JP2017155290A - Sour resistant steel sheet - Google Patents

Sour resistant steel sheet Download PDF

Info

Publication number
JP2017155290A
JP2017155290A JP2016039877A JP2016039877A JP2017155290A JP 2017155290 A JP2017155290 A JP 2017155290A JP 2016039877 A JP2016039877 A JP 2016039877A JP 2016039877 A JP2016039877 A JP 2016039877A JP 2017155290 A JP2017155290 A JP 2017155290A
Authority
JP
Japan
Prior art keywords
less
sour
toughness
amount
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016039877A
Other languages
Japanese (ja)
Other versions
JP6642118B2 (en
Inventor
児島 明彦
Akihiko Kojima
明彦 児島
恭平 石川
Kyohei Ishikawa
恭平 石川
篠原 康浩
Yasuhiro Shinohara
康浩 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016039877A priority Critical patent/JP6642118B2/en
Publication of JP2017155290A publication Critical patent/JP2017155290A/en
Application granted granted Critical
Publication of JP6642118B2 publication Critical patent/JP6642118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an API 5L X65 class sour resistant steel sheet having sheet thickness of 36.0 mm or more and securing HIC resistance and DWTT properties of a steel sheet at a low temperature of -30°C or less.SOLUTION: There is provided a sour resistant steel sheet containing, by mass%, Ca:0.0005 to 0.0030%, Zr:0.0005% to 0.03%, S:0.0001% to 0.0010%, O:0.0010% to 0.0030% with limitation of Nb:0.004% or less, satisfying the following formula (1) and having average of effective crystal grain diameter at a position of 1/2 of sheet thickness from a surface in a sheet thickness direction of 25 μm. 1.0≤(Ca-0.83×O)/(1.25×S)+(Zr-1.90×O)/(2.85×S)≤10.0 (1), where each mathematics is calculated as zero when (Ca-0.83×O) and (Zr-1.90×O) are negative value.SELECTED DRAWING: None

Description

本発明は、硫化水素を含む天然ガス、石油等を輸送する耐サワー鋼管などの素材に好適な、サワー環境で使用される耐サワー鋼板に関するものである。   The present invention relates to a sour-resistant steel plate used in a sour environment, which is suitable for a material such as a sour-resistant steel pipe for transporting natural gas containing hydrogen sulfide, petroleum, or the like.

近年、原油・天然ガス井戸への海水の注入や、品質が劣る資源の開発に伴って、硫化水素が存在するサワー環境に鋼材が曝される機会が増えている。サワー環境で鋼材を使用する際には、水素誘起割れ(Hydrogen Induced Cracking:HIC)の発生が問題になる場合がある。また、ラインパイプに使用される耐サワー鋼板には、優れた耐水素誘起割れ特性(耐HIC特性)だけでなく、輸送効率の向上などの観点から高強度化、厚手化が要求される。更には、エネルギー資源開発の寒冷地化が進んでおり、耐サワー鋼板には低温靭性も要求されるようになっている。   In recent years, with the injection of seawater into crude oil and natural gas wells and the development of resources of inferior quality, the opportunity for steel to be exposed to sour environments where hydrogen sulfide is present has increased. When steel is used in a sour environment, generation of hydrogen induced cracking (HIC) may be a problem. Further, the sour steel plate used for the line pipe is required to have high strength and thickness not only from excellent hydrogen-induced cracking resistance (HIC resistance) but also from the viewpoint of improving transportation efficiency. Furthermore, the development of energy resources is becoming colder, and sour steel plates are also required to have low temperature toughness.

優れた耐HIC特性を有する鋼板を得るためには、S、Oなどの不純物の制限による鋼の高純度化や高清浄度化、Ca添加による硫化物系介在物の形態制御が有効である。また、加速冷却による中心偏析部のミクロ組織の改善、特に硬化組織の生成の抑制によって、耐HIC特性を向上させる方法が提案されている(例えば、特許文献1、参照)。更に、連続鋳造時の軽圧下による中心偏析の低減や、熱間圧延前の鋼片の水素量の制限により、中心偏析部の未圧着部の残存を防止し、耐HIC特性を向上させる方法が提案されている(例えば、特許文献2、参照)。   In order to obtain a steel sheet having excellent HIC resistance, it is effective to increase the purity and cleanliness of the steel by limiting impurities such as S and O, and to control the form of sulfide inclusions by adding Ca. In addition, a method for improving the HIC resistance by improving the microstructure of the central segregation part by accelerated cooling, particularly by suppressing the formation of a hardened structure has been proposed (for example, see Patent Document 1). Furthermore, there is a method for improving the HIC resistance by preventing the center segregation part from remaining in the non-crimped area by reducing the center segregation due to light reduction during continuous casting and limiting the hydrogen content of the steel slab before hot rolling. It has been proposed (for example, see Patent Document 2).

ところで、高強度化を達成するためにNbを添加した鋼では、鋳片の加熱時に固溶せずに溶け残った粗大なNb析出物(Nb炭窒化物)が鋼板中でクラスターを形成し、これらが起点となって耐HIC特性を劣化させる場合がある。これに対して、Nb析出物を鋳片加熱時の限定された時間内で完全に固溶させるために、かなりの高温に鋳片を加熱すると、オーステナイト(γ)粒の粗大化やエネルギーコストの増大を招く。このような問題に対して、Nb量を制限した厚鋼板が提案されている(例えば、特許文献3、参照)。   By the way, in steel added with Nb in order to achieve high strength, coarse Nb precipitates (Nb carbonitrides) that remain undissolved without heating when the slab is heated form clusters in the steel sheet, These may be the starting point and deteriorate the HIC resistance. On the other hand, when the slab is heated to a considerably high temperature in order to completely dissolve the Nb precipitates within a limited time during the slab heating, the austenite (γ) grains are coarsened and the energy cost is reduced. Incurs an increase. In order to solve such a problem, a thick steel plate in which the Nb amount is limited has been proposed (for example, see Patent Document 3).

一方、本発明者らの一部は、Nbを添加しない鋼に加速冷却を適用することにより、高強度の耐サワー鋼板を製造する方法を提案している(例えば、特許文献4、参照)。これは、−45℃以下の低温の環境で使用される耐サワー鋼板の製造技術を提案するものである。特許文献4は、(1)Nb量の制限による耐HIC特性の向上、(2)加熱温度の低温化によるγ粒の粗大化抑制、(3)1パス当りの圧下率を高めた低温域での圧延によるγ組織の微細化、(4)圧延後の加速冷却による耐HIC特性の確保と変態強化、を実現する製造技術である。   On the other hand, some of the present inventors have proposed a method of manufacturing a high-strength sour-resistant steel plate by applying accelerated cooling to steel not added with Nb (see, for example, Patent Document 4). This proposes a technique for producing a sour-resistant steel plate used in a low-temperature environment of −45 ° C. or less. Patent Document 4 describes (1) improvement of HIC resistance by limiting the amount of Nb, (2) suppression of coarsening of γ grains by lowering the heating temperature, and (3) a low temperature range in which the rolling reduction per pass is increased. This is a manufacturing technology that realizes the refinement of the γ structure by rolling (4) and the securing of HIC resistance and enhanced transformation by accelerated cooling after rolling.

また、本発明者らの一部は、CaとZrとを主成分とする酸化物(以下、CaZr系酸化物と略称することがある。)を利用して、鋳片の等軸晶率を高める技術を提案している(例えば、特許文献5、参照)。これは、δ凝固する前の溶鋼にCaZr系酸化物を分散させ、鋼の凝固時にこれらを接種核として機能させる技術である。接種核の分散により、鋳片の等軸晶率が高まり、これと同時に等軸晶粒径が微細化し、偏析やポロシティなどの鋳造欠陥の悪影響が軽減される。   In addition, some of the present inventors use an oxide containing Ca and Zr as main components (hereinafter sometimes abbreviated as CaZr-based oxide) to reduce the equiaxed crystal ratio of the slab. The technique which raises is proposed (for example, refer patent document 5). This is a technique in which CaZr-based oxides are dispersed in molten steel before δ solidification, and these function as inoculation nuclei when the steel is solidified. Due to the dispersion of the inoculation nuclei, the equiaxed crystal ratio of the slab increases, and at the same time, the equiaxed crystal grain size becomes finer, and the adverse effects of casting defects such as segregation and porosity are reduced.

特開2000−199029号公報JP 2000-199029 A 特開2010−209460号公報JP 2010-209460 A 特開2011−1607号公報JP 2011-1607 A 特開平7−316652号公報Japanese Patent Laid-Open No. 7-316652 特開2008−127599号公報JP 2008-127599 A

特許文献3には、−17℃〜−23℃のDWTT(Drop Weight Tear Test)特性を有し、API 5L X65の強度を満たす板厚35.5mmの厚手耐サワー鋼板が示されている。ここで、DWTT特性は、ラインパイプの低温靱性として重要な脆性亀裂伝播停止特性である。また、特許文献4には、−45℃という低温での靱性に優れ、API 5L X65の強度を満たす、板厚35mmの厚手耐サワー鋼板が示されている。   Patent Document 3 discloses a thick sour-resistant steel plate having a DWTT (Drop Weight Tear Test) characteristic of −17 ° C. to −23 ° C. and a thickness of 35.5 mm satisfying the strength of API 5L X65. Here, the DWTT characteristic is a brittle crack propagation stop characteristic which is important as the low temperature toughness of the line pipe. Patent Document 4 discloses a thick sour-resistant steel plate having a thickness of 35 mm that has excellent toughness at a low temperature of −45 ° C. and satisfies the strength of API 5L X65.

特許文献4では、耐HIC特性の安定化を図るため、Nbを添加せず、鋳片を低温加熱し、圧延終了温度をAr3(冷却時の変態開始温度)よりも20〜30℃程度高めて、Ar3以上から加速冷却を開始する耐サワー鋼板の製造技術が提案されている。しかし、耐HIC特性を向上させる対策のうち、Nb無添加及び圧延終了温度の高温化は、熱加工制御プロセス(Thermo-Mechanical Control Process、TMCP)の効果を減じて、鋼板の金属組織の粗大化を招く。   In Patent Document 4, in order to stabilize the HIC resistance, Nb is not added, the slab is heated at a low temperature, and the rolling end temperature is increased by about 20 to 30 ° C. from Ar3 (transformation start temperature during cooling). In addition, a sour-resistant steel plate manufacturing technique that starts accelerated cooling from Ar3 or higher has been proposed. However, among the measures to improve the HIC resistance, the addition of Nb and the higher end temperature of rolling reduce the effect of the thermo-mechanical control process (TMCP), resulting in the coarsening of the metal structure of the steel sheet. Invite.

特に、鋼板の板厚が36.0mm以上になると、鋼板の金属組織の微細化が不十分となり、−30℃以下のような低温環境でDWTT特性を安定的に達成することは困難であった。また、CaZr系酸化物による鋳片の等軸晶の微細化が、耐HIC特性に及ぼす効果は不明である。例えば、凝固組織を微細化した場合、亀裂がミクロ偏析を伝播することにより、耐HIC性を劣化させる場合も有り得る。したがって、特許文献5の技術を耐サワー鋼板に適用するためには具体的な検討が必要である。   In particular, when the thickness of the steel sheet is 36.0 mm or more, the metal structure of the steel sheet is not sufficiently refined, and it is difficult to stably achieve the DWTT characteristics in a low temperature environment of −30 ° C. or lower. . In addition, the effect of the refinement of equiaxed crystal of the slab with CaZr-based oxide on the HIC resistance is unknown. For example, when the solidified structure is refined, the HIC resistance may deteriorate due to the propagation of microsegregation by cracks. Therefore, in order to apply the technique of patent document 5 to a sour-resistant steel plate, specific examination is required.

本発明は、このような実情に鑑み、硫化水素を含む天然ガス、石油等のエネルギー資源を輸送するラインパイプに用いられる、板厚が36.0mm以上45.0mm以下のAPI 5L X65級以上の耐HIC特性に優れた耐サワー鋼板において、−30℃以下の低温における鋼板の母材のDWTT特性を確保することを課題とするものである。   In view of such circumstances, the present invention is used for line pipes for transporting energy resources such as natural gas containing hydrogen sulfide and petroleum, and has a plate thickness of 36.0 mm or more and 45.0 mm or less, and API 5L X65 class or more. An object of the present invention is to ensure DWTT characteristics of a base material of a steel sheet at a low temperature of −30 ° C. or lower in a sour-resistant steel sheet having excellent HIC resistance.

本発明者らは、CaZr系酸化物による鋳片の等軸晶化及びその微細化の技術を高強度厚手耐サワー鋼板に適用するための検討を行った。その結果、CaZr系酸化物によって最終凝固部(鋳片の中心部近傍)の等軸晶粒径の平均値は3mm以下に微細化し、Nbの含有量を制限すれば、耐HIC特性が劣化しないことがわかった。Nbを実質的に無添加とした場合、CaZr系酸化物によって微細化された等軸晶の間に形成される凝固偏析部が微細化すれば、凝固偏析部に濃化したCやMnは、通常の鋳片加熱条件によって拡散し、鋼板の中心偏析部において局部的な硬化組織の生成が抑制される。   The present inventors have studied to apply a technique for equiaxed crystallization of a slab by CaZr-based oxide and its refinement to a high-strength thick sour-resistant steel plate. As a result, the average value of the equiaxed grain size of the final solidified part (near the center part of the slab) is refined to 3 mm or less by the CaZr-based oxide, and if the Nb content is limited, the HIC resistance is not deteriorated. I understood it. When Nb is substantially not added, if the solidification segregation part formed between equiaxed crystals refined by the CaZr-based oxide is refined, C and Mn concentrated in the solidification segregation part are: Diffusion occurs under normal slab heating conditions, and generation of a local hardened structure is suppressed at the center segregation portion of the steel sheet.

一方、Nbを添加した場合は、等軸晶を微細化しても耐HIC特性が劣化することがわかった。これは、Nbの凝固偏析が極めて大きく、かつ、凝固後のNbの拡散速度が小さいためである。即ち、通常の鋳片加熱条件では、特に鋳片の中心部近傍(中心偏析部)において、凝固偏析部のNb濃度の低下が不十分になり、鋼板の中心偏析部において局部的に硬化組織が生成し、HICが発生、伝播し易くなり、耐HIC特性が劣化する。   On the other hand, it was found that when Nb was added, the HIC resistance was deteriorated even if the equiaxed crystal was refined. This is because the solidification segregation of Nb is extremely large and the diffusion rate of Nb after solidification is small. That is, under normal slab heating conditions, particularly in the vicinity of the center part of the slab (center segregation part), the decrease in the Nb concentration in the solid segregation part is insufficient, and the hardened structure is locally present in the center segregation part of the steel sheet. HIC is easily generated and propagated, and the HIC resistance is deteriorated.

また、Nbを実質的に無添加とし、CaZr系酸化物によって鋳造組織を微細化することに加え、更にTiN粒子を微細分散させると、熱間圧延後の鋼板の有効結晶粒径の微細化が顕著になり、同時に、鋼板の中心偏析部において局所的な硬化組織の生成も抑制され、靱性が著しく向上することがわかった。TiN粒子は、凝固冷却時にTiとNが濃化する凝固偏析部に優先析出することから、CaZr系酸化物によって凝固偏析部が微細化すると、より微細なTiN粒子が分散し、鋳片加熱時のγ粒成長におけるピン止め効果が強化され、鋼板における有効結晶粒径が微細化する。このピン止め効果は、HAZの有効結晶粒径微細化にも効果的であり、HAZ靭性の向上にも寄与する。   In addition to making Nb substantially non-added and refining the cast structure with the CaZr-based oxide, and further finely dispersing the TiN particles, the effective crystal grain size of the steel sheet after hot rolling can be reduced. At the same time, it was found that the formation of a local hardened structure was suppressed at the center segregation portion of the steel sheet, and the toughness was remarkably improved. Since TiN particles preferentially precipitate in the solidified segregation part where Ti and N are concentrated during solidification cooling, when the solidification segregation part is refined by CaZr-based oxide, finer TiN particles are dispersed and the slab is heated. The pinning effect in γ grain growth is strengthened, and the effective crystal grain size in the steel sheet is refined. This pinning effect is effective in reducing the effective crystal grain size of HAZ, and contributes to the improvement of HAZ toughness.

本発明はこのような知見に基づいてなされたものであり、その要旨は、以下の通りである。   This invention is made | formed based on such knowledge, The summary is as follows.

本発明の一態様に係る耐サワー鋼板は、
(1)質量%で、C:0.040%以上、0.150%以下、Mn:1.00%以上、2.00%以下、S:0.0001%以上、0.0010%以下、Ca:0.0005%以上、0.0030%以下、Zr:0.0005%以上、0.030%以下、O:0.0010%以上、0.0030%以下、Al:0.001%以上、0.050%以下、Ti:0.005%以上、0.020%以下、N:0.0015%以上、0.0050%以下を含有し、Si:0.40%以下、P:0.015%以下、Nb:0.004%以下に制限し、残部がFe及び不可避的不純物からなり、Ca、Zr、O、Sの含有量が下記(1)式を満足し、板厚方向で表面から板厚の1/2の位置における有効結晶粒径の平均値が25μm以下である耐サワー鋼板である。
1.0≦(Ca−0.83×O)/(1.25×S)
+(Zr−1.90×O)/(2.85×S)≦10.0・・・ (1)
上記(1)式において、(Ca−0.83×O)、(Zr−1.90×O)が負の値になる場合は各項をゼロとして計算する。
The sour-resistant steel plate according to one aspect of the present invention is
(1) By mass%, C: 0.040% or more, 0.150% or less, Mn: 1.00% or more, 2.00% or less, S: 0.0001% or more, 0.0010% or less, Ca : 0.0005% or more, 0.0030% or less, Zr: 0.0005% or more, 0.030% or less, O: 0.0010% or more, 0.0030% or less, Al: 0.001% or more, 0 0.050% or less, Ti: 0.005% or more, 0.020% or less, N: 0.0015% or more, 0.0050% or less, Si: 0.40% or less, P: 0.015% Hereinafter, Nb is limited to 0.004% or less, the balance is Fe and inevitable impurities, the contents of Ca, Zr, O, and S satisfy the following formula (1), and the plate from the surface in the thickness direction Sour-resistant steel with an average effective grain size of 25 μm or less at half the thickness It is.
1.0 ≦ (Ca−0.83 × O) / (1.25 × S)
+ (Zr-1.90 × O) / (2.85 × S) ≦ 10.0 (1)
In the above equation (1), when (Ca−0.83 × O) and (Zr−1.90 × O) are negative values, each term is calculated as zero.

(2)また、上記(1)に記載の耐サワー鋼板において、更に、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下、Mo:0.5%以下、W:0.5%以下、Co:0.5%以下に制限してもよい。 (2) Further, in the sour-resistant steel plate according to (1), further, by mass, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, Mo: 0 It may be limited to 5% or less, W: 0.5% or less, and Co: 0.5% or less.

(3)また、上記(2)に記載の耐サワー鋼板において、更に、質量%で、V:0.10%以下、B:0.0030%以下に制限してもよい。 (3) Moreover, in the sour-resistant steel plate described in (2) above, the mass may be further limited to V: 0.10% or less and B: 0.0030% or less.

(4)また、上記(1)〜(3)の何れかに記載の耐サワー鋼板において、板厚が36.0mm以上45.0mm以下、降伏応力が448MPa以上、引張強さが535MPa以上であってもよい。 (4) Further, in the sour-resistant steel plate according to any one of (1) to (3), the plate thickness is 36.0 mm or more and 45.0 mm or less, the yield stress is 448 MPa or more, and the tensile strength is 535 MPa or more. May be.

本発明によれば、米国石油協会(API)規格X65級以上の強度を有し、かつ、−30℃以下の低温において優れたDWTT特性を有する、板厚が36.0mm以上45.0mm以下の、耐HIC特性に優れた耐サワー鋼板の提供が可能になる。そして、本発明によれば、低温のサワー環境における原油・天然ガスの生産、輸送に使用されるラインパイプを合理的に設計することが可能になる。したがって、本発明は産業上の貢献が極めて顕著である。   According to the present invention, the plate thickness is 36.0 mm or more and 45.0 mm or less, having strength of American Petroleum Institute (API) standard X65 grade or more and having excellent DWTT characteristics at a low temperature of −30 ° C. or less. It is possible to provide a sour-resistant steel plate having excellent HIC resistance. According to the present invention, it is possible to rationally design a line pipe used for production and transportation of crude oil and natural gas in a low temperature sour environment. Therefore, the industrial contribution of the present invention is extremely remarkable.

本発明は、(a)ZrとCaとの複合添加(CaZr系酸化物生成)、(b)Nb無添加、(c)極低S化、(d)TiとNとの複合添加(TiN粒子の微細分散)、という特徴を有する。そして、本発明は、これらの特徴により、従来に比べて凝固等軸晶が微細化することで凝固偏析部も微細化され、耐HIC特性に対して有害な局所的な硬化組織の生成が鋼板の中心偏析部において抑制され、耐サワー特性及び靱性が向上するという知見に基づくものである。なお、中心偏析部は、巨視的にみたときの最終凝固部であり鋳片の板厚中心部である。この中心偏析部を微視的にみると、凝固等軸晶から構成されている。凝固偏析部は、凝固等軸晶の間であり、合金元素が微視的に濃化している。   In the present invention, (a) composite addition of Zr and Ca (CaZr-based oxide formation), (b) no addition of Nb, (c) extremely low S, (d) composite addition of Ti and N (TiN particles) Of fine dispersion). Further, according to the present invention, the solidified equiaxed crystal is refined as compared with the conventional structure, so that the solidified segregation part is also refined, and the generation of a local hardened structure harmful to the HIC resistance is generated by the steel plate. This is based on the knowledge that sour resistance and toughness are improved in the central segregation portion of the steel. The central segregation part is the final solidification part when viewed macroscopically and is the center part of the slab thickness. When this center segregation portion is viewed microscopically, it is composed of solid equiaxed crystals. The solidified segregation part is between solidified equiaxed crystals, and the alloy elements are microscopically concentrated.

CaZr系酸化物は、凝固初相がδ−Feである鋳片の製造において、接種核(凝固核)として有効に作用する。電子線回折で同定されたCaZr系酸化物の結晶構造は、個々の酸化物粒子の全体あるいは一部がペロブスカイト構造を有する特徴がある。CaZrO3はペロブスカイト構造を有しており、TiN、Ce23に比べてδ−Feに対する格子不整合度が小さく接種能が高い。 CaZr-based oxides effectively act as inoculum nuclei (solidification nuclei) in the production of slabs whose initial solidification phase is δ-Fe. The crystal structure of the CaZr-based oxide identified by electron beam diffraction is characterized in that all or part of each oxide particle has a perovskite structure. CaZrO 3 has a perovskite structure and has a lower degree of lattice mismatch to δ-Fe and higher inoculation ability than TiN and Ce 2 O 3 .

CaZr系酸化物の接種効果によって、等軸晶率が高くなり、凝固組織が微細化され、特に鋳片の中心偏析部においては凝固等軸晶が微細になる。その結果、凝固偏析部が微細になり、濃化した元素、特にCやMnが、通常の鋳片加熱条件によって拡散し、濃度が低下する。そして、熱間圧延後、鋼板の有効結晶粒径が小さくなるのに加え、特に中心偏析部において、局部的な硬化組織が生成しにくくなり、靱性及び耐HIC特性が向上する。   Due to the inoculation effect of the CaZr-based oxide, the equiaxed crystal ratio is increased, the solidified structure is refined, and the solidified equiaxed crystal is refined particularly in the central segregation portion of the slab. As a result, the solidified segregation portion becomes fine, and concentrated elements, particularly C and Mn, diffuse under normal slab heating conditions and the concentration decreases. And after hot rolling, in addition to the effective crystal grain size of the steel sheet becoming small, it becomes difficult to form a local hardened structure, especially in the central segregation part, and toughness and HIC resistance are improved.

このように、上記(a)〜(d)により、本発明の耐サワー鋼板は、36.0mm以上の板厚であっても鋼板の金属組織が微細化され、中心偏析部の硬度の上昇も抑制され、−30℃以下の低温でのDWTT特性及び耐HIC特性を達成することが可能になる。このとき、板厚方向で板厚の1/2の位置(以下、板厚1/2位置ということがある。)における有効結晶粒径の平均値は25μm以下である。   Thus, according to the above (a) to (d), the sour-resistant steel plate of the present invention has a refined metallographic structure even when the thickness is 36.0 mm or more, and the hardness of the center segregation part is also increased. It is suppressed, and it becomes possible to achieve DWTT characteristics and HIC resistance characteristics at a low temperature of −30 ° C. or lower. At this time, the average value of the effective crystal grain size at a position of ½ of the plate thickness in the plate thickness direction (hereinafter also referred to as a plate thickness ½ position) is 25 μm or less.

ここで、有効結晶粒径とは、例えば、結晶方向の角度差が3度以内の領域の寸法であり、電子線後方散乱回折法(EBSD)によって測定することができる。金属組織がフェライトの場合は、結晶粒径が有効結晶粒径と同等である。一方、ベイナイトやマルテンサイトのような針状結晶である場合、有効結晶粒径は針状結晶の束の中で結晶の方向がほぼ揃った領域の寸法である。   Here, the effective crystal grain size is, for example, the size of a region in which the angle difference in the crystal direction is within 3 degrees, and can be measured by electron beam backscatter diffraction (EBSD). When the metal structure is ferrite, the crystal grain size is equivalent to the effective crystal grain size. On the other hand, in the case of acicular crystals such as bainite and martensite, the effective crystal grain size is the size of a region in which the crystal directions are substantially aligned in a bundle of acicular crystals.

以下、本発明の一実施形態に係る耐サワー鋼板について説明する。   Hereinafter, a sour-resistant steel plate according to an embodiment of the present invention will be described.

(C:0.040%以上、0.150%以下)
Cは、鋼の強度を高める元素であり、X65以上の高強度を得るためにC量を0.040%以上とする。好ましくはC量を0.050%以上、より好ましくは0.060%以上、更に好ましくは0.070%以上とする。しかし、C量の増加は鋳片の中心偏析におけるMnやPの偏析を強めて耐HIC特性を劣化させるため、その上限は0.150%である。好ましくはC量を0.140%以下、より好ましくは0.130%以下とする。
(C: 0.040% or more, 0.150% or less)
C is an element that increases the strength of the steel, and the C content is 0.040% or more in order to obtain a high strength of X65 or more. Preferably, the C content is 0.050% or more, more preferably 0.060% or more, and still more preferably 0.070% or more. However, the increase in the amount of C strengthens the segregation of Mn and P in the center segregation of the slab and degrades the HIC resistance, so the upper limit is 0.150%. Preferably, the C content is 0.140% or less, more preferably 0.130% or less.

(Si:0.40%以下)
Siは、脱酸のために鋼に含有される場合があるが、Si量が多すぎると溶接性及びHAZ靭性が劣化するため、0.40%以下に制限する。本発明の鋼では、Al、Tiによって脱酸が可能であるから、下限は0%でもよいが、0.01%以上のSiを含有させることができる。HAZ靭性を考慮するとSi量を0.30%以下にすることが望ましい。より好ましくはSi量を0.20%以下とする。
(Si: 0.40% or less)
Si may be contained in steel for deoxidation, but if the amount of Si is too large, weldability and HAZ toughness deteriorate, so it is limited to 0.40% or less. In the steel of the present invention, since deoxidation is possible with Al and Ti, the lower limit may be 0%, but 0.01% or more of Si can be contained. In consideration of HAZ toughness, it is desirable that the Si content be 0.30% or less. More preferably, the Si amount is 0.20% or less.

(Mn:1.00%以上、2.00%以下)
Mnは、焼入れ性を高めて鋼の強化に寄与する元素であり、X65以上の高強度を得るためにMn量を1.00%以上とする。好ましくはMn量を1.05%以上、より好ましくは1.10%以上、更に好ましくは1.15%以上とする。しかし、Mn量の増加は鋳片の中心偏析を強めて耐HIC特性を劣化させるため、その上限は2.00%である。好ましくはMn量を1.90%以下、より好ましくは1.80%以下、更に好ましくは1.70%以下とする。
(Mn: 1.00% or more, 2.00% or less)
Mn is an element that enhances hardenability and contributes to strengthening of steel, and in order to obtain a high strength of X65 or higher, the amount of Mn is set to 1.00% or higher. Preferably, the Mn content is 1.05% or more, more preferably 1.10% or more, and still more preferably 1.15% or more. However, since the increase in the amount of Mn strengthens the center segregation of the slab and degrades the HIC resistance, the upper limit is 2.00%. Preferably, the Mn content is 1.90% or less, more preferably 1.80% or less, and still more preferably 1.70% or less.

(P:0.015%以下)
Pは、不純物であり、鋳片の中心偏析を強めて耐HIC特性を劣化させるため、P量を0.015%以下に制限する。Pは少ないほど耐HIC特性が向上するため、下限は特に規定しないが、製造コストの観点からP量は0.001%以上が好ましい。
(P: 0.015% or less)
P is an impurity and limits the amount of P to 0.015% or less in order to strengthen the center segregation of the slab and deteriorate the HIC resistance. The lower the P, the better the HIC resistance, so the lower limit is not particularly specified.

(S:0.0001%以上、0.0010%以下)
Sは、耐HIC特性に有害な、圧延によって延伸するMnSを形成する元素であり、S量を0.0010%以下に制限する必要がある。好ましくはS量を0.0008%以下、より好ましくは0.0006%以下とする。Sを低減することは母材及びHAZの靭性の観点からも好ましいが、製造コストの観点からS量を0.0001%以上とする。
(S: 0.0001% or more, 0.0010% or less)
S is an element that forms MnS that is stretched by rolling, which is harmful to the HIC resistance, and the amount of S needs to be limited to 0.0010% or less. Preferably, the S content is 0.0008% or less, more preferably 0.0006% or less. Although reducing S is preferable from the viewpoint of the toughness of the base material and the HAZ, the amount of S is made 0.0001% or more from the viewpoint of manufacturing cost.

(Nb:0.004%以下)
本発明では、耐HIC特性を確保するために、Nbを実質的に含有しないことが望ましい。Nb量が0.004%を超えると、鋳片を加熱する際に中心偏析部で溶け残ったNb炭窒化物が耐HIC特性を劣化させる。したがって、Nb量は0.004%に制限することが必要である。本発明はDWTT特性を確保する観点から、鋳片を例えば1100℃以下のような低温加熱することが好ましく、この場合、Nb炭窒化物の溶け残りを防止するためにNb量を0.003%以下に低減することが好ましい。より好ましくはNb量を0.002%以下とする。NbはHAZ靭性にも有害であるから、Nbを実質的に含有しないことはHAZ靭性を高める効果がある。
(Nb: 0.004% or less)
In the present invention, it is desirable that Nb is not substantially contained in order to ensure HIC resistance. When the amount of Nb exceeds 0.004%, the Nb carbonitride remaining undissolved at the center segregation part when the slab is heated deteriorates the HIC resistance. Therefore, the Nb content needs to be limited to 0.004%. In the present invention, from the viewpoint of securing DWTT characteristics, it is preferable to heat the slab at a low temperature such as 1100 ° C. or less, and in this case, the Nb content is 0.003% in order to prevent unmelted Nb carbonitride. It is preferable to reduce to the following. More preferably, the Nb amount is 0.002% or less. Since Nb is also harmful to the HAZ toughness, the fact that Nb is not substantially contained has the effect of increasing the HAZ toughness.

(Ca:0.0005%以上、0.0030%以下)
Caは、ZrとCaZr系酸化物を形成する重要な元素である。溶鋼中に生成するCaZr系酸化物は接種核(凝固核)となり、鋳造組織を微細化し、特に中心偏析部において凝固偏析部を微細化する。その結果、凝固偏析部に濃化した元素の拡散が容易になり、特に鋼板の中心偏析部において硬化組織の生成が抑制される。このようにして、Caは靭性及び耐サワー特性を向上させる元素であり、効果を得るために、Ca量を0.0005%以上とする。好ましくはCa量を0.0007%以上、より好ましくは0.0010%以上とする。しかし、Ca量が0.0030%を超えると、Ca系介在物が増加して、HICや脆性破壊の発生起点となるので、これが上限である。好ましくはCa量を0.0025%以下、より好ましくは0.0020%以下とする。
(Ca: 0.0005% or more, 0.0030% or less)
Ca is an important element that forms Zr and CaZr-based oxides. The CaZr-based oxide generated in the molten steel becomes inoculum nuclei (solidification nuclei), and refines the cast structure, particularly at the central segregation part. As a result, the diffusion of the concentrated element in the solidified segregation part is facilitated, and the formation of a hardened structure is suppressed particularly in the central segregation part of the steel sheet. Thus, Ca is an element that improves toughness and sour resistance, and in order to obtain an effect, the Ca content is set to 0.0005% or more. Preferably, the Ca content is 0.0007% or more, more preferably 0.0010% or more. However, if the Ca content exceeds 0.0030%, Ca-based inclusions increase and become the starting point of HIC and brittle fracture, so this is the upper limit. Preferably, the Ca content is 0.0025% or less, more preferably 0.0020% or less.

(Zr:0.0005%以上、0.03%以下)
Zrは、Caとともに添加することにより、CaZr系酸化物を形成する重要な元素である。CaZr系酸化物による靭性及び耐サワー特性の向上は上述のとおりであり、効果を得るために、Zrを0.0005%以上含有させることが必要である。しかし、Zrを、0.03%を超えて含有させると、Zr系介在物が増加して、HICや脆性破壊の発生起点となる場合があるので、これが上限である。好ましくはZrの含有量を0.02%以下、より好ましくは0.01%以下とする。
(Zr: 0.0005% or more, 0.03% or less)
Zr is an important element that forms a CaZr-based oxide when added together with Ca. Improvement of toughness and sour resistance by the CaZr-based oxide is as described above, and in order to obtain the effect, it is necessary to contain 0.0005% or more of Zr. However, if Zr is contained in an amount exceeding 0.03%, the Zr-based inclusions increase, which may become the starting point of HIC and brittle fracture, so this is the upper limit. Preferably, the Zr content is 0.02% or less, more preferably 0.01% or less.

(O:0.0010%以上、0.0030%以下)
Oは、Ca、Zrと結合し、CaZr系酸化物を形成する元素である。上述のCaZr系酸化物の効果により靱性及び耐HIC特性を高めるために、0.0010%以上のO量が必要である。しかし、Oが0.0030%を超えると、鋼の清浄度が低下して母材やHAZの靭性が劣化する。HICの発生起点となる酸化物系介在物を低減し、Caによる硫化物形態制御を行うためにも、O量の上限は0.0030%である。O量は0.0025%以下が好ましい。
(O: 0.0010% or more, 0.0030% or less)
O is an element that combines with Ca and Zr to form a CaZr-based oxide. In order to improve toughness and HIC resistance due to the effect of the above-described CaZr-based oxide, an O amount of 0.0010% or more is necessary. However, if O exceeds 0.0030%, the cleanliness of the steel decreases and the toughness of the base material and the HAZ deteriorates. The upper limit of the amount of O is 0.0030% in order to reduce oxide inclusions that are the starting point of HIC generation and to control sulfide morphology with Ca. The amount of O is preferably 0.0025% or less.

(1.0≦(Ca−0.83×O)/(1.25×S)
+(Zr−1.90×O)/(2.85×S)≦10.0
本発明の耐サワー鋼板では、耐HIC特性を確保するために、Sを可能な限り低減し、Ca、Zrを添加し、HIC発生起点となる延伸MnSの生成を抑えて、Sを(Ca、Zr)S又は(Ca、Zr)(O、S)として固定する。このとき、SとCaとZrとOのバランスが、1.0≦(Ca−0.83×O)/(1.25×S)+(Zr−1.90×O)/(2.85×S)を満たさない場合、延伸MnSが残存してHICが発生する。一方、(Ca−0.83×O)/(1.25×S)+(Zr−1.90×O)/(2.85×S)≦10.0を満たさない場合、OやSに対してCaやZrが過剰に含まれることから、Ca系介在物やZr系介在物が増加して、HICが発生する。
(1.0 ≦ (Ca−0.83 × O) / (1.25 × S)
+ (Zr-1.90 × O) / (2.85 × S) ≦ 10.0
In the sour-resistant steel sheet of the present invention, in order to ensure the HIC resistance, S is reduced as much as possible, Ca and Zr are added, and the generation of stretched MnS that is the origin of HIC generation is suppressed, and S is reduced to (Ca, Fix as Zr) S or (Ca, Zr) (O, S). At this time, the balance of S, Ca, Zr, and O is 1.0 ≦ (Ca−0.83 × O) / (1.25 × S) + (Zr−1.90 × O) / (2.85). If xS) is not satisfied, stretched MnS remains and HIC occurs. On the other hand, if (Ca−0.83 × O) / (1.25 × S) + (Zr−1.90 × O) / (2.85 × S) ≦ 10.0 is not satisfied, O or S On the other hand, since Ca and Zr are excessively contained, Ca-based inclusions and Zr-based inclusions increase, and HIC is generated.

ここで、(Ca−0.83×O)/(1.25×S)+(Zr−1.90×O)/(2.85×S)の項は、脱酸によって接種核であるCaZrO3が生成すると仮定した場合に、脱酸反応で消費されずに残存するCa及びZrによってSが固定されるか否かを判断する指標である。即ち、1.0≦(Ca−0.83×O)/(1.25×S)+(Zr−1.90×O)/(2.85×S)を満たす場合は、脱酸反応で消費されずに残存するCa及びZrによって、鋼中の全てのSがCaSやZrSとして析出し、延伸MnSは生成しない。 Here, the term (Ca−0.83 × O) / (1.25 × S) + (Zr−1.90 × O) / (2.85 × S) indicates that CaZrO which is an inoculum nucleus by deoxidation. This is an index for determining whether or not S is fixed by Ca and Zr remaining without being consumed in the deoxidation reaction, assuming that 3 is generated. That is, when 1.0 ≦ (Ca−0.83 × O) / (1.25 × S) + (Zr−1.90 × O) / (2.85 × S) is satisfied, the deoxidation reaction is performed. With Ca and Zr remaining without being consumed, all S in the steel is precipitated as CaS and ZrS, and stretched MnS is not generated.

また、(Zr−1.90×O)が負の値であっても、1.0≦(Ca−0.83×O)/(1.25×S)を満たす場合、脱酸反応で消費されるCa(Oと結合するCa)を差し引いた残りのCaにより、鋼中のほぼ全てのSがCaSとして析出し、延伸MnSは生成しない。同様に、(Ca−0.83×O)が負の値であっても、1.0≦(Zr−1.90×O)/(2.85×S)を満たす場合、脱酸反応で消費されるZr(Oと結合するZr)を差し引いた残りのZrにより、鋼中のほぼ全てのSがZrSとして析出し、延伸MnSは生成しない。したがって、(Ca−0.83×O)、(Zr−1.90×O)が負の値になる場合は各項をゼロとする。   Further, even if (Zr-1.90 × O) is a negative value, if it satisfies 1.0 ≦ (Ca−0.83 × O) / (1.25 × S), it is consumed by the deoxidation reaction. By the remaining Ca after subtracting Ca (Ca combined with O), almost all S in the steel is precipitated as CaS, and stretched MnS is not generated. Similarly, even if (Ca−0.83 × O) is a negative value, if 1.0 ≦ (Zr−1.90 × O) / (2.85 × S) is satisfied, deoxidation reaction may occur. By the remaining Zr after subtracting the consumed Zr (Zr combined with O), almost all S in the steel precipitates as ZrS, and stretched MnS does not form. Accordingly, when (Ca−0.83 × O) and (Zr−1.90 × O) are negative values, each term is set to zero.

このように、(Ca−0.83×O)/(1.25×S)+(Zr−1.90×O)/(2.85×S)の項は、硫化物形態制御の指標であり、HIC特性を確保するために下記式(1)を満たす必要がある。耐HIC特性を高めるために、(Ca−0.83×O)/(1.25×S)+(Zr−1.90×O)/(2.85×S)の下限を好ましくは1.5、より好ましくは2.0、上限を好ましくは9.5、より好ましくは9.0とする。   Thus, the term (Ca−0.83 × O) / (1.25 × S) + (Zr−1.90 × O) / (2.85 × S) is an index of sulfide morphology control. In order to secure the HIC characteristics, the following formula (1) needs to be satisfied. In order to enhance the HIC resistance, the lower limit of (Ca−0.83 × O) / (1.25 × S) + (Zr−1.90 × O) / (2.85 × S) is preferably 1. 5, more preferably 2.0, and the upper limit is preferably 9.5, more preferably 9.0.

1.0≦(Ca−0.83×O)/(1.25×S)
+(Zr−1.90×O)/(2.85×S)≦10.0・・・ (1)
上記(1)式において、(Ca−0.83×O)、(Zr−1.90×O)が負の値になる場合は各項をゼロとして計算する。
1.0 ≦ (Ca−0.83 × O) / (1.25 × S)
+ (Zr-1.90 × O) / (2.85 × S) ≦ 10.0 (1)
In the above equation (1), when (Ca−0.83 × O) and (Zr−1.90 × O) are negative values, each term is calculated as zero.

(Al:0.001%以上、0.050%以下)
Alは、脱酸元素であり、Al量は0.001%以上が必要である。好ましくはAl量を0.002%以上、より好ましくは0.003%以上とする。しかし、Al量が0.050%を超えると介在物が増加して靱性を損なうため、これが上限である。好ましくはAl量を0.030%以下、より好ましくは0.020%以下とする。
(Al: 0.001% or more, 0.050% or less)
Al is a deoxidizing element, and the amount of Al needs to be 0.001% or more. Preferably, the Al content is 0.002% or more, more preferably 0.003% or more. However, if the Al content exceeds 0.050%, inclusions increase and the toughness is impaired, so this is the upper limit. Preferably, the Al content is 0.030% or less, more preferably 0.020% or less.

(Ti:0.005%以上、0.020%以下)
Tiは、鋳片やHAZのγ粒成長をピン止め効果によって抑制するTiN粒子を形成する元素である。ピン止め効果によって十分なγ粒成長抑制効果を発現させるために、Ti量の下限を0.005%とする。好ましくはTi量を0.007%以上する。しかし、Ti量が0.020%を超えると母材やHAZの靭性が劣化したり、鋳片の表面品質が劣化するため、これが上限である。好ましくはTi量を0.018%以下、より好ましくは0.016%以下とする。
(Ti: 0.005% or more, 0.020% or less)
Ti is an element that forms TiN particles that suppress γ grain growth of slabs or HAZ by a pinning effect. In order to exhibit a sufficient γ grain growth suppressing effect by the pinning effect, the lower limit of the Ti amount is set to 0.005%. Preferably, the Ti amount is 0.007% or more. However, if the Ti content exceeds 0.020%, the toughness of the base material and HAZ deteriorates, and the surface quality of the cast slab deteriorates, so this is the upper limit. Preferably, the Ti content is 0.018% or less, more preferably 0.016% or less.

(N:0.0015%以上、0.0050%以下)
Nは、鋳片やHAZのγ粒成長をピン止めするTiN粒子を構成する元素である。ピン止め効果によって十分なγ粒成長抑制効果を発現するために、N量の下限を0.0015%として最低限のTiN粒子個数を確保する必要がある。好ましくはN量を0.0020%以上、より好ましくは0.0025%以上とする。一方、N量が0.0050%を超えると母材やHAZの靭性が劣化したり、鋳片の表面品質が劣化するため、これが上限である。好ましくはN量を0.0045%以下、より好ましくは0.0040%以下とする。
(N: 0.0015% or more, 0.0050% or less)
N is an element constituting TiN particles that pin the γ grain growth of slabs or HAZ. In order to exhibit a sufficient γ grain growth suppressing effect by the pinning effect, it is necessary to secure the minimum number of TiN particles by setting the lower limit of the N amount to 0.0015%. Preferably, the N content is 0.0020% or more, more preferably 0.0025% or more. On the other hand, if the N amount exceeds 0.0050%, the toughness of the base material and the HAZ deteriorates and the surface quality of the cast slab deteriorates, so this is the upper limit. Preferably, the N content is 0.0045% or less, more preferably 0.0040% or less.

必要に応じて、Cu、Ni、Cr、Mo、W、Co、Ti、V、Bの1種又は2種以上を含有させてもよい。なお、工業的に使用されるZr原料には、微量のHfが含まれる場合がある。Zrの同属元素であるHfは、Zrと同様の作用を有しており、鋼中に微量のHfが不純物として含有されても特に問題はない。   You may contain 1 type, or 2 or more types of Cu, Ni, Cr, Mo, W, Co, Ti, V, and B as needed. The Zr raw material used industrially may contain a trace amount of Hf. Hf, which is an element belonging to Zr, has the same action as Zr, and there is no particular problem even if a small amount of Hf is contained as an impurity in the steel.

(Cu:1.0%以下)
Cuは、溶接性及びHAZ靱性に悪影響を及ぼすことなく母材の強度、靱性を向上させるため、0.1%以上を含有させてもよい。ただし、過剰な添加は熱間圧延時にCuクラックを発生し製造が困難となる場合や、溶接性に好ましくない場合があるため、Cu量の上限は1.0%が好ましい。より好ましくはCu量を0.5%以下、更に好ましくは0.3%以下とする。
(Cu: 1.0% or less)
Cu may be contained in an amount of 0.1% or more in order to improve the strength and toughness of the base material without adversely affecting weldability and HAZ toughness. However, excessive addition may cause Cu cracks during hot rolling, making production difficult, and may not be preferable for weldability, so the upper limit of the Cu content is preferably 1.0%. More preferably, the Cu amount is 0.5% or less, and further preferably 0.3% or less.

(Ni:1.0%以下)
Niは、溶接性及びHAZ靱性に悪影響を及ぼすことなく母材の強度、靱性を向上させるため、0.1%以上を含有させてもよい。ただし、過剰な添加は経済性を損ない、溶接性に好ましくない場合があるため、Ni量の上限は1.0%が好ましい。より好ましくはNi量を0.8%以下、更に好ましくは0.5%以下とする。
(Ni: 1.0% or less)
Ni may be contained in an amount of 0.1% or more in order to improve the strength and toughness of the base material without adversely affecting weldability and HAZ toughness. However, excessive addition impairs economic efficiency and may not be preferable for weldability, so the upper limit of Ni content is preferably 1.0%. More preferably, the Ni content is 0.8% or less, and further preferably 0.5% or less.

(Cr:1.0%以下)
Crは、連続鋳造鋳片において中心偏析し難く、かつ母材の強度を向上させるため、0.1%以上を含有させてもよい。ただし、過剰な添加は母材及びHAZの靱性、溶接性を劣化させる場合があるため、Cr量の上限は1.0%が好ましい。より好ましくはCr量を0.8%以下、更に好ましくは0.5%以下とする。
(Cr: 1.0% or less)
Cr may be contained in an amount of 0.1% or more in order to prevent center segregation in a continuous cast slab and improve the strength of the base material. However, since excessive addition may deteriorate the toughness and weldability of the base metal and the HAZ, the upper limit of Cr content is preferably 1.0%. More preferably, the Cr amount is 0.8% or less, and further preferably 0.5% or less.

(Mo:0.5%以下)
Moは、母材の強度、靱性をともに向上させるため、0.1%以上を含有させてもよい。ただし、過剰な添加は母材及びHAZの靱性、溶接性の劣化を招く場合があるため、Mo量の上限は0.5%が好ましい。より好ましくはMo量を0.3%以下とする。
(Mo: 0.5% or less)
Mo may contain 0.1% or more in order to improve both the strength and toughness of the base material. However, since excessive addition may cause deterioration of the toughness and weldability of the base material and HAZ, the upper limit of the Mo amount is preferably 0.5%. More preferably, the Mo amount is 0.3% or less.

(W:0.5%以下)
Wは、母材の強度、靱性をともに向上させるため、0.1%以上を含有させてもよい。ただし、過剰な添加は経済性を損ない、母材及びHAZの靱性、溶接性の劣化を招く場合があるため、W量の上限は0.5%が好ましい。より好ましくはW量を0.3%以下とする。
(W: 0.5% or less)
W may contain 0.1% or more in order to improve both the strength and toughness of the base material. However, excessive addition impairs economic efficiency and may cause deterioration of the toughness and weldability of the base material and the HAZ, so the upper limit of the W amount is preferably 0.5%. More preferably, the W amount is 0.3% or less.

(Co:0.5%以下)
Coは、溶接性及びHAZ靱性に悪影響を及ぼすことなく母材の強度、靱性を向上させるため、0.1%以上を含有させてもよい。ただし、過剰な添加は経済性を損ない、溶接性に好ましくない場合があるため、Co量の上限は0.5%が好ましい。より好ましくはCo量を0.3%以下とする。
(Co: 0.5% or less)
Co may contain 0.1% or more in order to improve the strength and toughness of the base material without adversely affecting the weldability and the HAZ toughness. However, excessive addition impairs economic efficiency and may not be preferable for weldability, so the upper limit of Co content is preferably 0.5%. More preferably, the Co content is 0.3% or less.

(V:0.10%以下)
Vは、析出硬化による高強度化とミクロ組織の微細化による低温靱性の向上を可能にするため、0.01%以上を含有させてもよい。ただし、過剰な添加はHAZ靱性や溶接性の劣化を招く場合があるため、V量の上限は0.10%が好ましい。より好ましくはV量を0.08%以下、更に好ましくは0.05%以下とする。
(V: 0.10% or less)
V may be contained in an amount of 0.01% or more in order to increase the strength by precipitation hardening and improve the low temperature toughness by refining the microstructure. However, since excessive addition may cause deterioration of HAZ toughness and weldability, the upper limit of V content is preferably 0.10%. More preferably, the V amount is 0.08% or less, and further preferably 0.05% or less.

(B:0.0030%以下)
Bは、焼き入れ性を高めて母材やHAZの強度、靭性を向上させるため、0.0003%以上を含有させてもよい。ただし、過剰な添加によってHAZ靭性や溶接性が劣化する場合があるため、B量の上限は0.0030%が好ましい。より好ましくはB量を0.0020%以下、更に好ましくは0.0015%以下とする。
(B: 0.0030% or less)
B may be contained in an amount of 0.0003% or more in order to improve the hardenability and improve the strength and toughness of the base material and HAZ. However, since the HAZ toughness and weldability may deteriorate due to excessive addition, the upper limit of the B amount is preferably 0.0030%. More preferably, the B content is 0.0020% or less, and further preferably 0.0015% or less.

本発明の耐サワー鋼板の金属組織は、フェライト、ベイナイト、マルテンサイト、パーライトの1種又は2種以上からなる。これらの混合組織である場合、光学顕微鏡によって観察される結晶粒径よりも、有効結晶粒径の方が靱性との相関が強い。靭性を向上させるためには、有効結晶粒径を微細化することが望ましく、本発明の耐サワー鋼板は、板厚方向で表面から板厚の1/2の位置における有効結晶粒径の平均値が25μm以下であることが必要である。有効結晶粒径の25μmを超えて粗大化すると、−30℃以下の低温でDWTT特性を安定的に達成することができない。板厚1/2位置における有効結晶粒径は小さい方が好ましいため下限は規定しないが、製造コストの観点から5μm以上であってもよい。   The metal structure of the sour-resistant steel plate of the present invention is composed of one or more of ferrite, bainite, martensite, and pearlite. In the case of these mixed structures, the effective crystal grain size has a stronger correlation with toughness than the crystal grain size observed with an optical microscope. In order to improve toughness, it is desirable to reduce the effective crystal grain size, and the sour-resistant steel plate of the present invention has an average value of effective crystal grain size at a position half the plate thickness from the surface in the plate thickness direction. Is required to be 25 μm or less. When the effective crystal grain size exceeds 25 μm, the DWTT characteristics cannot be stably achieved at a low temperature of −30 ° C. or lower. Since it is preferable that the effective crystal grain size at the position of 1/2 the plate thickness is small, the lower limit is not specified, but it may be 5 μm or more from the viewpoint of manufacturing cost.

次に、本実施形態に係る耐サワー鋼板の製造方法を説明する。   Next, a method for manufacturing a sour-resistant steel plate according to this embodiment will be described.

上述した化学成分から構成される厚み200mm以上の連続鋳造鋳片を、400℃以下に冷却した後、900℃以上1050℃以下に加熱し、熱間圧延を施すことが好ましい。
鋳片を400℃以下に冷却せずにホットチャージで加熱炉に挿入すると、鋳造時に生成した粗大γ組織が加熱後に残存し、組織が十分に微細化せず低温靱性が劣化する場合がある。
It is preferable that a continuous cast slab having a thickness of 200 mm or more composed of the above-described chemical components is cooled to 400 ° C. or lower and then heated to 900 ° C. or higher and 1050 ° C. or lower to perform hot rolling.
When the slab is inserted into a heating furnace by hot charging without being cooled to 400 ° C. or lower, the coarse γ structure generated during casting remains after heating, and the structure may not be sufficiently refined and low temperature toughness may deteriorate.

鋼片の加熱温度は、圧延終了温度をAr3以上にするため、900℃以上が好ましい。一方、加熱温度が高いと、加熱γ粒が粗大化し、組織が十分に微細化せず低温靱性が劣化する場合があるため、1050℃以下が好ましい。より好ましくは、加熱温度を1000℃以下とする。   The heating temperature of the steel slab is preferably 900 ° C. or higher so that the rolling end temperature is Ar 3 or higher. On the other hand, when the heating temperature is high, the heated γ grains become coarse, the structure is not sufficiently refined, and the low temperature toughness may be deteriorated. More preferably, heating temperature shall be 1000 degrees C or less.

その後の熱間圧延では、γ低温域で1パス当りの圧下率の大きい圧下を数多く累積することによって、ミクロ組織が十分に微細化し、非常に良好な低温靱性が得られる。そのため、熱間圧延では、900℃以下の累積圧下率が60%以上であることが好ましく、パス回数の60%以上は、1パスあたりの圧下率が15%以上であることが好ましい。900℃以下での累積圧下率が60%未満であったり、1パス当りの圧下率が15%以上となるパス回数の割合が60%未満であったりすると、変態後のミクロ組織が微細化せず、良好な低温靱性が得られない場合がある。   In the subsequent hot rolling, a large number of rolling reductions with a large rolling reduction per pass are accumulated in the γ low temperature region, whereby the microstructure is sufficiently refined and very good low temperature toughness is obtained. Therefore, in hot rolling, the cumulative rolling reduction at 900 ° C. or less is preferably 60% or more, and the rolling reduction per pass is preferably 15% or more for 60% or more of the number of passes. If the cumulative rolling reduction at 900 ° C. or less is less than 60%, or the ratio of the number of passes at which the rolling reduction per pass is 15% or more is less than 60%, the microstructure after transformation becomes finer. Therefore, good low temperature toughness may not be obtained.

板厚が36.0mm以上45.0mm以下になるように熱間圧延を行い、Ar3以上で圧延を終了することが好ましい。熱間圧延の終了温度がAr3未満であると、フェライト変態に伴って中心偏析部へCが濃化し、硬化組織が形成されて耐HIC特性が劣化する場合がある。また、加速冷却をAr3以上の温度から開始するためにも、熱間圧延をAr3以上で終了することが好ましい。   It is preferable to perform hot rolling so that the plate thickness is 36.0 mm or more and 45.0 mm or less, and finish the rolling at Ar3 or more. If the end temperature of hot rolling is less than Ar3, C concentrates in the center segregation part with ferrite transformation, and a hardened structure is formed, which may deteriorate the HIC resistance. Also, in order to start accelerated cooling from a temperature of Ar3 or higher, it is preferable to end hot rolling at Ar3 or higher.

熱間圧延後は、Ar3以上から加速冷却を行うことが好ましい。加速冷却は中心偏析部のミクロ組織を改善して耐HIC特性を向上させるとともに、変態強化による高強度化と結晶粒微細化による高靭性化を可能にする。加速冷却の冷却速度は3℃/秒以上50℃/秒以下が好ましく、550℃以下300℃以上の範囲内で加速冷却を終了し、その後空冷することが好ましい。   After hot rolling, accelerated cooling is preferably performed from Ar3 or higher. Accelerated cooling improves the HIC resistance by improving the microstructure of the central segregation part, and also enables higher strength by transformation strengthening and higher toughness by grain refinement. The cooling rate of the accelerated cooling is preferably 3 ° C./second or more and 50 ° C./second or less, and it is preferable that the accelerated cooling is terminated within the range of 550 ° C. or less and 300 ° C. or more, and then air cooling is performed.

冷却開始温度がAr3未満であったり、冷却速度が3℃/秒未満であったり、冷却停止温度が550℃を超えたりすると、フェライト変態に伴う中心偏析部へのCの濃化によって硬化組織が形成されて耐HIC特性が劣化するとともに、変態強化が不十分となって強度が不足する場合がある。一方、冷却速度が50℃/秒を超えたり水冷停止温度が300℃未満であったりすると、低温変態生成物が大量に生成して耐HIC特性及び低温靱性が劣化する場合がある。   When the cooling start temperature is less than Ar 3, the cooling rate is less than 3 ° C./second, or the cooling stop temperature exceeds 550 ° C., the hardened structure is caused by the concentration of C in the central segregation part due to ferrite transformation. As a result, the HIC resistance is deteriorated and the transformation strengthening is insufficient and the strength may be insufficient. On the other hand, if the cooling rate exceeds 50 ° C./second or the water cooling stop temperature is less than 300 ° C., a large amount of low-temperature transformation products may be generated, and the HIC resistance and low-temperature toughness may deteriorate.

ここで、Ar3は下記で計算される冷却時の変態開始温度であり、鋼の化学成分を用いて計算される。
Ar3(℃)=868−396×C+24.6×Si−68.1×Mn
−36.1×Ni−20.7×Cu−24.8×Cr
+29.1×Mo
上式におけるC、Si、Mn,Ni,Cu,Cr,Moは質量%で表した含有量を意味する。
Here, Ar3 is the transformation start temperature at the time of cooling calculated below, and is calculated using the chemical composition of steel.
Ar3 (° C.) = 868-396 × C + 24.6 × Si-68.1 × Mn
-36.1 × Ni-20.7 × Cu-24.8 × Cr
+ 29.1xMo
C, Si, Mn, Ni, Cu, Cr, and Mo in the above formula mean contents expressed in mass%.

なお、本発明による鋼板をAc1(加熱時の変態開始温度)以下の温度に焼戻し処理することは何ら本発明鋼の特性を損なうものではない。本発明による鋼板は耐サワーラインパイプのほか、耐サワー圧力容器用としても適用できる。   Note that tempering the steel sheet according to the present invention to a temperature of Ac1 (transformation start temperature during heating) or lower does not impair the properties of the steel of the present invention. The steel plate according to the present invention can be applied not only to a sour line pipe but also to a sour pressure vessel.

以下に本発明の実施例を示すが、以下に示す実施例は本発明の一例であり、本発明は以下に説明する実施例に制限されるものではない。   Examples of the present invention will be described below. However, the following examples are examples of the present invention, and the present invention is not limited to the examples described below.

転炉により鋼を溶製し、連続鋳造により表1と表2に示す化学成分を有する厚さ240mmの鋳片を製造した。得られた鋳片を、室温まで冷却した後、980〜1030℃に加熱し、熱間圧延を行った。このとき、900℃以下の累積圧下率を75〜80%、そのときのパス回数の60%以上は、1パスあたり圧下率を15%以上とした。また、圧延終了温度を770〜790℃とし、熱間圧延に引き続き、750〜770℃の範囲内から5〜35℃/秒の加速冷却を適用し、330〜430℃の範囲内で加速冷却を停止し、その後、空冷した。表1及び2から明らかであるように、圧延終了温度及び加速冷却の開始温度は、鋼のAr3よりも高温である。   Steel was melted by a converter and cast pieces having a thickness of 240 mm having chemical components shown in Tables 1 and 2 were produced by continuous casting. The obtained slab was cooled to room temperature and then heated to 980 to 1030 ° C. to perform hot rolling. At this time, the cumulative reduction rate of 900 ° C. or less was 75 to 80%, and the reduction rate per pass was 15% or more for 60% or more of the number of passes at that time. Further, the rolling end temperature is set to 770 to 790 ° C, and subsequently to hot rolling, accelerated cooling of 5 to 35 ° C / second is applied from the range of 750 to 770 ° C, and accelerated cooling is performed within the range of 330 to 430 ° C. Stopped and then air cooled. As is clear from Tables 1 and 2, the rolling end temperature and the start temperature of accelerated cooling are higher than Ar3 of steel.

Figure 2017155290
Figure 2017155290

Figure 2017155290
Figure 2017155290

得られた鋼板から圧延方向に垂直な幅方向を長手方向として、API5L規格に準拠した全厚試験片を採取し、API規格の2000に準拠して、室温で引張試験を行った。また、DWTT試験片を採取し、片側表面を切削して3/4インチに減厚して落重引裂試験を行った。低温靭性は延性破面率遷移温度(DWTT85%SATT[℃])で評価した。   A full-thickness test piece based on the API5L standard was taken from the obtained steel sheet with the width direction perpendicular to the rolling direction as the longitudinal direction, and a tensile test was performed at room temperature based on the API standard 2000. Further, a DWTT test piece was collected, the surface on one side was cut, and the thickness was reduced to 3/4 inch, and a drop weight tear test was performed. The low temperature toughness was evaluated by the ductile fracture surface transition temperature (DWTT 85% SATT [° C.]).

板厚1/2位置における有効結晶粒径は、その部分のミクロ試験片の断面において、EBSDを用いて測定した。EBSDによって0.02mm2以上の面積にわたって結晶方位測定を行い、結晶方位差が3度以内の領域を有効結晶粒とみなし、円相当直径の平均値を有効結晶粒径として求めた。 The effective crystal grain size at the 1/2 position of the plate thickness was measured using EBSD in the cross section of the micro test piece at that portion. The crystal orientation was measured over an area of 0.02 mm 2 or more by EBSD, the region where the crystal orientation difference was within 3 degrees was considered as the effective crystal grain, and the average value of the equivalent circle diameter was determined as the effective crystal grain size.

また、母材のHIC試験は、NACE TM0284に準拠し、NACE溶液(H2Sを1気圧で飽和した5%NaCl+0.5%酢酸水溶液、pH2.7)を用いて実施し、HIC面積率CARとHIC長さ率CLRを測定した。 In addition, the HIC test of the base material was conducted using a NACE solution (5% NaCl + 0.5% acetic acid aqueous solution saturated with H 2 S at 1 atm, pH 2.7) according to NACE TM0284, and the HIC area ratio CAR HIC length ratio CLR was measured.

更に、HAZ靭性を評価するためにUO鋼管のシーム溶接部に相当する内面1パスと外面1パスのサブマージアーク溶接を行い、溶接継手を作製した。なお、溶接金属は、−30℃で100J以上の靭性が得られるように、低温仕様の溶接材料を用いた。溶接継手の会合部を基準にシャルピー衝撃試験片を採取し、溶接金属とHAZとの比率が50:50になるように2mmVノッチを施し、−30℃で3本の試験を行って平均値と最低値を測定した。表3、表4に鋼板の板厚、機械的性質、耐HIC特性、HAZ靭性を示す。   Furthermore, in order to evaluate the HAZ toughness, a submerged arc welding of one inner surface and one outer surface corresponding to the seam welded portion of the UO steel pipe was performed to produce a welded joint. In addition, the welding metal used the welding material of a low temperature specification so that the toughness of 100J or more may be acquired at -30 degreeC. A Charpy impact test piece was taken with reference to the joint of the welded joint, 2 mmV notch was applied so that the ratio of weld metal to HAZ was 50:50, and three tests were performed at -30 ° C to obtain the average value. The lowest value was measured. Tables 3 and 4 show the steel sheet thickness, mechanical properties, HIC resistance, and HAZ toughness.

Figure 2017155290
Figure 2017155290

Figure 2017155290
Figure 2017155290

表3に示すように、本発明鋼は、板厚36.0〜45.0mmの鋼板において、API 5L X65以上(降伏強度YS:448MPa以上、引張強度TS:535MPa以上)を満足する母材の強度と、落重引裂試験における延性破面率遷移温度が−30℃以下の低温となっており、良好なDWTT特性を有する。有効結晶粒径は25μm以下に微細化している。同時に、本発明鋼は優れた耐HIC特性、HAZ靭性を有する。   As shown in Table 3, the steel of the present invention is a base material satisfying API 5L X65 or more (yield strength YS: 448 MPa or more, tensile strength TS: 535 MPa or more) in a steel plate having a thickness of 36.0 to 45.0 mm. The strength and ductile fracture surface transition temperature in the drop weight tear test are as low as −30 ° C. or lower, and it has good DWTT characteristics. The effective crystal grain size is refined to 25 μm or less. At the same time, the steel of the present invention has excellent HIC resistance and HAZ toughness.

一方、表2に示すように、従来鋼は化学成分が本発明の範囲から外れているため、表4に示すように、母材の機械的性質、耐HIC特性、溶接部のHAZ靭性が劣ったりする問題がある。   On the other hand, as shown in Table 2, the chemical composition of the conventional steel is out of the scope of the present invention. Therefore, as shown in Table 4, the base material has poor mechanical properties, HIC resistance, and HAZ toughness of the weld. There is a problem.

符号B1はC量が低すぎ、符号B4はMn量が低すぎるために強度が不足している。符号B2はC量が高すぎるために耐HIC特性が劣化し、HAZ靭性も劣化傾向にある。符号B3はSi量が高すぎるためにHAZ靭性が劣化している。符号B5はMn量が高すぎるために耐HIC特性が劣化している。   The code B1 has an insufficient C amount, and the code B4 has an insufficient Mn content because the Mn amount is too low. Since the amount of C of the code B2 is too high, the HIC resistance is deteriorated, and the HAZ toughness is also in a tendency to deteriorate. Since the amount of Si is too high, the sign B3 has degraded HAZ toughness. Since the amount of Mn is too high, the sign B5 has deteriorated HIC resistance.

符号B6はP量が高すぎるために耐HIC特性が劣化し、HAZ靭性も劣化傾向にある。符号B7はS量が高すぎるために耐HIC特性が劣化し、DWTT特性も劣化傾向にある。符号B8はAl量が低すぎるために脱酸が不十分となってO量が高すぎ、耐HIC特性とHAZ靭性が劣化し、DWTT特性も劣化傾向にある。符号B9はAl量が高すぎるためにHAZ靭性が劣化し、DWTT特性も劣化傾向にある。符号B10はTi量が低すぎ、符号B17はN量が低すぎるためにDWTT特性とHAZ靭性が劣化している。符号B11はTi量が高すぎ、符号B18はN量が高すぎるためにHAZ靭性が劣化し、DWTT特性も劣化傾向にある。   Since the amount of P of the code B6 is too high, the anti-HIC characteristics deteriorate and the HAZ toughness also tends to deteriorate. Since the amount of S in the code B7 is too high, the anti-HIC characteristics deteriorate and the DWTT characteristics tend to deteriorate. In B8, since the Al amount is too low, deoxidation is insufficient, the O amount is too high, the HIC resistance and HAZ toughness are deteriorated, and the DWTT property is also in a tendency to deteriorate. In the code B9, the amount of Al is too high, so that the HAZ toughness is deteriorated and the DWTT characteristic is also in a tendency to deteriorate. The code B10 has a Ti amount that is too low, and the code B17 has a N content that is too low, so that the DWTT characteristics and the HAZ toughness are deteriorated. The code B11 has an excessively high amount of Ti, and the code B18 has an excessively high amount of N, so that the HAZ toughness deteriorates and the DWTT characteristics also tend to deteriorate.

符号B12はNb量が高すぎるために耐HIC特性が劣化し、HAZ靭性も劣化傾向にある。符号B13はCa量が低すぎ、符号B15はZr量が低すぎるために耐HIC特性とDWTT特性が劣化し、HAZ靭性も劣化傾向にある。符号B14はCa量が高すぎ、符号B16はZr量が高すぎるために耐HIC特性とHAZ靭性が劣化し、DWTT特性も劣化傾向にある。   Since the amount of Nb is too high for the code B12, the anti-HIC characteristics deteriorate and the HAZ toughness also tends to deteriorate. The code B13 has an excessively low Ca content, and the code B15 has an excessively low Zr content, so that the HIC resistance and the DWTT characteristics deteriorate, and the HAZ toughness tends to deteriorate. The code B14 has an excessively high amount of Ca, and the code B16 has an excessively high amount of Zr, so that the HIC resistance and HAZ toughness deteriorate, and the DWTT characteristic tends to deteriorate.

符号B19はO量が低すぎるため耐HIC特性とDWTT特性が劣化し、HAZ靭性も劣化傾向にある。符号B20はO量が高すぎるために耐HIC特性とHAZ靭性が劣化し、DWTT特性も劣化傾向にある。符号B21は硫化物形態制御の指標である式(1)の値が低すぎ、符号B22は式(1)の値が高すぎるため、耐HIC特性が劣化している。   Since the amount of O is too low, the BIC resistance and DWTT characteristics deteriorate, and the HAZ toughness also tends to deteriorate. Since the amount of O in the code B20 is too high, the HIC resistance and HAZ toughness deteriorate, and the DWTT characteristic also tends to deteriorate. Since the value of the formula (1) which is an index of sulfide form control is too low for the code B21 and the value of the formula (1) is too high for the code B22, the HIC resistance is deteriorated.

本発明は、優れた耐HIC特性とAPI 5L X65以上の強度を有し、かつ従来よりも優れた低温靱性を有する厚手のラインパイプ用鋼板の製造に関するものであり、鉄鋼業においては厚板ミルに適用することが望ましい。   The present invention relates to the manufacture of thick steel plates for line pipes having excellent HIC resistance and API 5L X65 strength and superior low temperature toughness than before. It is desirable to apply to.

Claims (4)

質量%で、
C :0.040%以上、0.150%以下、
Mn:1.00%以上、2.00%以下、
S :0.0001%以上、0.0010%以下、
Ca:0.0005%以上、0.0030%以下、
Zr:0.0005%以上、0.030%以下、
O :0.0010%以上、0.0030%以下、
Al:0.001%以上、0.050%以下、
Ti:0.005%以上、0.020%以下、
N :0.0015%以上、0.0050%以下
を含有し、
Si:0.40%以下、
P :0.015%以下、
Nb:0.004%以下
に制限し、残部がFe及び不可避的不純物からなり、Ca、Zr、O、Sの含有量が下記(1)式を満足し、板厚方向で表面から板厚の1/2の位置における有効結晶粒径の平均値が25μm以下であることを特徴とする耐サワー鋼板。
1.0≦(Ca−0.83×O)/(1.25×S)
+(Zr−1.90×O)/(2.85×S)
≦10.0・・・ (1)
上記(1)式において、(Ca−0.83×O)、(Zr−1.90×O)が負の値になる場合は各項をゼロとして計算する。
% By mass
C: 0.040% or more, 0.150% or less,
Mn: 1.00% or more, 2.00% or less,
S: 0.0001% or more, 0.0010% or less,
Ca: 0.0005% or more, 0.0030% or less,
Zr: 0.0005% or more, 0.030% or less,
O: 0.0010% or more, 0.0030% or less,
Al: 0.001% or more, 0.050% or less,
Ti: 0.005% or more, 0.020% or less,
N: 0.0015% or more and 0.0050% or less,
Si: 0.40% or less,
P: 0.015% or less,
Nb: limited to 0.004% or less, the balance is made of Fe and inevitable impurities, the contents of Ca, Zr, O, S satisfy the following formula (1), A sour-resistant steel plate, wherein an average value of effective crystal grain size at a position of 1/2 is 25 μm or less.
1.0 ≦ (Ca−0.83 × O) / (1.25 × S)
+ (Zr-1.90 × O) / (2.85 × S)
≦ 10.0 (1)
In the above equation (1), when (Ca−0.83 × O) and (Zr−1.90 × O) are negative values, each term is calculated as zero.
更に、質量%で、
Cu:1.0%以下、
Ni:1.0%以下、
Cr:1.0%以下、
Mo:0.5%以下、
W :0.5%以下、
Co:0.5%以下
の1種又は2種以上を含有することを特徴とする請求項1に記載の耐サワー鋼板。
Furthermore, in mass%,
Cu: 1.0% or less,
Ni: 1.0% or less,
Cr: 1.0% or less,
Mo: 0.5% or less,
W: 0.5% or less,
The sour-resistant steel plate according to claim 1, comprising Co: 0.5% or less of one kind or two or more kinds.
更に、質量%で、
V :0.10%以下、
B :0.0030%以下
の一方又は両方を含有することを特徴とする請求項1又は2に記載の耐サワー鋼板。
Furthermore, in mass%,
V: 0.10% or less,
B: One or both of 0.0030% or less are contained, The sour-resistant steel plate of Claim 1 or 2 characterized by the above-mentioned.
板厚が36.0mm以上45.0mm以下、
降伏応力が448MPa以上、
引張強さが535MPa以上
であることを特徴とする請求項1〜3の何れか1項に記載の耐サワー鋼板。
The plate thickness is 36.0 mm or more and 45.0 mm or less,
Yield stress is 448 MPa or more,
The sour-resistant steel plate according to any one of claims 1 to 3, wherein the tensile strength is 535 MPa or more.
JP2016039877A 2016-03-02 2016-03-02 Sour-resistant steel plate Active JP6642118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016039877A JP6642118B2 (en) 2016-03-02 2016-03-02 Sour-resistant steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016039877A JP6642118B2 (en) 2016-03-02 2016-03-02 Sour-resistant steel plate

Publications (2)

Publication Number Publication Date
JP2017155290A true JP2017155290A (en) 2017-09-07
JP6642118B2 JP6642118B2 (en) 2020-02-05

Family

ID=59809256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016039877A Active JP6642118B2 (en) 2016-03-02 2016-03-02 Sour-resistant steel plate

Country Status (1)

Country Link
JP (1) JP6642118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755765A (en) * 2021-08-24 2021-12-07 钢铁研究总院 Hydrogen-embrittlement-resistant ultrahigh-strength steel and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052926A1 (en) * 2008-11-06 2010-05-14 新日本製鐵株式会社 Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
WO2010052928A1 (en) * 2008-11-07 2010-05-14 新日本製鐵株式会社 Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
WO2010052927A1 (en) * 2008-11-06 2010-05-14 新日本製鐵株式会社 Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
JP2010209460A (en) * 2009-02-12 2010-09-24 Nippon Steel Corp High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
JP2017110249A (en) * 2015-12-15 2017-06-22 新日鐵住金株式会社 Sour resistant steel plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052926A1 (en) * 2008-11-06 2010-05-14 新日本製鐵株式会社 Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
WO2010052927A1 (en) * 2008-11-06 2010-05-14 新日本製鐵株式会社 Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
WO2010052928A1 (en) * 2008-11-07 2010-05-14 新日本製鐵株式会社 Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
JP2010209460A (en) * 2009-02-12 2010-09-24 Nippon Steel Corp High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
JP2017110249A (en) * 2015-12-15 2017-06-22 新日鐵住金株式会社 Sour resistant steel plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755765A (en) * 2021-08-24 2021-12-07 钢铁研究总院 Hydrogen-embrittlement-resistant ultrahigh-strength steel and manufacturing method thereof
CN113755765B (en) * 2021-08-24 2022-07-08 钢铁研究总院 Hydrogen-embrittlement-resistant ultrahigh-strength steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP6642118B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP5950045B2 (en) Steel sheet and manufacturing method thereof
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
JP4484123B2 (en) High strength and excellent base material for clad steel plate with excellent weld heat affected zone toughness
WO2013089156A1 (en) High-strength h-section steel with excellent low temperature toughness, and manufacturing method thereof
WO2018185851A1 (en) Vertical-seam-welded steel pipe
WO2017183719A1 (en) High tensile steel and marine structure
KR20120099158A (en) High-strength welded steel pipe and method for producing the same
JP5445723B1 (en) Ultra high strength steel plate for welding
WO2014175122A1 (en) H-shaped steel and method for producing same
JPWO2011148754A1 (en) Thick steel plate manufacturing method
JP2019214752A (en) Low-yield-ratio thick steel plate
JP2011202214A (en) Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same
JP2017193759A (en) Thick steel sheet and manufacturing method therefor
WO2018079026A1 (en) Steel for high heat input welding
JP2012021214A (en) Hot-rolled high tensile steel sheet for high strength welded steel pipe for line pipe, and method of producing the same
WO2018185853A1 (en) Vertical-seam-welded steel pipe
JP2022510933A (en) Steel materials with excellent hydrogen-induced crack resistance and their manufacturing methods
JP6665515B2 (en) Sour-resistant steel plate
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
WO2017135179A1 (en) Steel for high heat input welding
JP6421907B1 (en) Rolled H-section steel and its manufacturing method
JP2016156032A (en) H-shaped steel for low temperature and method for producing the same
JP6642118B2 (en) Sour-resistant steel plate
JP2010090406A (en) Low yield ratio steel for low temperature use, and producing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R151 Written notification of patent or utility model registration

Ref document number: 6642118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151