JP2017157663A - PRODUCTION METHOD OF BASE POWDER OF RFeB-BASED SINTERED MAGNET, AND MANUFACTURING METHOD OF RFeB-BASED SINTERED MAGNET - Google Patents

PRODUCTION METHOD OF BASE POWDER OF RFeB-BASED SINTERED MAGNET, AND MANUFACTURING METHOD OF RFeB-BASED SINTERED MAGNET Download PDF

Info

Publication number
JP2017157663A
JP2017157663A JP2016038816A JP2016038816A JP2017157663A JP 2017157663 A JP2017157663 A JP 2017157663A JP 2016038816 A JP2016038816 A JP 2016038816A JP 2016038816 A JP2016038816 A JP 2016038816A JP 2017157663 A JP2017157663 A JP 2017157663A
Authority
JP
Japan
Prior art keywords
rfeb
sintered magnet
based sintered
raw material
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016038816A
Other languages
Japanese (ja)
Inventor
高木 忍
Shinobu Takagi
忍 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2016038816A priority Critical patent/JP2017157663A/en
Publication of JP2017157663A publication Critical patent/JP2017157663A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a base powder of RFeB-based sintered magnet not containing particles of large grain size, when recycling the RFeB-based sintered magnet.SOLUTION: A RFeB-based sintered magnet 11 of recycle object is heated at 60-200°C in hydrogen gas having pressure of 200 kPa or more. When heating in high pressure hydrogen gas at a low temperature, hydrogen gas can infiltrate the RFeB-based sintered magnet easily through grain boundaries rather than grains, and thereby the RFeB-based sintered magnet can be mainly separated only by the grain boundaries, into particles consisting only of old grains. Consequently, production of particles having large diameter of several tens μm-100 μm can be prevented at the time of re-sintering.SELECTED DRAWING: Figure 1

Description

本発明は、希土類元素(R)、鉄(Fe)及び硼素(B)を主成分とするRFeB系焼結磁石をリサイクルすることにより、RFeB系焼結磁石の原料粉末を製造する方法、及び該原料粉末を用いたRFeB系焼結磁石の製造方法に関する。   The present invention relates to a method for producing a raw material powder of an RFeB-based sintered magnet by recycling an RFeB-based sintered magnet mainly composed of rare earth elements (R), iron (Fe) and boron (B), and The present invention relates to a method for manufacturing an RFeB-based sintered magnet using raw material powder.

RFeB系焼結磁石は、1982年に佐川眞人によって見出されたものであり、それまでの永久磁石をはるかに凌駕する高い磁気特性を有するという特長を有する。RFeB系焼結磁石は、ハイブリッド自動車、電気自動車、燃料電池自動車等に用いる自動車用モータ向けの永久磁石等における需要が今後さらに拡大してゆくことが予想されている。   The RFeB-based sintered magnet was discovered by Hayato Sagawa in 1982 and has a feature that it has high magnetic properties far surpassing the permanent magnets used so far. The demand for RFeB sintered magnets for permanent magnets for automobile motors used in hybrid vehicles, electric vehicles, fuel cell vehicles and the like is expected to further increase in the future.

RFeB系焼結磁石を構成する元素のうち、特に希土類元素Rは高価であるため、使用されなくなったRFeB系焼結磁石や、RFeB系焼結磁石の製造時にひびや欠損等が生じた不良品を再利用することが求められている。特許文献1には、再利用対象のRFeB系焼結磁石を約1.3kgf/cm2(約127kPa。大気圧よりも0.3kgf/cm2高い圧力。)の水素ガス中で250〜400℃に加熱することによって崩壊させ、RFeB系焼結磁石の原料となる粉末を得ることが記載されている。これは、RFeB系焼結磁石を構成する結晶粒が水素を吸蔵することによって膨張し、それにより生じる歪みが粒界に集中し、粒界で割れが発生するためであると考えられている。 Of the elements that make up RFeB-based sintered magnets, rare earth element R is particularly expensive, so RFeB-based sintered magnets that are no longer used or defective products that have cracks or defects during the manufacture of RFeB-based sintered magnets Is required to be reused. In Patent Document 1, an RFeB-based sintered magnet to be reused is heated to 250 to 400 ° C. in hydrogen gas of about 1.3 kgf / cm 2 (about 127 kPa, 0.3 kgf / cm 2 higher than atmospheric pressure). In other words, it is disclosed that a powder is obtained as a raw material for an RFeB-based sintered magnet. This is considered to be because the crystal grains constituting the RFeB-based sintered magnet expand due to occlusion of hydrogen, and the strain generated thereby concentrates at the grain boundaries, causing cracks at the grain boundaries.

特開2012-062533号公報JP 2012-062533 A 特開2006-019521号公報JP 2006-019521 A

特許文献1に記載の方法では、得られた原料粉末内に、1〜100μmの範囲に亘り粒径が異なる粒子が混在する。RFeB系焼結磁石では通常、結晶粒の平均粒径は数μm〜10μm程度であることから、最大で数十μm〜100μmという大きい粒径を有する粉末の粒子には、複数個の結晶粒が互いに分離されないまま残っていることになる。特に、最大粒径が50μmを大幅に超える(おおむね70μm以上の)粒子を含有する原料粉末を用いてRFeB系焼結磁石を作製すると、焼結時に、これら複数個の結晶粒から、70μm以上という大きい径を有する1個の結晶粒が形成されるおそれがある(異常粒成長)。このような結晶粒が形成されると、RFeB系焼結磁石の保磁力が低下してしまう。保磁力は、磁化の向きとは逆向きの磁界が磁石に印加されたときに磁化が反転することに耐える力であり、その値が低いと自動車用モータには使用することができない。   In the method described in Patent Document 1, particles having different particle diameters in the range of 1 to 100 μm are mixed in the obtained raw material powder. In an RFeB-based sintered magnet, the average grain size of crystal grains is usually about several μm to 10 μm. Therefore, a plurality of crystal grains are included in powder particles having a maximum grain size of several tens μm to 100 μm. It will remain unseparated from each other. In particular, when an RFeB-based sintered magnet is produced using raw material powder containing particles whose maximum particle size greatly exceeds 50 μm (generally 70 μm or more), it is said that 70 μm or more from these multiple crystal grains during sintering. One crystal grain having a large diameter may be formed (abnormal grain growth). When such crystal grains are formed, the coercive force of the RFeB-based sintered magnet is lowered. The coercive force is a force that resists the reversal of magnetization when a magnetic field opposite to the direction of magnetization is applied to the magnet, and if the value is low, it cannot be used for an automobile motor.

本発明が解決しようとする課題は、RFeB系焼結磁石をリサイクルする際に、粒径の大きい粒子を含有しないRFeB系焼結磁石の原料粉末を製造する方法、及び該原料粉末を用いたRFeB系焼結磁石の製造方法を提供することである。   The problem to be solved by the present invention is a method for producing a raw material powder of an RFeB-based sintered magnet that does not contain particles having a large particle size when recycling an RFeB-based sintered magnet, and an RFeB using the raw material powder It is providing the manufacturing method of a system sintered magnet.

上記課題を解決するために成された本発明に係るRFeB系焼結磁石原料粉末製造方法は、リサイクル対象のRFeB系焼結磁石を、200kPa以上の圧力の水素ガス中で20〜200℃の範囲内の温度に所定時間保持することを特徴とする。   The RFeB-based sintered magnet raw material powder manufacturing method according to the present invention, which has been made to solve the above-mentioned problems, is a range of 20 to 200 ° C. in a hydrogen gas at a pressure of 200 kPa or higher in an RFeB-based sintered magnet to be recycled. It is characterized in that the temperature is maintained for a predetermined time.

本発明に係るRFeB系焼結磁石原料粉末製造方法によれば、リサイクル対象のRFeB系焼結磁石を、200kPa以上(大気圧よりも約100kPa以上)という高い圧力の水素ガス中で、20〜200℃という低い範囲内の温度に所定時間保持する、すなわち、当該範囲内の温度において圧力を200kPa以上とすることにより、水素ガスが粒内よりも粒界を通してRFeB系焼結磁石の内部に浸透し易くなる。これにより、当該RFeB系焼結磁石を主として粒界のみで分離させ、旧結晶粒から成る粒子のみに分離することができる。これにより、再焼結時に70μm以上という大きい径を有する粒子が生じることを防ぐことができる。   According to the RFeB-based sintered magnet raw material powder manufacturing method according to the present invention, the RFeB-based sintered magnet to be recycled is 20 to 200 in hydrogen gas at a high pressure of 200 kPa or more (about 100 kPa or more than atmospheric pressure). By maintaining the temperature within a low range of ℃ for a predetermined time, that is, by setting the pressure to 200 kPa or higher at the temperature within the range, hydrogen gas penetrates into the RFeB sintered magnet through the grain boundary rather than inside the grain. It becomes easy. Thereby, the RFeB-based sintered magnet can be separated mainly only at the grain boundaries, and can be separated only into particles made of old crystal grains. Thereby, it is possible to prevent the generation of particles having a large diameter of 70 μm or more during re-sintering.

また、本発明に係るRFeB系焼結磁石原料粉末製造方法によれば、粒度分布の中央値が10μm以下という、小さい粒径の原料粉末を得ることができる。そのため、当該原料粉末を用いれば、保磁力の高いRFeB系焼結磁石を作製することができる。さらに、複数個の結晶粒の集合体の数をできるだけ少なく抑えることができる。   In addition, according to the RFeB-based sintered magnet raw material powder manufacturing method according to the present invention, it is possible to obtain a raw material powder having a small particle size with a median particle size distribution of 10 μm or less. Therefore, if the raw material powder is used, an RFeB-based sintered magnet having a high coercive force can be produced. Furthermore, the number of aggregates of a plurality of crystal grains can be minimized.

なお、上記の処理で得られた原料粉末を撹拌してもよい。これにより、残存している複数個の結晶粒の集合体において、当該水素ガスによる処理によって脆くなった結晶粒間の結合が切断され、RFeB系焼結磁石原料粉末の粒径をより小さくすることができる。また、上記水素ガスによる処理の後又は上記撹拌による処理の後に、ジェットミル等を用いて粉砕処理を行うことにより、RFeB系焼結磁石原料粉末の粒径をさらに小さくするようにしてもよい。   In addition, you may stir the raw material powder obtained by said process. As a result, in the aggregate of the plurality of remaining crystal grains, the bonds between the crystal grains that have become brittle by the treatment with the hydrogen gas are cut, and the particle diameter of the RFeB-based sintered magnet raw material powder is made smaller. Can do. Further, after the treatment with hydrogen gas or the treatment with stirring, the particle size of the RFeB-based sintered magnet raw material powder may be further reduced by performing a pulverization treatment using a jet mill or the like.

本発明における処理時の温度は、前記所定時間中に一定の温度に保持するようにしてもよいし、前記範囲内で変動してもよい。当該温度の調整は、リサイクル対象のRFeB系焼結磁石を加熱することで行ってもよいし、RFeB系焼結磁石に水素を吸蔵させる際の発熱で自然に温度を上昇させることで行ってもよい。また、水素吸蔵時の発熱によって前記温度が前記範囲を超えるおそれがある場合には、リサイクル対象のRFeB系焼結磁石を冷却することで該範囲内に維持する。   The temperature at the time of processing in the present invention may be maintained at a constant temperature during the predetermined time or may vary within the above range. The temperature may be adjusted by heating the RFeB-based sintered magnet to be recycled, or by naturally raising the temperature with heat generated when the RFeB-based sintered magnet occludes hydrogen. Good. Further, when the temperature may exceed the above range due to heat generation during hydrogen storage, the RFeB sintered magnet to be recycled is maintained within the range by cooling.

前記所定時間は、予備実験で定めることができるが、リサイクル対象のRFeB系焼結磁石の平均粒径等に依らずに旧結晶粒同士を十分に分離するためには0.3時間以上とすることが望ましい。   The predetermined time can be determined in a preliminary experiment, but in order to sufficiently separate old crystal grains from each other regardless of the average grain size of the RFeB sintered magnet to be recycled, it may be 0.3 hours or more. desirable.

本発明において、上記の効果を奏するためには水素ガスの圧力に上限はないが、水素ガスの圧力は温度35℃において1100kPa以下とすることが望ましい。日本国の高圧ガス保安法では、温度35℃において約1101kPa(ゲージ圧で1000kPa)以上の圧力を有するガスは「高圧ガス」と定義され、貯蔵や売買等の規制を受けるが、本発明において水素ガスの圧力をそれよりも低い値とすることにより、それらの規制を受けることなく実施することができる。   In the present invention, in order to achieve the above effect, there is no upper limit to the pressure of hydrogen gas, but the pressure of hydrogen gas is preferably 1100 kPa or less at a temperature of 35 ° C. According to the Japanese High Pressure Gas Safety Law, a gas having a pressure of approximately 1101 kPa (gauge pressure of 1000 kPa) or higher at a temperature of 35 ° C. is defined as a “high pressure gas” and is subject to regulations such as storage and trading. By setting the pressure of the gas to a value lower than that, it can be carried out without being subject to these regulations.

また、本発明で用いる水素ガスは、純水素ガスであってもよいし、他のガスを含む混合ガスであってもよい。他のガスを含む混合ガスを用いる場合には、該混合ガス中の水素ガスの分圧を200kPa以上とする。なお、混合ガスとしては、アルゴン混合ガス、メタン改質ガス(水素と一酸化炭素等の混合ガス)、アンモニア分解ガス(水素と窒素の混合ガス)等が挙げられる。   The hydrogen gas used in the present invention may be pure hydrogen gas or a mixed gas containing other gases. When using a mixed gas containing other gases, the partial pressure of hydrogen gas in the mixed gas is set to 200 kPa or more. Examples of the mixed gas include argon mixed gas, methane reformed gas (mixed gas of hydrogen and carbon monoxide), ammonia decomposition gas (mixed gas of hydrogen and nitrogen), and the like.

本発明において、保持する温度が低過ぎると、水素吸蔵反応の速度が遅く、吸蔵される水素の量が全粒界を分離するのに必要な量を確保するのに時間を要する。そのため、前記温度は60℃以上とすることが望ましい。   In the present invention, if the temperature to be held is too low, the speed of the hydrogen storage reaction is slow, and it takes time to secure the amount of stored hydrogen necessary to separate all grain boundaries. Therefore, the temperature is desirably 60 ° C. or higher.

前記温度の上限値は、以下の理由により定めた。
上述の従来の方法では温度が250〜400℃になるように加熱するとしているが、200kPa以上の圧力の水素ガス中においてこのような高温で加熱すると、粒界で結晶粒同士を分離するだけに留まらず、リサイクル対象のRFeB系焼結磁石中の1個の結晶粒が多量の水素を吸蔵して粒径1μm以下にまで崩壊し、得られた原料粉末にこのような小さい粒子が含まれることとなる。粒径が小さい粒子は酸化し易いため、このような粒子を含む原料粉末を用いてRFeB系焼結磁石を製造すると却って磁気特性が低くなるおそれがある。それに対して前記温度を200℃以下、より望ましくは160℃以下にすれば、結晶粒が過度の水素を吸蔵することがないため、結晶粒を崩壊させることなく、粒界で結晶粒同士を分離することができる。
The upper limit of the temperature was determined for the following reason.
In the conventional method described above, heating is performed so that the temperature is 250 to 400 ° C. However, heating at such a high temperature in a hydrogen gas having a pressure of 200 kPa or more only separates the crystal grains at the grain boundary. In addition, one crystal grain in the RFeB sintered magnet to be recycled absorbs a large amount of hydrogen and collapses to a particle size of 1 μm or less, and the obtained raw material powder contains such small particles. It becomes. Since particles having a small particle size are easily oxidized, if an RFeB-based sintered magnet is produced using a raw material powder containing such particles, the magnetic properties may be lowered. On the other hand, if the temperature is set to 200 ° C. or lower, more preferably 160 ° C. or lower, the crystal grains do not occlude excessive hydrogen, so that the crystal grains are separated from each other at the grain boundaries without causing the crystal grains to collapse. can do.

本発明に係るRFeB系焼結磁石の原料粉末の製造方法において、リサイクル対象のRFeB系焼結磁石の表面に被覆が設けられている場合には、該被覆に、該表面に達する欠損部を形成しておくことが望ましい。これにより、欠損部を通してRFeB系焼結磁石内に水素ガスが侵入し、上記粒界分離が可能となる。なお、エポキシ樹脂等の樹脂製の被覆や、シリカ(SiO2)の被膜等では一般に、水素分子が通過することができる隙間又はひびが自然に形成されているため、欠損部を形成するための操作を行う必要はない。 In the RFeB-based sintered magnet raw material powder manufacturing method according to the present invention, when a coating is provided on the surface of the RFeB-based sintered magnet to be recycled, a defective portion reaching the surface is formed in the coating. It is desirable to keep it. As a result, hydrogen gas enters the RFeB-based sintered magnet through the defect, and the above grain boundary separation becomes possible. In general, a gap or a crack through which hydrogen molecules can pass is naturally formed in a resin coating such as an epoxy resin or a silica (SiO 2 ) coating, so that a defect portion is formed. There is no need to perform any operation.

表面に被覆が設けられたリサイクル対象のRFeB系焼結磁石に上記処理を行った場合には、上記処理後の残存物には、原料粉末と共に被覆の残骸が含まれる。そこで、原料粉末の粒子と被覆の残骸の大きさ又は重量の相違による分級処理を行う(例えば篩にかける、あるいは気流分級を行う)ことにより、上記処理後の残存物から被覆の残骸を容易に除去して原料粉末を得ることができる。   When the above processing is performed on the RFeB-based sintered magnet to be recycled whose coating is provided on the surface, the residue after the processing includes the remnants of the coating together with the raw material powder. Therefore, by performing a classification process (for example, by sieving or air classification) based on a difference in the size or weight of the raw material powder particles and the coating debris, it is possible to easily remove the coating debris from the processed residue. The raw material powder can be obtained by removing.

本発明に係るRFeB系焼結磁石の原料粉末の製造装置は、
リサイクル対象のRFeB系焼結磁石を収容する密閉可能な容器と、
前記容器内に200kPa以上の圧力の水素ガスを供給する水素ガス供給部と、
前記容器内の温度を20〜200℃の範囲内に保持するように調整する温度調整部と
を備えることを特徴とする。
An apparatus for producing raw material powder of an RFeB-based sintered magnet according to the present invention,
A sealable container containing the RFeB sintered magnet to be recycled;
A hydrogen gas supply unit for supplying hydrogen gas having a pressure of 200 kPa or more into the container;
And a temperature adjusting unit for adjusting the temperature in the container so as to be maintained within a range of 20 to 200 ° C.

このRFeB系焼結磁石原料粉末製造装置によれば、リサイクル対象のRFeB系焼結磁石を容器内に収容したうえで、水素ガス供給部によって容器内に200kPa以上の圧力の水素ガスを供給し、温度調整部によって前記容器の温度を20〜200℃の範囲内に調整することにより、上記製造方法を実施することができる。   According to this RFeB-based sintered magnet raw material powder production apparatus, after storing the RFeB-based sintered magnet to be recycled in the container, the hydrogen gas supply unit supplies hydrogen gas having a pressure of 200 kPa or more to the container, The said manufacturing method can be implemented by adjusting the temperature of the said container in the range of 20-200 degreeC with a temperature adjustment part.

本発明に係るRFeB系焼結磁石の製造方法は、上記RFeB系焼結磁石の原料粉末の製造方法により作製された原料粉末を磁界中で配向した後に焼結することを特徴とする。   The RFeB-based sintered magnet manufacturing method according to the present invention is characterized in that the raw material powder produced by the RFeB-based sintered magnet raw material powder manufacturing method is oriented in a magnetic field and then sintered.

このRFeB系焼結磁石製造方法によれば、リサイクルにより作製された、粒径の大きい粒子を含有せず、且つ粒度分布の中央値が10μm以下という小さい粒径の原料粉末を用いるため、安価で且つ保磁力が高いRFeB系焼結磁石を製造することができる。   According to this RFeB-based sintered magnet manufacturing method, since the raw material powder having a small particle diameter of 10 μm or less, which does not contain particles having a large particle diameter and is produced by recycling, is inexpensive. In addition, an RFeB-based sintered magnet having a high coercive force can be manufactured.

本発明に係るRFeB系焼結磁石の製造方法では、圧縮成形を伴う通常の方法(プレス法)を用いてもよいし、特許文献2に記載のように圧縮成形を行うことなく配向及び焼結を行うPLP(press-less process)法を用いてもよい。PLP法は、残留磁束密度の低下を抑えつつ保磁力をより高くすることができる(特許文献2参照)点、最終製品に対応した形状を有する容器に原料粉末を収容して配向及び焼結を行うことによって複雑な形状のRFeB系焼結磁石を容易に製造することができる点で、プレス法よりも優れている。   In the method for producing an RFeB-based sintered magnet according to the present invention, a normal method (press method) with compression molding may be used, and orientation and sintering are performed without performing compression molding as described in Patent Document 2. A PLP (press-less process) method may be used. The PLP method can increase the coercive force while suppressing the decrease in the residual magnetic flux density (see Patent Document 2). The raw material powder is accommodated in a container having a shape corresponding to the final product for orientation and sintering. This is superior to the press method in that a complex shaped RFeB sintered magnet can be easily manufactured.

本発明に係るRFeB系焼結磁石の製造方法において、上記方法により作製された原料粉末と、RFeB系合金塊を粉砕することにより作製された非リサイクル原料粉末を混合した粉末に対して前記配向及び焼結を行ってもよい。これにより、RFeB系焼結磁石の保磁力をより高くすることができる。   In the method for producing an RFeB-based sintered magnet according to the present invention, the orientation and the powder obtained by mixing the raw material powder produced by the above method and the non-recycled raw material powder produced by pulverizing the RFeB-based alloy ingot Sintering may be performed. Thereby, the coercive force of the RFeB-based sintered magnet can be further increased.

本発明に係るRFeB系焼結磁石の原料粉末の製造方法により、RFeB系焼結磁石をリサイクルする際に、粒径の大きい粒子を含有しないRFeB系焼結磁石の原料粉末を製造することができる。   According to the RFeB-based sintered magnet raw material powder manufacturing method according to the present invention, when recycling an RFeB-based sintered magnet, it is possible to manufacture an RFeB-based sintered magnet raw material powder that does not contain particles having a large particle size. .

本発明に係るRFeB系焼結磁石の製造方法により、保磁力が高いRFeB系焼結磁石を安価に製造することができる。   With the RFeB sintered magnet manufacturing method according to the present invention, an RFeB sintered magnet having a high coercive force can be manufactured at low cost.

本発明に係るRFeB系焼結磁石の原料粉末の製造方法の一実施形態を示す概略図。Schematic which shows one Embodiment of the manufacturing method of the raw material powder of the RFeB type sintered magnet which concerns on this invention. 本発明に係るRFeB系焼結磁石の原料粉末の製造方法の他の実施形態であって、表面に被膜が設けられたリサイクル対象のRFeB系焼結磁石を用いる場合について示す概略図。FIG. 6 is a schematic view showing another embodiment of a method for producing a raw material powder for an RFeB-based sintered magnet according to the present invention, in which an RFeB-based sintered magnet to be recycled with a coating provided on the surface is used. 本発明に係るRFeB系焼結磁石の製造方法の一実施形態を示す概略図。Schematic which shows one Embodiment of the manufacturing method of the RFeB type sintered magnet which concerns on this invention.

図1〜図3を用いて、本発明に係るRFeB系焼結磁石の原料粉末の製造方法、及び該方法により作製された原料粉末を用いたRFeB系焼結磁石の製造方法の実施形態を説明する。   1 to 3, an embodiment of a method for producing a raw material powder for an RFeB-based sintered magnet according to the present invention and a method for producing an RFeB-based sintered magnet using the raw material powder produced by the method will be described. To do.

図1は、表面に被覆(被膜)が設けられていないリサイクル対象のRFeB系焼結磁石(原料焼結磁石11)を用いてRFeB系焼結磁石の原料粉末を製造する方法の一実施形態を示している。この方法では、後述の水素ガスの圧力に耐え得る密閉容器12内に原料焼結磁石11をそのまま収容し、密閉容器12内の空気を除去する(図1(a))。密閉容器12内の空気の除去は、例えば真空ポンプで密閉容器12内を真空にするか、あるいは常圧の水素ガスを密閉容器12内に供給することで空気を水素ガスに置換することにより行うことができる。次に、密閉容器12内に200kPa以上の圧力の水素ガスを供給する(同(b))。その際、水素ガスと他のガス(窒素ガス、一酸化炭素ガス、希ガス等)との混合ガスを用いてもよいが、その場合には、水素ガスの分圧が200kPa以上になるようにする。この状態で密閉容器12内を20〜200℃、望ましくは60〜160℃に保持する(同(c))。これにより、原料焼結磁石11が主として粒界のみで分離し、旧結晶粒から成る粒子のみに分離された原料粉末Pが得られる。このように旧結晶粒から成る粒子に分離された原料粉末Pは酸化しやすいため、グローブボックス等を用いて窒素ガス等の不活性ガス中(あるいは、最初の(a)の段階から不活性ガス中で上記操作を行ったうえ)で、密閉容器12から取り出す(同(d))。   FIG. 1 shows an embodiment of a method for producing a raw material powder of an RFeB-based sintered magnet using an RFeB-based sintered magnet (raw material sintered magnet 11) to be recycled whose surface is not provided with a coating (coating). Show. In this method, the raw material sintered magnet 11 is housed as it is in a sealed container 12 that can withstand the pressure of hydrogen gas, which will be described later, and the air in the sealed container 12 is removed (FIG. 1 (a)). The air in the airtight container 12 is removed by, for example, evacuating the airtight container 12 with a vacuum pump or by replacing the air with hydrogen gas by supplying atmospheric hydrogen gas into the airtight container 12. be able to. Next, hydrogen gas having a pressure of 200 kPa or more is supplied into the sealed container 12 ((b)). At that time, a mixed gas of hydrogen gas and other gas (nitrogen gas, carbon monoxide gas, rare gas, etc.) may be used. In that case, the partial pressure of hydrogen gas should be 200 kPa or more. To do. In this state, the inside of the sealed container 12 is kept at 20 to 200 ° C., preferably 60 to 160 ° C. ((c)). Thereby, the raw material sintered magnet 11 is mainly separated only at the grain boundary, and the raw material powder P separated only into particles made of old crystal grains is obtained. Since the raw material powder P separated into particles made of old crystal grains is easily oxidized in this way, it can be oxidized in an inert gas such as nitrogen gas (or from the first stage (a) using a glove box or the like. After the above operation is performed, the container is taken out from the sealed container 12 ((d)).

図2は、水素を通過させない金属メッキ等の被膜111が表面に設けられたリサイクル対象のRFeB系焼結磁石(原料焼結磁石11A)を用いてRFeB系焼結磁石の原料粉末を製造する方法の一実施形態を示している。この方法では、原料焼結磁石11Aの被膜111に、切削工具13、ヤスリ、研磨機等を用いて焼結体112に達するキズ(欠損部113)を形成する(図2(a))。その後、被膜の無い原料焼結磁石11の場合と同様に、原料焼結磁石11Aを密閉容器12内に収容して密閉容器12内の空気を除去した(同(b))うえで、密閉容器12内に200kPa以上の圧力の水素ガスを供給し(同(c))、密閉容器12内を 60〜200℃、望ましくは100℃以下に加熱する(同(d))。その後、不活性ガス中で密閉容器12内の残存物15を取り出す(同(e))。この残存物15は、原料焼結磁石11Aの焼結体が主として粒界のみで分離して旧結晶粒から成る粒子のみに分離された原料粉末Pと、被膜111の残骸111Aから成る。この残存物15を篩16にかけたり気流分級を行うことにより、残存物15から被膜の残骸111Aを除去し、原料粉末Pのみを得る(同(f))。   FIG. 2 shows a method of manufacturing a raw material powder of an RFeB-based sintered magnet using an RFeB-based sintered magnet (raw material sintered magnet 11A) to be recycled having a coating 111 such as metal plating that does not allow hydrogen to pass through. 1 shows an embodiment. In this method, scratches (defects 113) reaching the sintered body 112 are formed on the coating 111 of the raw material sintered magnet 11A using a cutting tool 13, a file, a polishing machine, or the like (FIG. 2 (a)). Thereafter, as in the case of the raw material sintered magnet 11 without a coating, the raw material sintered magnet 11A is accommodated in the sealed container 12 to remove air in the sealed container 12 ((b)), and then the sealed container. Hydrogen gas having a pressure of 200 kPa or more is supplied into the chamber 12 (same (c)), and the inside of the sealed container 12 is heated to 60 to 200 ° C., preferably 100 ° C. or less (same (d)). Thereafter, the residue 15 in the sealed container 12 is taken out in an inert gas ((e)). This residue 15 is composed of the raw material powder P in which the sintered body of the raw material sintered magnet 11A is separated only at the grain boundaries and separated only into particles made of old crystal grains, and the remnant 111A of the coating 111. By applying the residue 15 to the sieve 16 or performing air classification, the film residue 111A is removed from the residue 15 to obtain only the raw material powder P ((f)).

図3は、上記の方法により得られた原料粉末Pを用いてRFeB系焼結磁石を製造する方法の一実施形態を示している。まず、原料粉末Pをモールド21に充填し、該モールド21に蓋22を装着する(図3(a))。その際、原料粉末Pの充填密度は、パンチなどで原料粉末Pをモールド21内に押し込むことによって自然充填密度よりも高い3.2〜3.8g/cm3とするとよい。この充填密度の値は圧縮成形を行った場合の密度よりは低い。次に、モールド21内の原料粉末Pに磁界を印加することにより、原料粉末Pを配向する(同(b))。磁界の強度は、例えば1T〜数Tとする。その後、原料粉末Pをモールド21内に収容したままの状態で加熱することにより、原料粉末Pを焼結する(同(c))。加熱の温度は、例えば800〜1100℃の間とする。これにより、RFeB系焼結磁石Mが得られる(同(d))。 FIG. 3 shows an embodiment of a method for producing an RFeB-based sintered magnet using the raw material powder P obtained by the above method. First, the raw material powder P is filled in the mold 21, and the lid 22 is attached to the mold 21 (FIG. 3 (a)). At that time, the filling density of the raw material powder P is preferably set to 3.2 to 3.8 g / cm 3 higher than the natural filling density by pushing the raw material powder P into the mold 21 with a punch or the like. The value of the filling density is lower than the density when compression molding is performed. Next, the raw material powder P is oriented by applying a magnetic field to the raw material powder P in the mold 21 ((b)). The intensity of the magnetic field is, for example, 1T to several T. Then, the raw material powder P is sintered by heating the raw material powder P while being accommodated in the mold 21 ((c)). The temperature of heating shall be between 800-1100 degreeC, for example. Thereby, the RFeB system sintered magnet M is obtained ((d)).

上記RFeB系焼結磁石の製造方法において、原料粉末Pをそのまま用いる代わりに、原料粉末Pと非リサイクル原料粉末を混合した粉末をモールド21に充填し、その後の配向及び焼結の操作を行ってもよい。   In the above RFeB sintered magnet manufacturing method, instead of using the raw material powder P as it is, the mold 21 is filled with a powder obtained by mixing the raw material powder P and the non-recycled raw material powder, and the subsequent orientation and sintering operations are performed. Also good.

さらに保磁力の高いRFeB系焼結磁石を得るためには、上記の方法で作製したRFeB系焼結磁石の表面に、Dy, Ho及びTbから選択される1種又は2種以上の元素を含む粉末やペースト等を付着させたうえで、700〜950℃の温度に加熱する粒界拡散処理を行うとよい。この処理により、上記元素がRFeB系焼結磁石の粒界を通して結晶粒の表面近傍に拡散し、残留磁束密度の低下を抑えつつ保磁力を高くすることができる。   In order to obtain an RFeB-based sintered magnet with higher coercive force, the surface of the RFeB-based sintered magnet produced by the above method contains one or more elements selected from Dy, Ho and Tb. After adhering powder, paste, etc., it is good to perform the grain boundary diffusion process which heats to the temperature of 700-950 degreeC. By this treatment, the element diffuses to the vicinity of the surface of the crystal grains through the grain boundary of the RFeB-based sintered magnet, and the coercive force can be increased while suppressing the decrease in the residual magnetic flux density.

以下、本発明に係るRFeB系焼結磁石の原料粉末の製造方法及びRFeB系焼結磁石の製造方法の実施例、及び比較例を説明する。   Hereinafter, examples of the method for producing the raw material powder of the RFeB-based sintered magnet and the method for producing the RFeB-based sintered magnet according to the present invention and comparative examples will be described.

下記の各実施例ではいずれも、非リサイクル原料粉末を用いて以下の方法でRFeB系焼結磁石を製造した際に発生した不良品をリサイクル対象としている。非リサイクル原料粉末は、Nd:26.0、Pr:4.7、Dy:0.3、B:0.99、Co:0.9、Cu:0.1、Al:0.2、Fe:残部(単位は重量%)の組成になるよう配合した合金を溶解してストリップキャスト法で厚さ0.3mm以下のフレーク状合金片を作製し、約0.1〜1mmの大きさに水素化粉砕した後、ジェットミルで平均粒径が約3μmになるように粉砕することで作製した。この非リサイクル原料粉末をモールドに充填し、圧縮成形を行うことなく、磁界中で配向した後に真空中で1000℃に加熱し、4時間保持することにより、RFeB系磁石の焼結体を製造した。その後、この焼結体を切削加工によって最終製品の形状に整形することにより、RFeB系焼結磁石を製造した。こうして得られたRFeB系焼結磁石の一部はさらに、表面にエポキシ樹脂、シリカ、又はニッケルめっきによる被膜を形成する処理を行った。各実施例で用いた不良品は、焼結後、切削加工後、及び被膜形成後の各段階で発見されたものであり、1つの実施例では同じ段階で得られた不良品を用いた。被膜形成後の不良品を用いる場合には、1つの実施例では同種の被膜を有するものを用いた。   In each of the following examples, defective products generated when an RFeB-based sintered magnet is manufactured by the following method using non-recycled raw material powder are targeted for recycling. Non-recycled raw material powder was blended to have a composition of Nd: 26.0, Pr: 4.7, Dy: 0.3, B: 0.99, Co: 0.9, Cu: 0.1, Al: 0.2, Fe: balance (unit: wt%) The alloy is melted to produce a flake-shaped alloy piece with a thickness of 0.3 mm or less by the strip casting method. After hydrogenating and pulverizing to a size of about 0.1 to 1 mm, the average particle size is about 3 μm with a jet mill. It was prepared by grinding. This non-recycled raw material powder was filled into a mold, and oriented in a magnetic field without being subjected to compression molding, then heated to 1000 ° C. in a vacuum, and held for 4 hours to produce an RFeB-based magnet sintered body . Thereafter, this sintered body was shaped into the final product shape by cutting to produce an RFeB-based sintered magnet. Part of the RFeB-based sintered magnet thus obtained was further subjected to a treatment to form a coating film on the surface by epoxy resin, silica, or nickel plating. The defective product used in each example was discovered at each stage after sintering, after cutting, and after film formation. In one example, a defective product obtained at the same stage was used. In the case of using a defective product after the formation of the film, one having the same kind of film was used in one example.

[実施例1]
焼結後に発見された不良品(被膜なし)を約0.5kg、容量3Lの密閉容器に収容し、密閉容器内を真空にした。次に、密閉容器内に圧力400kPaの水素ガスを導入し、水素吸蔵による発熱温度を160℃に調整して1時間保持した。その後、室温まで冷却し、窒素雰囲気のグローブボックス内で密閉容器内の残存物を取り出したところ、全て粉末状態であった。こうして得られた原料粉末を3、上記非リサイクル原料粉末を7の割合で混合し(再生率30%)、該混合粉末をモールドに充填し、圧縮成形を行うことなく、磁界中で配向した後に真空中で1000℃に加熱し、4時間保持することにより、RFeB系焼結磁石を製造した。
[Example 1]
A defective product (without coating) discovered after sintering was placed in a sealed container of about 0.5 kg and a capacity of 3 L, and the inside of the sealed container was evacuated. Next, hydrogen gas at a pressure of 400 kPa was introduced into the sealed container, and the heat generation temperature by hydrogen occlusion was adjusted to 160 ° C. and held for 1 hour. Then, when it cooled to room temperature and the residue in a sealed container was taken out in the glove box of nitrogen atmosphere, all was a powder state. After mixing the raw material powder thus obtained 3 and the non-recycled raw material powder in a ratio of 7 (regeneration rate 30%), filling the mixed powder into a mold and orienting it in a magnetic field without performing compression molding An RFeB sintered magnet was manufactured by heating to 1000 ° C. in a vacuum and holding for 4 hours.

[実施例2]
切削加工後に発見された不良品(被膜なし)を約0.5kg、容量3Lの密閉容器に収容し、密閉容器内を真空にした。次に、密閉容器内に圧力300kPaの水素ガスを導入し、水素吸蔵による発熱温度を120℃に調整して1時間保持した。その後、室温まで冷却し、前記と同様の方法で密閉容器の残存物を取り出したところ、残存物は全て粉末状態であった。こうして得られた原料粉末を6、上記非リサイクル原料粉末を4の割合で混合し(再生率60%)、該混合粉末をモールドに充填し、実施例1と同様の方法により、RFeB系焼結磁石を製造した。
[Example 2]
Defective product (without coating) discovered after cutting was placed in a sealed container of about 0.5 kg and 3 L capacity, and the inside of the sealed container was evacuated. Next, hydrogen gas having a pressure of 300 kPa was introduced into the sealed container, and the exothermic temperature by hydrogen storage was adjusted to 120 ° C. and held for 1 hour. Then, it cooled to room temperature and when the residue of the airtight container was taken out by the same method as the above, all the residues were a powder state. The raw material powder thus obtained was mixed at a ratio of 6 and the above non-recycled raw material powder at a rate of 4 (regeneration rate 60%), and the mixed powder was filled into a mold, and RFeB-based sintering was performed in the same manner as in Example 1. A magnet was manufactured.

[実施例3]
切削加工後に発見された不良品(被膜なし)を約1kg、容量3Lの密閉容器に収容し、密閉容器内を真空にした。次に、密閉容器内に圧力200kPaの水素ガスを導入し、水素吸蔵による発熱温度を60℃に調整して1時間保持した。前記と同様の方法で密閉容器内の残存物を取り出したところ、残存物は、粉末状態のものと共に、未粉砕状態の焼結体の一部が残存していた。そこで残存物を密閉容器内に戻して、再度密閉容器内に圧力200kPaの水素ガスを導入し、60℃に加熱して更に1時間保持した結果、残存物は未粉砕状態の焼結体が無くなり、全て粉末状態となっていた。こうして得られた原料粉末を、上記非リサイクル原料粉末を混合することなく(再生率100%)モールドに充填し、実施例1と同様の方法により、RFeB系焼結磁石を製造した。
[Example 3]
A defective product (without coating) discovered after cutting was placed in a sealed container of about 1 kg and 3 L capacity, and the inside of the sealed container was evacuated. Next, hydrogen gas with a pressure of 200 kPa was introduced into the sealed container, and the exothermic temperature by hydrogen occlusion was adjusted to 60 ° C. and held for 1 hour. When the residue in the closed container was taken out by the same method as described above, the residue was a part of the unsintered sintered body together with the powder. Therefore, the residue was returned to the sealed container, hydrogen gas at a pressure of 200 kPa was again introduced into the sealed container, heated to 60 ° C., and held for another hour. As a result, the residue was free of unsintered sintered body. All were in a powder state. The raw material powder thus obtained was filled into a mold without mixing the non-recycled raw material powder (regeneration rate 100%), and an RFeB-based sintered magnet was produced by the same method as in Example 1.

[実施例4]
表面にエポキシ樹脂から成る被膜を形成した後に発見された不良品を約2kg、容量3Lの密閉容器に収容した。被膜には欠損部を形成しなかった。密閉容器内を真空にした後、密閉容器内に圧力300kPaの水素ガスを導入し、水素吸蔵による発熱温度を120℃に調整して1時間保持した。前記と同様の方法で密閉容器内の残存物を取り出したところ、残存物は、被膜の残骸を除いて全て粉末状態であった。残存物を目開き250μmの篩にかけることにより、被膜の残骸を除去し、原料粉末を得た。こうして得られた原料粉末を、上記非リサイクル原料粉末を混合することなく(再生率100%)モールドに充填し、実施例1と同様の方法により、RFeB系焼結磁石を製造した。
[Example 4]
Defective products discovered after forming a coating made of epoxy resin on the surface were placed in a sealed container of about 2 kg and a capacity of 3 L. No defects were formed in the coating. After the inside of the sealed container was evacuated, hydrogen gas having a pressure of 300 kPa was introduced into the sealed container, and the exothermic temperature due to hydrogen storage was adjusted to 120 ° C. and held for 1 hour. When the residue in the sealed container was taken out in the same manner as described above, all the residue was in a powder state except for the remains of the coating. The residue was passed through a sieve having an opening of 250 μm to remove the coating debris and obtain a raw material powder. The raw material powder thus obtained was filled into a mold without mixing the non-recycled raw material powder (regeneration rate 100%), and an RFeB-based sintered magnet was produced by the same method as in Example 1.

[実施例5]
表面にシリカから成る被膜を形成した後に発見された不良品を約2kg、容量3Lの密閉容器に収容した。被膜には欠損部を形成しなかった。密閉容器内を真空にした後、密閉容器内に圧力300kPaの水素ガスを導入し、水素吸蔵による発熱温度を120℃に調整して1時間保持した。前記と同様の方法で密閉容器内の残存物を取り出したところ、残存物は、被膜の残骸を除いて全て粉末状態であった。残存物を目開き250μmの篩にかけることにより、被膜の残骸を除去し、原料粉末を得た。得られた原料粉末を、上記非リサイクル原料粉末を混合することなく(再生率100%)モールドに充填し、実施例1と同様の方法により、RFeB系焼結磁石を製造した。
[Example 5]
Defective products discovered after forming a silica coating on the surface were placed in a sealed container of about 2 kg and 3 L capacity. No defects were formed in the coating. After the inside of the sealed container was evacuated, hydrogen gas having a pressure of 300 kPa was introduced into the sealed container, and the exothermic temperature due to hydrogen storage was adjusted to 120 ° C. and held for 1 hour. When the residue in the sealed container was taken out in the same manner as described above, all the residue was in a powder state except for the remains of the coating. The residue was passed through a sieve having an opening of 250 μm to remove the coating debris and obtain a raw material powder. The obtained raw material powder was filled in a mold without mixing the non-recycled raw material powder (regeneration rate 100%), and an RFeB-based sintered magnet was produced by the same method as in Example 1.

[実施例6]
表面にニッケルメッキによる被膜を形成した後に発見された不良品を約2kg、まずは、被膜に欠損部を形成することなく容量3Lの密閉容器に収容し、密閉容器内を真空にした後、密閉容器内に圧力300kPaの水素ガスを導入し、水素吸蔵による発熱温度を120℃に調整して1時間保持した。前記と同様の方法で密閉容器内の残存物を取り出したところ、不良品はほぼ原形を維持していた。そこで、不良品の被膜に、ヤスリを用いて焼結体に達するキズ(欠損部)を形成したうえで、前述の密閉容器に収容し、密閉容器内を真空にした後、密閉容器内に圧力300kPaの水素ガスを導入し、水素吸蔵による発熱温度を120℃に調整して1時間保持した。残存物は、被膜の残骸の他は全て粉末状態となっていた。残存物を目開き250μmの篩にかけることにより、被膜の残骸を除去し、原料粉末を得た。得られた原料粉末を、上記非リサイクル原料粉末を混合することなく(再生率100%)モールドに充填し、実施例1と同様の方法により、RFeB系焼結磁石を製造した。
[Example 6]
About 2 kg of defective products discovered after forming a nickel plating coating on the surface. First, it is housed in a 3 L sealed container without forming a defect in the coating, and the sealed container is evacuated and then sealed. Hydrogen gas at a pressure of 300 kPa was introduced therein, and the exothermic temperature due to hydrogen occlusion was adjusted to 120 ° C. and held for 1 hour. When the residue in the sealed container was taken out in the same manner as described above, the defective product remained almost in its original form. Therefore, after forming scratches (defects) that reach the sintered body with a file on the defective coating, it is housed in the above-mentioned sealed container, the inside of the sealed container is evacuated, and then the pressure in the sealed container is reached. Hydrogen gas of 300 kPa was introduced, the exothermic temperature due to hydrogen occlusion was adjusted to 120 ° C. and held for 1 hour. The residue was all in powder form except for the remnants of the coating. The residue was passed through a sieve having an opening of 250 μm to remove the coating debris and obtain a raw material powder. The obtained raw material powder was filled in a mold without mixing the non-recycled raw material powder (regeneration rate 100%), and an RFeB-based sintered magnet was produced by the same method as in Example 1.

[実施例7]
焼結後に、Tbを主成分とする合金の粉末をシリコーングリースと混合したペーストを焼結体の表面に塗布して真空中約900℃で15時間熱処理(粒界拡散処理)し、更に真空中約500℃で5時間時効処理した後、切削加工を行い、その後表面にニッケルメッキによる被膜を形成したRFeB系焼結磁石の不良品を2kg用意した。不良品の被膜に、ヤスリを用いて焼結体に達するキズを形成したうえで密閉容器に収容し、密閉容器内を真空にした後、密閉容器内に圧力300kPaの水素ガスを導入し、水素吸蔵による発熱温度を120℃に調整して1時間保持した。前記と同様の方法で密閉容器内の残存物を取り出したところ、残存物は、被膜の残骸を除いて全て粉末状態であった。残存物を目開き250μmの篩にかけることにより、被膜の残骸を除去し、原料粉末を得た。得られた原料粉末を、上記非リサイクル原料粉末を混合することなく(再生率100%)モールドに充填し、実施例1と同様の方法により、RFeB系焼結磁石を製造した。
[Example 7]
After sintering, paste containing a mixture of Tb-based alloy powder and silicone grease is applied to the surface of the sintered body and heat-treated in a vacuum at about 900 ° C for 15 hours (grain boundary diffusion treatment). After aging treatment at about 500 ° C. for 5 hours, cutting was performed, and then 2 kg of defective RFeB sintered magnet having a nickel plating film formed on the surface was prepared. A flaw that reaches the sintered body using a file is formed on the defective coating, and then stored in a sealed container. After the inside of the sealed container is evacuated, hydrogen gas at a pressure of 300 kPa is introduced into the sealed container, The exothermic temperature by occlusion was adjusted to 120 ° C and held for 1 hour. When the residue in the sealed container was taken out in the same manner as described above, all the residue was in a powder state except for the remains of the coating. The residue was passed through a sieve having an opening of 250 μm to remove the coating debris and obtain a raw material powder. The obtained raw material powder was filled in a mold without mixing the non-recycled raw material powder (regeneration rate 100%), and an RFeB-based sintered magnet was produced by the same method as in Example 1.

なお、実施例7においてリサイクル対象のRFeB系焼結磁石(不良品)に対して行った粒界拡散処理は、RFeB系焼結磁石の粒界を通してRFeB系結晶粒の表面付近にのみTbを供給することによって、残留磁束密度の低下を抑えつつ保磁力をより高くする処理である。この実施例で得られる原料粉末は、元の非リサイクル原料粉末が含有していた元素の他にTbを含有することとなる。   In addition, the grain boundary diffusion treatment performed on the RFeB-based sintered magnet (defective product) to be recycled in Example 7 supplies Tb only to the vicinity of the surface of the RFeB-based crystal grain through the grain boundary of the RFeB-based sintered magnet. By doing this, the coercive force is further increased while suppressing the decrease in the residual magnetic flux density. The raw material powder obtained in this example contains Tb in addition to the elements contained in the original non-recycled raw material powder.

焼結後に発見された不良品(被膜なし)を約3kg、容量3Lの密閉容器に収容し、密閉容器内を真空にしたうえで、密閉容器内に圧力400kPaの水素ガスを導入し、水素吸蔵による発熱温度を160℃に調整して1時間保持した。その後、室温まで冷却し、窒素雰囲気のグローブボックス内で密閉容器内の残存物を取り出した。この段階で残存物の粒度分布を測定したところ、粒径約8μmの所にピークが見られると共に、粒径約40μmの所にもピークが見られた。そこで、残存物を目開き500μmの篩にかけたうえで、攪拌機(株式会社カワタ製「SUPERMIXER PICCOLO」、型式SMP-2)で撹拌した。こうして得られた残存物の粒度分布を測定したところ、粒径約40μmの所にはピークが見られず、粒径約8μmの所のみにピークが見られた。   Defective product (without coating) discovered after sintering is stored in a sealed container of about 3 kg and capacity of 3 L, and after the inside of the sealed container is evacuated, hydrogen gas at a pressure of 400 kPa is introduced into the sealed container to store hydrogen. The exothermic temperature was adjusted to 160 ° C and held for 1 hour. Then, it cooled to room temperature and took out the residue in a sealed container in the glove box of nitrogen atmosphere. When the particle size distribution of the residue was measured at this stage, a peak was observed at a particle size of about 8 μm, and a peak was also observed at a particle size of about 40 μm. Therefore, the residue was passed through a sieve having an opening of 500 μm and stirred with a stirrer (“SUPERMIXER PICCOLO”, model SMP-2, manufactured by Kawata Corporation). When the particle size distribution of the residue thus obtained was measured, no peak was observed at a particle size of about 40 μm, and a peak was observed only at a particle size of about 8 μm.

[比較例]
切削加工後に発見された不良品(被膜なし)を約1kg、容量3Lの密閉容器に収容し、密閉容器内を真空にした。次に、密閉容器内に圧力150kPaの水素ガスを導入し、水素吸蔵による発熱を抑えて10℃に冷却して2時間保持した。前記と同様の方法で密閉容器内の残存物を取り出したところ、多量の塊状の部分が目視で確認されたため、この条件での実験を中止した。
[Comparative example]
A defective product (without coating) discovered after cutting was placed in a sealed container of about 1 kg and 3 L capacity, and the inside of the sealed container was evacuated. Next, hydrogen gas having a pressure of 150 kPa was introduced into the sealed container, and heat generation due to occlusion of hydrogen was suppressed to cool to 10 ° C. and maintained for 2 hours. When the residue in the sealed container was taken out in the same manner as described above, a large amount of agglomerated portion was visually confirmed, so the experiment under this condition was stopped.

実施例1〜8で製造された原料粉末につき、粒度分布の中央値D50及び粒径の最大値Dmaxを乾式粒度分布測定装置で測定した。ここで実施例1及び2では、非リサイクル原料粉末を混合する前の、リサイクル品のみから成る粉末を対象として当該測定を行った。また、実施例1〜7で製造されたRFeB系焼結磁石につき、7mm×7mm×3mmの直方体に切り出して、室温において残留磁束密度Br及び保磁力Hcjを測定した。併せて、リサイクル対象にならなかった良品についても同様の方法で、非リサイクル原料粉末の粒径の中央値D50及び最大値Dmax、並びにRFeB系焼結磁石の残留磁束密度Br及び保磁力Hcjを測定した(非リサイクル品1〜3)。非リサイクル品1は、被膜のないRFeB系焼結磁石(実施例2、3に対応する良品)、非リサイクル品2はニッケルメッキによる被膜を形成したRFeB系焼結磁石(実施例6に対応する良品)、非リサイクル品3は、粒界拡散処理を行った後にニッケルメッキによる被膜を形成したRFeB系焼結磁石(実施例7に対応する良品)である。測定結果及び上述の製造条件をまとめて表1に示す。

Figure 2017157663
Per raw material powder prepared in Example 1-8, and the maximum value D max median D 50 and particle size of the particle size distribution was measured by a dry particle size distribution measuring apparatus. Here, in Examples 1 and 2, the measurement was performed on a powder composed only of a recycled product before mixing the non-recycled raw material powder. Also, every RFeB based sintered magnet produced in Examples 1 to 7, cut into cuboid 7 mm × 7 mm × 3 mm, and measuring the residual magnetic flux density B r and coercivity H cj at room temperature. At the same time, the same method is applied to non-recyclable non-recycled non-recycled powders in the median value D 50 and maximum value D max of the non-recycled raw material powder, and the residual magnetic flux density Br and coercive force of the RFeB-based sintered magnet. H cj was measured (non-recycled products 1 to 3). Non-recycled product 1 corresponds to an RFeB-based sintered magnet without a coating (good product corresponding to Examples 2 and 3), and non-recycled product 2 corresponds to an RFeB-based sintered magnet formed with a nickel plating coating (corresponding to Example 6). The non-recycled product 3 and the non-recycled product 3 are RFeB-based sintered magnets (good products corresponding to Example 7) in which a film is formed by nickel plating after the grain boundary diffusion treatment. Table 1 summarizes the measurement results and the manufacturing conditions described above.
Figure 2017157663

各実施例ではいずれも、粒度分布の中央値D50が10μm未満という小さい粒径の原料粉末が得られた。また、各実施例では原料粉末の粒径の最大値Dmaxは36.5〜51.5μmの範囲内に抑えられており、異常粒成長の発生を防ぐことができる。 Both in the embodiment, the median D 50 of the particle size distribution was obtained raw material powder of small particle size of less than 10 [mu] m. Moreover, in each Example, the maximum value D max of the particle diameter of the raw material powder is suppressed within the range of 36.5 to 51.5 μm, and the occurrence of abnormal grain growth can be prevented.

粒界拡散処理を行っていない実施例1〜6の試料の磁気特性値を非リサイクル品1,2の磁気特性値と対比すると、残留磁束密度Brは3〜4%、保磁力Hcjは9〜15%低下しているが、これらの値は許容範囲である。また、粒界拡散処理を行った非リサイクル品3から作製した実施例7の試料の磁気特性値を該非リサイクル品3の磁気特性値と対比すると、残留磁束密度Brはほぼ同じであって、保磁力Hcjは約10%低下しているが、この値も許容範囲である。 When the magnetic characteristic values of the samples of Examples 1 to 6 that are not subjected to the grain boundary diffusion treatment are compared with the magnetic characteristic values of the non-recycled products 1 and 2, the residual magnetic flux density Br is 3 to 4%, and the coercive force H cj is Although these are 9-15% lower, these values are acceptable. Further, when the magnetic property value of the sample of Example 7 produced from the non-recycled product 3 subjected to the grain boundary diffusion treatment is compared with the magnetic property value of the non-recycled product 3, the residual magnetic flux density Br is substantially the same, The coercive force H cj is reduced by about 10%, but this value is also acceptable.

なお、上記各実施例では水素処理時の温度を60〜160℃の範囲内としたが、この温度は20〜200℃の範囲内であればよい。さらに、上記各実施例では水素処理時に、目標の温度に到達した後に一定の温度に維持したが、当該温度は処理中に20〜200℃、望ましくは60〜160℃の範囲内で変動しても許容される。また、上記各実施例では水素処理の時間を1時間又は2時間としたが、当該時間は0.3時間以上あればよく、また、2時間を超えてもよい。   In each of the above examples, the temperature during the hydrogen treatment is in the range of 60 to 160 ° C, but this temperature may be in the range of 20 to 200 ° C. Furthermore, in each of the above examples, during the hydrogen treatment, a constant temperature was maintained after reaching the target temperature, but the temperature fluctuated within the range of 20 to 200 ° C., preferably 60 to 160 ° C. during the treatment. Is also acceptable. In each of the above examples, the hydrogen treatment time is 1 hour or 2 hours, but the time may be 0.3 hours or more, and may exceed 2 hours.

11、11A…原料焼結磁石
111…原料焼結磁石の被膜
111A…被膜の残骸
112…焼結体
113…被膜の欠損部
12…密閉容器
13…切削工具
15…残存物
16…篩
21…モールド
22…蓋
11, 11A ... Raw material sintered magnet 111 ... Raw material sintered magnet film 111A ... Film debris 112 ... Sintered body 113 ... Film defect 12 ... Sealed container 13 ... Cutting tool 15 ... Residue 16 ... Sieve 21 ... Mold 22 ... Lid

Claims (8)

リサイクル対象のRFeB系焼結磁石を、200kPa以上の圧力の水素ガス中で20〜200℃の範囲内の温度に所定時間保持することを特徴とするRFeB系焼結磁石の原料粉末の製造方法。   A method for producing a raw material powder of an RFeB-based sintered magnet, characterized in that an RFeB-based sintered magnet to be recycled is maintained in a hydrogen gas at a pressure of 200 kPa or higher at a temperature within a range of 20 to 200 ° C. for a predetermined time. 前記範囲が60〜160℃であることを特徴とする請求項1に記載のRFeB系焼結磁石の原料粉末の製造方法。   The said range is 60-160 degreeC, The manufacturing method of the raw material powder of the RFeB type sintered magnet of Claim 1 characterized by the above-mentioned. 前記リサイクル対象のRFeB系焼結磁石の表面に被覆が設けられている場合において、該被覆に、該表面に達する欠損部を形成したうえで、前記圧力の水素ガス中で前記加熱を行うことを特徴とする請求項1又は2に記載のRFeB系焼結磁石の原料粉末の製造方法。   In the case where a coating is provided on the surface of the RFeB-based sintered magnet to be recycled, the heating is performed in hydrogen gas at the pressure after forming a defect portion reaching the surface in the coating. The method for producing a raw material powder for an RFeB-based sintered magnet according to claim 1 or 2, wherein 前記圧力の水素ガス中で前記加熱を行った後に、残存物に分級処理を行うことにより該残存物から前記被覆の残骸を除去することを特徴とする請求項3に記載のRFeB系焼結磁石の原料粉末の製造方法。   4. The RFeB-based sintered magnet according to claim 3, wherein after the heating in the hydrogen gas at the pressure, the residue of the coating is removed from the residue by subjecting the residue to a classification process. Of manufacturing raw material powder. リサイクル対象のRFeB系焼結磁石を収容する密閉可能な容器と、
前記容器内に200kPa以上の圧力の水素ガスを供給する水素ガス供給部と、
前記容器内の温度を20〜200℃の範囲内に保持するように調整する温度調整部と
を備えることを特徴とするRFeB系焼結磁石の原料粉末の製造装置。
A sealable container containing the RFeB sintered magnet to be recycled;
A hydrogen gas supply unit for supplying hydrogen gas having a pressure of 200 kPa or more into the container;
An apparatus for producing a raw material powder for an RFeB-based sintered magnet, comprising: a temperature adjusting unit that adjusts the temperature in the container so as to be maintained within a range of 20 to 200 ° C.
請求項1〜4のいずれかに記載の方法により作製された原料粉末を磁界中で配向した後に焼結することを特徴とするRFeB系焼結磁石の製造方法。   A method for producing an RFeB-based sintered magnet, wherein the raw material powder produced by the method according to claim 1 is sintered after being oriented in a magnetic field. 圧縮成形を行うことなく前記配向及び前記焼結を行うことを特徴とする請求項6に記載のRFeB系焼結磁石の製造方法。   The method for producing an RFeB-based sintered magnet according to claim 6, wherein the orientation and the sintering are performed without performing compression molding. 前記原料粉末に、RFeB系合金塊を粉砕することにより作製された非リサイクル原料粉末を混合した粉末に対して前記配向及び焼結を行うことを特徴とする請求項6又は7に記載のRFeB系焼結磁石の製造方法。   The RFeB system according to claim 6 or 7, wherein the orientation and sintering are performed on a powder obtained by mixing the raw material powder with a non-recycled raw material powder produced by pulverizing an RFeB-based alloy lump. Manufacturing method of sintered magnet.
JP2016038816A 2016-03-01 2016-03-01 PRODUCTION METHOD OF BASE POWDER OF RFeB-BASED SINTERED MAGNET, AND MANUFACTURING METHOD OF RFeB-BASED SINTERED MAGNET Pending JP2017157663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038816A JP2017157663A (en) 2016-03-01 2016-03-01 PRODUCTION METHOD OF BASE POWDER OF RFeB-BASED SINTERED MAGNET, AND MANUFACTURING METHOD OF RFeB-BASED SINTERED MAGNET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038816A JP2017157663A (en) 2016-03-01 2016-03-01 PRODUCTION METHOD OF BASE POWDER OF RFeB-BASED SINTERED MAGNET, AND MANUFACTURING METHOD OF RFeB-BASED SINTERED MAGNET

Publications (1)

Publication Number Publication Date
JP2017157663A true JP2017157663A (en) 2017-09-07

Family

ID=59810072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038816A Pending JP2017157663A (en) 2016-03-01 2016-03-01 PRODUCTION METHOD OF BASE POWDER OF RFeB-BASED SINTERED MAGNET, AND MANUFACTURING METHOD OF RFeB-BASED SINTERED MAGNET

Country Status (1)

Country Link
JP (1) JP2017157663A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141502A (en) * 1990-10-02 1992-05-15 Tdk Corp Manufacture of alloy powder for rare earth metal bond magnet
JP2000030919A (en) * 1998-07-09 2000-01-28 Sumitomo Metal Mining Co Ltd MANUFACTURE OF MATERIAL POWDER FOR R-Fe-B MAGNET
JP2000303107A (en) * 1999-02-19 2000-10-31 Sumitomo Special Metals Co Ltd Hydrogenation granulating apparatus for rare-earth magnetic material, and manufacture of rare-earth magnetic material powder and magnet using the apparatus
JP2005057191A (en) * 2003-08-07 2005-03-03 Sumitomo Metal Ind Ltd Method of manufacturing rare-earth magnet powder
JP2015225965A (en) * 2014-05-28 2015-12-14 大同特殊鋼株式会社 Sintered magnet manufacturing mold and sintered magnet manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141502A (en) * 1990-10-02 1992-05-15 Tdk Corp Manufacture of alloy powder for rare earth metal bond magnet
JP2000030919A (en) * 1998-07-09 2000-01-28 Sumitomo Metal Mining Co Ltd MANUFACTURE OF MATERIAL POWDER FOR R-Fe-B MAGNET
JP2000303107A (en) * 1999-02-19 2000-10-31 Sumitomo Special Metals Co Ltd Hydrogenation granulating apparatus for rare-earth magnetic material, and manufacture of rare-earth magnetic material powder and magnet using the apparatus
JP2005057191A (en) * 2003-08-07 2005-03-03 Sumitomo Metal Ind Ltd Method of manufacturing rare-earth magnet powder
JP2015225965A (en) * 2014-05-28 2015-12-14 大同特殊鋼株式会社 Sintered magnet manufacturing mold and sintered magnet manufacturing method

Similar Documents

Publication Publication Date Title
JP6037128B2 (en) R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet
JP5598465B2 (en) R-T-B-M alloy for sintered magnet and method for producing the same
JP2013216965A (en) Alloy for r-t-b-based rare earth sintered magnet, method for manufacturing the same, alloy material for the same, r-t-b-based rare earth sintered magnet, method for manufacturing the same, and motor
CN1958824A (en) R-T-B type alloy, production method of r-t-b type alloy flake, permanent magnet, and fine powder for manufacturing the same
JP2014145129A (en) Method of manufacturing r-t-b-m-c-based sintered magnet, magnet manufactured by the method, and manufacturing device
JP5906874B2 (en) Manufacturing method of RTB-based permanent magnet
JP2017532770A (en) Grain boundary engineering
JP7416476B2 (en) magnet manufacturing
EP2555211B1 (en) Method for recycling slurry, method for manufacturing rare-earth based sintered magnet, and apparatus for recycling slurry
JP5906876B2 (en) Manufacturing method of RTB-based permanent magnet
US20140210582A1 (en) Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
JP5613856B1 (en) R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor
JP6198103B2 (en) Manufacturing method of RTB-based permanent magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JP2017157663A (en) PRODUCTION METHOD OF BASE POWDER OF RFeB-BASED SINTERED MAGNET, AND MANUFACTURING METHOD OF RFeB-BASED SINTERED MAGNET
JP6691667B2 (en) Method for manufacturing RTB magnet
JP5103428B2 (en) Rare earth sintered magnet manufacturing method
JP4305927B2 (en) Lubricant removal method
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP2013229595A (en) R-t-b based rare earth magnet powder, method of manufacturing the same, and bond magnet
CN113690039A (en) Rare earth sintered magnet and method for producing same
JP4288637B2 (en) Method for producing rare earth alloy powder for permanent magnet
WO2019078148A1 (en) Rare-earth magnet material and rare-earth magnet
JP7226281B2 (en) rare earth sintered magnet
JP4353430B2 (en) Method for removing lubricant and method for producing rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200421