷媒との熱交換を促進する波形状のインナーフィン314が配設されている。   Specifically, the flow path forming unit 31 includes a pair of outer shell plates 311 and 312 and an intermediate plate 313 disposed between the pair of outer shell plates 311 and 312 as shown in FIG. A refrigerant flow path extending in the longitudinal direction of the flow path pipe 30 is formed between the pair of outer shell plates 311 and 312 and the intermediate plate 313, and heat exchange between the semiconductor module 2 and the refrigerant is performed in the flow path. A wave-shaped inner fin 314 that promotes the movement is disposed.

本実施形態の流路形成部31には、図3および図4に示すように、流路管30の長手方向に延びる外周縁部の一部に内側に窪んだリブ315が設けられている。このリブ315は、インナーフィン314の位置決めを行うために設けられている。   As shown in FIGS. 3 and 4, the flow path forming portion 31 of the present embodiment is provided with ribs 315 that are recessed inward at a part of the outer peripheral edge portion that extends in the longitudinal direction of the flow channel tube 30. The rib 315 is provided for positioning the inner fin 314.

図2および図4に示すように、一対の突出管部32、33は、流路管30における積層方向に突き出た部位である。一対の突出管部32、33は、流路形成部31における流路管30の長手方向の両側に設けられている。   As shown in FIGS. 2 and 4, the pair of protruding pipe portions 32 and 33 are portions protruding in the stacking direction in the flow path pipe 30. The pair of projecting tube portions 32 and 33 are provided on both sides of the flow channel forming portion 31 in the longitudinal direction of the flow channel tube 30.

一対の突出管部32、33は、一方の突出管部32が流路形成部31の内部に形成された流通路に冷媒を分配する分配部を構成し、他方の突出管部33が流路形成部31の内部を通過した冷媒を集合させる集合部を構成している。   The pair of projecting tube portions 32 and 33 constitute a distribution portion in which one projecting tube portion 32 distributes the refrigerant to the flow passage formed inside the channel forming portion 31, and the other projecting tube portion 33 serves as the channel. A collecting part that collects the refrigerant that has passed through the inside of the forming part 31 is configured.

複数の流路管30のうち、積層方向の最も両外側に位置する流路管30を除く流路管30には、隣り合う流路管30に対向する対向面の両側それぞれに突出管部32、33が設けられている。   Of the plurality of flow channel tubes 30, the flow channel tubes 30 excluding the flow channel tubes 30 located on the outermost sides in the stacking direction are protruded tube portions 32 on both sides of the facing surface facing the adjacent flow channel tubes 30. , 33 are provided.

一対の突出管部32、33は、流路管30の一方の面に形成された第1突出部321、331が、流路管30の他方の面に形成された第2突出部322、332に嵌合可能な形状に構成されている。   The pair of projecting tube portions 32 and 33 includes first projecting portions 321 and 331 formed on one surface of the flow channel tube 30 and second projecting portions 322 and 332 formed on the other surface of the flow channel tube 30. It is comprised in the shape which can be fitted in.

本実施形態の隣り合う流路管30は、互いの流路形成部31の内部に形成された冷媒の流通路が一対の突出管部32、33を介して連通するように、互いの一対の突出管部32、33が嵌合された状態で接続されている。   Adjacent channel pipes 30 of the present embodiment are connected to each other so that the refrigerant flow passages formed in the flow path forming parts 31 communicate with each other via the pair of projecting pipe parts 32 and 33. The protruding pipe portions 32 and 33 are connected in a fitted state.

また、図2に示すように、本実施形態の積層型冷却器3は、複数の流路管30のうち、積層方向一端側の流路管30に、外部からの冷媒を積層体Sの内部に供給する供給パイプ部34、および積層体Sの内部から冷媒を排出する排出パイプ部35が接続されている。   In addition, as shown in FIG. 2, the stacked cooler 3 of the present embodiment is configured such that, from among the plurality of flow channel tubes 30, the refrigerant from the outside is supplied to the flow channel tube 30 on one end side in the stacking direction. A supply pipe portion 34 that supplies the refrigerant and a discharge pipe portion 35 that discharges the refrigerant from the inside of the stacked body S are connected.

本実施形態の供給パイプ部34および排出パイプ部35は、積層方向一端側の流路管30における筐体11の一対の貫通穴111a、111bに対向する部位に接続されている。なお、本実施形態の供給パイプ部34および排出パイプ部35は、その中心軸線CL1が一対の突出管部32、33の中心軸線CL2に対して、流路管30の長手方向の内側にずれている。   The supply pipe portion 34 and the discharge pipe portion 35 of the present embodiment are connected to portions facing the pair of through holes 111a and 111b of the housing 11 in the flow channel pipe 30 on one end side in the stacking direction. Note that the supply pipe portion 34 and the discharge pipe portion 35 of the present embodiment have their center axis CL1 shifted inward in the longitudinal direction of the flow channel tube 30 with respect to the center axis CL2 of the pair of projecting tube portions 32 and 33. Yes.

ここで、本実施形態の流路形成部31は、図3および図4に示すように、発熱体である半導体モジュール2を接触させる接触部位316と、一対の突出管部32、33の根元側の根元部位317とに大別することができる。   Here, as shown in FIGS. 3 and 4, the flow path forming portion 31 of the present embodiment includes a contact portion 316 that contacts the semiconductor module 2 that is a heating element, and a base side of the pair of protruding tube portions 32 and 33. It can be roughly divided into the root part 317 of the nose.

本実施形態の積層型冷却器3は、隣り合う流路管30同士の隙間に半導体モジュール2を配置した状態で、加圧部材113の外力により圧縮荷重を付与して、半導体モジュール2を流路管30の両面で挟み込む構造となっている。   In the stacked cooler 3 of this embodiment, the semiconductor module 2 is disposed in the gap between the adjacent flow channel tubes 30, and a compressive load is applied by the external force of the pressure member 113 so that the semiconductor module 2 flows through the flow path. The structure is sandwiched between both surfaces of the tube 30.

このような構造では、流路管30に対して積層方向に圧縮荷重が作用した際に、流路形成部31の根元部位317に作用する負荷が最も大きくなり、根元部位317が当該圧縮荷重によって流路管30の内側に向かって変形する。   In such a structure, when a compressive load acts on the flow path pipe 30 in the stacking direction, the load acting on the root portion 317 of the flow path forming portion 31 becomes the largest, and the root portion 317 is caused by the compressive load. It deforms toward the inside of the flow channel tube 30.

流路形成部31の根元部位317の強度を向上させる観点では、突出管部32、33の径を小さくして、根元部位317の幅を大きくすることが考えられるが、この場合、突出管部32、33の圧力損失が大きくなってしまう。   From the viewpoint of improving the strength of the root portion 317 of the flow path forming portion 31, it is conceivable to reduce the diameter of the protruding tube portions 32 and 33 and increase the width of the root portion 317. In this case, the protruding tube portion The pressure loss of 32 and 33 will become large.

一対の突出管部32、33の圧力損失が大きくなると、複数の流路管30のうち、冷媒流れ下流側の流路管30に冷媒が流れ難くなり、複数の流路管30における冷媒の流量分配が悪化することから好ましくない。   When the pressure loss of the pair of projecting pipe portions 32 and 33 increases, the refrigerant hardly flows into the flow path pipe 30 on the downstream side of the refrigerant flow among the plurality of flow path pipes 30, and the flow rate of the refrigerant in the plurality of flow path pipes 30 It is not preferable because distribution deteriorates.

次に、本実施形態の流路管30の特徴的な構造について図6を参照して説明する。ここで、図6は、図3のVI−VI断面図である。   Next, a characteristic structure of the flow path pipe 30 of the present embodiment will be described with reference to FIG. Here, FIG. 6 is a VI-VI sectional view of FIG.

ここで、本実施形態では、流路形成部31の平坦状の部位における流路管30の短手方向の横幅である冷却領域幅を「A」、流路形成部31の積層方向の縦幅である流路高さを「H」としている。さらに、本実施形態では、突出管部32における流路管30の短手方向の横幅であるパイプ径を「φ」、流路形成部31のうち、根元部位317における冷却領域幅Aからパイプ径φを差し引いた幅である荷重受幅を「L」としている。なお、本実施形態では、流路形成部31の根元部位317における冷却領域幅Aと接触部位316における冷却領域幅とが同等の大きさとなっている。また、本実施形態では、流路形成部31における突出管部32の両側に形成される根元部位317の横幅が同等となっている。すなわち、本実施形態の流路形成部31における突出管部32の両側に形成される根元部位317の横幅は、荷重受幅Lの半分の長さ(=L/2)になっている。   Here, in the present embodiment, the cooling region width which is the lateral width in the short direction of the flow path tube 30 in the flat portion of the flow path forming portion 31 is “A”, and the vertical width of the flow path forming portion 31 in the stacking direction. The flow path height is “H”. Furthermore, in this embodiment, the pipe diameter, which is the lateral width in the short direction of the flow path pipe 30 in the protruding pipe section 32, is “φ”, and the pipe diameter is determined from the cooling region width A in the root portion 317 of the flow path forming section 31. The load receiving width that is the width obtained by subtracting φ is “L”. In the present embodiment, the cooling region width A at the root portion 317 of the flow path forming portion 31 and the cooling region width at the contact portion 316 are the same size. In the present embodiment, the lateral widths of the root portions 317 formed on both sides of the protruding tube portion 32 in the flow path forming portion 31 are equal. That is, the lateral width of the root portion 317 formed on both sides of the protruding tube portion 32 in the flow path forming portion 31 of the present embodiment is half the load receiving width L (= L / 2).

ここで、流路管30に対して積層方向に圧縮荷重が作用した際には、流路形成部31の根元部位317における突出管部32との継目となる部分が大きく変形する。この変形によって、根元部位317における平坦状の部位と短手方向に延びる直線とのなす曲り角度θが45°を超えると、根元部位317における圧縮荷重に対する反発力が積層方向から短手方向に分散されてしまう。この場合、根元部位317における圧縮荷重に対する反発力が不足することで、流路管30の流路形成部31の強度が不十分となってしまう。   Here, when a compressive load is applied to the flow path tube 30 in the stacking direction, a portion that becomes a joint with the protruding pipe portion 32 in the root portion 317 of the flow path forming portion 31 is greatly deformed. As a result of this deformation, when the bending angle θ formed by the flat portion of the root portion 317 and the straight line extending in the short direction exceeds 45 °, the repulsive force against the compressive load at the root portion 317 is dispersed from the stacking direction to the short direction. It will be. In this case, the strength of the flow path forming portion 31 of the flow path pipe 30 becomes insufficient because the repulsive force against the compressive load at the root portion 317 is insufficient.

加えて、根元部位317における曲り角度θが45°を超えてしまうと、例えば、根本部位317の内側と中間プレート313とが接触し、流路管30内部の冷媒の流通路の一部が閉塞されてしまう可能性がある。このことは、流路形成部31における冷媒の流通路の圧力損失の増大等を招く要因となり、冷媒の流量分配の悪化によって性能低下が懸念されることから、好ましくない。   In addition, when the bending angle θ at the root portion 317 exceeds 45 °, for example, the inner side of the root portion 317 and the intermediate plate 313 come into contact with each other, and a part of the refrigerant flow path inside the flow path pipe 30 is blocked. There is a possibility of being. This is not preferable because it causes an increase in the pressure loss of the refrigerant flow passage in the flow path forming unit 31 and there is a concern about performance deterioration due to deterioration of the refrigerant flow distribution.

そこで、本実施形態では、流路管30に対して積層方向に圧縮荷重が作用した際に、根元部位317における曲り角度θが45°を超えないように、荷重受幅Lを流路高さH以上の長さに設定している(すなわち、L≧H)。   Therefore, in this embodiment, when a compressive load is applied to the flow path tube 30 in the stacking direction, the load receiving width L is set to the flow path height so that the bending angle θ at the root portion 317 does not exceed 45 °. The length is set to H or more (that is, L ≧ H).

また、本実施形態では、複数の流路管30のうち、冷媒流れ下流側の流路管30にも冷媒が流れ易くなるように、パイプ径φを荷重受幅L以上の長さに設定している(すなわち、φ≧L)。   In the present embodiment, the pipe diameter φ is set to a length greater than the load receiving width L so that the refrigerant can easily flow into the flow path pipe 30 on the downstream side of the refrigerant flow among the plurality of flow path pipes 30. (That is, φ ≧ L).

このように、本実施形態の流路管30は、荷重受幅Lが流路高さH以上、且つ、パイプ径φ以下となる長さ、すなわち、荷重受幅Lが以下の数式F1を満たす長さに設定されている。   Thus, the flow path pipe 30 of the present embodiment has a length that allows the load receiving width L to be equal to or higher than the flow path height H and equal to or less than the pipe diameter φ, that is, the load receiving width L satisfies the following formula F1. It is set to length.

H≦L≦φ ・・・(F1)
例えば、冷却領域幅Aが24mm、流路高さHが2mmとなる流路管30では、荷重受幅Lを流路高さH以上となる5mm程度とし、パイプ径φを荷重受幅L以上の長さとなる19mmとすればよい。
H ≦ L ≦ φ (F1)
For example, in the flow path tube 30 in which the cooling area width A is 24 mm and the flow path height H is 2 mm, the load receiving width L is about 5 mm which is equal to or higher than the flow path height H, and the pipe diameter φ is equal to or greater than the load receiving width L. What is necessary is just to be 19 mm used as the length of this.

また、本実施形態の複数の流路管30それぞれは、流路形成部31における冷媒の流通路の圧力損失が一対の突出管部32、33の内部における圧力損失よりも大きくなるように構成されている。   In addition, each of the plurality of flow path tubes 30 of the present embodiment is configured such that the pressure loss of the refrigerant flow path in the flow path forming portion 31 is larger than the pressure loss in the pair of protruding tube portions 32 and 33. ing.

具体的には、本実施形態の流路形成部31は、冷媒の流通路における断面積(≒[H×(φ+L)])が、一対の突出管部32、33の内部の断面積(≒[π×(φ/2)2])よりも小さくなっている。なお、流路形成部31の内部に冷媒の流通抵抗となる部材(例えば、インナーフィン314)を配置することで、流路形成部31における冷媒の流通路の圧力損失が一対の突出管部32、33の内部における圧力損失よりも大きくなる構成としてもよい。なお、図6では、流路管30における一方の突出管部32側の断面を図示しているが、他方の突出管部33側の断面も同様に構成されている。 Specifically, in the flow path forming portion 31 of the present embodiment, the cross-sectional area (≈ [H × (φ + L)]) in the refrigerant flow path is equal to the cross-sectional area inside the pair of protruding pipe portions 32 and 33 (≈ [Π × (φ / 2) 2 ]). In addition, by disposing a member (for example, the inner fin 314) that serves as a flow resistance of the refrigerant inside the flow path forming unit 31, the pressure loss of the refrigerant flow path in the flow path forming unit 31 is reduced to a pair of protruding pipe portions 32. , 33 may be configured to be larger than the pressure loss inside. In FIG. 6, the cross section on the one projecting pipe portion 32 side in the flow path pipe 30 is illustrated, but the cross section on the other projecting pipe portion 33 side is configured similarly.

上記構成に係る本実施形態の積層型冷却器3では、供給パイプ部34を介して外部から供給された冷媒が、一対の突出管部32、33の一方の突出管部32を介して、複数の流路管30の流路形成部31の長手方向の一端側から流入する。そして、複数の流路管30の流路形成部31を流れる冷媒は、流路管30の長手方向の他端側から流出し、一対の突出管部32、33の他方の突出管部33を介して、排出パイプ部35から排出される。   In the stacked cooler 3 according to the present embodiment having the above-described configuration, a plurality of refrigerants supplied from the outside via the supply pipe portion 34 are supplied via one protruding tube portion 32 of the pair of protruding tube portions 32 and 33. It flows in from one end side in the longitudinal direction of the flow path forming portion 31 of the flow path pipe 30. Then, the refrigerant flowing through the flow path forming portions 31 of the plurality of flow path tubes 30 flows out from the other end side in the longitudinal direction of the flow path tubes 30, and passes through the other protruding tube portion 33 of the pair of protruding tube portions 32 and 33. Through the discharge pipe portion 35.

ここで、図7は、比較例の積層型冷却器REFにおける冷媒の流れを示す模式的な断面図である。比較例の積層型冷却器REFは、一対の突出管部T1、T2のパイプ径φrefが荷重受部よりも短くなっている点が本実施形態の積層型冷却器3と異なっている。なお、説明の便宜上、図7では、比較例の積層型冷却器REFと本実施形態とで同様となる構成について同一の参照符号を付している。   Here, FIG. 7 is a schematic cross-sectional view showing the flow of the refrigerant in the multilayer cooler REF of the comparative example. The laminated cooler REF of the comparative example is different from the laminated cooler 3 of the present embodiment in that the pipe diameter φref of the pair of protruding tube portions T1 and T2 is shorter than the load receiving portion. For convenience of explanation, in FIG. 7, the same reference numerals are assigned to the configurations that are the same between the stacked cooler REF of the comparative example and the present embodiment.

比較例の積層型冷却器REFでは、供給パイプ部34を介して外部から供給された冷媒が、一対の突出管部T1、T2の一方の突出管部T1を介して、複数の流路管30の流路形成部31の長手方向の一端側から流入する。この際、比較例の積層型冷却器REFでは、突出管部T1のパイプ径φrefが小さいため、突出管部T1における圧力損失によって、図7に示すように、複数の流路管30のうち、冷媒流れ下流側の流路管30に冷媒が流れ難くなってしまう。   In the laminated cooler REF of the comparative example, the refrigerant supplied from the outside via the supply pipe portion 34 is supplied with a plurality of flow channel tubes 30 via one protruding tube portion T1 of the pair of protruding tube portions T1 and T2. It flows in from the one end side of the longitudinal direction of this flow path formation part 31. At this time, in the multilayer cooler REF of the comparative example, since the pipe diameter φref of the protruding tube portion T1 is small, due to the pressure loss in the protruding tube portion T1, as shown in FIG. It becomes difficult for the refrigerant to flow into the flow path pipe 30 on the downstream side of the refrigerant flow.

これに対して、本実施形態の積層型冷却器3では、突出管部32のパイプ径φが充分に確保されている。このため、本実施形態の積層型冷却器3では、突出管部32における圧力損失が小さくなり、図8に示すように、複数の流路管30のうち、冷媒流れ下流側の流路管30にも冷媒が流れ易くなる。   On the other hand, in the multilayer cooler 3 of the present embodiment, the pipe diameter φ of the protruding pipe portion 32 is sufficiently ensured. For this reason, in the multilayer cooler 3 of the present embodiment, the pressure loss in the protruding pipe portion 32 is reduced, and the flow path pipe 30 on the downstream side of the refrigerant flow among the plurality of flow path pipes 30 as shown in FIG. In addition, the refrigerant easily flows.

以上説明した本実施形態の積層型冷却器3は、流路形成部31の根元部位317の荷重受幅Lを流路形成部31の流路高さH以上の長さに設定している。これによれば、流路形成部31に圧縮荷重が作用した際の強度を高くすることができる。   In the stacked cooler 3 of the present embodiment described above, the load receiving width L of the root portion 317 of the flow path forming unit 31 is set to a length equal to or greater than the flow path height H of the flow path forming unit 31. According to this, the strength when a compressive load acts on the flow path forming portion 31 can be increased.

加えて、本実施形態の積層型冷却器3は、一対の突出管部32、33のパイプ径φを荷重受幅L以上の長さに設定している。これによれば、一対の突出管部32、33における圧力損失を抑えられるので、積層体Sにおける冷媒流れ下流側の流路管30の流路形成部31にも冷媒が流れ易くなる。さらに、一対の突出管部32、33のパイプ径を大きくすると、流路形成部31における根元部位317における周長さが長くなる。このため、流路形成部31における一対の突出管部32、33の根元側にて圧縮荷重を受ける部位の面積を確保することができる。   In addition, in the stacked cooler 3 of the present embodiment, the pipe diameter φ of the pair of projecting pipe portions 32 and 33 is set to a length greater than the load receiving width L. According to this, since the pressure loss in the pair of protruding pipe portions 32 and 33 can be suppressed, the refrigerant easily flows into the flow path forming portion 31 of the flow path pipe 30 on the downstream side of the refrigerant flow in the stacked body S. Furthermore, when the pipe diameters of the pair of protruding pipe portions 32 and 33 are increased, the circumferential length at the root portion 317 in the flow path forming portion 31 is increased. For this reason, the area of the site | part which receives a compressive load in the base side of a pair of projecting pipe parts 32 and 33 in the flow-path formation part 31 is securable.

従って、本実施形態によれば、流路管30における圧縮荷重を受ける部位の強度を確保しつつ、複数の流路管30における冷媒の流量分配の改善を図ることが可能な積層型冷却器3を実現することができる。   Therefore, according to the present embodiment, the stacked cooler 3 capable of improving the flow rate distribution of the refrigerant in the plurality of flow channel tubes 30 while ensuring the strength of the portion receiving the compressive load in the flow channel tube 30. Can be realized.

また、本実施形態の複数の流路管30それぞれは、流路形成部31における冷媒の流通路の圧力損失が一対の突出管部32、33の内部における圧力損失よりも大きくなるように構成されている。このように、流路形成部31における冷媒の流通路の圧力損失が一対の突出管部32、33の内部における圧力損失よりも大きくなる構成では、積層体Sにおける冷媒流れ下流側の流路管30の流路形成部31にも冷媒が流れ易くなる。このため、複数の流路管30における冷媒の流量分配の改善を図ることができる。   In addition, each of the plurality of flow path tubes 30 of the present embodiment is configured such that the pressure loss of the refrigerant flow path in the flow path forming portion 31 is larger than the pressure loss in the pair of protruding tube portions 32 and 33. ing. As described above, in the configuration in which the pressure loss in the flow path of the refrigerant in the flow path forming portion 31 is larger than the pressure loss in the pair of projecting pipe portions 32 and 33, the flow path pipe on the downstream side of the refrigerant flow in the stacked body S. It becomes easy for the refrigerant to also flow through the flow path forming portion 31 of 30. For this reason, it is possible to improve the flow rate distribution of the refrigerant in the plurality of flow path tubes 30.

(第1実施形態の変形例1)
上述の第1実施形態では、供給パイプ部34および排出パイプ部35の中心軸線CL1が一対の突出管部32、33の中心軸線CL2に対して、流路管30の長手方向の内側にずれている例について説明したが、これに限定されない。例えば、図9に示すように、供給パイプ部34および排出パイプ部35の中心軸線CL1と一対の突出管部32、33の中心軸線CL2とが同軸となる構成としてもよい。
(Modification 1 of the first embodiment)
In the first embodiment described above, the central axis CL1 of the supply pipe portion 34 and the discharge pipe portion 35 is shifted inward in the longitudinal direction of the flow channel tube 30 with respect to the central axis CL2 of the pair of protruding pipe portions 32 and 33. However, the present invention is not limited to this. For example, as shown in FIG. 9, the central axis CL1 of the supply pipe part 34 and the discharge pipe part 35 and the central axis CL2 of the pair of protruding pipe parts 32 and 33 may be coaxial.

(第1実施形態の変形例2)
また、例えば、図10に示すように、供給パイプ部34および排出パイプ部35における流路管30側の部位を拡径して、供給パイプ部34および排出パイプ部35の中心軸線CL1と一対の突出管部32、33の中心軸線CL2とが同軸となる構成としてもよい。
(Modification 2 of the first embodiment)
Further, for example, as shown in FIG. 10, the diameters of the portions of the supply pipe portion 34 and the discharge pipe portion 35 on the flow channel pipe 30 side are increased so that the central axis CL1 of the supply pipe portion 34 and the discharge pipe portion 35 and the pair of It is good also as a structure with which the central axis CL2 of the protrusion pipe parts 32 and 33 becomes coaxial.

(第2実施形態)
次に、第2実施形態について、図11を参照して説明する。本実施形態では、流路形成部31の形状を変更している点が第1実施形態と相違している。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. In this embodiment, the point which has changed the shape of the flow-path formation part 31 is different from 1st Embodiment.

図11に示すように、本実施形態の流路形成部31は、根元部位317における冷却領域幅A1が、半導体モジュール2を接触させる接触部位316における冷却領域幅A2よりも大きくなっている。   As shown in FIG. 11, in the flow path forming portion 31 of the present embodiment, the cooling region width A1 at the root portion 317 is larger than the cooling region width A2 at the contact portion 316 that contacts the semiconductor module 2.

その他の構成は、第1実施形態と同様である。本実施形態の積層型冷却器3は、第1実施形態と共通する構成によって得られる作用効果を第1実施形態と同様に得ることができる。   Other configurations are the same as those of the first embodiment. The stacked cooler 3 of the present embodiment can obtain the effects obtained by the configuration common to the first embodiment in the same manner as the first embodiment.

特に、本実施形態では、流路形成部31における根元部位317の冷却領域幅A1を、流路形成部31における接触部位316の冷却領域幅A2よりも大きくしている。これによれば、一対の突出管部32、33におけるパイプ径φを大きくしたとしても、流路形成部31の荷重受幅Lを確保し易くなる。このため、本実施形態の構成は、流路管30における圧縮荷重を受ける部位の強度を確保しつつ、複数の流路管30における冷媒の流量分配の改善を図る上で好適である。   In particular, in the present embodiment, the cooling area width A1 of the root part 317 in the flow path forming part 31 is larger than the cooling area width A2 of the contact part 316 in the flow path forming part 31. According to this, even if the pipe diameter φ in the pair of projecting pipe portions 32 and 33 is increased, it is easy to ensure the load receiving width L of the flow path forming portion 31. For this reason, the configuration of the present embodiment is suitable for improving the flow rate distribution of the refrigerant in the plurality of flow channel tubes 30 while ensuring the strength of the portion receiving the compressive load in the flow channel tube 30.

(他の実施形態)
以上、発明を実施する代表的な形態について説明したが、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
(Other embodiments)
As mentioned above, although the typical form which implements invention was demonstrated, it is not limited to the above-mentioned embodiment, For example, various deformation | transformation are possible as follows.

上述の各実施形態の如く、複数の流路管30それぞれが、流路形成部31における冷媒の流通路の圧力損失が一対の突出管部32、33の内部における圧力損失よりも大きくなるように構成されていることが望ましいが、これに限定されない。例えば、複数の流路管30の一部だけが、流路形成部31における冷媒の流通路の圧力損失が一対の突出管部32、33の内部における圧力損失よりも大きくなるように構成されていてもよい。   As in the above-described embodiments, each of the plurality of flow path tubes 30 is configured such that the pressure loss in the refrigerant flow path in the flow path forming portion 31 is larger than the pressure loss in the pair of protruding tube portions 32 and 33. Although it is desirable to be comprised, it is not limited to this. For example, only a part of the plurality of flow path pipes 30 is configured such that the pressure loss of the refrigerant flow passage in the flow path forming part 31 is larger than the pressure loss in the pair of protruding pipe parts 32 and 33. May be.

上述の各実施形態では、流路管30の流路形成部31の内部に中間プレート313が配置されることで、流路形成部31の内部に冷媒の流通路が2列形成される例について説明したが、これに限定されない。例えば、中間プレート313が省略され、流路管30の流路形成部31の内部に冷媒の流通路が1列形成される構成となっていてもよい。   In each of the embodiments described above, an example in which the intermediate plate 313 is disposed inside the flow path forming portion 31 of the flow path pipe 30 to form two rows of refrigerant flow paths inside the flow path forming portion 31. Although described, it is not limited to this. For example, the intermediate plate 313 may be omitted, and one row of refrigerant flow paths may be formed inside the flow path forming portion 31 of the flow path pipe 30.

上述の各実施形態では、流路管30の流路形成部31の内部にインナーフィン314を配置する例について説明したが、これに限定されず、インナーフィン314が省略されていてもよい。   In each of the above-described embodiments, the example in which the inner fin 314 is disposed inside the flow path forming portion 31 of the flow path pipe 30 has been described. However, the present invention is not limited thereto, and the inner fin 314 may be omitted.

上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。   In the above-described embodiment, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where it is considered that it is clearly essential in principle.

上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。   In the above-described embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is particularly limited to a specific number when clearly indicated as essential and in principle. Except in some cases, the number is not limited.

上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。   In the above embodiment, when referring to the shape, positional relationship, etc. of the component, etc., the shape, positional relationship, etc. unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to etc.

(まとめ)
上述の実施形態の一部または全部で示された第1の観点によれば、積層型冷却器は、流路形成部の荷重受幅が、流路高さ以上の流れに設定されると共に、一対の突出管部のパイプ径が荷重受幅以上の長さに設定されている。
(Summary)
According to the first aspect shown in a part or all of the above-described embodiments, the stacked cooler is configured such that the load-receiving width of the flow path forming portion is set to a flow higher than the flow path height, The pipe diameter of the pair of protruding tube portions is set to a length that is equal to or greater than the load receiving width.

また、第2の観点によれば、積層型冷却器の複数の流路管それぞれは、流路形成部における冷媒の流通路の圧力損失が一対の突出管部の内部における圧力損失よりも大きくなるように構成されている。   Further, according to the second aspect, in each of the plurality of flow path tubes of the stacked cooler, the pressure loss of the refrigerant flow passage in the flow path forming portion is larger than the pressure loss in the pair of protruding tube portions. It is configured as follows.

このように、流路形成部における冷媒の流通路の圧力損失が突出管部の内部における圧力損失よりも大きくなる構成では、積層体における冷媒流れ下流側の流路管の流路形成部にも冷媒が流れ易くなる。このため、複数の流路管における冷媒の流量分配の改善を図ることができる。   Thus, in the configuration in which the pressure loss of the refrigerant flow path in the flow path forming portion is larger than the pressure loss in the protruding pipe portion, the flow path forming portion of the flow path pipe on the downstream side of the refrigerant flow in the laminated body is also used. It becomes easier for the refrigerant to flow. For this reason, it is possible to improve the flow rate distribution of the refrigerant in the plurality of flow channel tubes.

また、第3の観点によれば、積層型冷却器は、流路形成部における一対の突出管部の根元側の部位における冷却領域幅が、流路形成部における発熱体を接触させる部位における冷却領域幅よりも大きくなっている。   Further, according to the third aspect, the stacked cooler is configured such that the cooling region width at the base side portion of the pair of projecting tube portions in the flow path forming portion is the cooling at the portion where the heating element in the flow path forming portion is in contact. It is larger than the region width.

このように、流路形成部における突出管部の根元側の冷却領域幅が、流路形成部における発熱体を接触させる部位の冷却領域幅よりも大きくなる構成とすれば、突出管部におけるパイプ径を大きくしたとしても、流路形成部の荷重受幅を確保し易くなる。このような構成は、流路管における圧縮荷重を受ける部位の強度を確保しつつ、複数の流路管における冷媒の流量分配の改善を図る上で好適である。   In this way, if the cooling region width on the base side of the protruding tube portion in the flow path forming portion is larger than the cooling region width of the portion in contact with the heating element in the flow path forming portion, the pipe in the protruding tube portion Even if the diameter is increased, it is easy to ensure the load receiving width of the flow path forming portion. Such a configuration is suitable for improving the flow rate distribution of the refrigerant in the plurality of flow channel pipes while ensuring the strength of the portion receiving the compressive load in the flow channel pipes.

2 半導体モジュール(発熱体)
3 積層型冷却器
30 流路管
31 流路形成部
32、33 一対の突出管部
S 積層体
A 冷却領域幅
H 流路高さ
L 荷重受幅
2 Semiconductor module (heating element)
DESCRIPTION OF SYMBOLS 3 Laminated type cooler 30 Channel pipe 31 Channel formation part 32, 33 A pair of protrusion pipe part S Laminated body A Cooling area width H Channel height L Load receiving width

Claims (3)

複数の発熱体(2)を冷却する積層型冷却器であって、
複数の流路管(30)が、隣り合う前記流路管の間に前記発熱体を配置する隙間をあけた状態で積層された積層体(S)を備え、
前記複数の流路管それぞれは、
前記積層体の積層方向に開口する共に前記積層方向に突出する筒状の一対の突出管部(32、33)と、
前記流路管の長手方向に沿って延びる冷媒の流通路が内部に形成されると共に前記一対の突出管部の根元側にて前記積層方向に作用する圧縮荷重を受ける扁平形状の流路形成部(31)と、を含んで構成されており、
隣り合う前記流路管は、互いの前記流路形成部の内部に形成された冷媒の流通路が前記一対の突出管部を介して連通するように、互いの前記一対の突出管部が接続されており、
前記流路形成部の平坦状の部位における前記流路管の短手方向の横幅を冷却領域幅(A)、前記流路形成部の前記積層方向の縦幅を流路高さ(H)、前記一対の突出管部における前記流路管の短手方向の横幅をパイプ径(φ)、前記流路形成部のうち、前記一対の突出管部の根元側の部位(317)における前記冷却領域幅から前記パイプ径を差し引いた幅を荷重受幅(L)としたときに、
前記荷重受幅は、前記流路高さ以上の長さに設定されており、
前記パイプ径は、前記荷重受幅以上の長さに設定されている積層型冷却器。
A stacked type cooler for cooling a plurality of heating elements (2),
A plurality of flow path pipes (30) are provided with a laminate (S) that is stacked in a state where a gap for arranging the heating element is provided between the adjacent flow path pipes,
Each of the plurality of flow path pipes is
A pair of cylindrical projecting pipe portions (32, 33) that open in the stacking direction of the stack and project in the stacking direction;
A flow path forming portion having a flat shape, in which a refrigerant flow passage extending along the longitudinal direction of the flow path tube is formed, and receives a compressive load acting in the stacking direction on the base side of the pair of protruding pipe portions. (31), and
The adjacent channel pipes are connected to each other so that the refrigerant flow passages formed inside the channel forming parts communicate with each other via the pair of protruding pipe parts. Has been
The horizontal width in the short direction of the flow path tube in the flat portion of the flow path forming portion is the cooling region width (A), the vertical width in the stacking direction of the flow path forming portion is the flow height (H), The transverse width of the channel pipe in the short direction of the pair of projecting tube portions is the pipe diameter (φ), and the cooling region in the base side portion (317) of the pair of projecting tube portions of the channel forming portion. When the width obtained by subtracting the pipe diameter from the width is the load receiving width (L),
The load bearing width is set to a length equal to or greater than the flow path height,
The pipe-type diameter is a stacked cooler in which the length is set to be longer than the load receiving width.
前記複数の流路管それぞれは、前記流路形成部における冷媒の流通路の圧力損失が前記一対の突出管部の内部における圧力損失よりも大きくなるように構成されている請求項1に記載の積層型冷却器。   2. The plurality of flow channel pipes according to claim 1, wherein each of the plurality of flow channel tubes is configured such that a pressure loss of a refrigerant flow path in the flow channel forming unit is larger than a pressure loss in the pair of protruding tube units. Stacked cooler. 前記流路形成部は、前記一対の突出管部の根元側の部位(317)における前記冷却領域幅(A1)が、前記発熱体を接触させる部位(316)における前記冷却領域幅(A2)よりも大きくなっている請求項1または2に記載の積層型冷却器。   In the flow path forming portion, the cooling region width (A1) in the base portion (317) of the pair of protruding tube portions is larger than the cooling region width (A2) in the portion (316) in contact with the heating element. The stacked cooler according to claim 1 or 2, wherein the size is also larger.
JP2016042448A 2016-03-04 2016-03-04 Stacked cooler Pending JP2017157794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016042448A JP2017157794A (en) 2016-03-04 2016-03-04 Stacked cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016042448A JP2017157794A (en) 2016-03-04 2016-03-04 Stacked cooler

Publications (1)

Publication Number Publication Date
JP2017157794A true JP2017157794A (en) 2017-09-07

Family

ID=59810242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016042448A Pending JP2017157794A (en) 2016-03-04 2016-03-04 Stacked cooler

Country Status (1)

Country Link
JP (1) JP2017157794A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108891A (en) * 2009-11-18 2011-06-02 Toyota Motor Corp Stacked cooler
JP2015103736A (en) * 2013-11-27 2015-06-04 株式会社デンソー Laminated heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108891A (en) * 2009-11-18 2011-06-02 Toyota Motor Corp Stacked cooler
JP2015103736A (en) * 2013-11-27 2015-06-04 株式会社デンソー Laminated heat exchanger

Similar Documents

Publication Publication Date Title
JP5983565B2 (en) Cooler
US9713293B2 (en) Electric power converter
US10147668B2 (en) Stacked cooler
JP5652370B2 (en) Power converter
JP2009188387A (en) Semiconductor cooling structure
WO2016067501A1 (en) Heat exchanger
JP2010010418A (en) Laminated cooler
JP5703969B2 (en) Power converter
US20140098496A1 (en) Power conversion apparatus including semiconductor modules and cooler
JP2005311046A (en) Cooler
JP2011228566A (en) Cooler
JP6102641B2 (en) Stacked cooler
JP6708113B2 (en) Stacked cooler
JP6331870B2 (en) Stacked cooler
JP2008221951A (en) Cooling system of electronic parts for automobile
JP2017157794A (en) Stacked cooler
JP4400502B2 (en) Stacked cooler
JP2006093293A (en) Cooler
JP2013171647A (en) Battery pack
JP5999028B2 (en) Power converter
JP6107400B2 (en) Power converter
JP6750420B2 (en) Stacked heat exchanger
JP6455417B2 (en) Stacked cooler
JP6191540B2 (en) Laminate heat exchanger
JP6331849B2 (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190730