JP2017154353A - Method for manufacturing flexographic printing plate and method for manufacturing liquid crystal display element - Google Patents

Method for manufacturing flexographic printing plate and method for manufacturing liquid crystal display element Download PDF

Info

Publication number
JP2017154353A
JP2017154353A JP2016038979A JP2016038979A JP2017154353A JP 2017154353 A JP2017154353 A JP 2017154353A JP 2016038979 A JP2016038979 A JP 2016038979A JP 2016038979 A JP2016038979 A JP 2016038979A JP 2017154353 A JP2017154353 A JP 2017154353A
Authority
JP
Japan
Prior art keywords
flexographic printing
printing plate
liquid crystal
manufacturing
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016038979A
Other languages
Japanese (ja)
Inventor
山本 勝志
Katsushi Yamamoto
勝志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2016038979A priority Critical patent/JP2017154353A/en
Publication of JP2017154353A publication Critical patent/JP2017154353A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Printing Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing such a flexographic printing plate that has excellent tensile strength in a connected portion, that endures against a tensile stress applied when a liquid crystal alignment film or the like of a large liquid crystal display element is to be printed, and that prevents tearing or peeling in the connected portion during printing a predetermined number of sheets, and a method for manufacturing a liquid crystal display element including a step of forming a liquid crystal alignment film by using a flexographic printing plate manufactured by the above method.SOLUTION: The method for manufacturing a flexographic printing plate includes the steps of treating each side face 14 of a plurality of division bodies 4 with a treating agent comprising isocyanate or its biuret complex, then arranging the division bodies 4 as spaced at a given interval in a plane direction on the same plane, filling a gap of the division bodies with a photocurable resin composition, and irradiating the photocurable resin composition with active rays to cure, and thereby bonding the division bodies with the cured product to form an ink transfer layer. The method for manufacturing a liquid crystal display element includes a step of forming a liquid crystal alignment film by flexographic printing using the above flexographic printing plate.SELECTED DRAWING: Figure 1

Description

本発明は、フレキソ印刷版の製造方法と、かかる製造方法によって製造されたフレキソ印刷版を用いたフレキソ印刷によって液晶表示素子の液晶配向膜を形成する工程を含む、液晶表示素子の製造方法に関するものである。   The present invention relates to a method for manufacturing a flexographic printing plate, and a method for manufacturing a liquid crystal display device, including a step of forming a liquid crystal alignment film of a liquid crystal display device by flexographic printing using the flexographic printing plate manufactured by the manufacturing method. It is.

液晶表示素子を構成する基板の電極形成面上に、できるだけ厚みが均一でピンホール等がなくしかも薄いという、高い膜品質が要求される液晶配向膜を形成するために、フレキソ印刷が利用される。
フレキソ印刷には、柔軟な樹脂のシートからなり、その表面が、液晶配向膜のもとになるインキを担持した状態で上記電極形成面等の被印刷面に接触されて、保持したインキを上記被印刷面に転写させるための版表面とされた平板状のインキ転写層を備えたフレキソ印刷版が用いられる。
Flexographic printing is used to form a liquid crystal alignment film that is required to have a high film quality that is as uniform as possible and free from pinholes and the like on the electrode forming surface of the substrate constituting the liquid crystal display element. .
Flexographic printing is made of a flexible resin sheet whose surface is in contact with the surface to be printed such as the electrode forming surface in a state where the surface of the liquid crystal alignment film is supported. A flexographic printing plate having a plate-shaped ink transfer layer that is a plate surface for transfer onto a printing surface is used.

またインキ転写層の、版表面と反対面には多くの場合、各種のプラスチックフィルム等からなる補強シートが積層される。
フレキソ印刷版は、印圧を一定に維持し、印刷精度を向上して厚みの均一な液晶配向膜を形成するために、全面に亘って厚みの精度ができるだけ高いことが求められる。特に最近では、従来は±30μm前後であった厚みの精度を、±15μm程度にまで高めることが求められるようになってきている。
In many cases, a reinforcing sheet made of various plastic films is laminated on the surface of the ink transfer layer opposite to the plate surface.
The flexographic printing plate is required to have as high a thickness accuracy as possible over the entire surface in order to maintain a constant printing pressure, improve printing accuracy, and form a uniform liquid crystal alignment film. In particular, recently, it has been demanded to increase the accuracy of thickness, which was conventionally about ± 30 μm, to about ± 15 μm.

ところが近年の液晶表示素子の大型化によるフレキソ印刷版の大型化に伴って、厚みの精度を上記の範囲に維持するのが困難になりつつあるという問題がある。
特に、一辺が例えば1500mmを超える大きなフレキソ印刷版において、厚みの精度の低下が顕著である。
そこでインキ転写層のもとになる複数枚のシート状の分割体を作製し、それを面方向に繋ぎ合わせて大型のフレキソ印刷版を製造することが検討されている(特許文献1)。
However, with the recent increase in size of flexographic printing plates due to the increase in size of liquid crystal display elements, there is a problem that it is becoming difficult to maintain the thickness accuracy within the above range.
In particular, in a large flexographic printing plate with a side exceeding, for example, 1500 mm, the thickness accuracy is significantly reduced.
In view of this, it has been studied to produce a plurality of sheet-like divided bodies that serve as the basis of the ink transfer layer and to join them in the surface direction to produce a large flexographic printing plate (Patent Document 1).

かかる製造方法によれば、個々の分割体は厚みの精度を向上することが容易な小型サイズに形成できるため、フレキソ印刷版の全体での厚みの精度を向上できると考えられる。   According to such a manufacturing method, since the individual divided bodies can be formed in a small size that is easy to improve the thickness accuracy, it is considered that the thickness accuracy of the entire flexographic printing plate can be improved.

特開平9−274310号公報JP-A-9-274310

特許文献1に記載の製造方法では、それぞれの分割体の、他の分割体と接合される側面を、まず分子中にシアノアクリル基を有するモノマによって処理し、次いで分割体間の隙間に、活性光線の照射によって硬化反応する光硬化性樹脂組成物を注入したのち、上記活性光線の照射によって光硬化性樹脂組成物を硬化反応させて複数の分割体を接合している。   In the production method described in Patent Document 1, the side surfaces of each divided body to be joined to other divided bodies are first treated with a monomer having a cyanoacryl group in the molecule, and then activated in the gaps between the divided bodies. After injecting a photocurable resin composition that undergoes a curing reaction upon irradiation with light, the photocurable resin composition is subjected to a curing reaction by irradiation with the active light to join a plurality of divided bodies.

しかし、上記従来の接合では繋ぎ合わせ部分の引張強度が未だ十分ではなく、特に前述した大型の液晶表示素子の液晶配向膜等を連続的に印刷する際に繰り返し加えられる引張応力によって、フレキソ印刷版が繋ぎ合わせ部分から引きちぎられたり剥離したりしやすい傾向がある。
特に近年、1枚のフレキソ印刷版を用いて連続的に印刷できる印刷枚数を現状よりも増加させることが求められる傾向にあるが、上記のように繋ぎ合わせ部分の引張強度が十分でない場合には、あらかじめ設定された印刷枚数以前の比較的早期の段階でフレキソ印刷版が繋ぎ合わせ部分から引きちぎられたり剥離したりして、それ以上の印刷を継続できないといった問題を生じやすい。
However, the tensile strength of the joint portion is not yet sufficient in the above-described conventional bonding, and flexographic printing plates are particularly affected by the tensile stress repeatedly applied when continuously printing the liquid crystal alignment film of the large liquid crystal display element described above. Tends to be torn off or peeled off from the joined portion.
In particular, in recent years, there has been a tendency to increase the number of sheets that can be continuously printed using a single flexographic printing plate from the current level, but when the tensile strength of the joint portion is not sufficient as described above, The flexographic printing plate is torn off or peeled off from the joining portion at a relatively early stage before the preset number of printed sheets, and it is easy to cause a problem that further printing cannot be continued.

本発明の目的は、繋ぎ合わせ部分の引張強度に優れ、特に大型の液晶表示素子の液晶配向膜等を連続的に印刷する際に繰り返し加えられる引張応力に十分に耐えて、所定の印刷枚数の間、繋ぎ合わせ部分から引きちぎられたり剥離したりしないフレキソ印刷版を製造するための製造方法を提供することにある。
また本発明の目的は、上記製造方法によって製造されたフレキソ印刷版を用いて液晶配向膜を形成する工程を含む、液晶表示素子の製造方法を提供することにある。
The object of the present invention is excellent in the tensile strength of the joint portion, and particularly withstands a tensile stress repeatedly applied when continuously printing a liquid crystal alignment film of a large liquid crystal display element, etc. Another object of the present invention is to provide a manufacturing method for manufacturing a flexographic printing plate that is not torn off or peeled off from a joined portion.
Moreover, the objective of this invention is providing the manufacturing method of a liquid crystal display element including the process of forming a liquid crystal aligning film using the flexographic printing plate manufactured by the said manufacturing method.

本発明は、樹脂製のインキ転写層を備えたフレキソ印刷版の製造方法であって、
前記インキ転写層のもとになる複数枚のシート状の分割体を、互いに面方向に一定間隔を隔てて同一平面上に配列する工程(第一工程)、
配列した前記分割体間の前記隙間に、活性光線の照射によって硬化反応する光硬化性樹脂組成物を充填する工程(第二工程)、および
前記光硬化性樹脂組成物を、前記活性光線の照射によって硬化反応させることで、前記複数枚の分割体を互いに接合して前記インキ転写層を形成する工程(第三工程)
を含み、前記各分割体の、他の分割体と接合される側面を、あらかじめイソシアネートおよびそのビウレット体からなる群より選ばれた少なくとも1種を含む処理剤によって処理する工程(前処理工程)をも含むフレキソ印刷版の製造方法である。
The present invention is a method for producing a flexographic printing plate provided with a resin-made ink transfer layer,
A step of arranging a plurality of sheet-like divided bodies that are the basis of the ink transfer layer on the same plane at regular intervals in the surface direction (first step),
A step (second step) of filling the gap between the arrayed divided bodies with a photocurable resin composition that undergoes a curing reaction by irradiation with actinic rays, and irradiation with the actinic rays. A step of forming the ink transfer layer by joining the plurality of divided bodies to each other by a curing reaction (third step)
And a step (pretreatment step) of treating each side surface of each of the divided bodies with a treating agent containing at least one kind selected from the group consisting of isocyanate and its biuret body in advance. Is a method for producing a flexographic printing plate.

また本発明は、上記本発明の製造方法によって製造されたフレキソ印刷版を用いて、フレキソ印刷によって液晶配向膜を形成する工程を含む液晶表示素子の製造方法である。   Moreover, this invention is a manufacturing method of the liquid crystal display element including the process of forming a liquid crystal aligning film by flexographic printing using the flexographic printing plate manufactured by the manufacturing method of the said invention.

本発明によれば、繋ぎ合わせ部分の引張強度に優れ、特に大型の液晶表示素子の液晶配向膜等を連続的に印刷する際に繰り返し加えられる引張応力に十分に耐えて、所定の印刷枚数の間、繋ぎ合わせ部分から引きちぎられたり剥離したりしないフレキソ印刷版を製造するための製造方法を提供できる。
また本発明によれば、上記製造方法によって製造されたフレキソ印刷版を用いて液晶配向膜を形成する工程を含む、液晶表示素子の製造方法を提供できる。
According to the present invention, it is excellent in the tensile strength of the joined portion, and particularly sufficiently withstands the tensile stress repeatedly applied when continuously printing a liquid crystal alignment film or the like of a large liquid crystal display element. In the meantime, it is possible to provide a manufacturing method for manufacturing a flexographic printing plate that is not torn off or peeled off from a joined portion.
Moreover, according to this invention, the manufacturing method of a liquid crystal display element including the process of forming a liquid crystal aligning film using the flexographic printing plate manufactured by the said manufacturing method can be provided.

本発明のフレキソ印刷版の製造方法の、第一実施形態の各工程のうち前処理工程ないし第一工程の前段を説明する斜視図である。It is a perspective view explaining the pre-process of the manufacturing method of the flexographic printing plate of this invention among the each process of 1st embodiment thru | or the front | former stage of a 1st process. 図(a)(b)は、上記第一工程の後段を説明する拡大断面図である。FIGS. (A) and (b) are enlarged sectional views for explaining the latter stage of the first step. 図(a)〜(c)は、第二ないし第三工程を説明する拡大断面図である。FIGS. (A) to (c) are enlarged sectional views for explaining the second to third steps. 第三工程が終了した状態の版シートを示す斜視図である。It is a perspective view which shows the plate sheet of the state which the 3rd process was complete | finished. 上記第一実施形態の各工程を経て最終的に製造されるフレキソ印刷版の一例を示す斜視図である。It is a perspective view which shows an example of the flexographic printing plate finally manufactured through each process of said 1st embodiment. 本発明の製造方法の第二実施形態において、第三工程が終了した状態の版シートを示す斜視図である。In 2nd embodiment of the manufacturing method of this invention, it is a perspective view which shows the plate sheet of the state which the 3rd process was complete | finished.

《フレキソ印刷版の製造方法》
本発明のフレキソ印刷版の製造方法は、前述したようにインキ転写層のもとになる複数枚のシート状の分割体を、互いに面方向に一定間隔を隔てて同一平面上に配列する第一工程、
配列した前記分割体間の前記隙間に、活性光線の照射によって硬化反応する光硬化性樹脂組成物を充填する第二工程、および
前記光硬化性樹脂組成物を、前記活性光線の照射によって硬化反応させることで、前記複数枚の分割体を互いに接合して前記インキ転写層を形成する第三工程
を含み、前記各分割体の、他の分割体と接合される側面を、あらかじめイソシアネートおよびそのビウレット体からなる群より選ばれた少なくとも1種を含む処理剤によって処理する前処理工程をも含むことを特徴とするものである。
<Production method of flexographic printing plate>
The method for producing a flexographic printing plate of the present invention includes a first method in which a plurality of sheet-like divided bodies that form the ink transfer layer are arranged on the same plane at regular intervals in the surface direction as described above. Process,
A second step of filling the gaps between the arrayed divided bodies with a photocurable resin composition that undergoes a curing reaction by irradiation with actinic rays, and the photocurable resin composition that undergoes a curing reaction by irradiation with actinic rays. A third step of joining the plurality of divided bodies to each other to form the ink transfer layer, and the side surfaces of each of the divided bodies to be joined to the other divided bodies in advance are isocyanate and biuret thereof. It includes a pretreatment step of treating with a treating agent containing at least one selected from the group consisting of bodies.

上記本発明の製造方法によれば、インキ転写層のもとになる分割体の、光硬化性樹脂組成物の硬化反応によって互いに接合される側面を、あらかじめ上記処理剤によって処理することにより、後述する実施例、比較例の結果からも明らかなように、例えば特許文献1等に記載された従来の接合に比べて、繋ぎ合わせ部分の引張強度を大幅に向上できる。
そのため本発明の製造方法によれば、特に大型の液晶表示素子の液晶配向膜等を連続的に印刷する際に繰り返し加えられる引張応力に十分に耐えて、所定の印刷枚数の間、繋ぎ合わせ部分から引きちぎられたり剥離したりしないフレキソ印刷版を製造できる。
According to the production method of the present invention described above, the side surfaces of the divided body that is the basis of the ink transfer layer that are bonded to each other by the curing reaction of the photocurable resin composition are treated in advance with the above-described treatment agent. As is clear from the results of the examples and comparative examples, the tensile strength of the joined portion can be significantly improved as compared with the conventional joining described in, for example, Patent Document 1.
For this reason, according to the manufacturing method of the present invention, it is sufficient to withstand the tensile stress repeatedly applied when continuously printing a liquid crystal alignment film or the like of a large liquid crystal display element, etc. Flexographic printing plates that are not torn off or peeled off can be produced.

図5を参照して、本発明の実施形態にかかる製造方法によって製造されるフレキソ印刷版1は、当該フレキソ印刷版1の全体を面方向に補強するための、フレキソ印刷版1の全面に亘る1枚の補強シート2上に、複数枚(図では4枚)の、同寸法の矩形シート状の分割体4を面方向に近接させて2行×2列に配列した状態で、各分割体4を、光硬化性樹脂組成物の硬化物5によって接合して形成した矩形平板状のインキ転写層6を備えている。   With reference to FIG. 5, the flexographic printing plate 1 manufactured by the manufacturing method according to the embodiment of the present invention covers the entire surface of the flexographic printing plate 1 for reinforcing the entire flexographic printing plate 1 in the surface direction. In a state where a plurality of (four in the figure) rectangular sheet-like divided bodies 4 of the same size are arranged in 2 rows × 2 columns close to each other in the plane direction on one reinforcing sheet 2. 4 is provided with a rectangular flat-plate-shaped ink transfer layer 6 formed by bonding 4 with a cured product 5 of a photocurable resin composition.

硬化物5は、光硬化性樹脂組成物に紫外線等の活性光線を照射し、硬化反応させて形成される。
また、インキ転写層6の露出した表面である版表面7には、図では一部を省略して記載しているがx×y個の印刷パターンに対応するパターンP11〜Pxyが、当該インキ転写層6の矩形に対応させてマトリクス状に配列されている。
The cured product 5 is formed by irradiating a photocurable resin composition with an actinic ray such as ultraviolet rays and causing a curing reaction.
Further, although the plate surface 7 which is the exposed surface of the ink transfer layer 6 is partially omitted in the drawing, the patterns P 11 to P xy corresponding to the x × y print patterns are The ink transfer layers 6 are arranged in a matrix corresponding to the rectangles.

また、フレキソ印刷版1の矩形の互いに平行な2辺の近傍で、かつ版表面7の外側には、それぞれフレキソ印刷版1をフレキソ印刷機にセットする際に図示しないバイスで把持するための一定幅の把持部61が、それぞれの辺の全幅に亘って設けられている。
また把持部61と版表面7との間には、上記把持部61と平行に一定幅の溝部62が設けられている。
Further, when the flexographic printing plate 1 is set on a flexographic printing machine, in the vicinity of two rectangular parallel sides of the flexographic printing plate 1 and on the outside of the plate surface 7, a constant for holding with a vise (not shown). A width gripping portion 61 is provided over the entire width of each side.
A groove 62 having a constant width is provided between the grip 61 and the plate surface 7 in parallel with the grip 61.

さらに把持部61には、その長さ方向の複数箇所(図では10箇所)に、当該把持部61をバイスで把持した状態で固定ピン(図示せず)を挿通するためのピン穴63が等間隔で形成されている。
上記フレキソ印刷版1を、本発明の実施形態にかかる製造方法によって製造するには、まず所定の枚数の分割体4を用意する。
Further, the grip portion 61 has pin holes 63 for inserting fixing pins (not shown) at a plurality of locations (10 locations in the figure) in the length direction while gripping the grip portion 61 with a vise. It is formed at intervals.
In order to manufacture the flexographic printing plate 1 by the manufacturing method according to the embodiment of the present invention, first, a predetermined number of divided bodies 4 are prepared.

なお分割体4としては、例えばあらかじめパターン形成していないものを用い、当該分割体4を一体に繋ぎ合わせて形成したインキ転写層6の版表面7に、あとからパターンを形成してもよいし、あらかじめパターン形成した分割体4を用いてもよい。
《フレキソ印刷版の製造方法》
〈第一実施形態〉
第一実施形態では、あらかじめパターン形成していない分割体4を用いる。
As the divided body 4, for example, an unpatterned material may be used, and a pattern may be formed later on the plate surface 7 of the ink transfer layer 6 formed by joining the divided bodies 4 together. Alternatively, the divided body 4 that has been patterned in advance may be used.
<Production method of flexographic printing plate>
<First embodiment>
In 1st embodiment, the division body 4 which is not pattern-formed beforehand is used.

図2(a)(b)等を参照して、かかる分割体4としては、例えば版表面7を構成する表層樹脂層8と補強フィルム9との積層体等が挙げられる。
上記の積層構造を有する分割体4は、従来の小型のフレキソ印刷版と同様にして作製できる。
すなわち、版表面7を粗面等の所定の表面状態とするための平面状の型面(図示せず)を用意し、当該型面と補強フィルム9との間に表層樹脂層8のもとになる光硬化性樹脂組成物を挟むとともに、上記補強フィルム9を型面に対して所定の間隔を隔てて平行平板状に保持した状態で活性光線を照射することで、光硬化性樹脂組成物を硬化反応させて表層樹脂層8を形成する。このあと、形成された表層樹脂層8を型面から離型すると分割体4が作製される。
With reference to FIGS. 2 (a) and 2 (b) and the like, examples of the divided body 4 include a laminated body of a surface resin layer 8 and a reinforcing film 9 constituting the plate surface 7.
The divided body 4 having the above laminated structure can be produced in the same manner as a conventional small flexographic printing plate.
That is, a planar mold surface (not shown) for making the plate surface 7 a predetermined surface state such as a rough surface is prepared, and the surface resin layer 8 is placed between the mold surface and the reinforcing film 9. The photocurable resin composition is irradiated with actinic rays in a state where the reinforcing film 9 is held in a parallel plate shape with a predetermined interval with respect to the mold surface while sandwiching the photocurable resin composition to be Is cured to form the surface resin layer 8. Thereafter, when the formed surface resin layer 8 is released from the mold surface, the divided body 4 is produced.

上記分割体4は、例えば一辺が1500mm未満の、従来の技術で厚みの精度に優れたものが得られるサイズに作製し、それをフレキソ印刷版1の表層樹脂層8のサイズに合わせて必要な枚数(図の場合は4枚)用意する。
表層樹脂層8のもとになる光硬化性樹脂組成物としては、補強フィルム9との親和性、接着性に優れた種々の光硬化性樹脂組成物が挙げられる。
The above-mentioned divided body 4 is prepared to a size that can be obtained, for example, with one side of less than 1500 mm and having excellent thickness accuracy by a conventional technique, and is necessary to match the size of the surface layer resin layer 8 of the flexographic printing plate 1. Prepare the number of sheets (4 in the case of the figure).
Examples of the photocurable resin composition on which the surface resin layer 8 is based include various photocurable resin compositions excellent in affinity with the reinforcing film 9 and adhesiveness.

また前述した、複数枚の分割体4を接合する硬化物5のもとになる光硬化性樹脂組成物としては、上記表層樹脂層8、および補強フィルム9との親和性、接着性に優れた種々の光硬化性樹脂組成物が挙げられる。
特に硬化物5と表層樹脂層8とを同一の光硬化性樹脂組成物で形成するのが、当該表層樹脂層8を含む分割体4と硬化物5とからなるインキ転写層6のゴム弾性や柔軟性等を、その全面に亘って均一化できるため好ましい。
Moreover, as a photocurable resin composition used as the base of the hardened | cured material 5 which joins the several division body 4 mentioned above, it was excellent in the affinity with the said surface layer resin layer 8 and the reinforcement film 9, and adhesiveness. Various photocurable resin compositions may be mentioned.
In particular, the cured product 5 and the surface layer resin layer 8 are formed of the same photocurable resin composition, and the rubber elasticity of the ink transfer layer 6 composed of the divided body 4 including the surface layer resin layer 8 and the cured product 5 Since flexibility and the like can be made uniform over the entire surface, it is preferable.

硬化物5および表層樹脂層8のもとになる光硬化性樹脂組成物としては、例えば1,2−ブタジエン構造を有するとともに末端にエチレン性不飽和二重結合を有するプレポリマ、エチレン性不飽和単量体、および光重合開始剤を含む組成物等が挙げられる。
上記の光硬化性樹脂組成物によれば、適度なゴム弾性と柔軟性を有し、しかも耐溶剤性にも優れたインキ転写層6を形成できる。
Examples of the photocurable resin composition used as the basis of the cured product 5 and the surface resin layer 8 include a prepolymer having an 1,2-butadiene structure and having an ethylenically unsaturated double bond at the terminal, and an ethylenically unsaturated single monomer. And a composition containing a monomer and a photopolymerization initiator.
According to said photocurable resin composition, it can have the ink transfer layer 6 which has moderate rubber elasticity and a softness | flexibility, and was excellent also in solvent resistance.

特にプレポリマとして、主鎖中にウレタン結合を含むウレタンプレポリマを少なくとも含有する光硬化性樹脂組成物が好ましい。
かかるウレタンプレポリマとしては、例えば水添1,2−ポリブタジエン化合物をジイソシアナートによって鎖延長して得られる化合物の末端に、重合可能なエチレン性二重結合を少なくとも1個導入して合成される化合物等が挙げられる。
In particular, a photocurable resin composition containing at least a urethane prepolymer containing a urethane bond in the main chain is preferred as the prepolymer.
Such a urethane prepolymer is synthesized, for example, by introducing at least one polymerizable ethylenic double bond at the end of a compound obtained by chain extension of a hydrogenated 1,2-polybutadiene compound with diisocyanate. Compounds and the like.

上記ウレタンプレポリマを含む光硬化性樹脂組成物を使用すると、分割体4の側面を前述した処理剤で処理して繋ぎ合わせ部分の引張強度を向上させる効果をより一層良好に発現させて、当該引張強度を大幅に向上できる。
補強フィルム9としては、上記光硬化性樹脂組成物との親和性、接着性に優れた樹脂からなる種々のフィルムが使用可能である。
When the photo-curable resin composition containing the urethane prepolymer is used, the effect of improving the tensile strength of the joined portion by treating the side surface of the divided body 4 with the above-described treatment agent is further improved. The tensile strength can be greatly improved.
As the reinforcing film 9, various films made of a resin excellent in affinity and adhesiveness with the photocurable resin composition can be used.

上記フィルムとしては、例えばポリエチレン(PE)、ポリプロピレン(PP)、熱可塑性ポリウレタン(TPU)、ポリエチレンテレフタレート(PET)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)等のフィルムが挙げられる。
かかるフィルムを補強フィルム9として用いることにより、上記光硬化性樹脂組成物からなる表層樹脂層8、および硬化物5との接着性を向上できる。
Examples of the film include polyethylene (PE), polypropylene (PP), thermoplastic polyurethane (TPU), polyethylene terephthalate (PET), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and the like.
By using such a film as the reinforcing film 9, it is possible to improve the adhesion with the surface resin layer 8 made of the photocurable resin composition and the cured product 5.

(前処理工程)
図1を参照して、上記各分割体4の、それぞれ他の分割体4と接合される側面14を、まず必要に応じてアセトン、テトラヒドロフラン等の有機溶剤で脱脂して乾燥させたのち、前述したイソシアネートおよびそのビウレット体からなる群より選ばれた少なくとも1種を含む処理剤によって処理する。
(Pretreatment process)
Referring to FIG. 1, side surfaces 14 of each divided body 4 to be joined to other divided bodies 4 are first degreased with an organic solvent such as acetone or tetrahydrofuran as necessary, and then dried. It is treated with a treating agent containing at least one selected from the group consisting of the isocyanate and its biuret.

上記処理剤に含まれるイソシアネートとしては、分子中に―N=C=O基を1つ以上、特に2つ以上で、かつ4つ以下、特に3つ以下の範囲で有する種々の化合物が使用可能である。
中でもジシクロヘキシルメタン−4,4′−ジイソシアネート、イソホロンジイソシアネート、トリフェニルメタン−4,4′,4″−トリイソシアネート、およびチオりん酸トリス(4−イソシアネートフェニル)からなる群より選ばれた少なくとも1種のイソシアネートが好ましい。
As the isocyanate contained in the above-mentioned treatment agent, various compounds having 1 or more, especially 2 or more, and 4 or less, particularly 3 or less in the molecule can be used as the isocyanate. It is.
Among them, at least one selected from the group consisting of dicyclohexylmethane-4,4′-diisocyanate, isophorone diisocyanate, triphenylmethane-4,4 ′, 4 ″ -triisocyanate, and tris (4-isocyanatephenyl) thiophosphate. Is preferred.

またビウレット体としては、上記イソシアネートの1種または2種以上をビウレット化反応によって多量化させて合成される種々のビウレット体がいずれも使用可能である。
処理剤は、上記イソシアネートまたはそのビウレット体を、例えばアセトン、テトラヒドロフラン、酢酸エチル、ピリジン等の任意の有機溶剤に溶解して調製される。また常温で液状のイソシアネートまたはビウレット体は、有機溶剤に溶解せずにそのままでも、処理剤として使用できる。
In addition, as the biuret body, any of various biuret bodies synthesized by multiplying one or more of the above isocyanates by a biuretization reaction can be used.
The treating agent is prepared by dissolving the above isocyanate or its biuret in an arbitrary organic solvent such as acetone, tetrahydrofuran, ethyl acetate, pyridine and the like. Further, an isocyanate or biuret that is liquid at normal temperature can be used as a treatment agent without being dissolved in an organic solvent.

処理剤の具体例としては、例えばコベストロジャパン(株)製のデスモジュール(登録商標)W〔ジシクロヘキシルメタン−4,4′−ジイソシアネートの異性体混合物〕、当該デスモジュールWの10%アセトン溶液、デスモジュールN3200〔ジシクロヘキシルメタン−4,4′−ジイソシアネートのビウレット体〕、デスモジュールRE〔トリフェニルメタン−4,4′,4″−トリイソシアネートの27%酢酸エチル溶液〕、デスモジュールRFE〔チオりん酸トリス(4−イソシアネートフェニル)の27%酢酸エチル溶液〕、イソホロンジイソシアネートの異性体混合物〔東京化成工業(株)製〕等の1種または2種以上が挙げられる。   Specific examples of the treatment agent include, for example, Desmodur (registered trademark) W (dicyclohexylmethane-4,4′-diisocyanate isomer mixture) manufactured by Covestro Japan Co., Ltd., a 10% acetone solution of the desmodur W, Desmodur N3200 [biuret form of dicyclohexylmethane-4,4′-diisocyanate], desmodur RE [27% ethyl acetate solution of triphenylmethane-4,4 ′, 4 ″ -triisocyanate], desmodur RFE [thiophosphorus 27% ethyl acetate solution of acid tris (4-isocyanate phenyl)], isomer mixture of isophorone diisocyanate [manufactured by Tokyo Chemical Industry Co., Ltd.] and the like.

上記処理剤を各分割体4の側面14に、例えば刷毛塗り、スプレー塗布、浸漬塗布等の任意の塗布方法によって塗布したのち35〜45℃程度の温度で2〜4時間程度静置することによって処理が完了する。
かかる処理をすることで、処理しない場合に比べて分割体4の繋ぎ合わせ部分の引張強度を向上できる。
By applying the treatment agent to the side surface 14 of each divided body 4 by any coating method such as brush coating, spray coating, dip coating, etc., and then allowing to stand at a temperature of about 35 to 45 ° C. for about 2 to 4 hours. Processing is complete.
By performing such treatment, the tensile strength of the joined portion of the divided bodies 4 can be improved as compared with the case where the treatment is not performed.

(第一工程)
図1、図2(a)を参照して、片面が粘着面10とされた仮固定用の粘着シート11を、上記粘着面10が平面状となるように配設し、その上に上記分割体4を、版表面7となる表層樹脂層8側の片面12が粘着面10と接するように、一定幅(例えば3mm程度)の帯状のスペーサ13を挟んで互いに面方向に近接させた状態で貼り合わせて仮固定する。
(First step)
Referring to FIGS. 1 and 2 (a), a temporary fixing pressure-sensitive adhesive sheet 11 having a pressure-sensitive adhesive surface 10 on one side is disposed so that the pressure-sensitive adhesive surface 10 is flat, and the above-mentioned division is performed thereon. In a state where the body 4 is brought close to each other in the surface direction with a strip-shaped spacer 13 having a certain width (for example, about 3 mm) interposed therebetween so that the one surface 12 on the surface resin layer 8 side serving as the plate surface 7 is in contact with the adhesive surface 10. Bond and temporarily fix.

すなわち図1中に破線で示すように、分割体4の側面14をスペーサ13の側面15に全長に亘って接触させながら、片面12が粘着面10と接するように分割体4を粘着面10上に貼り付ける操作を繰り返すと、隣り合う複数枚の分割体4同士が上記スペーサ13を挟んで互いに面方向に隣接された状態で、上記粘着面10上に仮固定される。
図2(a)(b)を参照して、粘着面10上に仮固定した上記複数枚の分割体4の、補強フィルム9側の露出した面(反対面16)上に、当該複数枚の分割体4の全面に亘る1枚の補強シート2を、その片面に積層した粘着層17を介して貼り合わせたのち上下を逆にして、仮固定用の粘着シート11およびスペーサ13を除去する。
That is, as shown by a broken line in FIG. 1, the divided body 4 is placed on the adhesive surface 10 so that the one surface 12 is in contact with the adhesive surface 10 while the side surface 14 of the divided body 4 is in contact with the side surface 15 of the spacer 13 over the entire length. When the pasting operation is repeated, a plurality of adjacent divided bodies 4 are temporarily fixed on the adhesive surface 10 in a state where the spacers 13 are adjacent to each other across the spacer 13.
2 (a) and 2 (b), on the exposed surface (opposite surface 16) on the reinforcing film 9 side of the plurality of divided bodies 4 temporarily fixed on the adhesive surface 10, the plurality of sheets After sticking one reinforcing sheet 2 over the entire surface of the divided body 4 via the adhesive layer 17 laminated on one side, the adhesive sheet 11 and the spacer 13 for temporary fixing are removed by turning upside down.

補強シート2としては、粘着層17を形成する粘着剤との親和性、粘着性に優れた、補強フィルム9と同様の樹脂からなり、前述した補強効果と、フレキソ印刷版1の総厚みとを考慮して厚み188μm以上、350μm以下程度のシート等が用いられる。
また粘着層17は、上記補強シート2との親和性、粘着性に優れる上、前述した光硬化性樹脂組成物とともに活性光線の照射によって硬化反応する、光硬化性の粘着剤によって形成するのが好ましい。
The reinforcing sheet 2 is made of the same resin as the reinforcing film 9 having excellent affinity and adhesiveness with the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 17. The reinforcing effect described above and the total thickness of the flexographic printing plate 1 are obtained. Considering this, a sheet having a thickness of about 188 μm to 350 μm is used.
The pressure-sensitive adhesive layer 17 is formed of a photo-curable pressure-sensitive adhesive that is excellent in affinity and pressure-sensitive adhesiveness with the reinforcing sheet 2 and that undergoes a curing reaction upon irradiation with actinic rays together with the above-described photo-curable resin composition. preferable.

かかる粘着剤としては、例えば光硬化性樹脂組成物が先述した組成を有する場合、成分中にエチレン性不飽和二重結合を有するプレポリマやエチレン性不飽和単量体等を配合したもの等が挙げられる。
上記粘着剤からなる粘着層17を用いると、活性光線の照射により、当該粘着層17を介して補強シート2と、光硬化性樹脂組成物19の硬化物5、および分割体4の反対面16を構成する補強フィルム9をより強固に接合できる。
As such an adhesive, for example, when the photocurable resin composition has the above-mentioned composition, a compound in which a prepolymer having an ethylenically unsaturated double bond, an ethylenically unsaturated monomer, or the like is blended in the component may be mentioned. It is done.
When the pressure-sensitive adhesive layer 17 made of the pressure-sensitive adhesive is used, the reinforcing sheet 2, the cured product 5 of the photocurable resin composition 19, and the opposite surface 16 of the divided body 4 are irradiated through the pressure-sensitive adhesive layer 17 by irradiation with actinic rays. The reinforcing film 9 constituting the can be joined more firmly.

そのため分割体4の側面14をあらかじめ前述した処理剤で処理していることと相まって、繋ぎ合わせ部分の引張強度をより一層向上できる。
補強シート2の貼り合わせには、従来公知の汎用のラミネータ等がいずれも使用可能である。特に上下ロール共に駆動力を有する二軸駆動タイプの対ロール式のラミネータが最適である。かかるラミネータを使用すると各層の面方向のずれを極力小さくできる。
Therefore, coupled with the fact that the side surface 14 of the divided body 4 is previously treated with the above-mentioned treatment agent, the tensile strength of the joined portion can be further improved.
Any conventionally known general-purpose laminator or the like can be used for laminating the reinforcing sheet 2. In particular, a biaxial drive type pair roll laminator having both upper and lower rolls is most suitable. When such a laminator is used, the deviation in the surface direction of each layer can be minimized.

(第二工程)
図2(b)、図3(a)を参照して、上記スペーサ13を除去した分割体4間の隙間18に光硬化性樹脂組成物19を充填したのち、当該光硬化性樹脂組成物19を、活性光線の透過性を有する例えばPE、PP等のフィルム20によってカバーする。
フィルム20は、補強シート2の片面3上に配列された複数枚の分割体4を全面に亘ってカバーしてもよいし、分割体4の、光硬化性樹脂組成物19を充填した隙間18とその近傍のみをカバーするだけでもよい。
(Second step)
2B and 3A, after the photocurable resin composition 19 is filled in the gap 18 between the divided bodies 4 from which the spacers 13 are removed, the photocurable resin composition 19 is filled. Is covered with a film 20 such as PE or PP having translucency of actinic rays.
The film 20 may cover the plurality of divided bodies 4 arranged on one side 3 of the reinforcing sheet 2 over the entire surface, or the gap 18 filled with the photocurable resin composition 19 of the divided bodies 4. And only its vicinity may be covered.

(第三工程)
図3(b)(c)を参照して、紫外線等の活性光線を、図中に実線の矢印で示すように、上記フィルム20を通して照射して光硬化性樹脂組成物19、および粘着層17を形成する粘着剤を硬化反応させたのちフィルム20を剥離する。
そうすると図3(c)および図4に示すように、隣り合う分割体4同士が光硬化性樹脂組成物19の硬化物5によって接合されたインキ転写層6が形成されるとともに、当該インキ転写層6と補強シート2が粘着層17を介して強固に粘着されて、版シート1Aが作製される。
(Third process)
Referring to FIGS. 3B and 3C, an actinic ray such as ultraviolet rays is irradiated through the film 20 as shown by solid arrows in the figure, and the photocurable resin composition 19 and the adhesive layer 17 are irradiated. After the pressure-sensitive adhesive forming the curing reaction, the film 20 is peeled off.
Then, as shown in FIG. 3 (c) and FIG. 4, an ink transfer layer 6 is formed in which the adjacent divided bodies 4 are joined together by the cured product 5 of the photocurable resin composition 19, and the ink transfer layer 6 and the reinforcing sheet 2 are firmly adhered to each other through the adhesive layer 17 to produce the plate sheet 1A.

しかも、上記のように光硬化性樹脂組成物19をフィルム20によってカバーした状態で硬化反応させているため、図3(c)に示すように硬化物5の、版表面7に露出した面を当該版表面7と面一にして、その後の研磨工程等を必要とせずに、かかる版表面7の面精度を向上できる。
またフィルム20によってカバーして光硬化性樹脂組成物19を硬化反応させると、当該光硬化性樹脂組成物19のタックを抑えることができるため、当該タックによって生じる汚れをふき取る洗浄工程を省略することもできる。
Moreover, since the photo-curing resin composition 19 is cured and covered with the film 20 as described above, the surface of the cured product 5 exposed on the plate surface 7 as shown in FIG. The surface accuracy of the plate surface 7 can be improved by making it flush with the plate surface 7 without requiring a subsequent polishing step or the like.
Moreover, since the tack of the photocurable resin composition 19 can be suppressed by covering with the film 20 and causing the photocurable resin composition 19 to undergo a curing reaction, a cleaning process for wiping off dirt generated by the tack is omitted. You can also.

このあと、図4の版シート1Aから、インキ転写層6の外側へはみ出した補強シート2をカットして全体の平面形状を矩形に整えるとともに、互いに平行な2辺の近傍のインキ転写層6を、例えばレーザー加工等して把持部61、溝部62およびピン穴63を形成し、さらに版表面7に所定のパターンP11〜Pxyを形成すると、図5に示すフレキソ印刷版が完成する。 Thereafter, the reinforcing sheet 2 protruding outside the ink transfer layer 6 is cut from the plate sheet 1A in FIG. 4 to adjust the overall planar shape to a rectangle, and the ink transfer layer 6 in the vicinity of two sides parallel to each other is formed. , for example, the grip portion 61 by laser machining or the like, to form a groove 62 and the pin hole 63, to form a predetermined pattern P 11 to P xy further plate surface 7, the flexographic printing plate shown in FIG. 5 is completed.

上記第一実施形態の各工程を経て製造されるフレキソ印刷版1は、先に説明したように、そのもとになる分割体4の側面14をあらかじめイソシアネートおよびそのビウレット体からなる群より選ばれた少なくとも1種を含む処理剤で処理しているため、繋ぎ合わせ部分の引張強度に優れている。
そのため上記フレキソ印刷版1によれば、特に大型の液晶表示素子の液晶配向膜等を連続的に印刷する際に繰り返し加えられる引張応力に十分に耐えて、比較的早期の段階で繋ぎ合わせ部分から引きちぎられたり剥離したりせずに、あらかじめ設定された印刷枚数まで印刷を継続することが可能となる。
As described above, the flexographic printing plate 1 manufactured through the respective steps of the first embodiment is selected in advance from the group consisting of isocyanate and its biuret body as the side surface 14 of the divided body 4 as a base. In addition, since it is treated with a treating agent containing at least one kind, it has excellent tensile strength at the joined portion.
Therefore, according to the flexographic printing plate 1, it can sufficiently withstand the tensile stress repeatedly applied particularly when continuously printing a liquid crystal alignment film or the like of a large liquid crystal display element, and from a joined portion at a relatively early stage. It is possible to continue printing up to a preset number of prints without tearing or peeling.

しかも上記フレキソ印刷版1によれば、先に説明したように、パターン形成していない分割体4を一体に繋ぎ合わせて形成したインキ転写層6の版表面7に、あとからパターンP11〜Pxyを形成しているため、例えば版表面7上のx方向、およびy方向の精度をいずれも±100μm程度として、パターンの位置精度を大幅に向上できる。
〈第二実施形態〉
本発明の第二実施形態では、あらかじめパターン形成した分割体4を用いる。その他の工程は第一実施形態と同様である。
Moreover, according to the flexographic printing plate 1, as described above, the patterns P 11 to P are later formed on the plate surface 7 of the ink transfer layer 6 formed by integrally joining the divided bodies 4 that are not patterned. Since xy is formed, for example, the accuracy of the pattern position can be greatly improved by setting both the accuracy in the x direction and the y direction on the plate surface 7 to about ± 100 μm.
<Second embodiment>
In the second embodiment of the present invention, the divided body 4 that is patterned in advance is used. Other steps are the same as in the first embodiment.

すなわち版表面7を構成する表層樹脂層8と補強フィルム9との積層体である個々の分割体4の、上記版表面7となる表層樹脂層8の表面に、図6に一部を省略して記載したように、先にx×y個の印刷パターンに対応する所定のパターンP11〜Pxyを形成する。
またその前後いずれかの時点で、上記分割体4の、それぞれ他の分割体4と接合される側面14を、必要に応じてアセトン、テトラヒドロフラン等の有機溶剤で脱脂して乾燥させたのち、イソシアネートおよびそのビウレット体からなる群より選ばれた少なくとも1種を含む処理剤によって処理する。
That is, in FIG. 6, a part of the surface of the surface layer resin layer 8 that becomes the plate surface 7 of each divided body 4 that is a laminate of the surface layer resin layer 8 and the reinforcing film 9 constituting the plate surface 7 is omitted. As described above, predetermined patterns P 11 to P xy corresponding to x × y print patterns are formed first.
Further, at any time before or after that, the side surface 14 of each of the divided bodies 4 to be joined to the other divided bodies 4 is degreased with an organic solvent such as acetone or tetrahydrofuran as necessary, and then dried. And a treatment agent containing at least one selected from the group consisting of the biuret bodies.

次いで第一実施形態と同様に図2(a)(b)、図3(a)〜(c)の各工程を経ることにより、上記図6に示す版シート1Bが作製される。
このあと上記版シート1Bから、インキ転写層6の外側へはみ出した補強シート2をカットして全体の平面形状を矩形に整えるとともに、互いに平行な2辺の近傍のインキ転写層6を、例えばレーザー加工等して把持部61、溝部62およびピン穴63を形成すると、図5に示すフレキソ印刷版が完成する。
Next, similarly to the first embodiment, the plate sheet 1B shown in FIG. 6 is produced through the steps of FIGS. 2 (a) and 2 (b) and FIGS. 3 (a) to 3 (c).
Thereafter, the reinforcing sheet 2 that protrudes outside the ink transfer layer 6 is cut from the plate sheet 1B to adjust the overall planar shape to a rectangle, and the ink transfer layer 6 in the vicinity of the two sides parallel to each other is, for example, a laser. When the gripping part 61, the groove part 62 and the pin hole 63 are formed by processing or the like, the flexographic printing plate shown in FIG. 5 is completed.

上記第二実施形態の各工程を経て製造されるフレキソ印刷版1も、やはりそのもとになる分割体4の側面14をあらかじめ上記処理剤で処理しているため、繋ぎ合わせ部分の引張強度に優れている。
そのため上記フレキソ印刷版1によれば、やはり大型の液晶表示素子の液晶配向膜等を連続的に印刷する際に繰り返し加えられる引張応力に十分に耐えて、比較的早期の段階で繋ぎ合わせ部分から引きちぎられたり剥離したりせずに、あらかじめ設定された印刷枚数まで印刷を継続することが可能となる。
Also in the flexographic printing plate 1 manufactured through the steps of the second embodiment, the side surface 14 of the divided body 4 that is the basis of the flexographic printing plate 1 is treated in advance with the treatment agent. Are better.
Therefore, according to the flexographic printing plate 1, it can sufficiently withstand the tensile stress repeatedly applied when continuously printing a liquid crystal alignment film or the like of a large liquid crystal display element, and from a joined portion at a relatively early stage. It is possible to continue printing up to a preset number of prints without tearing or peeling.

しかも上記フレキソ印刷版1によれば、例えば分割体の面方向の寸法精度、ならびにスペーサの厚みの精度を高めることにより、フレキソ印刷版1の全体での位置精度を、第一実施形態で製造されるものと同等程度の高いレベルに維持できる。
《液晶表示素子の製造方法》
本発明は、上記本発明の製造方法によって製造されたフレキソ印刷版を用いて、フレキソ印刷によって液晶配向膜を形成する工程を含む液晶表示素子の製造方法である。
Moreover, according to the flexographic printing plate 1, the overall positional accuracy of the flexographic printing plate 1 is manufactured in the first embodiment by increasing the dimensional accuracy in the surface direction of the divided body and the accuracy of the spacer thickness, for example. Can be maintained at the same high level as
<< Method for manufacturing liquid crystal display element >>
This invention is a manufacturing method of the liquid crystal display element including the process of forming a liquid crystal aligning film by flexographic printing using the flexographic printing plate manufactured by the manufacturing method of the said invention.

本発明によれば、上記製造方法によって製造された、全体での厚みの精度に優れたフレキソ印刷版を用いることにより、当該フレキソ印刷版の版表面を基板の表面の凹凸の微細化に対応して当該凹凸に良好に追従させることができるため、厚みが均一でピンホールのない液晶配向膜を備えた液晶表示素子を製造できる。
本発明の製造方法のその他の工程は、従来同様に実施できる。
According to the present invention, by using a flexographic printing plate produced by the above production method and excellent in overall thickness accuracy, the plate surface of the flexographic printing plate can be used for miniaturization of irregularities on the surface of the substrate. Therefore, the liquid crystal display element including the liquid crystal alignment film having a uniform thickness and no pinhole can be manufactured.
Other steps of the production method of the present invention can be carried out in the same manner as in the prior art.

すなわち、ガラス基板等の透明基板の表面に、所定のマトリクスパターン等に対応した透明電極層を形成した上に、上記フレキソ印刷版を用いたフレキソ印刷によって液晶配向膜を形成し、さらに液晶配向膜の表面を必要に応じてラビング等によって配向処理して基板を作製する。
上記基板を2枚用意し、それぞれの透明電極層を位置合わせした状態で、間に液晶材料を挟みこんで互いに固定して積層体を形成するとともに、さらに必要に応じてこの積層体の両外側に偏光板を配設して液晶表示素子が製造される。
That is, a transparent electrode layer corresponding to a predetermined matrix pattern or the like is formed on the surface of a transparent substrate such as a glass substrate, and a liquid crystal alignment film is formed by flexographic printing using the flexographic printing plate. The substrate is prepared by subjecting the surface to orientation treatment by rubbing or the like as necessary.
Two substrates are prepared, and with the respective transparent electrode layers aligned, a liquid crystal material is sandwiched between them and fixed together to form a laminated body. Further, if necessary, both outer sides of the laminated body A liquid crystal display element is manufactured by disposing a polarizing plate.

本発明の構成は、以上で説明した図の例には限定されない。
例えばインキ転写層6を構成する分割体4は、2枚または3枚であってもよいし、5枚以上であってもよい。
各分割体4は同じ形状および同じ大きさでなく、インキ転写層6のどの位置を形成するかによって違う形状と大きさに形成してもよい。ただし組み合わせの手間等を省くことを考慮すると、同形状同寸法の分割体4を2枚以上組み合わせて使用するのが好ましい。
The configuration of the present invention is not limited to the example of the figure described above.
For example, the divided body 4 constituting the ink transfer layer 6 may be two or three, or may be five or more.
Each divided body 4 may not be the same shape and the same size, but may be formed in a different shape and size depending on which position of the ink transfer layer 6 is formed. However, in consideration of saving the time and labor of the combination, it is preferable to use a combination of two or more divided bodies 4 having the same shape and the same size.

分割体4の側面14を、図の例では版表面7となる片面12に対して直交する垂直面としていたが、上記片面12に対して、当該片面12側よりも反対面16側が突出するように所定の傾斜角度で傾斜させた傾斜面とすることもできる。
この場合は隣り合う分割体4間の隙間18を、版表面7側の開口の幅の広い逆台形状として、光硬化性樹脂組成物19を注入しやすくするとともに、気泡の噛み込みを抑制できる。
In the example shown in the figure, the side surface 14 of the divided body 4 is a vertical surface orthogonal to the one surface 12 that becomes the plate surface 7, but the opposite surface 16 side protrudes from the one surface 12 rather than the one surface 12 side. It is also possible to use an inclined surface inclined at a predetermined inclination angle.
In this case, the gap 18 between the adjacent divided bodies 4 is formed in an inverted trapezoidal shape with a wide opening on the plate surface 7 side, so that the photocurable resin composition 19 can be easily injected and the entrapment of bubbles can be suppressed. .

そのため上記側面14を、あらかじめイソシアネートおよびそのビウレット体からなる群より選ばれた少なくとも1種を含む処理剤によって処理していること、当該側面14と光硬化性樹脂組成物19の硬化物5との接触面積を増加できることと相まって、繋ぎ合わせ部分の引張強度をより一層向上できる。
その他、本発明の要旨を変更しない範囲で種々の設計変更を施すことができる。
Therefore, the side surface 14 is previously treated with a treatment agent containing at least one selected from the group consisting of isocyanate and its biuret body, and the side surface 14 and the cured product 5 of the photocurable resin composition 19 Combined with the fact that the contact area can be increased, the tensile strength of the joined portion can be further improved.
In addition, various design changes can be made without departing from the scope of the present invention.

〈実施例1〉
(分割体4の作製)
表層樹脂層8のもとになる光硬化性樹脂組成物としては、1,2−ブタジエン構造を有するとともに末端にエチレン性不飽和二重結合を有するウレタンプレポリマ、エチレン性不飽和単量体、および光重合開始剤を含む組成物〔住友ゴム工業(株)製のNK樹脂〕を用意した。
<Example 1>
(Preparation of divided body 4)
As the photocurable resin composition that is the basis of the surface resin layer 8, a urethane prepolymer having an 1,2-butadiene structure and having an ethylenically unsaturated double bond at the terminal, an ethylenically unsaturated monomer, And a composition [NK resin manufactured by Sumitomo Rubber Industries, Ltd.] containing a photopolymerization initiator.

当該光硬化性樹脂組成物を、型面とPET製の補強フィルム9との間に挟むとともに波長365nmの紫外線を15分間照射して光硬化性樹脂組成物を硬化反応させたのち縦150mm×横150mmに切り出して分割体4のサンプルとした。
分割体4の全厚みは2.56mmであった。
(フレキソ印刷版1の製造)
温度23℃、相対湿度55%の環境下、上記分割体4の側面14をまずアセトンで脱脂して1時間乾燥させ、次いで前出のコベストロジャパン(株)製のデスモジュールW〔ジシクロヘキシルメタン−4,4′−ジイソシアネートの異性体混合物〕を刷毛塗りしたのち40℃で3時間静置した。
The photocurable resin composition is sandwiched between the mold surface and the reinforcing film 9 made of PET and irradiated with ultraviolet rays having a wavelength of 365 nm for 15 minutes to cure and cure the photocurable resin composition. A sample of the divided body 4 was cut out to 150 mm.
The total thickness of the divided body 4 was 2.56 mm.
(Manufacture of flexographic printing plate 1)
In an environment of a temperature of 23 ° C. and a relative humidity of 55%, the side surface 14 of the divided body 4 is first degreased with acetone and dried for 1 hour, and then desmodule W [dicyclohexylmethane − manufactured by Covestro Japan Co., Ltd. The isomer mixture of 4,4'-diisocyanate] was applied with a brush and allowed to stand at 40 ° C for 3 hours.

次いで前述した手順に従って、図1ないし図4に示したように4枚の分割体4を接合してインキ転写層6を形成した。
すなわち分割体4の接合用の光硬化性樹脂組成物19としては、上記と同じ組成物〔住友ゴム工業(株)製のNK樹脂〕を用いた。また補強シート2としてはPET製で、片面に粘着層17を積層したものを用いた。
Then, according to the procedure described above, the four divided bodies 4 were joined as shown in FIGS. 1 to 4 to form the ink transfer layer 6.
That is, as the photocurable resin composition 19 for joining the divided bodies 4, the same composition as above (NK resin manufactured by Sumitomo Rubber Industries, Ltd.) was used. The reinforcing sheet 2 is made of PET and has a pressure-sensitive adhesive layer 17 laminated on one side.

上記光硬化性樹脂組成物19を隙間18に充填し、PP製のフィルム20によってカバーした状態で、波長365nmの紫外線を15分間照射して硬化反応させて、隣り合う分割体4同士を上記光硬化性樹脂組成物19の硬化物5で接合してインキ転写層6を形成した。
そして形成したインキ転写層6の版表面7に、x×y個の印刷パターンに対応するパターンP11〜Pxyを形成して図5に示すフレキソ印刷版を製造した。
In a state where the photocurable resin composition 19 is filled in the gap 18 and covered with the PP film 20, ultraviolet light having a wavelength of 365 nm is irradiated for 15 minutes to cause a curing reaction, and the adjacent divided bodies 4 are separated from each other by the light. The ink transfer layer 6 was formed by bonding with the cured product 5 of the curable resin composition 19.
Then, patterns P 11 to P xy corresponding to x × y printing patterns were formed on the plate surface 7 of the formed ink transfer layer 6 to produce a flexographic printing plate shown in FIG.

〈実施例2〉
温度23℃、相対湿度55%の環境下、分割体4の側面14をまずアセトンで脱脂して1時間乾燥させ、次いで実施例1で使用したのと同じコベストロジャパン(株)製のデスモジュールWの10%アセトン溶液に15秒間浸漬したのち引き上げて40℃で3時間静置したこと以外は実施例1と同様にしてフレキソ印刷版を製造した。
<Example 2>
In an environment of a temperature of 23 ° C. and a relative humidity of 55%, the side surface 14 of the divided body 4 is first degreased with acetone and dried for 1 hour, and then the same des module manufactured by Covestro Japan Co., Ltd. used in Example 1. A flexographic printing plate was produced in the same manner as in Example 1 except that it was immersed in a 10% acetone solution of W for 15 seconds, then lifted and allowed to stand at 40 ° C. for 3 hours.

〈実施例3〉
温度23℃、相対湿度55%の環境下、分割体4の側面14をまずアセトンで脱脂して1時間乾燥させ、次いで前出のコベストロジャパン(株)製のデスモジュールN3200〔ジシクロヘキシルメタン−4,4′−ジイソシアネートのビウレット体〕を刷毛塗りしたのち40℃で3時間静置したこと以外は実施例1と同様にしてフレキソ印刷版を製造した。
<Example 3>
In an environment of a temperature of 23 ° C. and a relative humidity of 55%, the side surface 14 of the divided body 4 is first degreased with acetone and dried for 1 hour, and then desmod N3200 [dicyclohexylmethane-4 manufactured by Covestro Japan Co., Ltd.] , 4'-diisocyanate biuret] was prepared in the same manner as in Example 1 except that it was allowed to stand at 40 ° C for 3 hours.

〈実施例4〉
温度23℃、相対湿度55%の環境下、分割体4の側面14をまずアセトンで脱脂して1時間乾燥させ、次いで前出のイソホロンジイソシアネートの異性体混合物〔東京化成工業(株)製〕を刷毛塗りしたのち40℃で3時間静置したこと以外は実施例1と同様にしてフレキソ印刷版を製造した。
<Example 4>
In an environment of a temperature of 23 ° C. and a relative humidity of 55%, the side surface 14 of the divided body 4 is first degreased with acetone and dried for 1 hour, and then the isophorone diisocyanate isomer mixture (manufactured by Tokyo Chemical Industry Co., Ltd.) is used. A flexographic printing plate was produced in the same manner as in Example 1 except that it was brushed and then allowed to stand at 40 ° C. for 3 hours.

〈実施例5〉
温度23℃、相対湿度55%の環境下、分割体4の側面14をまずアセトンで脱脂して1時間乾燥させ、次いで前出のコベストロジャパン(株)製のデスモジュールRE〔トリフェニルメタン−4,4′,4″−トリイソシアネートの27%酢酸エチル溶液〕を刷毛塗りしたのち40℃で3時間静置したこと以外は実施例1と同様にしてフレキソ印刷版を製造した。
<Example 5>
In an environment of a temperature of 23 ° C. and a relative humidity of 55%, the side surface 14 of the divided body 4 is first degreased with acetone and dried for 1 hour, and then desmod RE [triphenylmethane- A flexographic printing plate was produced in the same manner as in Example 1 except that 27% ethyl acetate solution of 4,4 ′, 4 ″ -triisocyanate was brushed and left to stand at 40 ° C. for 3 hours.

〈実施例6〉
温度23℃、相対湿度55%の環境下、分割体4の側面14をまずアセトンで脱脂して1時間乾燥させ、次いで前出のコベストロジャパン(株)製のデスモジュールRFE〔チオりん酸トリス(4−イソシアネートフェニル)の27%酢酸エチル溶液〕に15秒間浸漬したのち引き上げて40℃で3時間静置したこと以外は実施例1と同様にしてフレキソ印刷版を製造した。
<Example 6>
In an environment of a temperature of 23 ° C. and a relative humidity of 55%, the side surface 14 of the divided body 4 is first degreased with acetone and dried for 1 hour, and then desmodule RFE [Tris thiophosphate] manufactured by Covestro Japan Co., Ltd. A flexographic printing plate was produced in the same manner as in Example 1 except that it was dipped in a 27% ethyl acetate solution of (4-isocyanatophenyl) for 15 seconds, then pulled up and allowed to stand at 40 ° C. for 3 hours.

〈比較例1〉
温度23℃、相対湿度55%の環境下、分割体4の側面14をまずアセトンで脱脂して1時間乾燥させ、次いで市販のシアノアクリレート系接着剤〔東亞合成(株)製のアロンアルファ(登録商標)〕を開封直後に塗り口を直接に接触させて塗布して3時間乾燥させたこと以外は実施例1と同様にしてフレキソ印刷版を製造した。このものは、特許文献1に記載の接合を再現したものである。
<Comparative example 1>
In an environment of a temperature of 23 ° C. and a relative humidity of 55%, the side surface 14 of the divided body 4 is first degreased with acetone and dried for 1 hour, and then a commercially available cyanoacrylate adhesive [Aron Alpha (registered trademark) manufactured by Toagosei Co., Ltd. A flexographic printing plate was produced in the same manner as in Example 1 except that the coating was applied in direct contact immediately after opening and dried for 3 hours. This is a reproduction of the joining described in Patent Document 1.

〈比較例2〉
温度23℃、相対湿度55%の環境下、分割体4の側面14をアセトンで脱脂して3時間乾燥させた後、そのままの状態で使用したこと以外は実施例1と同様にしてフレキソ印刷版を製造した。
〈引張特性試験〉
温度23℃、相対湿度55%の環境下、上記実施例1〜6、比較例1、2で製造したフレキソ印刷版を18時間養生させ、次いでハムスライサを用いて補強フィルムを剥がし、厚みを2mmに調整したのち、日本工業規格JIS K6251:2010「加硫ゴム及び熱可塑性ゴム−引張特性の求め方」に規定されたダンベル状3号形試験片の形状で、なおかつその平行部分を横断するように分割体4間の継ぎ目が位置するように打ち抜いて試験片とした。
<Comparative example 2>
A flexographic printing plate was prepared in the same manner as in Example 1 except that the side surface 14 of the divided body 4 was degreased with acetone and dried for 3 hours in an environment of a temperature of 23 ° C. and a relative humidity of 55%, and then used as it was. Manufactured.
<Tensile property test>
The flexographic printing plates produced in Examples 1 to 6 and Comparative Examples 1 and 2 were cured for 18 hours under an environment of a temperature of 23 ° C. and a relative humidity of 55%, and then the reinforcing film was peeled off using a ham slicer to a thickness of 2 mm. After adjustment, the shape of the dumbbell-shaped No. 3 test piece specified in Japanese Industrial Standard JIS K6251: 2010 “Vulcanized rubber and thermoplastic rubber – Determination of tensile properties”, and so as to cross the parallel part A test piece was punched out so that the joint between the divided bodies 4 was located.

そして上記規格に所載の測定方法に則って測定した結果から引張強さTS(MPa)および切断時伸びE(%)を求めた。
〈実機試験〉
温度23℃、相対湿度55%の環境下、上記実施例1〜6、比較例1、2で製造したフレキソ印刷版をフレキソ印刷機の版胴にセットして20000回の連続印刷をして、その際のフレキソ印刷版の状態を記録した。
And tensile strength TS (MPa) and elongation at break Eb (%) were determined from the results of measurement according to the measurement method described in the above standard.
<Real machine test>
In an environment of a temperature of 23 ° C. and a relative humidity of 55%, the flexographic printing plates produced in Examples 1 to 6 and Comparative Examples 1 and 2 were set on the plate cylinder of a flexographic printing machine and continuously printed 20000 times. The state of the flexographic printing plate at that time was recorded.

以上の結果を表1、表2に示す。なお表中、「側面の処理」欄の符号は下記のとおり。
HDI:デスモジュールW〔ジシクロヘキシルメタン−4,4′−ジイソシアネートの異性体混合物〕
HDIbu:デスモジュールN3200〔ジシクロヘキシルメタン−4,4′−ジイソシアネートのビウレット体〕
IDI:イソホロンジイソシアネートの異性体混合物〔東京化成工業(株)製〕
TTI:デスモジュールRE〔トリフェニルメタン−4,4′,4″−トリイソシアネートの27%酢酸エチル溶液〕
TPI:デスモジュールRFE〔チオりん酸トリス(4−イソシアネートフェニル)の27%酢酸エチル溶液〕
The above results are shown in Tables 1 and 2. In the table, the symbols in the “side treatment” column are as follows.
HDI: Desmodur W [isomer mixture of dicyclohexylmethane-4,4′-diisocyanate]
HDIbu: Desmodur N3200 [biuret of dicyclohexylmethane-4,4′-diisocyanate]
IDI: Isophorone diisocyanate isomer mixture [manufactured by Tokyo Chemical Industry Co., Ltd.]
TTI: Desmodur RE [27% ethyl acetate solution of triphenylmethane-4,4 ′, 4 ″ -triisocyanate]
TPI: Desmodur RFE [27% ethyl acetate solution of tris (4-isocyanatophenyl) thiophosphate]

Figure 2017154353
Figure 2017154353

Figure 2017154353
Figure 2017154353

表1、表2の実施例1〜6、比較例1、2の結果より、分割体4の側面14を、あらかじめイソシアネートおよびそのビウレット体からなる群より選ばれた少なくとも1種を含む処理剤によって処理することにより、処理しない場合だけでなく、特許文献1に記載されたシアノアクリレート処理する場合と比べても、上記分割体4間の繋ぎ合わせ部分の引張強度を向上でき、所定の印刷枚数の間、上記繋ぎ合わせ部分から引きちぎられたり剥離したりしないフレキソ印刷版を製造できることが判った。   From the results of Examples 1 to 6 and Comparative Examples 1 and 2 in Tables 1 and 2, the side surface 14 of the divided body 4 is treated with a treatment agent containing at least one selected from the group consisting of isocyanate and its biuret body in advance. By treating, not only the case of not treating but also the case of treating with cyanoacrylate described in Patent Document 1, the tensile strength of the joined portion between the divided bodies 4 can be improved, and a predetermined number of printed sheets can be obtained. In the meantime, it has been found that a flexographic printing plate that is not torn off or peeled off from the joined portion can be produced.

1 フレキソ印刷版
1A、1B 版シート
2 補強シート
3 片面
4 分割体
5 硬化物
6 インキ転写層
7 版表面
8 表層樹脂層
9 補強フィルム
10 粘着面
11 粘着シート
12 片面
13 スペーサ
14 側面
15 側面
16 反対面
17 粘着層
18 隙間
19 光硬化性樹脂組成物
20 フィルム
61 把持部
62 溝部
63 ピン穴
11-Pxy パターン
DESCRIPTION OF SYMBOLS 1 Flexo printing plate 1A, 1B Plate sheet 2 Reinforcement sheet 3 Single side 4 Divided body 5 Hardened material 6 Ink transfer layer 7 Plate surface 8 Surface layer resin layer 9 Reinforcement film 10 Adhesive surface 11 Adhesive sheet 12 Single side 13 Spacer 14 Side 15 Side 16 Opposite Surface 17 Adhesive layer 18 Gap 19 Photocurable resin composition 20 Film 61 Holding portion 62 Groove portion 63 Pin hole P 11 -P xy pattern

Claims (4)

樹脂製のインキ転写層を備えたフレキソ印刷版の製造方法であって、
前記インキ転写層のもとになる複数枚のシート状の分割体を、互いに面方向に一定間隔を隔てて同一平面上に配列する工程、
配列した前記分割体間の前記隙間に、活性光線の照射によって硬化反応する光硬化性樹脂組成物を充填する工程、および
前記光硬化性樹脂組成物を、前記活性光線の照射によって硬化反応させることで、前記複数枚の分割体を互いに接合して前記インキ転写層を形成する工程
を含み、前記各分割体の、他の分割体と接合される側面を、あらかじめイソシアネートおよびそのビウレット体からなる群より選ばれた少なくとも1種を含む処理剤によって処理する工程をも含むフレキソ印刷版の製造方法。
A method for producing a flexographic printing plate having a resin ink transfer layer,
A step of arranging a plurality of sheet-like divided bodies on which the ink transfer layer is based on the same plane at regular intervals in the surface direction;
Filling the gaps between the arrayed divided bodies with a photocurable resin composition that undergoes a curing reaction by irradiation with actinic rays, and curing reaction of the photocurable resin composition by irradiation with actinic rays And forming the ink transfer layer by joining the plurality of divided bodies to each other, and the side surfaces of the divided bodies to be joined to the other divided bodies are made of an isocyanate and its biuret body in advance. The manufacturing method of a flexographic printing plate which also includes the process processed with the processing agent containing at least 1 sort (s) chosen from more.
前記処理剤は、ジシクロヘキシルメタン−4,4′−ジイソシアネート、イソホロンジイソシアネート、トリフェニルメタン−4,4′,4″−トリイソシアネート、チオりん酸トリス(4−イソシアネートフェニル)、およびこれらのビウレット体からなる群より選ばれた少なくとも1種を含む液状の処理剤であり、前記処理剤を前記側面に塗布したのち、所定温度で一定時間静置して処理する請求項1に記載のフレキソ印刷版の製造方法。   The treating agent includes dicyclohexylmethane-4,4′-diisocyanate, isophorone diisocyanate, triphenylmethane-4,4 ′, 4 ″ -triisocyanate, tris (4-isocyanatephenyl) thiophosphate, and biurets thereof. The flexographic printing plate according to claim 1, wherein the flexographic printing plate is a liquid processing agent containing at least one selected from the group consisting of the processing agent, which is applied to the side surface and then left to stand for a predetermined time at a predetermined temperature. Production method. 前記光硬化性樹脂組成物は、ウレタンプレポリマを含む組成物である請求項1または2に記載のフレキソ印刷版の製造方法。   The method for producing a flexographic printing plate according to claim 1, wherein the photocurable resin composition is a composition containing a urethane prepolymer. 前記請求項1ないし3のいずれか1項に記載の製造方法によって製造されたフレキソ印刷版を用いて、フレキソ印刷によって液晶配向膜を形成する工程を含む液晶表示素子の製造方法。   The manufacturing method of a liquid crystal display element including the process of forming a liquid crystal aligning film by flexographic printing using the flexographic printing plate manufactured by the manufacturing method of any one of the said Claim 1 thru | or 3.
JP2016038979A 2016-03-01 2016-03-01 Method for manufacturing flexographic printing plate and method for manufacturing liquid crystal display element Pending JP2017154353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038979A JP2017154353A (en) 2016-03-01 2016-03-01 Method for manufacturing flexographic printing plate and method for manufacturing liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038979A JP2017154353A (en) 2016-03-01 2016-03-01 Method for manufacturing flexographic printing plate and method for manufacturing liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2017154353A true JP2017154353A (en) 2017-09-07

Family

ID=59807716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038979A Pending JP2017154353A (en) 2016-03-01 2016-03-01 Method for manufacturing flexographic printing plate and method for manufacturing liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2017154353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188271A1 (en) * 2018-03-26 2019-10-03 株式会社コムラテック Connected printing plate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188271A1 (en) * 2018-03-26 2019-10-03 株式会社コムラテック Connected printing plate
CN111587185A (en) * 2018-03-26 2020-08-25 株式会社小村技术 Binding printing plate
KR20200135286A (en) * 2018-03-26 2020-12-02 가부시키가이샤 고무라테크 Connection printing plate
JPWO2019188271A1 (en) * 2018-03-26 2021-02-12 株式会社コムラテック Concatenated printing plate
CN111587185B (en) * 2018-03-26 2022-03-11 株式会社小村技术 Binding printing plate
JP7153637B2 (en) 2018-03-26 2022-10-14 株式会社コムラテック Linked printing plate
TWI782193B (en) * 2018-03-26 2022-11-01 日商小村科技股份有限公司 Link print edition
KR102520776B1 (en) * 2018-03-26 2023-04-11 가부시키가이샤 고무라테크 connection printing plate

Similar Documents

Publication Publication Date Title
JP6322871B2 (en) Flexographic printing plate and manufacturing method thereof, and manufacturing method of liquid crystal display element
WO2011089963A1 (en) Process for producing laminate of light-transmitting rigid plates and device for laminating light-transmitting rigid plates
DE602005027885D1 (en) LAMINATED ADHESIVE, LAMINATE AND METHOD FOR THE PRODUCTION OF A LAMINATE
WO2013011969A1 (en) Method for producing translucent rigid substrate laminate and device for pasting together translucent rigid substrates
DE19508502A1 (en) Clamp for holding the substrate for prodn. of an LCD element
KR101811456B1 (en) Resin original plate for printing and method for manufacturing the same
KR20130018467A (en) Flexo printing die support
JP6551737B2 (en) Method for producing flexographic printing plate and method for producing liquid crystal display element
TW201300917A (en) Method for separating multilayer substrate
DE69929087T2 (en) FLEXODRUCKPLATTE AND THEIR ROHLING
KR102079066B1 (en) Improved bonding device for a curved substrate
WO2013039231A1 (en) Method for processing hard substrate laminated body, and clamp jig
TWI594887B (en) Method of manufacturing translucent hard substrate laminate
JP2017154353A (en) Method for manufacturing flexographic printing plate and method for manufacturing liquid crystal display element
JP6306715B2 (en) Method for producing flexographic printing plate and method for producing liquid crystal display element
KR101307134B1 (en) Release film for transcribing pattern, transcription film for patterning and patterning method using the same
JP2016210167A (en) Method for manufacturing flexographic printing plate and method for manufacturing liquid crystal display element
JP6395301B2 (en) Flexographic printing plate for testing, manufacturing method thereof, and manufacturing method of liquid crystal display element
JP2010009946A (en) Member for push-button switch, and its manufacturing method
CN115064077B (en) Display device and attaching method thereof
WO2007015356A1 (en) Display device and method of producing the same
CN107867101B (en) Method for producing resin original plate, method for producing printing plate, and method for producing liquid crystal display element
TW201625422A (en) Manufacture method of resin original plate for printing and flexible printing plate
JP5195385B2 (en) Protection plate integrated display panel manufacturing equipment
JP2001005011A (en) Manufacture of liquid crystal display element