JP2017155977A - Carbon dioxide separation recovery device and separation recovery method - Google Patents

Carbon dioxide separation recovery device and separation recovery method Download PDF

Info

Publication number
JP2017155977A
JP2017155977A JP2016037813A JP2016037813A JP2017155977A JP 2017155977 A JP2017155977 A JP 2017155977A JP 2016037813 A JP2016037813 A JP 2016037813A JP 2016037813 A JP2016037813 A JP 2016037813A JP 2017155977 A JP2017155977 A JP 2017155977A
Authority
JP
Japan
Prior art keywords
product gas
temperature fluid
low
cooling
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016037813A
Other languages
Japanese (ja)
Other versions
JP6536434B2 (en
Inventor
正人 藤城
Masato Fujishiro
正人 藤城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016037813A priority Critical patent/JP6536434B2/en
Publication of JP2017155977A publication Critical patent/JP2017155977A/en
Application granted granted Critical
Publication of JP6536434B2 publication Critical patent/JP6536434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a COseparation recovery device and separation recovery method capable of reducing energy at the time of COseparation and recovery.SOLUTION: A COseparation recovery device 1 comprises: a compressor 20 for compressing by-product gas containing COwhile using self-pressure of the by-product gas; a cooling unit 31 for cooling the by-product gas compressed by the compressor 20 by being heat exchanged with first low temperature fluid and second low temperature fluid composed of fluid different from the first low temperature fluid; a supersonic nozzle 40 for processing the by-product gas in adiabatic expansion that is cooled by the cooling unit 31; a cooling pipe passage 50 arranged at an expansion part 41 of the supersonic nozzle 40 where the third low temperature fluid flows; and recovering means for recovering liquid or solid COaccumulated on an outer surface of the cooling pipe passage 50.SELECTED DRAWING: Figure 1

Description

本発明は、製鉄所内で発生する副生ガスに含まれる二酸化炭素(CO)の分離回収装置および分離回収方法に関する。 The present invention relates to a separation and recovery device and a separation and recovery method for carbon dioxide (CO 2 ) contained in a by-product gas generated in a steelworks.

従来、COを含むガスからCOを分離回収する装置が提案されている。例えば特許文献1では、COを含む被処理ガスを圧縮、冷却、断熱膨張および冷却させることによりCOを分離回収する分離回収装置が提案されている。 Conventionally, an apparatus for separating and recovering CO 2 from a gas containing CO 2 has been proposed. For example, Patent Document 1, compresses the gas to be treated containing CO 2, cooling, separation and recovery device has been proposed for separating and recovering a CO 2 by adiabatic expansion and cooling.

特開平9−14831号公報JP-A-9-14831

しかしながら、特許文献1に係る発明は、例えば被処理ガスを圧縮または冷却する際に、圧縮機や冷却器等により大きな動力供給が必要であり、COの分離回収に多くのエネルギーが必要であるという問題があった。 However, in the invention according to Patent Document 1, for example, when compressing or cooling a gas to be processed, a large power supply is required by a compressor, a cooler, or the like, and a lot of energy is required for CO 2 separation and recovery. There was a problem.

本発明は、上記に鑑みてなされたものであって、COの分離回収時におけるエネルギーを削減することができるCOの分離回収装置および分離回収方法を提供することを課題とする。 The present invention was made in view of the above, and an object thereof is to provide a separating and recovering apparatus and a method of separating and recovering CO 2 that can reduce the energy at the time of separation and recovery CO 2.

上述した課題を解決し、目的を達成するために、本発明に係るCOの分離回収装置は、COを含む副生ガスを、前記副生ガスの自圧を併用しながら圧縮する圧縮機と、前記圧縮機によって圧縮された前記副生ガスを、第1低温流体と、前記第1低温流体とは異なる流体からなる第2低温流体とに熱交換させることにより冷却する冷却器と、前記冷却器によって冷却された前記副生ガスを、断熱膨張させる超音速ノズルと、前記超音速ノズルの膨張部に設けられた、第3低温流体が流れる冷却管路と、前記冷却管路の外面に蓄積された液体状または固体状のCOを回収する回収手段と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a CO 2 separation and recovery apparatus according to the present invention compresses by-product gas containing CO 2 while using the self-pressure of the by-product gas together. A cooler that cools the by-product gas compressed by the compressor by heat-exchanging the first low-temperature fluid and a second low-temperature fluid made of a fluid different from the first low-temperature fluid; and A supersonic nozzle that adiabatically expands the by-product gas cooled by a cooler; a cooling pipe that is provided in an expansion portion of the supersonic nozzle and through which a third low-temperature fluid flows; and an outer surface of the cooling pipe. And a recovery means for recovering the accumulated liquid or solid CO 2 .

また、本発明に係るCOの分離回収装置は、上記発明において、前記副生ガスは、製鉄所内で発生するものであり、前記第1低温流体は、製鉄所内で製造される液体酸素または液体窒素であり、前記第2低温流体は、フロンまたはアンモニアであることを特徴とする。 In the CO 2 separation and recovery apparatus according to the present invention, in the above invention, the by-product gas is generated in an ironworks, and the first low-temperature fluid is liquid oxygen or liquid produced in the ironworks. Nitrogen, and the second low-temperature fluid is Freon or ammonia.

上述した課題を解決し、目的を達成するために、本発明に係るCOの分離回収方法は、COを含む副生ガスを、圧縮機によって、前記副生ガスの自圧を併用しながら圧縮する圧縮ステップと、前記圧縮ステップで圧縮された前記副生ガスを、冷却器によって、第1低温流体と、前記第1低温流体とは異なる流体からなる第2低温流体とを熱交換させることにより冷却する冷却ステップと、前記冷却ステップで冷却された前記副生ガスを、超音速ノズルによって断熱膨張させる断熱膨張ステップと、前記超音速ノズルの膨張部に設けられた、第3低温流体が流れる冷却管路の外面に蓄積された液体状または固体状のCOを、回収手段によって回収する回収ステップと、を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, the method for separating and recovering CO 2 according to the present invention uses a by-product gas containing CO 2 by using a self-pressure of the by-product gas by a compressor. The compression step of compressing, and the by-product gas compressed in the compression step are heat-exchanged between a first low-temperature fluid and a second low-temperature fluid made of a fluid different from the first low-temperature fluid by a cooler. A cooling step for cooling by the step, adiabatic expansion step for adiabatic expansion of the by-product gas cooled in the cooling step by a supersonic nozzle, and a third low-temperature fluid provided in the expansion portion of the supersonic nozzle flows And a recovery step of recovering liquid or solid CO 2 accumulated on the outer surface of the cooling pipe by a recovery means.

本発明によれば、副生ガスの自圧を併用しながら圧縮することにより、副生ガスの圧縮に必要な昇圧量を減らすことができるため、COの分離回収時におけるエネルギーを削減することができる。 According to the present invention, the amount of pressure increase required for compression of the by-product gas can be reduced by compressing it while using the self-pressure of the by-product gas, so that energy during the separation and recovery of CO 2 can be reduced. Can do.

図1は、本発明の実施形態に係るCOの分離回収装置の構成を模式的に示す図である。FIG. 1 is a diagram schematically showing a configuration of a CO 2 separation and recovery apparatus according to an embodiment of the present invention. 図2は、本発明の実施形態に係る分離回収装置を利用したCOの分離回収方法を説明するためのフローチャートである。FIG. 2 is a flowchart for explaining the CO 2 separation and recovery method using the separation and recovery apparatus according to the embodiment of the present invention.

以下、本発明の実施形態に係るCOの分離回収装置および分離回収方法について、図面を参照しながら説明する。なお、本発明は以下の実施形態に限定されるものではない。また、以下の実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Hereinafter, a CO 2 separation and recovery apparatus and a separation and recovery method according to an embodiment of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

[分離回収装置]
以下、本実施形態に係るCOの分離回収装置について、図1を参照しながら説明する。分離回収装置は、COを含む副生ガスから、COを分離回収するものである。分離回収装置1は、図1に示すように、副生ガス発生源10と、圧縮機20と、冷却器31と、冷凍機32と、低温流体貯蔵タンク33と、超音速ノズル40と、回収手段と、を備えている。なお、分離回収装置1は、主に製鉄所内で用いられるものであり、製鉄所内で発生する副生ガスや、製鉄所内で製造される低温流体等を利用してCOの分離回収を行う。
[Separation and recovery equipment]
Hereinafter, the CO 2 separation and recovery apparatus according to the present embodiment will be described with reference to FIG. The separation / recovery device separates and recovers CO 2 from by-product gas containing CO 2 . As shown in FIG. 1, the separation and recovery apparatus 1 includes a by-product gas generation source 10, a compressor 20, a cooler 31, a refrigerator 32, a low-temperature fluid storage tank 33, a supersonic nozzle 40, a recovery Means. The separation / recovery device 1 is mainly used in an ironworks, and separates and collects CO 2 by using a by-product gas generated in the ironworks, a low-temperature fluid produced in the ironworks, and the like.

副生ガス発生源10は、例えば製鉄所内に設けられた高炉等であり、COを含む副生ガス(高炉ガス、BFG)を発生させる。なお、この副生ガス発生源10で発生する副生ガスは、例えば200kPa程度の自圧を有している。 The by-product gas generation source 10 is, for example, a blast furnace provided in an ironworks, and generates a by-product gas (blast furnace gas, BFG) containing CO 2 . The by-product gas generated by the by-product gas generation source 10 has a self-pressure of about 200 kPa, for example.

圧縮機20は、副生ガス発生源10で発生した副生ガスを圧縮するものである。圧縮機20は、具体的には副生ガス発生源10から送られてきたCOを含む副生ガスを、当該副生ガスの自圧を併用しながら、例えば3気圧〜6気圧程度まで断熱圧縮する。そのため、本実施形態では、従来(特許文献1)のように、自圧を有しないガスを圧縮する場合と比較して、圧縮機20が圧縮する昇圧量が相対的に小さくなる。 The compressor 20 compresses the by-product gas generated by the by-product gas generation source 10. The compressor 20 specifically insulates by-product gas containing CO 2 sent from the by-product gas generation source 10 to, for example, about 3 to 6 atm while using the self-pressure of the by-product gas. Compress. For this reason, in the present embodiment, as compared with the case of compressing a gas that does not have its own pressure as in the prior art (Patent Document 1), the pressure increase amount compressed by the compressor 20 is relatively small.

冷却器31は、圧縮機20によって圧縮された副生ガスを冷却するものである。冷却器31は、具体的には、圧縮機20から送られてきたCOを含む副生ガスを、冷凍機32から供給される第1低温流体と、低温流体貯蔵タンク33から供給される第2低温流体とに、それぞれ熱交換させることにより、例えば−50℃〜−70℃程度まで冷却する。なお、冷却器31としては、具体的には二重管熱交換器や多管円筒式熱交換器(シェル・アンド・チューブ熱交換器)を用いることができる。 The cooler 31 cools the byproduct gas compressed by the compressor 20. More specifically, the cooler 31 includes a first low-temperature fluid supplied from the refrigerator 32 and a low-temperature fluid storage tank 33 supplied with by-product gas containing CO 2 sent from the compressor 20. The heat is exchanged with each of the two low-temperature fluids, for example, to cool to about −50 ° C. to −70 ° C. As the cooler 31, specifically, a double tube heat exchanger or a multi-tube cylindrical heat exchanger (shell-and-tube heat exchanger) can be used.

冷凍機32から供給される第1低温流体は、例えばフロンまたはアンモニアである。また、低温流体貯蔵タンク33から供給される第2低温流体は、第1低温流体とは異なる流体であり、例えば液体酸素または液体窒素である。   The first low-temperature fluid supplied from the refrigerator 32 is, for example, chlorofluorocarbon or ammonia. Further, the second low temperature fluid supplied from the low temperature fluid storage tank 33 is a fluid different from the first low temperature fluid, for example, liquid oxygen or liquid nitrogen.

低温流体貯蔵タンク33は、製鉄所内に設けられている設備であり、製鉄所内で製造される液体酸素または液体窒素を貯蔵するためのものである。低温流体貯蔵タンク33から冷却器31に供給された第2低温流体は、図1に示すように、副生ガスと熱交換を行った後、大気へ放出、または製鉄所内の製鉄プロセスで使用される。   The cryogenic fluid storage tank 33 is a facility provided in the steelworks, and is for storing liquid oxygen or liquid nitrogen produced in the steelworks. As shown in FIG. 1, the second cryogenic fluid supplied from the cryogenic fluid storage tank 33 to the cooler 31 is subjected to heat exchange with the by-product gas and then released to the atmosphere or used in the iron making process in the steelworks. The

このように、冷却器31は、冷凍機32から供給される第1低温流体に加えて、製鉄所内で貯蔵されている液体酸素または液体窒素等の第2低温流体の冷排熱を利用して副生ガスの冷却を行う。そのため、本実施形態では、従来(特許文献1)のように、製鉄所内で貯蔵されている低温流体を利用せずにガスを冷却する場合と比較して、冷却器31が冷却する冷却量が相対的に小さくなる。   As described above, the cooler 31 uses the cold exhaust heat of the second low-temperature fluid such as liquid oxygen or liquid nitrogen stored in the steelworks in addition to the first low-temperature fluid supplied from the refrigerator 32. Cool by-product gas. Therefore, in this embodiment, compared with the case where the gas is cooled without using the low-temperature fluid stored in the steelworks as in the prior art (Patent Document 1), the cooling amount that the cooler 31 cools is smaller. Relatively small.

超音速ノズル40は、冷却器31によって冷却された副生ガスを、断熱膨張させるものである。超音速ノズル40は、亜音速の気体の流れ(音速以下の流れ)を超音速(音速以上の流れ)に加速するノズルである。超音速ノズル40は、図1に示すように、管の途中にスロートをもつ中細ノズルであり、内部を流れる気体の高速化に伴い、気体の温度を低下させる作用を有する。   The supersonic nozzle 40 adiabatically expands the by-product gas cooled by the cooler 31. The supersonic nozzle 40 is a nozzle that accelerates the flow of subsonic gas (flow below the sonic speed) to supersonic (flow above the sonic speed). As shown in FIG. 1, the supersonic nozzle 40 is a medium-thin nozzle having a throat in the middle of the tube, and has a function of lowering the temperature of the gas as the gas flowing through the nozzle increases in speed.

また、超音速ノズル40の膨張部41には、図1に示すように、低温流体(第3低温流体)が流れる冷却管路50が設けられている。この冷却管路50の低温流体入口51からは、例えば−150℃〜−190℃の低温流体(例えばフロンまたはアンモニア)が供給される。そして、冷却管路50内を流れた低温流体は、超音速ノズル40によって断熱膨張した副生ガスと熱交換した後、低温流体出口52から排出される。   Moreover, as shown in FIG. 1, the expansion part 41 of the supersonic nozzle 40 is provided with a cooling conduit 50 through which a low-temperature fluid (third low-temperature fluid) flows. A low temperature fluid (for example, chlorofluorocarbon or ammonia) of −150 ° C. to −190 ° C. is supplied from the low temperature fluid inlet 51 of the cooling pipe 50. The low-temperature fluid that has flowed through the cooling pipe 50 is exchanged with the by-product gas adiabatically expanded by the supersonic nozzle 40, and then discharged from the low-temperature fluid outlet 52.

このような超音速ノズル40に副生ガスを導入すると、断熱膨張した副生ガスが冷却管路50を流れる−150℃〜−190℃の低温流体と熱交換して超低温になる。その結果、図1の符号Aに示すように、冷却管路50の外面に液体状または固体状のCOが蓄積(付着)し、副生ガスからCOが分離されることになる。なお、COは、超音速ノズル40内における副生ガスの圧力に応じて、液体状または固体状のいずれかの状態で冷却管路50の外面に蓄積する。 When a by-product gas is introduced into such a supersonic nozzle 40, the adiabatic and expanded by-product gas exchanges heat with a low-temperature fluid of −150 ° C. to −190 ° C. flowing through the cooling pipe line 50 to become an ultra-low temperature. As a result, as shown by reference symbol A in FIG. 1, liquid or solid CO 2 accumulates (adheres) on the outer surface of the cooling pipe 50, and CO 2 is separated from the by-product gas. Note that CO 2 accumulates on the outer surface of the cooling pipe 50 in either a liquid state or a solid state according to the pressure of the by-product gas in the supersonic nozzle 40.

回収手段は、冷却管路50の外面に蓄積された液体状または固体状のCOを回収するものである。回収手段としては、例えばかき取り型のスクレーパ等を用いることができる。 The recovery means recovers liquid or solid CO 2 accumulated on the outer surface of the cooling pipe 50. As the collecting means, for example, a scraping scraper or the like can be used.

[分離回収方法]
以下、分離回収装置1を利用したCOの分離回収方法について、図2を参照しながら説明する。COの分離回収方法は、圧縮ステップと、冷却ステップと、断熱膨張ステップと、回収ステップと、を行う。
[Separation and collection method]
Hereinafter, a CO 2 separation and recovery method using the separation and recovery apparatus 1 will be described with reference to FIG. The CO 2 separation and recovery method includes a compression step, a cooling step, an adiabatic expansion step, and a recovery step.

圧縮ステップでは、COを含む副生ガスを、圧縮機20によって、副生ガスの自圧を併用しながら圧縮する(ステップS1)。続いて、冷却ステップでは、圧縮ステップで圧縮された副生ガスを、冷却器31によって、第1低温流体と、第2低温流体とを熱交換させることにより冷却する(ステップS2)。 In the compression step, the by-product gas containing CO 2 is compressed by the compressor 20 while using the self-pressure of the by-product gas together (step S1). Subsequently, in the cooling step, the by-product gas compressed in the compression step is cooled by exchanging heat between the first low-temperature fluid and the second low-temperature fluid by the cooler 31 (step S2).

続いて、断熱膨張ステップでは、冷却ステップで冷却された副生ガスを、超音速ノズル40によって断熱膨張させるとともに、冷却管路50に供給した第3低温流体によって冷却する(ステップS3)。続いて、回収ステップでは、超音速ノズル40の冷却管路50の外面に蓄積された液体状または固体状のCOを、スクレーパ等の回収手段によって回収する(ステップS4)。 Subsequently, in the adiabatic expansion step, the by-product gas cooled in the cooling step is adiabatically expanded by the supersonic nozzle 40 and is cooled by the third low-temperature fluid supplied to the cooling pipe 50 (step S3). Subsequently, in the recovery step, the liquid or solid CO 2 accumulated on the outer surface of the cooling pipe 50 of the supersonic nozzle 40 is recovered by a recovery means such as a scraper (step S4).

以上のような構成を備えるCOの分離回収装置1およびそれを利用した分離回収方法によれば、圧縮機20を利用した圧縮ステップにおいて、副生ガスの自圧を併用しながら圧縮することにより、副生ガスの圧縮に必要な昇圧量を減らすことができる。また、冷却器31を利用した冷却ステップにおいて、製鉄所内で貯蔵されている液体酸素または液体窒素等の低温流体の冷排熱を利用して副生ガスの冷却を行うことにより、副生ガスの冷却に必要な冷却量を減らすことができる。従って、COの分離回収時におけるエネルギーを削減することができる。 According to the CO 2 separation and recovery apparatus 1 having the above-described configuration and the separation and recovery method using the same, in the compression step using the compressor 20, compression is performed while using the self-pressure of the byproduct gas in combination. The amount of pressure increase required for compressing the by-product gas can be reduced. Further, in the cooling step using the cooler 31, by-product gas is cooled by using the cold exhaust heat of a low-temperature fluid such as liquid oxygen or liquid nitrogen stored in the ironworks, thereby generating by-product gas. The amount of cooling required for cooling can be reduced. Therefore, it is possible to reduce energy at the time of CO 2 separation and recovery.

以上、本発明に係るCOの分離回収装置および分離回収方法について、発明を実施するための形態により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、特許請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。 As described above, the CO 2 separation and recovery apparatus and the separation and recovery method according to the present invention have been specifically described with reference to embodiments for carrying out the invention. However, the gist of the present invention is not limited to these descriptions, and patents It should be construed broadly based on the claims. Needless to say, various changes and modifications based on these descriptions are also included in the spirit of the present invention.

1 分離回収装置
10 副生ガス発生源
20 圧縮機
31 冷却器
32 冷凍機
33 低温流体貯蔵タンク
40 超音速ノズル
41 膨張部
50 冷却管路
51 低温流体入口
52 低温流体出口
DESCRIPTION OF SYMBOLS 1 Separation | recovery apparatus 10 By-product gas generation source 20 Compressor 31 Cooler 32 Refrigerator 33 Low temperature fluid storage tank 40 Supersonic nozzle 41 Expansion part 50 Cooling pipeline 51 Low temperature fluid inlet 52 Low temperature fluid outlet

Claims (3)

COを含む副生ガスを、前記副生ガスの自圧を併用しながら圧縮する圧縮機と、
前記圧縮機によって圧縮された前記副生ガスを、第1低温流体と、前記第1低温流体とは異なる流体からなる第2低温流体とに熱交換させることにより冷却する冷却器と、
前記冷却器によって冷却された前記副生ガスを、断熱膨張させる超音速ノズルと、
前記超音速ノズルの膨張部に設けられた、第3低温流体が流れる冷却管路と、
前記冷却管路の外面に蓄積された液体状または固体状のCOを回収する回収手段と、
を備えることを特徴とする二酸化炭素の分離回収装置。
A compressor that compresses by-product gas containing CO 2 while using the self-pressure of the by-product gas together;
A cooler that cools the by-product gas compressed by the compressor by causing heat exchange between a first low-temperature fluid and a second low-temperature fluid made of a fluid different from the first low-temperature fluid;
A supersonic nozzle that adiabatically expands the by-product gas cooled by the cooler;
A cooling line provided in the expansion portion of the supersonic nozzle, through which a third low-temperature fluid flows;
Recovery means for recovering liquid or solid CO 2 accumulated on the outer surface of the cooling pipe;
A carbon dioxide separation and recovery device comprising:
前記副生ガスは、製鉄所内で発生するものであり、
前記第1低温流体は、フロンまたはアンモニアであり、
前記第2低温流体は、製鉄所内で製造される液体酸素または液体窒素であることを特徴とする請求項1に記載の二酸化炭素の分離回収装置。
The by-product gas is generated in the steel works,
The first cryogenic fluid is chlorofluorocarbon or ammonia;
2. The carbon dioxide separation and recovery device according to claim 1, wherein the second low-temperature fluid is liquid oxygen or liquid nitrogen produced in an ironworks.
COを含む副生ガスを、圧縮機によって、前記副生ガスの自圧を併用しながら圧縮する圧縮ステップと、
前記圧縮ステップで圧縮された前記副生ガスを、冷却器によって、第1低温流体と、前記第1低温流体とは異なる流体からなる第2低温流体とを熱交換させることにより冷却する冷却ステップと、
前記冷却ステップで冷却された前記副生ガスを、超音速ノズルによって断熱膨張させる断熱膨張ステップと、
前記超音速ノズルの膨張部に設けられた、第3低温流体が流れる冷却管路の外面に蓄積された液体状または固体状のCOを、回収手段によって回収する回収ステップと、
を含むことを特徴とする二酸化炭素の分離回収方法。
A compression step of compressing by-product gas containing CO 2 by a compressor while simultaneously using the self-pressure of the by-product gas;
A cooling step of cooling the by-product gas compressed in the compression step by heat-exchanging the first low-temperature fluid and a second low-temperature fluid made of a fluid different from the first low-temperature fluid by a cooler; ,
An adiabatic expansion step in which the by-product gas cooled in the cooling step is adiabatically expanded by a supersonic nozzle;
A recovery step of recovering liquid or solid CO 2 accumulated on the outer surface of the cooling pipe line through which the third low-temperature fluid flows provided in the expansion portion of the supersonic nozzle by a recovery means;
A method for separating and recovering carbon dioxide, comprising:
JP2016037813A 2016-02-29 2016-02-29 Carbon dioxide separation and recovery apparatus and separation and recovery method Active JP6536434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037813A JP6536434B2 (en) 2016-02-29 2016-02-29 Carbon dioxide separation and recovery apparatus and separation and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037813A JP6536434B2 (en) 2016-02-29 2016-02-29 Carbon dioxide separation and recovery apparatus and separation and recovery method

Publications (2)

Publication Number Publication Date
JP2017155977A true JP2017155977A (en) 2017-09-07
JP6536434B2 JP6536434B2 (en) 2019-07-03

Family

ID=59809648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037813A Active JP6536434B2 (en) 2016-02-29 2016-02-29 Carbon dioxide separation and recovery apparatus and separation and recovery method

Country Status (1)

Country Link
JP (1) JP6536434B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758040A (en) * 2021-07-05 2021-12-07 中国科学院理化技术研究所 Supersonic cyclone two-phase expansion CO2Trapping, utilizing and sealing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565518A (en) * 1991-09-09 1993-03-19 Kawasaki Steel Corp Production of liquefied hydrogen, liquefied carbon dioxide and dry ice
JPH07157306A (en) * 1993-12-03 1995-06-20 Mitsubishi Heavy Ind Ltd Recovering device of solid carbon dioxide
JPH0914831A (en) * 1995-06-27 1997-01-17 Mitsubishi Heavy Ind Ltd Co2 recovering device and recovering method
JP2004323263A (en) * 2003-04-22 2004-11-18 Osaka Gas Co Ltd Apparatus for recovering carbon dioxide
JP2012013255A (en) * 2010-06-29 2012-01-19 Jfe Steel Corp Method of operating gas separation recovery equipment in steel plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565518A (en) * 1991-09-09 1993-03-19 Kawasaki Steel Corp Production of liquefied hydrogen, liquefied carbon dioxide and dry ice
JPH07157306A (en) * 1993-12-03 1995-06-20 Mitsubishi Heavy Ind Ltd Recovering device of solid carbon dioxide
JPH0914831A (en) * 1995-06-27 1997-01-17 Mitsubishi Heavy Ind Ltd Co2 recovering device and recovering method
JP2004323263A (en) * 2003-04-22 2004-11-18 Osaka Gas Co Ltd Apparatus for recovering carbon dioxide
JP2012013255A (en) * 2010-06-29 2012-01-19 Jfe Steel Corp Method of operating gas separation recovery equipment in steel plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758040A (en) * 2021-07-05 2021-12-07 中国科学院理化技术研究所 Supersonic cyclone two-phase expansion CO2Trapping, utilizing and sealing system
CN113758040B (en) * 2021-07-05 2022-10-28 中国科学院理化技术研究所 Supersonic cyclone two-phase expansion CO 2 Trapping, utilizing and sealing system

Also Published As

Publication number Publication date
JP6536434B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
US8814981B2 (en) Compression of carbon dioxide containing fluid
NO20061677L (en) Hybrid gas melting cycle with multiple expand
KR101669729B1 (en) Air liquefaction system using lng cold energy with ejector expansion device entraining expanded vapor
JP5763091B2 (en) Method and apparatus for cryogenic cooling / liquefaction
RU2010107257A (en) METHOD AND DEVICE FOR COOLING A GAS-HYDROCARBON HYDROCARBON FLOW
US20140144178A1 (en) Optimized heat exchange in a co2 de-sublimation process
CN103033026A (en) Low temperature heat exchanger system and method
JP2017155977A (en) Carbon dioxide separation recovery device and separation recovery method
RU2009117466A (en) METHOD AND DEVICE FOR COOLING A HYDROCARBON FLOW
KR101983314B1 (en) Re-injection system of leaked carbon dioxid associated with heat pump
WO2014128959A1 (en) Carbon dioxide liquefaction device
JP2014222128A (en) Intake air cooling device and cooling method in air compressor
JP2017155960A (en) Carbon dioxide separation recovery device and separation recovery method
CN104620067B (en) For by the method and apparatus of separating air by cryogenic distillation
CN102917771A (en) Method and apparatus for producing liquid carbon dioxide
CN206897098U (en) A kind of comprehensive heat exchanger
CN115789511B (en) Liquid hydrogen cold energy cascade utilization system and method
CN117781603A (en) Gas separation system
CN114893269B (en) System and method for coupling carbon dioxide collection and compressed air energy storage
JPH07157306A (en) Recovering device of solid carbon dioxide
CN113375892B (en) Wind tunnel test method based on reverse Brayton cycle of turboexpander
CN104879946A (en) Novel backheating type low-temperature circulating refrigerating system
CN210036377U (en) Energy storage system
WO2023117028A3 (en) Hybrid system for co2 direct air capture - district air cooling (dac-dc)
RU2265167C2 (en) Liquefier and operational method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R150 Certificate of patent or registration of utility model

Ref document number: 6536434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250