JP6665515B2 - Sour-resistant steel plate - Google Patents

Sour-resistant steel plate Download PDF

Info

Publication number
JP6665515B2
JP6665515B2 JP2015244150A JP2015244150A JP6665515B2 JP 6665515 B2 JP6665515 B2 JP 6665515B2 JP 2015244150 A JP2015244150 A JP 2015244150A JP 2015244150 A JP2015244150 A JP 2015244150A JP 6665515 B2 JP6665515 B2 JP 6665515B2
Authority
JP
Japan
Prior art keywords
less
content
sour
toughness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015244150A
Other languages
Japanese (ja)
Other versions
JP2017110249A (en
Inventor
児島 明彦
明彦 児島
恭平 石川
恭平 石川
篠原 康浩
康浩 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015244150A priority Critical patent/JP6665515B2/en
Publication of JP2017110249A publication Critical patent/JP2017110249A/en
Application granted granted Critical
Publication of JP6665515B2 publication Critical patent/JP6665515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、硫化水素を含む天然ガス、石油等を輸送する耐サワー鋼管などの素材に好適な、サワー環境で使用される耐サワー鋼板に関するものである。   TECHNICAL FIELD The present invention relates to a sour resistant steel plate used in a sour environment, which is suitable for a material such as a sour resistant steel pipe for transporting natural gas containing hydrogen sulfide, oil and the like.

近年、原油・天然ガス井戸への海水の注入や、品質が劣る資源の開発に伴って、硫化水素が存在するサワー環境に鋼材が曝される機会が増えている。サワー環境で鋼材を使用する際には、水素誘起割れ(Hydrogen Induced Cracking:HIC)の発生が問題になる場合がある。また、ラインパイプに使用される耐サワー鋼板には、優れた耐水素誘起割れ特性(耐HIC特性)だけでなく、輸送効率の向上などの観点から高強度化、厚手化が要求される。更には、エネルギー資源開発の寒冷地化が進んでおり、耐サワー鋼板には低温靭性も要求されるようになっている。   In recent years, with the injection of seawater into crude oil / natural gas wells and the development of inferior resources, there is an increasing number of opportunities for steel materials to be exposed to sour environments where hydrogen sulfide is present. When a steel material is used in a sour environment, the occurrence of Hydrogen Induced Cracking (HIC) may be a problem. Further, the sour-resistant steel plate used for the line pipe is required to have not only excellent hydrogen-induced cracking resistance (HIC resistance) but also high strength and thickening from the viewpoint of improving transport efficiency. Furthermore, the development of energy resources in colder regions is progressing, and sour-resistant steel sheets are also required to have low-temperature toughness.

優れた耐HIC特性を有する鋼板を得るためには、S、Oなどの不純物の制限による鋼の高純度化や高清浄度化、Ca添加による硫化物系介在物の形態制御が有効である。また、加速冷却による中心偏析部のミクロ組織の改善、特に硬化組織の生成の抑制によって、耐HIC特性を向上させる方法が提案されている(例えば、特許文献1、参照)。更に、連続鋳造時の軽圧下による中心偏析の低減や、熱間圧延前の鋼片の水素量の制限により、中心偏析部の未圧着部の残存を防止し、耐HIC特性を向上させる方法が提案されている(例えば、特許文献2、参照)。   In order to obtain a steel sheet having excellent HIC resistance, it is effective to purify and purify steel by limiting impurities such as S and O, and to control the form of sulfide-based inclusions by adding Ca. Further, there has been proposed a method for improving the HIC resistance by improving the microstructure of the center segregated portion by accelerated cooling, particularly by suppressing the formation of a hardened structure (see, for example, Patent Document 1). Furthermore, there is a method of preventing center unseparated portions from being left uncompressed and improving HIC resistance by reducing center segregation due to light reduction during continuous casting and limiting the amount of hydrogen in the steel slab before hot rolling. It has been proposed (for example, see Patent Document 2).

ところで、高強度化を達成するためにNbを添加した鋼では、鋳片の加熱時に固溶せずに溶け残った粗大なNb析出物(Nb炭窒化物)が鋼板中でクラスターを形成し、これらが起点となって耐HIC特性を劣化させる場合がある。これに対して、Nb析出物を鋳片加熱時の限定された時間内で完全に固溶させるために、かなりの高温に鋳片を加熱すると、オーステナイト(γ)粒の粗大化やエネルギーコストの増大を招く。このような問題に対して、Nb量を制限した厚鋼板が提案されている(例えば、特許文献3、参照)。   By the way, in steel to which Nb is added in order to achieve high strength, coarse Nb precipitates (Nb carbonitride) which are not dissolved but remain dissolved when the slab is heated form clusters in the steel sheet, These may serve as starting points to degrade the HIC resistance. On the other hand, when the slab is heated to a fairly high temperature in order to completely dissolve the Nb precipitate in solid solution within a limited time when the slab is heated, coarsening of austenite (γ) grains and reduction of energy cost are required. Cause an increase. To solve such a problem, a thick steel plate in which the amount of Nb is limited has been proposed (for example, see Patent Document 3).

一方、本発明者らの一部は、Nbを添加しない鋼に加速冷却を適用することにより、高強度の耐サワー鋼板を製造する方法を提案している(例えば、特許文献4、参照)。これは、−45℃以下の低温の環境で使用される耐サワー鋼板の製造技術を提案するものである。特許文献4は、(1)Nb量の制限による耐HIC特性の向上、(2)加熱温度の低温化によるγ粒の粗大化抑制、(3)1パス当りの圧下率を高めた低温域での圧延によるγ組織の微細化、(4)圧延後の加速冷却による耐HIC特性の確保と変態強化、を実現する製造技術である。   On the other hand, some of the present inventors have proposed a method of manufacturing a high-strength sour-resistant steel sheet by applying accelerated cooling to steel to which Nb is not added (for example, see Patent Document 4). This proposes a technique for manufacturing a sour-resistant steel sheet used in a low-temperature environment of -45 ° C or lower. Patent Document 4 discloses (1) improvement in HIC resistance by limiting the amount of Nb, (2) suppression of coarsening of γ grains by lowering the heating temperature, and (3) in a low-temperature region where the rolling reduction per pass is increased. This is a manufacturing technique for realizing the refinement of the γ-structure by the rolling of (4) and the securing of the HIC resistance and the enhancement of the transformation by accelerated cooling after the rolling.

また、本発明者らの一部は、Ti添加鋼にMgを含有させることによって、鋳片加熱時のγ粒の成長を顕著に抑制する技術を提案している(例えば、特許文献5、参照)。この技術では、鋳片の加熱温度は1150〜1300℃という高温であるが、平均γ粒径は100μm以下である。しかし、鋳片加熱時のγ粒径を更に微細化するには、加熱温度の低温化と併せて新しいγ粒成長抑制技術の適用が必要になる。   In addition, some of the present inventors have proposed a technique of remarkably suppressing the growth of γ grains during slab heating by adding Mg to Ti-added steel (for example, see Patent Document 5). ). In this technique, the heating temperature of the slab is as high as 1150 to 1300 ° C., but the average γ particle size is 100 μm or less. However, in order to further reduce the γ-grain size during slab heating, it is necessary to apply a new γ-grain growth suppression technology in addition to lowering the heating temperature.

特開2000−199029号公報JP-A-2000-199029 特開2010−209460号公報JP 2010-209460 A 特開2011−1607号公報JP 2011-1607 A 特開平7−316652号公報JP-A-7-316652 特開2001−254139号公報JP 2001-254139 A

特許文献4では、耐HIC特性の安定化を図るため、Nbを添加せず、鋳片を低温加熱し、圧延終了温度をAr3(冷却時の変態開始温度)よりも20〜30℃程度高めて、Ar3以上から加速冷却を開始する耐サワー鋼板の製造技術が提案されている。しかし、耐HIC特性を向上させる対策のうち、Nb無添加及び圧延終了温度の高温化は、熱加工制御プロセス(Thermo-Mechanical Control Process、TMCP)の効果を減じて、鋼板の金属組織の粗大化を招く。特に、鋼板の板厚が30mmを超える場合、鋼板の金属組織の微細化が不十分となり、−50℃のような低温環境でBDWTT(Battelle Drop Weight Tear Test)特性を安定的に達成することは困難であった。ここで、BDWTT特性は、ラインパイプの低温靱性として重要な脆性亀裂伝播停止特性である。   In Patent Document 4, in order to stabilize the HIC resistance, the slab is heated at a low temperature without adding Nb, and the rolling end temperature is raised by about 20 to 30 ° C. higher than Ar 3 (transformation start temperature at the time of cooling). A technique for producing a sour-resistant steel sheet that starts accelerated cooling from Ar3 or higher has been proposed. However, among the measures to improve the HIC resistance, the addition of Nb and the increase in the end-of-rolling temperature reduce the effect of the thermo-mechanical control process (TMCP) and increase the metal structure of the steel sheet. Invite. In particular, when the thickness of the steel sheet exceeds 30 mm, the metal structure of the steel sheet is not sufficiently refined, and it is difficult to stably achieve the BDWTT (Battelle Drop Weight Tear Test) characteristics in a low temperature environment such as -50 ° C. It was difficult. Here, the BDWTT characteristic is a brittle crack propagation stopping characteristic that is important as the low-temperature toughness of the line pipe.

更に、本発明の対象である低温靭性の優れた厚手耐サワー鋼板は、鋼板の母材のBDWTT特性に加えて、溶接熱影響部のシャルピー衝撃特性を具備する必要がある。本発明は、このような実情に鑑み、硫化水素を含む天然ガス、石油等のエネルギー資源を輸送するラインパイプに用いられる、板厚が31mm以上45mm以下のAPI 5L X65級以上の耐HIC特性に優れた耐サワー鋼板において、−50℃以下の低温における鋼板の母材のBDWTT特性と溶接熱影響部(HAZ)のシャルピー衝撃特性を同時に確保することを課題とするものである。   Furthermore, the thick sour resistant steel sheet excellent in low-temperature toughness, which is the subject of the present invention, needs to have Charpy impact properties of the weld heat affected zone in addition to the BDWTT properties of the base material of the steel sheet. In view of such circumstances, the present invention provides an API 5L X65 class or higher HIC resistance of 31 mm or more and 45 mm or less used for line pipes for transporting energy resources such as natural gas containing hydrogen sulfide and petroleum. It is an object of the present invention to simultaneously ensure the BDWTT characteristics of the base material of a steel plate and the Charpy impact characteristics of a welding heat affected zone (HAZ) at a low temperature of -50 ° C or less in an excellent sour resistant steel plate.

本発明者らは、TMCPの初期段階である鋳片加熱時において、新しいγ粒成長抑制技術を適用し、加熱時のγ粒径を従来に比べて著しく微細化することを検討した。そして、本発明者らは、耐HIC特性の観点からCa添加かつ極低Sとし、Nbを添加しない場合、Ti−Mg添加によるピンニング効果を更に高めるには、Al添加量を0.02%以下に制限する必要があることを見出した。特に、900〜1050℃の極低温加熱条件では、微細なMg含有酸化物を核として複合析出するTiNと、地鉄中に単独析出するTiNにより、極めて強力なγ粒成長抑制効果が発現することがわかった。   The present inventors have studied a method of applying a new γ-grain growth suppression technique at the time of casting slab heating, which is the initial stage of TMCP, to significantly reduce the γ-grain size at the time of heating as compared with the conventional technique. In view of the HIC resistance, the present inventors set Ca addition and extremely low S, and when Nb was not added, in order to further enhance the pinning effect by Ti-Mg addition, the Al addition amount was 0.02% or less. Found that it is necessary to limit to. In particular, under extremely low temperature heating conditions of 900 to 1050 ° C., extremely strong γ-grain growth suppressing effect is exhibited by TiN that precipitates compositely with fine Mg-containing oxides as nuclei and TiN that solely precipitates in ground iron. I understood.

本発明はこのような知見に基づいてなされたものであり、その要旨は、以下の通りである。
本発明の一態様に係る耐サワー鋼板は、
(1)質量%で、C:0.020%以上、0.060%以下、Mn:1.00%以上、1.60%以下、S:0.0001%以上、0.0010%以下、Al:0.001%以上、0.020%以下、Ti:0.005%以上、0.020%以下、Ca:0.0005%以上、0.0030%以下、Mg:0.0003%以上、0.0030%以下、N:0.0015%以上、0.0050%以下、O:0.0010%以上、0.0030%以下、を含有し、Si:0.30%以下、P:0.015%以下、Nb:0.004%以下に制限し、残部がFe及び不可避的不純物から構成され、下記式(1)を満足し、板厚方向で表面から板厚の1/4の位置における有効結晶粒径の平均値が15μm以下である耐サワー鋼板である。
1.0≦〔Ca×(1−124×O)〕/(1.25×S)≦8.0 ・・・ (1)
The present invention has been made based on such knowledge, and the gist is as follows.
The sour resistant steel sheet according to one embodiment of the present invention,
(1) In mass%, C: 0.020% or more and 0.060% or less, Mn: 1.00% or more and 1.60% or less, S: 0.0001% or more and 0.0010% or less, Al : 0.001% or more, 0.020% or less, Ti: 0.005% or more, 0.020% or less, Ca: 0.0005% or more, 0.0030% or less, Mg: 0.0003% or more, 0 0.0030% or less, N: 0.0015% or more, 0.0050% or less, O: 0.0010% or more, 0.0030% or less, Si: 0.30% or less, P: 0.015 %, Nb: limited to 0.004% or less, the balance being composed of Fe and unavoidable impurities, satisfying the following expression (1), and effective at a position 1/4 of the sheet thickness from the surface in the sheet thickness direction. This is a sour-resistant steel sheet having an average crystal grain size of 15 μm or less.
1.0 ≦ [Ca × (1-124 × O)] / (1.25 × S) ≦ 8.0 (1)

(2)また、上記(1)に記載の耐サワー鋼板において、更に、質量%で、Cu:1.0%以下、 Ni:1.0%以下、Cr:1.0%以下、Mo:0.5%以下、W:0.5%以下、 Co:0.5%以下、V:0.10%以下、B:0.0030%以下、に制限してもよい。 (2) Further, in the sour resistant steel sheet according to (1), further, in mass%, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, Mo: 0 0.5% or less, W: 0.5% or less, Co: 0.5% or less, V: 0.10% or less, B: 0.0030% or less.

(3)また、上記(2)に記載の耐サワー鋼板において、更に、質量%で、REM:0.004%以下、Zr:0.005%以下、に制限し、上記式(1)に替えて下記式(2)を満足してもよい。
1.0≦〔(Ca+3.5×REM+2.3×Zr)×(1−124×O)〕/(1.25×S)≦8.0 ・・・ (2)
(3) Further, in the sour resistant steel sheet according to the above (2), the mass% is further limited to REM: 0.004% or less, Zr: 0.005% or less, and the above formula (1) is replaced. May satisfy the following expression (2).
1.0 ≦ [(Ca + 3.5 × REM + 2.3 × Zr) × (1-124 × O)] / (1.25 × S) ≦ 8.0 (2)

(4)さらに、上記(1)〜(3)の何れかに記載の耐サワー鋼板において、板厚が31mm以上45mm以下、降伏応力が448MPa以上、引張強さが535MPa以上、であってもよい。 (4) Further, in the sour resistant steel sheet according to any one of the above (1) to (3), the sheet thickness may be 31 mm or more and 45 mm or less, the yield stress may be 448 MPa or more, and the tensile strength may be 535 MPa or more. .

本発明によれば、米国石油協会(API)規格X65級以上の強度を有し、かつ、−50℃以下の低温において優れたBDWTT特性を有する、板厚が31mm以上45mm以下の、耐HIC特性に優れた耐サワー鋼板の提供が可能になる。そして、本発明によれば、低温のサワー環境における原油・天然ガスの生産、輸送に使用されるラインパイプを合理的に設計することが可能になる。したがって、本発明は産業上の貢献が極めて顕著である。   ADVANTAGE OF THE INVENTION According to this invention, it has the strength of more than American Petroleum Institute (API) standard X65 grade, and has the excellent BDWTT property at low temperature of -50 degreeC or less, the board thickness of 31 mm or more and 45 mm or less, and the HIC resistance. It is possible to provide an excellent sour resistant steel sheet. According to the present invention, it is possible to rationally design a line pipe used for production and transportation of crude oil and natural gas in a low-temperature sour environment. Therefore, the present invention has a remarkable industrial contribution.

本発明は、(a)Ti−Mg添加、(b)耐サワー成分(Ca添加、極低S化、Nb無添加)、(c)Alの低減、という特徴を有し、従来に比べて更に顕著なγ粒成長抑制効果が発現されるという知見に基づくものである。本発明では、γ中に存在する固溶Sと固溶Alとを低減することで、900〜1050℃に加熱したとき、即ち、特に、(d)極低温加熱、によって、TiNのオストワルド成長が抑制され、TiNの微細分散状態が維持される結果、極めて強力なγ粒成長抑制効果が発現される。   The present invention has the characteristics of (a) Ti-Mg addition, (b) Sour-resistant component (Ca addition, extremely low S content, no Nb addition), and (c) reduction of Al. This is based on the finding that a remarkable γ grain growth inhibitory effect is exhibited. In the present invention, Ostwald growth of TiN is reduced when heated to 900 to 1050 ° C., that is, particularly at (d) cryogenic heating, by reducing the solute S and solute Al present in γ. As a result, the fine dispersion state of TiN is maintained, and as a result, an extremely strong effect of suppressing the growth of γ grains is exhibited.

これは、TiNとγの界面(非整合界面)に偏析する固溶Cが、固溶S及び固溶Alを低減することで増加し、TiNのオストワルド成長を抑制するためと考えられる。γの界面に偏析する固溶Cは、低温になるほど増加することから、このTiNのオストワルド成長を抑制する効果(TiNオストワルド成長抑制効果)は加熱温度が低いほど顕著に現れる。したがって、上記(a)〜(d)により、本発明の耐サワー鋼板には、ピンニング粒子である超微細なMg含有酸化物を核とした複合析出TiNと地鉄中に単独析出したTiNが微細に多数存在する。本発明の耐サワー鋼板は、30mmを超える板厚であっても、鋼板の金属組織が微細化され、−50℃以下の低温でBDWTT特性を安定的に達成することが可能である。   This is considered to be because the solid solution C segregating at the interface (non-coherent interface) between TiN and γ increases by reducing the solid solution S and the solid solution Al, and suppresses Ostwald growth of TiN. Since the amount of solute C segregated at the interface of γ increases as the temperature decreases, the effect of suppressing the Ostwald growth of TiN (the effect of suppressing TiN Ostwald growth) becomes more pronounced as the heating temperature is lower. Therefore, according to the above (a) to (d), in the sour resistant steel sheet of the present invention, the composite precipitation TiN having the core of the ultrafine Mg-containing oxide as the pinning particles and the TiN solely precipitated in the ground iron are fine. There are many. The sour-resistant steel sheet of the present invention has a finer metal structure even if the thickness exceeds 30 mm, and can stably achieve the BDWTT characteristics at a low temperature of -50 ° C or lower.

このとき、板厚方向で表面から板厚の1/4の位置(以下、板厚1/4位置ということがある。)における有効結晶粒径の平均値は15μm以下である。ここで、有効結晶粒径とは、例えば、結晶方向の角度差が3度以内の領域の寸法であり、電子線後方散乱回折法(EBSD)によって測定することができる。金属組織がフェライトの場合は、結晶粒径が有効結晶粒径と同等である。一方、ベイナイトやマルテンサイトのような針状結晶である場合、有効結晶粒径は針状結晶の束の中で結晶の方向がほぼ揃った領域の寸法である。   At this time, the average value of the effective crystal grain size at a position 1 / of the plate thickness from the surface in the plate thickness direction (hereinafter, sometimes referred to as a 厚 position of the plate thickness) is 15 μm or less. Here, the effective crystal grain size is, for example, a size of a region where the angle difference in the crystal direction is within 3 degrees, and can be measured by an electron beam backscatter diffraction (EBSD). When the metal structure is ferrite, the crystal grain size is equal to the effective crystal grain size. On the other hand, in the case of a needle-like crystal such as bainite or martensite, the effective crystal grain size is a dimension of a region in the needle-like crystal bundle where the directions of the crystals are substantially aligned.

以下、本発明の一実施形態に係る耐サワー鋼板について説明する。   Hereinafter, a sour resistant steel sheet according to an embodiment of the present invention will be described.

(C:0.020%以上、0.060%以下)
Cは、鋼の強度を高める元素であり、X65以上の高強度を得るためにC量を0.020%以上とする。好ましくはC量を0.030%以上、より好ましくは0.035%以上、更に好ましくは0.040%以上とする。しかし、C量の増加は鋳片の中心偏析におけるMnやPの偏析を強めて耐HIC特性を著しく劣化させるため、その上限は0.060%である。好ましくはC量を0.055%以下、より好ましくは0.050%以下とする。
(C: 0.020% or more, 0.060% or less)
C is an element for increasing the strength of steel, and the C content is made 0.020% or more in order to obtain high strength of X65 or more. Preferably, the C content is 0.030% or more, more preferably 0.035% or more, and still more preferably 0.040% or more. However, an increase in the amount of C intensifies the segregation of Mn and P in the center segregation of the slab and significantly degrades the HIC resistance, so the upper limit is 0.060%. Preferably, the C content is 0.055% or less, more preferably 0.050% or less.

(Si:0.30%以下)
Siは、脱酸のために鋼に含有される場合があるが、Si量が多すぎると溶接性及びHAZ靭性が劣化するため、0.30%以下に制限する。本発明の鋼では、Al、Ti、Mgによって脱酸が可能であるから、下限は0%でもよいが、0.01%以上のSiを含有させることができる。HAZ靭性を考慮するとSi量を0.15%以下にすることが望ましい。より好ましくはSi量を0.10%以下とする。
(Si: 0.30% or less)
Si may be contained in steel for deoxidation, but if the amount of Si is too large, the weldability and the HAZ toughness deteriorate, so the content is limited to 0.30% or less. In the steel of the present invention, since deoxidation is possible with Al, Ti, and Mg, the lower limit may be 0%, but 0.01% or more of Si can be contained. In consideration of HAZ toughness, it is desirable that the amount of Si be 0.15% or less. More preferably, the Si content is 0.10% or less.

(Mn:1.00%以上、1.60%以下)
Mnは、焼入れ性を高めて鋼の強化に寄与する元素であり、X65以上の高強度を得るためにMn量を1.00%以上とする。好ましくはMn量を1.05%以上、より好ましくは1.10%以上、更に好ましくは1.15%以上とする。しかし、Mn量の増加は鋳片の中心偏析を強めて耐HIC特性を著しく劣化させるため、その上限は1.60%である。好ましくはMn量を1.55%以下、より好ましくは1.50%以下、更に好ましくは1.45%以下とする。
(Mn: 1.00% or more, 1.60% or less)
Mn is an element that enhances the hardenability and contributes to strengthening of the steel. In order to obtain a high strength of X65 or more, the Mn content is set to 1.00% or more. Preferably, the Mn content is 1.05% or more, more preferably 1.10% or more, and still more preferably 1.15% or more. However, an increase in the amount of Mn strengthens the center segregation of the slab and remarkably degrades the HIC resistance. Therefore, the upper limit is 1.60%. Preferably, the Mn content is 1.55% or less, more preferably 1.50% or less, and still more preferably 1.45% or less.

(P:0.015%以下)
Pは、不純物であり、鋳片の中心偏析を強めて耐HIC特性を著しく劣化させるため、P量を0.015%以下に制限する。Pは少ないほど耐HIC特性が向上するため、下限は特に規定しないが、製造コストの観点からP量は0.001%以上が好ましい。
(P: 0.015% or less)
P is an impurity, which strengthens the central segregation of the slab and significantly degrades the HIC resistance. Therefore, the P content is limited to 0.015% or less. The lower the content of P, the better the HIC resistance. Therefore, the lower limit is not particularly specified, but the content of P is preferably 0.001% or more from the viewpoint of manufacturing cost.

(S:0.0001%以上、0.0010%以下)
Sは、耐HIC特性に有害な、圧延によって延伸するMnSを形成する元素であり、S量を0.0010%以下に制限する必要がある。好ましくはS量を0.0008%以下、より好ましくは0.0006%以下とする。Sを低減することは母材及びHAZの靭性の観点からも好ましいが、製造コストの観点からS量を0.0001%以上とする。
(S: 0.0001% or more, 0.0010% or less)
S is an element which forms MnS which is harmful to the HIC resistance and is stretched by rolling, and the S content needs to be limited to 0.0010% or less. Preferably, the S content is 0.0008% or less, more preferably 0.0006% or less. Although reducing S is preferable from the viewpoint of the toughness of the base material and the HAZ, the amount of S is set to 0.0001% or more from the viewpoint of manufacturing cost.

(Ti:0.005%以上、0.020%以下)
Tiは、γ粒成長をピン止め効果によって抑制するTiN粒子を形成する元素である。鋳片を加熱する時に十分なγ粒成長抑制効果を発現させるために、Ti量の下限を0.005%とする。好ましくはTi量を0.007%以上する。しかし、Ti量が0.020%を超えると母材及びHAZの靭性が劣化したり、鋳片の表面品質が劣化するため、これが上限である。好ましくはTi量を0.018%以下、より好ましくは0.016%以下とする。
(Ti: 0.005% or more, 0.020% or less)
Ti is an element that forms TiN particles that suppress γ-grain growth by a pinning effect. The lower limit of the amount of Ti is set to 0.005% in order to exhibit a sufficient effect of suppressing the growth of γ grains when the slab is heated. Preferably, the Ti content is 0.007% or more. However, if the Ti content exceeds 0.020%, the toughness of the base material and the HAZ deteriorates, and the surface quality of the slab deteriorates, so this is the upper limit. Preferably, the Ti content is 0.018% or less, more preferably 0.016% or less.

(Nb:0.004%以下)
本発明では、耐HIC特性を確保するために、Nbを実質的に含有しないことが望ましい。Nb量が0.004%を超えると、鋳片を加熱する際に中心偏析部で溶け残ったNb炭窒化物が耐HIC特性を劣化させる。したがって、Nb量は0.004%に制限することが必要である。本発明はBDWTT特性を確保する観点から、鋳片を例えば1100℃以下のような低温加熱することが好ましく、この場合、Nb炭窒化物の溶け残りを防止するためにNb量を0.003%以下に低減することが好ましい。より好ましくはNb量を0.002%以下とする。NbはHAZ靭性にも有害であるから、Nbを実質的に含有しないことはHAZ靭性を高める効果がある。
(Nb: 0.004% or less)
In the present invention, it is desirable that Nb is not substantially contained in order to ensure the HIC resistance. If the Nb content exceeds 0.004%, Nb carbonitride left undissolved in the central segregation portion when the slab is heated deteriorates the HIC resistance. Therefore, it is necessary to limit the amount of Nb to 0.004%. In the present invention, from the viewpoint of ensuring the BDWTT characteristics, it is preferable to heat the slab to a low temperature of, for example, 1100 ° C. or less. In this case, the Nb content is set to 0.003% in order to prevent undissolved Nb carbonitride. It is preferable to reduce it below. More preferably, the Nb content is 0.002% or less. Since Nb is also harmful to HAZ toughness, the fact that Nb is not substantially contained has the effect of increasing HAZ toughness.

(Al:0.001%以上、0.020%以下)
Alは、本発明において適正範囲に制御されるべき重要な元素である。Alは、Mg及びOと結合して、TiNの析出核となる0.01〜0.1μmの超微細なMg−Al系酸化物を構成するから、Al量は0.001%以上が必要である。好ましくはAl量を0.002%以上、より好ましくは0.003%以上とする。しかし、Al量が0.02%を超えると、鋳片加熱時の固溶Alが増加して、本発明の特徴であるTiNオストワルド成長抑制効果が低下するため、これが上限である。好ましくはAl量を0.018%以下、より好ましくは0.016%以下とする。
(Al: 0.001% or more, 0.020% or less)
Al is an important element to be controlled to an appropriate range in the present invention. Since Al combines with Mg and O to form an ultrafine Mg-Al-based oxide of 0.01 to 0.1 μm serving as a precipitation nucleus of TiN, the amount of Al needs to be 0.001% or more. is there. Preferably, the Al content is 0.002% or more, more preferably 0.003% or more. However, if the amount of Al exceeds 0.02%, the amount of solid solution Al at the time of heating the slab increases, and the TiN Ostwald growth suppression effect, which is a feature of the present invention, is reduced. Therefore, this is the upper limit. Preferably, the Al content is 0.018% or less, more preferably 0.016% or less.

(Ca:0.0005%以上、0.0030%以下)
Caは、圧延で延伸化し難いCaS又はCa(O、S)を形成し、硫化物の形態を制御して、耐HIC特性を確保するために添加される重要な元素である。圧延によって伸長してHICの発生起点となるMnSの生成を防止するために、Ca量を0.0005%以上とする。好ましくはCa量を0.0007%以上、より好ましくは0.0010%以上とする。しかし、Ca量が0.0030%を超えると、Ca系介在物が増加して、HICや脆性破壊の発生起点となるので、これが上限である。好ましくはCa量を0.0025%以下、より好ましくは0.0020%以下とする。
(Ca: 0.0005% or more, 0.0030% or less)
Ca is an important element added to form CaS or Ca (O, S) which is difficult to be stretched by rolling, to control the form of the sulfide, and to secure the HIC resistance. The amount of Ca is set to 0.0005% or more in order to prevent the generation of MnS which is a starting point of HIC due to elongation by rolling. Preferably, the Ca content is 0.0007% or more, more preferably 0.0010% or more. However, if the Ca content exceeds 0.0030%, Ca-based inclusions increase and become the starting point of HIC and brittle fracture, so this is the upper limit. Preferably, the Ca amount is 0.0025% or less, more preferably 0.0020% or less.

(Mg:0.0003%以上、0.0030%以下)
Mgは、Al及びOと結合して0.01〜0.1μmの微細な酸化物を形成する重要な元素である。微細なMg系酸化物は、TiNの析出核として機能し、鋳片加熱時のγ粒成長を強力にピン止めする複合形態のTiNを微細に分散させる。また、Mgは、ミクロンサイズの粗大な酸化物を形成し、粗大酸化物上へのTiNの析出を抑制する。その結果として、Mgを含まない鋼に比べてよりも微細なTiNが地鉄に析出する傾向を強め、鋳片加熱時のγ粒成長を有効にピン止めする。このように、Mgは微細な酸化物と粗大な酸化物を形成し、直接的又は間接的にTiNの微細分散化を促し、鋳片加熱時のTiN粒子によるγ粒成長抑制力を格段に高める。加えて、このようなγ粒成長抑制効果はHAZ組織の微細化にも有効であり、HAZ靭性を高める効果がある。
このような効果を発揮するためには0.0003%以上のMg量が必要であり、これが下限である。好ましくはMg量を0.0005%以上とし、より好ましくは0.0008%以上、更に好ましくは0.0010%以上とする。一方、0.0030%を超えてMg量を含有させてもTiNの微細分散効果は飽和するので、これ以上のMgは金属学的に何ら効果をもたらさない。Mgは蒸気圧が高くて酸化力が強い非常に活性な元素であることから、必要以上に鋼中に含有させることは製造コストの上昇を招き好ましくない。したがって、Mg量の上限は0.0030%である。好ましくはMg量を0.0025%以下、より好ましくは0.0020%以下とする。
(Mg: 0.0003% or more, 0.0030% or less)
Mg is an important element that combines with Al and O to form a fine oxide of 0.01 to 0.1 μm. The fine Mg-based oxide functions as a precipitation nucleus of TiN, and finely disperses a composite form of TiN that strongly pins γ-grain growth during slab heating. Mg forms a micron-sized coarse oxide and suppresses precipitation of TiN on the coarse oxide. As a result, the tendency of finer TiN to precipitate on the base iron than that of steel containing no Mg is increased, and the growth of γ grains during slab heating is effectively pinned. As described above, Mg forms a fine oxide and a coarse oxide, directly or indirectly promotes fine dispersion of TiN, and significantly enhances the ability of TiN particles to suppress γ-grain growth during slab heating. . In addition, such an effect of suppressing the growth of γ grains is also effective for refining the HAZ structure, and has an effect of increasing the HAZ toughness.
In order to exert such an effect, the amount of Mg of 0.0003% or more is necessary, and this is the lower limit. Preferably, the Mg content is 0.0005% or more, more preferably 0.0008% or more, and still more preferably 0.0010% or more. On the other hand, even if the content of Mg exceeds 0.0030%, the fine dispersion effect of TiN saturates, so that more Mg does not have any metallurgical effect. Since Mg is a very active element having a high vapor pressure and a strong oxidizing power, it is not preferable to include Mg more than necessary in steel because it increases the production cost. Therefore, the upper limit of the amount of Mg is 0.0030%. Preferably, the Mg content is 0.0025% or less, more preferably 0.0020% or less.

(N:0.0015%以上、0.0050%以下)
Nは、γ粒成長をピン止めするTiN粒子を構成する元素である。鋳片加熱時に十分なγ粒成長抑制効果を発現するために、N量の下限を0.0015%として最低限のTiN粒子個数を確保する必要がある。好ましくはN量を0.0020%以上、より好ましくは0.0025%以上とする。一方、N量が0.0050%を超えると母材及びHAZの靭性が劣化したり、鋳片の表面品質が劣化するため、これが上限である。好ましくはN量を0.0045%以下、より好ましくは0.0040%以下とする。
(N: 0.0015% or more, 0.0050% or less)
N is an element constituting TiN particles that pin the γ grain growth. In order to exhibit a sufficient effect of suppressing the growth of γ grains during slab heating, it is necessary to secure the minimum number of TiN particles by setting the lower limit of the amount of N to 0.0015%. Preferably, the N content is 0.0020% or more, more preferably 0.0025% or more. On the other hand, if the N content exceeds 0.0050%, the toughness of the base material and the HAZ deteriorates, and the surface quality of the cast slab deteriorates, so this is the upper limit. Preferably, the N content is 0.0045% or less, more preferably 0.0040% or less.

(O:0.0010%以上、0.0030%以下)
Oは、MgやAlなどの脱酸元素と結合して0.01〜0.1μmの微細酸化物や数μmの粗大酸化物を形成する元素である。直接的又は間接的にTiNの微細分散に寄与するMg系酸化物を生成させるために、0.0010%以上のO量が必要である。しかし、Oが0.0030%を超えると、鋼の清浄度が低下して母材及びHAZの靭性が劣化する。HICの発生起点となる酸化物系介在物を低減し、Caによる硫化物形態制御を行うためにも、O量の上限は0.0030%である。
(O: 0.0010% or more, 0.0030% or less)
O is an element that combines with a deoxidizing element such as Mg or Al to form a fine oxide of 0.01 to 0.1 μm or a coarse oxide of several μm. In order to directly or indirectly generate an Mg-based oxide that contributes to fine dispersion of TiN, an O amount of 0.0010% or more is required. However, if O exceeds 0.0030%, the cleanliness of the steel decreases, and the toughness of the base material and the HAZ deteriorates. The upper limit of the O content is 0.0030% in order to reduce oxide-based inclusions, which are the starting points of HIC, and to control the sulfide form by Ca.

(1.0≦〔Ca×(1−124×O)〕/(1.25×S)≦8.0)
本発明の耐サワー鋼板では、耐HIC特性を確保するために、Sを可能な限り低減した上でCaを添加し、HIC発生起点となる延伸MnSの生成を抑えて、SをCaS又はCa(O、S)として固定する。このとき、SとCaとOのバランスが、1.0≦〔Ca×(1−124×O)〕/(1.25×S)を満たさない場合、延伸MnSが残存してHICが発生する。一方、〔Ca×(1−124×O)〕/(1.25×S)≦8.0を満たさない場合、Ca系介在物が増加して、HICが発生する。したがって、下記式(1)を満たす必要がある。
1.0≦〔Ca×(1−124×O)〕/(1.25×S)≦8.0 ・・・ (1)
耐HIC性を高めるために、〔Ca×(1−124×O)〕/(1.25×S)の下限を好ましくは1.5、より好ましくは2.0、上限を好ましくは7.5、より好ましくは7.0とする。
(1.0 ≦ [Ca × (1-124 × O)] / (1.25 × S) ≦ 8.0)
In the sour resistant steel sheet of the present invention, in order to secure HIC resistance, S is reduced as much as possible, and then Ca is added to suppress the generation of stretched MnS, which is a starting point of HIC, to reduce S to CaS or Ca ( O, S). At this time, if the balance between S, Ca and O does not satisfy 1.0 ≦ [Ca × (1-124 × O)] / (1.25 × S), stretched MnS remains and HIC occurs. . On the other hand, when [Ca × (1-124 × O)] / (1.25 × S) ≦ 8.0 is not satisfied, Ca-based inclusions increase and HIC occurs. Therefore, it is necessary to satisfy the following expression (1).
1.0 ≦ [Ca × (1-124 × O)] / (1.25 × S) ≦ 8.0 (1)
In order to increase the HIC resistance, the lower limit of [Ca × (1-124 × O)] / (1.25 × S) is preferably 1.5, more preferably 2.0, and the upper limit is preferably 7.5. , More preferably 7.0.

必要に応じて、Cu、Ni、Cr、Mo、W、Co、V、B、REM、Zrの1種又は2種以上を含有させてもよい。   If necessary, one or more of Cu, Ni, Cr, Mo, W, Co, V, B, REM, and Zr may be contained.

(Cu:1.0%以下)
Cuは、溶接性及びHAZ靱性に悪影響を及ぼすことなく母材の強度、靱性を向上させるため、0.1%以上を含有させてもよい。ただし、過剰な添加は熱間圧延時にCuクラックを発生し製造が困難となる場合や、溶接性に好ましくない場合があるため、Cu量の上限は1.0%が好ましい。より好ましくはCu量を0.5%以下、更に好ましくは0.3%以下とする。
(Cu: 1.0% or less)
Cu may be contained in an amount of 0.1% or more in order to improve the strength and toughness of the base material without adversely affecting the weldability and the HAZ toughness. However, excessive addition may cause production of Cu cracks during hot rolling, making production difficult or unfavorable in weldability. Therefore, the upper limit of the Cu content is preferably 1.0%. More preferably, the amount of Cu is 0.5% or less, and further preferably 0.3% or less.

(Ni:1.0%以下)
Niは、溶接性及びHAZ靱性に悪影響を及ぼすことなく母材の強度、靱性を向上させるため、0.1%以上を含有させてもよい。ただし、過剰な添加は経済性を損ない、溶接性に好ましくない場合があるため、Ni量の上限は1.0%が好ましい。より好ましくはNi量を0.8%以下、更に好ましくは0.5%以下とする。
(Ni: 1.0% or less)
Ni may be contained in an amount of 0.1% or more in order to improve the strength and toughness of the base material without adversely affecting the weldability and the HAZ toughness. However, excessive addition impairs economic efficiency and may be unfavorable for weldability. Therefore, the upper limit of the Ni content is preferably 1.0%. More preferably, the Ni content is set to 0.8% or less, further preferably 0.5% or less.

(Cr:1.0%以下)
Crは、連続鋳造鋳片において中心偏析し難く、かつ母材の強度を向上させるため、0.1%以上を含有させてもよい。ただし、過剰な添加は母材及びHAZの靱性、溶接性を劣化させる場合があるため、Cr量の上限は1.0%が好ましい。より好ましくはCr量を0.8%以下、更に好ましくは0.5%以下とする。
(Cr: 1.0% or less)
Cr may be contained in an amount of 0.1% or more in order to prevent segregation of the center in the continuous cast slab and improve the strength of the base material. However, since excessive addition may deteriorate the toughness and weldability of the base material and HAZ, the upper limit of the Cr content is preferably 1.0%. More preferably, the amount of Cr is 0.8% or less, further preferably 0.5% or less.

(Mo:0.5%以下)
Moは、母材の強度、靱性をともに向上させるため、0.1%以上を含有させてもよい。ただし、過剰な添加は母材及びHAZの靱性、溶接性の劣化を招く場合があるため、Mo量の上限は0.5%が好ましい。より好ましくはMo量を0.3%以下とする。
(Mo: 0.5% or less)
Mo may contain 0.1% or more in order to improve both the strength and the toughness of the base material. However, since excessive addition may cause deterioration of the toughness and weldability of the base material and HAZ, the upper limit of the Mo content is preferably 0.5%. More preferably, the Mo content is 0.3% or less.

(W:0.5%以下)
Wは、母材の強度、靱性をともに向上させるため、0.1%以上を含有させてもよい。ただし、ただし、過剰な添加は経済性を損ない、母材及びHAZの靱性、溶接性の劣化を招く場合があるため、W量の上限は0.5%が好ましい。より好ましくはW量を0.3%以下とする。
(W: 0.5% or less)
W may contain 0.1% or more to improve both the strength and the toughness of the base material. However, an excessive addition impairs economic efficiency and may cause deterioration of the toughness and weldability of the base material and the HAZ. Therefore, the upper limit of the W amount is preferably 0.5%. More preferably, the W content is 0.3% or less.

(Co:0.5%以下)
Coは、溶接性及びHAZ靱性に悪影響を及ぼすことなく母材の強度、靱性を向上させるため、0.1%以上を含有させてもよい。ただし、過剰な添加は経済性を損ない、溶接性に好ましくない場合があるため、Co量の上限は0.5%が好ましい。より好ましくはCo量を0.3%以下とする。
(Co: 0.5% or less)
Co may be contained in an amount of 0.1% or more in order to improve the strength and toughness of the base material without adversely affecting weldability and HAZ toughness. However, excessive addition impairs economic efficiency and may be unfavorable for weldability. Therefore, the upper limit of the Co content is preferably 0.5%. More preferably, the Co content is 0.3% or less.

(V:0.10%以下)
Vは、析出硬化による高強度化とミクロ組織の微細化による低温靱性の向上を可能にするため、0.01%以上を含有させてもよい。ただし、過剰な添加はHAZ靱性や溶接性の劣化を招く場合があるため、V量の上限は0.10%が好ましい。より好ましくはV量を0.08%以下、更に好ましくは0.05%以下とする。
(V: 0.10% or less)
V may be contained in an amount of 0.01% or more in order to increase the strength by precipitation hardening and improve the low-temperature toughness by making the microstructure finer. However, since excessive addition may cause deterioration of HAZ toughness and weldability, the upper limit of the V content is preferably 0.10%. More preferably, the V content is 0.08% or less, further preferably 0.05% or less.

(B:0.0030%以下)
Bは、焼き入れ性を高めて母材やHAZの強度、靭性を向上させるため、0.0003%以上を含有させてもよい。ただし、過剰な添加によってHAZ靭性や溶接性が劣化する場合があるため、B量の上限は0.0030%が好ましい。より好ましくはB量を0.0020%以下、更に好ましくは0.0015%以下とする。
(B: 0.0030% or less)
B may contain 0.0003% or more of B in order to enhance the hardenability and improve the strength and toughness of the base material and the HAZ. However, since the HAZ toughness and weldability may deteriorate due to excessive addition, the upper limit of the B content is preferably 0.0030%. More preferably, the B content is set to 0.0020% or less, and still more preferably 0.0015% or less.

(REM:0.004%以下)
REMとは、La、CeやNdなどの希土類元素を意味する。REMは、Caと同様にMnに優先してSと結合し、硫化物や酸硫化物を形成して延伸MnSの生成を抑制し、耐HIC特性を高めるため、0.0001%以上を含有させてもよい。しかし、REMが0.004%を超えて添加されると、REM系介在物が増加して、HICや脆性破壊の発生起点となる場合があるので、REMの含有量の上限は0.004%が好ましい。
(REM: 0.004% or less)
REM means a rare earth element such as La, Ce or Nd. REM, like Ca, binds to S in preference to Mn, forms sulfides and oxysulfides, suppresses the generation of stretched MnS, and contains 0.0001% or more to increase the HIC resistance. You may. However, if REM is added in excess of 0.004%, REM-based inclusions increase and may become a starting point of HIC or brittle fracture. Therefore, the upper limit of the REM content is 0.004%. Is preferred.

(Zr:0.005%以下)
Zrは、CaやREMと同様にMnに優先してSと結合し、硫化物や酸硫化物を形成して延伸MnSの生成を抑制し、耐HIC特性を高めるため、0.0001%以上を含有させてもよい。しかし、Zrが0.005%を超えて添加されると、Zr系介在物が増加して、HICや脆性破壊の発生起点となる場合があるので、Zr量の上限は0.005%が好ましい。
(Zr: 0.005% or less)
Zr combines with S in preference to Mn like Ca and REM, forms sulfides and oxysulfides, suppresses the generation of stretched MnS, and increases the HIC resistance by 0.0001% or more. You may make it contain. However, when Zr is added in excess of 0.005%, the amount of Zr-based inclusions increases and may become a starting point of HIC or brittle fracture. Therefore, the upper limit of the amount of Zr is preferably 0.005%. .

REM、Zrを含有する場合、REMはCaの3.5倍、ZrはCaの2.3倍の効果を奏するとして扱うことで、SとOのバランスを適正化することができる。したがって、上記式に代えて、下記式(2)を満足するように、REM、Zrの含有量を調整することが望ましい。なお、REM、Zrの一方を含有しない場合は、これらを0として計算すればよい。耐HIC性を高めるために、下記式(2)の下限を好ましくは1.5、より好ましくは2.0、上限を好ましくは7.5、より好ましくは7.0とする。
1.0≦〔(Ca+3.5×REM+2.3×Zr)×(1−124×O)〕/(1.25×S)≦8.0 ・・・ (2)
When REM and Zr are contained, it is possible to optimize the balance between S and O by treating REM as 3.5 times of Ca and Zr as 2.3 times of Ca. Therefore, it is preferable to adjust the contents of REM and Zr so as to satisfy the following expression (2) instead of the above expression. In the case where one of REM and Zr is not contained, it is sufficient to calculate them as 0. In order to increase the HIC resistance, the lower limit of the following formula (2) is preferably 1.5, more preferably 2.0, and the upper limit is preferably 7.5, more preferably 7.0.
1.0 ≦ [(Ca + 3.5 × REM + 2.3 × Zr) × (1-124 × O)] / (1.25 × S) ≦ 8.0 (2)

本発明の耐サワー鋼板の金属組織は、フェライト、ベイナイト、マルテンサイト、パーライトの1種又は2種以上からなる。これらの混合組織である場合、光学顕微鏡によって観察される結晶粒径よりも、有効結晶粒径の方が靱性との相関が強い。靭性を向上させるためには、有効結晶粒径を微細化することが望ましく、本発明の耐サワー鋼板は、板厚方向で表面から板厚の1/4の位置における有効結晶粒径が15μm以下であることが必要である。有効結晶粒径の15μmを超えて粗大化すると、−50℃以下の低温でBDWTT特性を安定的に達成することができない。板厚1/4位置における有効結晶粒径は小さい方が好ましいため下限は規定しないが、製造コストの観点から3μm以上であってもよい。   The metal structure of the sour-resistant steel sheet of the present invention comprises one or more of ferrite, bainite, martensite, and pearlite. In the case of these mixed structures, the effective crystal grain size has a stronger correlation with toughness than the crystal grain size observed by an optical microscope. In order to improve toughness, it is desirable to reduce the effective crystal grain size. The sour resistant steel sheet of the present invention has an effective crystal grain size of 15 μm or less at a position 1/4 of the sheet thickness from the surface in the sheet thickness direction. It is necessary to be. If the effective crystal grain size exceeds 15 μm, the BDWTT characteristics cannot be stably achieved at a low temperature of −50 ° C. or less. Since the smaller the effective crystal grain size at the 1/4 thickness position is, the lower limit is not specified, but may be 3 μm or more from the viewpoint of manufacturing cost.

次に、本実施形態に係る耐サワー鋼板の製造方法を説明する。
上述した化学成分から構成される厚み200mm以上の連続鋳造鋳片を、400℃以下に冷却した後、900℃以上1050℃以下に加熱し、熱間圧延を施すことが好ましい。
鋳片を400℃以下に冷却せずにホットチャージで加熱炉に挿入すると、鋳造時に生成した粗大γ組織が加熱後に残存し、組織が十分に微細化せず低温靱性が劣化する場合がある。
Next, a method for manufacturing the sour resistant steel sheet according to the embodiment will be described.
It is preferable that a continuous cast slab having a thickness of 200 mm or more composed of the above-described chemical components is cooled to 400 ° C. or less, and then heated to 900 ° C. to 1050 ° C. to perform hot rolling.
If the slab is inserted into the heating furnace by hot charging without cooling it to 400 ° C. or lower, the coarse γ structure generated during casting may remain after heating, and the structure may not be sufficiently refined to lower the low-temperature toughness.

鋼片の加熱温度は、圧延終了温度をAr3 以上にするため、900℃以上が好ましい。一方、加熱温度が高いと、加熱γ粒が粗大化し、組織が十分に微細化せず低温靱性が劣化する場合があるため、1050℃以下が好ましい。より好ましくは、加熱温度を1000℃以下とする。   The heating temperature of the slab is preferably 900 ° C. or higher in order to set the rolling end temperature to Ar 3 or higher. On the other hand, when the heating temperature is high, the heated γ grains are coarsened, and the microstructure may not be sufficiently refined, so that the low-temperature toughness may be deteriorated. More preferably, the heating temperature is 1000 ° C. or lower.

その後の熱間圧延では、γ低温域で1パス当りの圧下率の大きい圧下を数多く累積することによって、ミクロ組織が十分に微細化し、非常に良好な低温靱性が得られる。そのため、熱間圧延では、900℃以下の累積圧下率が60%以上であることが好ましく、パス回数の60%以上は、1パスあたりの圧下率が15%以上であることが好ましい。900℃以下での累積圧下率が60%未満であったり、1パス当りの圧下率が15%以上となるパス回数の割合が60%未満であったりすると、変態後のミクロ組織が微細化せず、良好な低温靱性が得られない場合がある。   In the subsequent hot rolling, the microstructure is sufficiently refined by accumulating a large number of reductions with a large reduction ratio per pass in the γ low temperature range, and very good low temperature toughness can be obtained. Therefore, in hot rolling, the cumulative rolling reduction at 900 ° C. or less is preferably 60% or more, and the rolling reduction per pass is preferably 15% or more when the number of passes is 60% or more. If the cumulative rolling reduction at 900 ° C. or less is less than 60% or the ratio of the number of passes at which the rolling reduction per pass is 15% or more is less than 60%, the microstructure after transformation becomes finer. And good low-temperature toughness may not be obtained.

板厚が31mm以上45mm以下になるように熱間圧延を行い、Ar3以上で圧延を終了することが好ましい。熱間圧延の終了温度がAr3未満であると、フェライト変態に伴って中心偏析部へCが濃化し、硬化組織が形成されて耐HIC特性が劣化する場合がある。また、加速冷却をAr3以上の温度から開始するためにも、熱間圧延をAr3以上で終了することが好ましい。   It is preferable to perform hot rolling so that the plate thickness becomes 31 mm or more and 45 mm or less, and finish the rolling at Ar3 or more. If the end temperature of the hot rolling is lower than Ar3, C may be concentrated in the central segregation part due to the ferrite transformation, a hardened structure may be formed, and the HIC resistance may deteriorate. Further, in order to start the accelerated cooling from a temperature of Ar3 or higher, it is preferable that the hot rolling is terminated at Ar3 or higher.

熱間圧延後は、Ar3以上から加速冷却を行うことが好ましい。加速冷却は中心偏析部のミクロ組織を改善して耐HIC特性を向上させるとともに、変態強化による高強度化と結晶粒微細化による高靭性化を可能にする。加速冷却の冷却速度は3℃/秒以上50℃/秒以下が好ましく、550℃以下300℃以上の範囲内で加速冷却を終了し、その後空冷することが好ましい。   After hot rolling, it is preferable to perform accelerated cooling from Ar3 or more. Accelerated cooling improves the microstructure of the center segregation part to improve the HIC resistance, and also enables high strength by transformation strengthening and high toughness by grain refinement. The cooling rate of the accelerated cooling is preferably 3 ° C./sec or more and 50 ° C./sec or less, and it is preferable that the accelerated cooling be completed within the range of 550 ° C. or less and 300 ° C. or more, and then air-cooled.

冷却開始温度がAr3未満であったり、冷却速度が3℃/秒未満であったり、冷却停止温度が550℃を超えたりすると、フェライト変態に伴う中心偏析部へのCの濃化によって硬化組織が形成されて耐HIC特性が劣化するとともに、変態強化が不十分となって強度が不足する場合がある。一方、冷却速度が50℃/秒を超えたり水冷停止温度が300℃未満であったりすると、低温変態生成物が大量に生成して耐HIC特性及び低温靱性が劣化する場合がある。   If the cooling start temperature is lower than Ar3, the cooling rate is lower than 3 ° C./sec, or the cooling stop temperature is higher than 550 ° C., the hardened structure is formed by enrichment of C in the central segregation part due to ferrite transformation. When formed, the HIC resistance is degraded, and the transformation may be insufficiently strengthened due to insufficient reinforcement. On the other hand, if the cooling rate exceeds 50 ° C./sec or the water cooling stop temperature is less than 300 ° C., a large amount of low-temperature transformation products are generated, and the HIC resistance and low-temperature toughness may deteriorate.

ここで、Ar3は下記で計算される冷却時の変態開始温度であり、鋼の化学成分を用いて計算される。
Ar3(℃)=868−396×C+24.6×Si−68.1×Mn
−36.1×Ni−20.7×Cu−24.8×Cr
+29.1×Mo
上式におけるC、Si、Mn,Ni,Cu,Cr,Moは質量%で表した含有量を意味する。
Here, Ar3 is a transformation start temperature at the time of cooling calculated as follows, and is calculated using a chemical composition of steel.
Ar3 (° C.) = 868-396 × C + 24.6 × Si−68.1 × Mn
-36.1 x Ni-20.7 x Cu-24.8 x Cr
+ 29.1 × Mo
C, Si, Mn, Ni, Cu, Cr, and Mo in the above formula mean the contents expressed in mass%.

なお、本発明による鋼板をAc1(加熱時の変態開始温度)以下の温度に焼戻し処理することは何ら本発明鋼の特性を損なうものではない。本発明による鋼板は耐サワーラインパイプのほか、耐サワー圧力容器用としても適用できる。   Note that tempering the steel sheet according to the present invention to a temperature equal to or lower than Ac1 (transformation start temperature during heating) does not impair the characteristics of the steel of the present invention at all. The steel sheet according to the present invention can be applied not only to a sour resistant line pipe but also to a sour resistant pressure vessel.

以下に本発明の実施例を示すが、以下に示す実施例は本発明の一例であり、本発明は以下に説明する実施例に制限されるものではない。
転炉により鋼を溶製し、連続鋳造により表1と表2に示す化学成分を有する厚さ240mmの鋳片を製造した。
Examples of the present invention will be described below, but the following examples are merely examples of the present invention, and the present invention is not limited to the examples described below.
Steel was melted by a converter, and cast pieces having a chemical composition shown in Tables 1 and 2 and having a thickness of 240 mm were produced by continuous casting.

Figure 0006665515
Figure 0006665515

Figure 0006665515
Figure 0006665515

得られた鋳片を、室温まで冷却した後、980〜1030℃に加熱し、熱間圧延を行った。このとき、900℃以下の累積圧下率を75〜80%、そのときのパス回数の60%以上は、1パスあたり圧下率を15%以上とした。また、圧延終了温度を800〜830℃とし、熱間圧延に引き続き、790〜810℃の範囲内から5〜35℃/秒の加速冷却を適用し、350〜450℃の範囲内で加速冷却を停止し、その後、空冷した。表1及び2から明らかであるように、圧延終了温度及び加速冷却の開始温度は、鋼のAr3よりも高温である。   After cooling the obtained slab to room temperature, it was heated to 980 to 1030 ° C. and hot-rolled. At this time, the cumulative rolling reduction at 900 ° C. or less was 75 to 80%, and the rolling reduction per pass was 60% or more and the rolling reduction per pass was 15% or more. Further, the rolling end temperature is set to 800 to 830 ° C., and after hot rolling, accelerated cooling of 5 to 35 ° C./sec is applied from a range of 790 to 810 ° C., and accelerated cooling is performed within a range of 350 to 450 ° C. Stopped and then air cooled. As is clear from Tables 1 and 2, the rolling end temperature and the start temperature of accelerated cooling are higher than Ar3 of steel.

得られた鋼板から圧延方向に垂直な幅方向を長手方向として、API5L規格に準拠した全厚試験片を採取し、API規格の2000に準拠して、室温で引張試験を行った。また、BDWTT試験片を採取し、片側表面を切削して3/4インチに減厚して落重引裂試験を行った。低温靭性は延性破面率遷移温度(BDWTT85%SATT[℃])で評価した。   From the obtained steel sheet, a test piece having a thickness in a width direction perpendicular to the rolling direction as a longitudinal direction was sampled in accordance with the API 5L standard, and a tensile test was performed at room temperature in accordance with the API standard 2000. Further, a BDWTT test piece was sampled, and one side surface was cut to reduce the thickness to 3/4 inch, and a drop tear test was performed. The low-temperature toughness was evaluated by a ductile fracture surface transition temperature (BDWTT 85% SATT [° C.]).

板厚1/4位置における有効結晶粒径は、その部分のミクロ試験片の断面において、EBSDを用いて測定した。EBSDによって0.02mm2以上の面積にわたって結晶方位測定を行い、結晶方位差が3度以内の領域を有効結晶粒とみなし、円相当直径の平均値を有効結晶粒径として求めた。 The effective crystal grain size at the 1/4 position of the plate thickness was measured by using EBSD on the cross section of the micro test piece at that position. The crystal orientation was measured over an area of 0.02 mm 2 or more by EBSD, and a region having a crystal orientation difference of 3 ° or less was regarded as an effective crystal grain, and the average value of equivalent circle diameters was determined as an effective crystal grain size.

また、母材のHIC試験は、NACE TM0284に準拠し、NACE溶液(H2Sを1気圧で飽和した5%NaCl+0.5%酢酸水溶液、pH2.7)を用いて実施し、HIC面積率CARとHIC長さ率CLRを測定した。 The HIC test of the base material was carried out using a NACE solution (5% NaCl + 0.5% acetic acid aqueous solution saturated with H 2 S at 1 atm, pH 2.7) according to NACE TM0284, and the HIC area ratio CAR And the HIC length ratio CLR were measured.

更に、HAZ靭性を評価するためにUO鋼管のシーム溶接部に相当する内面1パスと外面1パスのサブマージアーク溶接を行い、溶接継手を作製した。なお、溶接金属は、−50℃で100J以上の靭性が得られるように、低温仕様の溶接材料を用いた。溶接継手の会合部を基準にシャルピー衝撃試験片を採取し、溶接金属とHAZとの比率が50:50になるように2mmVノッチを施し、−50℃で3本の試験を行って平均値と最低値を測定した。
表3、表4に鋼板の板厚、機械的性質、耐HIC特性、溶接部のHAZ靭性を示す。
Further, in order to evaluate the HAZ toughness, one-pass inner surface and one-pass outer surface corresponding to a seam weld of a UO steel pipe were subjected to submerged arc welding to produce a welded joint. In addition, the welding metal of low temperature specification was used so that the toughness of 100 J or more could be obtained at -50 degreeC. A Charpy impact test specimen was sampled based on the joint portion of the welded joint, a 2 mm V notch was made so that the ratio of the weld metal to HAZ was 50:50, and three tests were performed at −50 ° C. The lowest value was measured.
Tables 3 and 4 show the thickness, mechanical properties, HIC resistance, and HAZ toughness of the welded portion of the steel sheet.

Figure 0006665515
Figure 0006665515

Figure 0006665515
Figure 0006665515

表3に示すように、本発明鋼は、板厚31〜45mmの鋼板において、API 5L X65以上(降伏強度YS:448MPa以上、引張強度TS:535MPa以上)を満足する母材の強度と、落重引裂試験における延性破面率遷移温度が−50℃以下の低温となっており、良好なBDWTT特性を有する。有効結晶粒径は15μm以下に微細化している。同時に、本発明鋼は優れた耐HIC特性を有する。更に、本発明鋼は−50℃で優れたHAZ靭性を有する。   As shown in Table 3, in the steel of the present invention, the strength of the base material satisfying API 5L X65 or more (yield strength YS: 448 MPa or more, tensile strength TS: 535 MPa or more) in a steel sheet having a thickness of 31 to 45 mm, The transition temperature of the ductile fracture surface in the heavy tear test is as low as −50 ° C. or less, and has good BDWTT characteristics. The effective crystal grain size is reduced to 15 μm or less. At the same time, the steel according to the invention has excellent HIC resistance. Further, the steel of the present invention has excellent HAZ toughness at -50 ° C.

一方、表2に示すように、従来鋼は化学成分が本発明の範囲から外れているため、表4に示すように、母材の機械的性質、耐HIC特性、溶接部のHAZ靭性が劣ったり、あるいは表面きずが発生したりする場合がある。   On the other hand, as shown in Table 2, since the chemical composition of the conventional steel is out of the range of the present invention, as shown in Table 4, the mechanical properties of the base material, the HIC resistance, and the HAZ toughness of the welded portion are inferior. Or surface flaws may occur.

符号B1はC量が低すぎ、符号B4はMn量が低すぎるために強度が不足している。符号B2はC量が高すぎるために耐HIC特性が劣化し、HAZ靭性も劣化傾向にある。符号B3はSi量が高すぎるためにHAZ靭性が劣化している。符号B5はMn量が高すぎるために耐HIC特性が劣化している。   Symbol B1 has too low C amount, and symbol B4 has insufficient strength because Mn amount is too low. Reference B2 has an excessively high C content, so that the HIC resistance is deteriorated and the HAZ toughness tends to be deteriorated. The symbol B3 has deteriorated HAZ toughness because the amount of Si is too high. Symbol B5 degrades the HIC resistance because the Mn content is too high.

符号B6はP量が高すぎるために耐HIC特性が劣化し、HAZ靭性も劣化傾向にある。符号B7はS量が高すぎるために耐HIC特性が劣化している。符号B8はAl量が低すぎ、符号B10はTi量が低すぎるために有効結晶粒径が15μmを超えて粗大化し、BDWTT特性とHAZ靭性が劣化している。符号B9はAl量が高すぎるために有効結晶粒径が15μmを超えて粗大化し、BDWTT特性が劣化している。符号B11はTi量が高すぎるために有効結晶粒径が15μmを超えて粗大化し、BDWTT特性とHAZ靭性が劣化し、また、鋳片表面きずの発生も見られた。   Reference B6 has an excessively high P content, so that the HIC resistance is deteriorated and the HAZ toughness also tends to be deteriorated. The symbol B7 has a deteriorated HIC resistance because the amount of S is too high. The symbol B8 has an excessively low Al content, and the symbol B10 has an excessively low Ti content, so that the effective crystal grain size becomes larger than 15 μm and the BDWTT characteristics and the HAZ toughness are deteriorated. The symbol B9 indicates that the effective crystal grain size exceeds 15 μm because the Al content is too high, and the BDWTT characteristic is deteriorated. The reference B11 had an effective crystal grain size exceeding 15 μm because the Ti content was too high, and the BDWTT characteristics and the HAZ toughness were deteriorated.

符合B12はNb量が高すぎるために耐HIC特性が劣化し、HAZ靭性も劣化傾向にある。符号B13はCa量が低すぎるために耐HIC特性が劣化している。符号B14はCa量が高すぎるために耐HIC特性とHAZ靭性が劣化している。符号B15はMg量が低すぎるために有効結晶粒径が15μmを超えて粗大化し、BDWTT特性とHAZ靭性が劣化している。   In the case of symbol B12, the Nb content is too high, so that the HIC resistance deteriorates and the HAZ toughness also tends to deteriorate. The symbol B13 has deteriorated HIC resistance because the amount of Ca is too low. The symbol B14 has deteriorated HIC resistance and HAZ toughness because the Ca content is too high. The reference B15 has an effective crystal grain size exceeding 15 μm because the Mg content is too low, and the BDWTT characteristic and the HAZ toughness are deteriorated.

符号B16はN量が低すぎるために有効結晶粒径が15μmを超えて粗大化し、BDWTT特性とHAZ靭性が劣化している。符号B17はN量が高すぎるために耐HIC特性が劣化傾向にあり、HAZ靭性が劣化しており、また、鋳片表面きずの発生も見られた。符合B18はO量が低すぎるため有効結晶粒径が15μmを超えて粗大化し、BDWTT特性とHAZ靭性が劣化している。符号B19はO量が高すぎるため耐HIC特性とHAZ靭性が劣化している。   Reference B16 has an effective crystal grain size exceeding 15 μm because the N content is too low, and the BDWTT characteristics and the HAZ toughness are deteriorated. The symbol B17 had a tendency that the HIC resistance was degraded due to the excessively high N content, the HAZ toughness was degraded, and the occurrence of flaws on the slab surface was also observed. In the case of symbol B18, the O content is too low, the effective crystal grain size exceeds 15 μm, and the BWTT property and the HAZ toughness are deteriorated. The symbol B19 has an O content that is too high, so that the HIC resistance and the HAZ toughness are deteriorated.

符号B20は硫化物形態制御の指標である式(1)の値が低すぎるため耐HIC特性が劣化している。符号B21は硫化物形態制御の指標である式(1)の値が高すぎるため耐HIC特性が劣化している。   Reference numeral B20 indicates that the value of the expression (1), which is an index of sulfide form control, is too low, so that the HIC resistance is deteriorated. Reference numeral B21 indicates that the value of equation (1), which is an index of sulfide form control, is too high, so that the HIC resistance is degraded.

本発明は、優れた耐HIC特性とAPI 5L X65以上の強度を有し、かつ従来よりも格段に優れた低温靱性を有するラインパイプ用鋼板の製造に関するものであり、鉄鋼業においては厚板ミルに適用することが望ましい。   The present invention relates to the production of a linepipe steel sheet having excellent HIC resistance and strength of API 5L X65 or more and having much lower low-temperature toughness than before. It is desirable to apply.

Claims (3)

質量%で、
C :0.020%以上、0.060%以下、
Mn:1.00%以上、1.60%以下、
S :0.0001%以上、0.0010%以下、
Al:0.001%以上、0.020%以下、
Ti:0.005%以上、0.020%以下、
Ca:0.0005%以上、0.0030%以下、
Mg:0.0003%以上、0.0030%以下、
N :0.0015%以上、0.0050%以下、
O :0.0010%以上、0.0030%以下
を含有し、
Si:0.30%以下、
P :0.015%以下、
Nb:0.004%以下
に制限し、残部がFe及び不可避的不純物からなり、Ca、O、Sの含有量が下記(1)式を満足し、板厚方向で表面から板厚の1/4の位置における有効結晶粒径の平均値が15μm以下であり、
板厚が、31mm以上45mm以下、
降伏応力が、448MPa以上、
引張強さが、535MPa以上であることを特徴とする耐サワー鋼板。
1.0≦〔Ca×(1−124×O)〕/(1.25×S)≦8.0 ・・・ (1)
In mass%,
C: 0.020% or more, 0.060% or less,
Mn: 1.00% or more, 1.60% or less,
S: 0.0001% or more, 0.0010% or less,
Al: 0.001% or more, 0.020% or less,
Ti: 0.005% or more, 0.020% or less,
Ca: 0.0005% or more, 0.0030% or less,
Mg: 0.0003% or more, 0.0030% or less,
N: 0.0015% or more, 0.0050% or less,
O: contains 0.0010% or more and 0.0030% or less,
Si: 0.30% or less,
P: 0.015% or less,
Nb: limited to 0.004% or less, the balance consists of Fe and unavoidable impurities, the content of Ca, O, and S satisfies the following formula (1), and 1/1 of the sheet thickness from the surface in the sheet thickness direction. the average value of the effective crystal grain size in 4 positions Ri der less 15 [mu] m,
The board thickness is 31mm or more and 45mm or less,
The yield stress is 448MPa or more,
Tensile strength, sour steel sheet, characterized in der Rukoto than 535MPa.
1.0 ≦ [Ca × (1-124 × O)] / (1.25 × S) ≦ 8.0 (1)
更に、質量%で、
Cu:1.0%以下、
Ni:1.0%以下、
Cr:1.0%以下、
Mo:0.5%以下、
W :0.5%以下、
Co:0.5%以下、
V :0.10%以下、
B :0.0030%以下
の1種又は2種以上を含有することを特徴とする請求項1に記載の耐サワー鋼板。
Furthermore, in mass%,
Cu: 1.0% or less,
Ni: 1.0% or less,
Cr: 1.0% or less,
Mo: 0.5% or less,
W: 0.5% or less,
Co: 0.5% or less,
V: 0.10% or less,
B: The sour-resistant steel sheet according to claim 1, comprising one or more of 0.0030% or less.
更に、質量%で、
REM:0.004%以下、
Zr:0.005%以下
の一方又は両方を含有し、前記(1)式に代えて下記(2)式を満足することを特徴とする請求項1又は2に記載の耐サワー鋼板。
1.0≦〔(Ca+3.5×REM+2.3×Zr)×(1−124×O)〕/(1.25×S)≦8.0 ・・・ (2)
Furthermore, in mass%,
REM: 0.004% or less,
The sour-resistant steel sheet according to claim 1, further comprising one or both of Zr: 0.005% or less and satisfying the following equation (2) instead of the equation (1).
1.0 ≦ [(Ca + 3.5 × REM + 2.3 × Zr) × (1-124 × O)] / (1.25 × S) ≦ 8.0 (2)
JP2015244150A 2015-12-15 2015-12-15 Sour-resistant steel plate Active JP6665515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015244150A JP6665515B2 (en) 2015-12-15 2015-12-15 Sour-resistant steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015244150A JP6665515B2 (en) 2015-12-15 2015-12-15 Sour-resistant steel plate

Publications (2)

Publication Number Publication Date
JP2017110249A JP2017110249A (en) 2017-06-22
JP6665515B2 true JP6665515B2 (en) 2020-03-13

Family

ID=59081117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015244150A Active JP6665515B2 (en) 2015-12-15 2015-12-15 Sour-resistant steel plate

Country Status (1)

Country Link
JP (1) JP6665515B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6642118B2 (en) * 2016-03-02 2020-02-05 日本製鉄株式会社 Sour-resistant steel plate
JP6631353B2 (en) * 2016-03-24 2020-01-15 日本製鉄株式会社 Sour-resistant steel plate and sour-resistant steel pipe
KR102131537B1 (en) * 2018-11-30 2020-07-08 주식회사 포스코 Steel plate for pressure vessel having excellent hydrogen induced cracking resistance and method of manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968011B2 (en) * 2002-05-27 2007-08-29 新日本製鐵株式会社 High strength steel excellent in low temperature toughness and weld heat affected zone toughness, method for producing the same and method for producing high strength steel pipe
JP4437972B2 (en) * 2005-04-22 2010-03-24 株式会社神戸製鋼所 Thick steel plate with low base material toughness with little acoustic anisotropy and method for producing the same
JP5251089B2 (en) * 2006-12-04 2013-07-31 新日鐵住金株式会社 Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
CN101578380B (en) * 2007-12-06 2011-01-12 新日本制铁株式会社 Process for producing thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding and thick high-strength steel plate
CN105008574B (en) * 2013-03-12 2018-05-18 杰富意钢铁株式会社 The steel plate and its manufacturing method of multi-layer welding connector CTOD characteristic goods
JP6165088B2 (en) * 2013-03-29 2017-07-19 株式会社神戸製鋼所 Steel sheets and line pipe steel pipes with excellent resistance to hydrogen-induced cracking and toughness of weld heat affected zone
CN105143487B (en) * 2013-08-30 2017-03-08 新日铁住金株式会社 The thick section and high strength spool steel plate of acid resistance, resistance to crushing characteristic and excellent in low temperature toughness and spool

Also Published As

Publication number Publication date
JP2017110249A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
KR101603461B1 (en) High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
US8084144B2 (en) High strength thick welded steel pipe for line pipe superior in low temperature toughness and method of production of the same
KR101668546B1 (en) High strength steel plate having low yield ratio excellent in terms of strain ageing resistance, method for manufacturing the same and high strength welded steel pipe made of the same
US8765269B2 (en) High strength steel pipe for low-temperature usage having excellent buckling resistance and toughness of welded heat affected zone and method for producing the same
KR101119240B1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
EP2484792B1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
WO2015088040A1 (en) Steel sheet and method for manufacturing same
WO2015012317A1 (en) Steel plate for line pipe, and line pipe
JP6354572B2 (en) Low-temperature H-section steel and its manufacturing method
WO2014175122A1 (en) H-shaped steel and method for producing same
JP2019214752A (en) Low-yield-ratio thick steel plate
JP2012021214A (en) Hot-rolled high tensile steel sheet for high strength welded steel pipe for line pipe, and method of producing the same
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP6665515B2 (en) Sour-resistant steel plate
WO2016056216A1 (en) Steel sheet for line pipe, method for manufacturing same, and steel tube for line pipe
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP7115200B2 (en) Steel plate for line pipe
JP6421638B2 (en) Low-temperature H-section steel and its manufacturing method
JP6308148B2 (en) Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP6631353B2 (en) Sour-resistant steel plate and sour-resistant steel pipe
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP6642118B2 (en) Sour-resistant steel plate
JP7284380B2 (en) Electric resistance welded steel pipes for line pipes

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R151 Written notification of patent or utility model registration

Ref document number: 6665515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151