JP6322871B2 - Flexographic printing plate and manufacturing method thereof, and manufacturing method of liquid crystal display element - Google Patents

Flexographic printing plate and manufacturing method thereof, and manufacturing method of liquid crystal display element Download PDF

Info

Publication number
JP6322871B2
JP6322871B2 JP2014102687A JP2014102687A JP6322871B2 JP 6322871 B2 JP6322871 B2 JP 6322871B2 JP 2014102687 A JP2014102687 A JP 2014102687A JP 2014102687 A JP2014102687 A JP 2014102687A JP 6322871 B2 JP6322871 B2 JP 6322871B2
Authority
JP
Japan
Prior art keywords
resin layer
layer
flexographic printing
printing plate
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014102687A
Other languages
Japanese (ja)
Other versions
JP2015217595A (en
Inventor
信彦 田所
信彦 田所
武文 中下
武文 中下
匠志 窪田
匠志 窪田
康広 森
康広 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Nakan Techno Co Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Nakan Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd, Nakan Techno Co Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014102687A priority Critical patent/JP6322871B2/en
Priority to KR1020150050705A priority patent/KR20150131950A/en
Priority to CN201510191180.0A priority patent/CN105082818B/en
Priority to TW104112789A priority patent/TWI645985B/en
Publication of JP2015217595A publication Critical patent/JP2015217595A/en
Application granted granted Critical
Publication of JP6322871B2 publication Critical patent/JP6322871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば液晶パネル用基板の液晶配向膜等をフレキソ印刷によって形成するために好適に用いることができるフレキソ印刷版とその製造方法、ならびにかかるフレキソ印刷版を用いて液晶パネル用の液晶配向膜を形成する工程を含む液晶表示素子の製造方法に関するものである。   The present invention relates to a flexographic printing plate that can be suitably used for forming, for example, a liquid crystal alignment film of a substrate for a liquid crystal panel by flexographic printing, a method for producing the same, and liquid crystal alignment for a liquid crystal panel using such a flexographic printing plate. The present invention relates to a method for manufacturing a liquid crystal display element including a step of forming a film.

液晶表示素子を構成する液晶パネル用基板の電極形成面上に、できるだけ厚みが均一でピンホール等がなくしかも薄いという、高い塗膜品質が要求される液晶配向膜を形成するために、良好な印刷特性を有するフレキソ印刷法が利用されている。
フレキソ印刷法に用いるフレキソ印刷版は、片面が印刷時にインキを保持する印刷面とされた、単層の柔軟な樹脂層(フレキソ樹脂層)を備えるのが一般的である。また、かかるフレキソ樹脂層の反対面には各種プラスチック等からなる補強シートを積層する場合もある。
In order to form a liquid crystal alignment film that is required to have high coating quality, that is, as thin as possible and free from pinholes, etc., on the electrode forming surface of the liquid crystal panel substrate constituting the liquid crystal display element Flexographic printing methods having printing characteristics are used.
In general, a flexographic printing plate used in the flexographic printing method includes a single-layered flexible resin layer (flexographic resin layer) whose one surface is a printing surface that holds ink during printing. Further, a reinforcing sheet made of various plastics may be laminated on the opposite surface of the flexo resin layer.

上記印刷面は、液晶配向膜のもとになるインキに対して高い保持性を有している必要がある。すなわち印刷面には、液晶配向膜の厚みに応じた少量のインキであってもはじきやカスレ等を生じることなしに、その全面に亘ってできるだけ均一な厚みに保持できる良好な保持性が求められる。
保持性を向上するためには、印刷面を凹凸形状として比表面積を増加させて、インキに対する濡れ性を向上させればよい。
The printed surface needs to have a high holding property with respect to the ink that is the basis of the liquid crystal alignment film. In other words, the printed surface is required to have a good holding property that can be kept as uniform as possible over the entire surface without causing repelling or blurring even with a small amount of ink according to the thickness of the liquid crystal alignment film. .
In order to improve the retainability, it is only necessary to improve the wettability with respect to the ink by increasing the specific surface area by making the printed surface uneven.

例えば特許文献1、2には、印刷面に円形等の幾何学的な平面形状を有する微小突起を多数設け、当該多数の微小突起とその間の溝部とによって印刷面を凹凸形状として、インキに対する濡れ性を向上させることが記載されている。
微小突起は、例えばフォトリソグラフ法によって形成される。すなわちフレキソ樹脂層のもとになる感光性樹脂組成物の層を用意し、その上に微小突起の平面形状に対応する微細なパターン(ドットパターン等)を形成したネガまたはポジフィルムからなるマスクを重ねた状態で露光して、感光性樹脂組成物をマスクのパターンに対応させて選択的に硬化させたのち、現像して未硬化の感光性樹脂組成物を除去することで、当該感光性樹脂からなるフレキソ樹脂層の印刷面に多数の微小突起が形成される。
For example, in Patent Documents 1 and 2, a printing surface is provided with a large number of minute projections having a geometrical planar shape such as a circle, and the printing surface is formed into a concavo-convex shape by the large number of minute projections and a groove portion therebetween, so It is described to improve the property.
The microprotrusions are formed by, for example, a photolithographic method. In other words, a mask made of a negative or positive film in which a layer of a photosensitive resin composition as a base of a flexo resin layer is prepared and a fine pattern (dot pattern or the like) corresponding to the planar shape of the fine protrusions is formed thereon. The photosensitive resin composition is exposed in a stacked state, selectively cured according to the mask pattern, and then developed to remove the uncured photosensitive resin composition. Many microprotrusions are formed on the printing surface of the flexo resin layer made of

また特許文献3には、印刷面を例えばエッチングやサンドブラスト等の任意の粗面化法を利用して粗面化して、その形状や大きさが微小突起のように規則的でないランダムな凹凸を有する例えば梨地面等の凹凸面に仕上げることが記載されている。   In Patent Document 3, the printed surface is roughened by using an arbitrary roughening method such as etching or sandblasting, and has irregular irregularities whose shape and size are not regular, such as microprojections. For example, it is described that a rough surface such as a pear ground is finished.

特開2002−293049号公報JP 2002-293049 A 特許第2933790号公報Japanese Patent No. 2933790 特開2009−34913号公報JP 2009-34913 A

印刷対象である液晶パネル用基板の表面には通常、各種回路やBM仕切りなどの微細な凹凸が形成されている。
そこでフレキソ印刷による液晶配向膜の形成では、フレキソ印刷版を、液晶パネル用基板に対して厚み方向に0.10〜0.25mm程度のニップ量を設定して圧接させて印刷面を上記凹凸に追従させることにより、かかる印刷面に担持させた液晶配向膜のもとになるインクを液晶パネル用基板の略全面に転写させるのが一般的である。
Usually, fine irregularities such as various circuits and BM partitions are formed on the surface of the liquid crystal panel substrate to be printed.
Therefore, in the formation of the liquid crystal alignment film by flexographic printing, the flexographic printing plate is brought into pressure contact with the liquid crystal panel substrate by setting a nip amount of about 0.10 to 0.25 mm in the thickness direction so that the printed surface has the above-mentioned unevenness. In general, the ink that is the basis of the liquid crystal alignment film carried on the printing surface is transferred onto substantially the entire surface of the liquid crystal panel substrate.

ところが近年の液晶表示素子の高精細化、インチあたりの画素数の増加に対応して液晶パネル用基板の表面に形成される凹凸についても形成間隔が狭くなり、しかもより複雑に入り組んだ形状になる傾向がある。
そのため従来のフレキソ印刷版を、上記所定のニップ量を設定して液晶パネル用基板に圧接させたとしても、印刷面を微細な凹凸に良好に追従させて厚みの均一な液晶配向膜を形成するのは困難になりつつあるのが現状である。
However, the formation interval of the unevenness formed on the surface of the liquid crystal panel substrate in response to the recent increase in the definition of liquid crystal display elements and the increase in the number of pixels per inch has become narrower and more complicated and complicated. Tend.
Therefore, even if a conventional flexographic printing plate is pressed against a liquid crystal panel substrate with the above-mentioned predetermined nip amount set, a liquid crystal alignment film having a uniform thickness is formed by following the fine irregularities well. This is becoming difficult.

中でも、先に説明したように微小突起を形成したり梨地面としたりすることで印刷面に凹凸を形成したフレキソ印刷版は、液晶パネル用基板の表面の凹凸に対する追従性が低いため、特に当該液晶パネル用基板の表面の凹凸およびその角の部分において、液晶配向膜の厚みが極端に小さくなったりピンホールを生じたりするといった問題がある。
本発明の目的は、例えば液晶パネル用基板の表面の凹凸の微細化に対応して当該凹凸に良好に追従でき、上記液晶パネル用基板の表面に厚みが均一でピンホールのない液晶配向膜を形成できるフレキソ印刷版とその製造方法、ならびにかかるフレキソ印刷版を用いて液晶パネル用の液晶配向膜を形成する工程を含む液晶表示素子の製造方法を提供することにある。
Among them, as described above, the flexographic printing plate in which irregularities are formed on the printing surface by forming minute protrusions or a textured surface as described above has a low followability to the irregularities on the surface of the liquid crystal panel substrate, There is a problem that the thickness of the liquid crystal alignment film becomes extremely small or a pinhole is generated in the irregularities and corners of the surface of the liquid crystal panel substrate.
An object of the present invention is to provide a liquid crystal alignment film that can follow the unevenness well, for example, corresponding to the miniaturization of the unevenness of the surface of the liquid crystal panel substrate, and has a uniform thickness and no pinhole on the surface of the liquid crystal panel substrate. An object of the present invention is to provide a flexographic printing plate that can be formed, a method for producing the same, and a method for producing a liquid crystal display element including a step of forming a liquid crystal alignment film for a liquid crystal panel using the flexographic printing plate.

本発明は、平板状のフレキソ樹脂層を備え、当該フレキソ樹脂層は、ショアA硬さが40度以上、50度以下である本体樹脂層、および当該本体樹脂層の片面に積層されて露出した表面が印刷面とされた、前記本体樹脂層よりも軟らかい表層樹脂層を含み、かつ本体樹脂層の反対面には補強シートが積層され、一体化されたフレキソ印刷版である。
また本発明は、前記本体樹脂層、および前記表層樹脂層のもとになる感光性樹脂組成物を硬化反応させるための活性光線に対する透過性を有する材料からなり、片面が前記印刷面の形状に対応した賦形面とされた型材の前記賦形面に、前記表層樹脂層のもとになる感光性樹脂組成物を塗布して第一前駆層を形成する工程、
前記第一前駆層上に、前記本体樹脂層のもとになる感光性樹脂組成物を塗布して第二前駆層を積層する工程、
前記第二前駆層上に前記補強シートを積層する工程、ならびに
前記第一および前記第二前駆層を、前記型材を通して前記活性光線の照射によって硬化反応させて前記表層樹脂層と前記本体樹脂層と前記補強シートとの積層体を形成したのち、当該積層体を前記賦形面から剥離する工程、
を含む
前記本発明のフレキソ印刷版の製造方法である。
The present invention includes a flat flexo resin layer, and the flexo resin layer is exposed by being laminated on one side of the main body resin layer having a Shore A hardness of 40 degrees or more and 50 degrees or less , and the main body resin layer. surface is a printing surface, said saw including a soft surface layer resin layer than the body resin layer, and on the opposite side of the main body resin layer reinforced sheet is laminated, an integrated flexographic printing plate.
The present invention, the main body resin layer, and makes a photosensitive resin composition comprising the original surface layer resin layer of a material transparent to active rays for curing reaction, the shape of one side the printed surface A step of forming a first precursor layer by applying a photosensitive resin composition on which the surface resin layer is based on the shaping surface of the mold material corresponding to the shaping surface;
A step of applying a photosensitive resin composition on which the main body resin layer is based on the first precursor layer and laminating a second precursor layer,
Laminating the reinforcing sheet to the second precursor layer, and said first and said second precursor layer, and the surface resin layer by curing reaction by irradiation of the active light through the mold member and said body resin layer Forming the laminate with the reinforcing sheet, and then peeling the laminate from the shaping surface;
Is a method for producing a flexographic printing plate of the present invention.

さらに本発明は、前記本発明のフレキソ印刷版を用いて、フレキソ印刷により、液晶パネル用の液晶配向膜を形成する工程を含む液晶表示素子の製造方法である。   Furthermore, this invention is a manufacturing method of a liquid crystal display element including the process of forming the liquid crystal aligning film for liquid crystal panels by flexographic printing using the said flexographic printing plate of this invention.

凹凸に対する印刷面の追従性を高めるために、従来のフレキソ印刷版の、単層のフレキソ樹脂層の全体を現状よりも柔らかくすることが考えられる。
しかしその場合には、当該フレキソ樹脂層が印刷時にせん断方向に大きく変形しやすくなり、印刷の位置ズレや歪み、はみ出しなどを生じやすくなってフレキソ印刷版の印刷精度が低下する。
In order to improve the followability of the printing surface to the unevenness, it is conceivable to make the entire single-layer flexo resin layer of the conventional flexographic printing plate softer than the current state.
However, in that case, the flexographic resin layer is likely to be greatly deformed in the shearing direction at the time of printing, and printing misalignment, distortion, and protrusion are likely to occur, and the printing accuracy of the flexographic printing plate is lowered.

また印刷を繰り返した際にフレキソ樹脂層が短期間でいわゆるへたりを生じやすくなってフレキソ印刷版の耐久性が低下する。またへたりを生じると所定の印圧を維持できなくなって印刷の厚みが低下するといった問題を生じる。
これに対し本発明によれば、従来は単層であったフレキソ樹脂層を本体樹脂層と表層樹脂層の2層の積層構造とし、そのうち本体樹脂層は従来と同程度の硬さとしてフレキソ樹脂層の全体が印刷時にせん断方向に大きく変形して印刷精度が低下したり、短期間でへたりを生じて耐久性が低下したりするのを防止しながら、表層樹脂層を本体樹脂層よりも軟らかくすることで当該表層樹脂層の露出した表面である印刷面の、凹凸に対する追従性を向上できる。
Further, when the printing is repeated, the flexo resin layer tends to be so-called sag in a short period of time, and the durability of the flexographic printing plate is lowered. Further, when the settling occurs, there is a problem that the predetermined printing pressure cannot be maintained and the printing thickness is reduced.
On the other hand, according to the present invention, the flexo resin layer, which has been a single layer in the past, has a laminated structure of a main body resin layer and a surface layer resin layer, of which the main body resin layer has the same degree of hardness as the conventional flexo resin. While preventing the entire layer from being greatly deformed in the shearing direction during printing and reducing printing accuracy or causing sag in a short period of time and lowering durability, the surface resin layer is made more than the main resin layer. By making it soft, it is possible to improve the followability of the printed surface, which is the exposed surface of the surface resin layer, with respect to the unevenness.

そのため本発明のフレキソ印刷版によれば、例えば液晶パネル用基板の表面の凹凸の微細化に対応して当該凹凸に印刷面を良好に追従させることができ、かかる液晶パネル用基板の表面に厚みが均一でピンホールのない液晶配向膜を形成することが可能となる。
また本発明のフレキソ印刷版の製造方法によれば、かかる積層構造を有する本発明のフレキソ印刷版を、生産性良くコスト安価に製造することができる。
Therefore, according to the flexographic printing plate of the present invention, for example, the printing surface can be made to follow the unevenness on the surface of the liquid crystal panel substrate in accordance with the miniaturization of the unevenness of the surface of the liquid crystal panel substrate. It is possible to form a liquid crystal alignment film that is uniform and has no pinholes.
Further, according to the method for producing a flexographic printing plate of the present invention, the flexographic printing plate of the present invention having such a laminated structure can be produced with high productivity and low cost.

さらに本発明の液晶表示素子の製造方法によれば、上記の積層構造に基づいて、厚みが均一でピンホールのない液晶配向膜を備えた液晶表示素子を製造することができる。   Furthermore, according to the method for manufacturing a liquid crystal display element of the present invention, a liquid crystal display element including a liquid crystal alignment film having a uniform thickness and no pinholes can be manufactured based on the above laminated structure.

同図(a)〜(d)は、それぞれ本発明のフレキソ印刷版の製造方法の、実施の形態の一例の各工程を説明する断面図である。FIGS. 4A to 4D are cross-sectional views illustrating respective steps of an example of an embodiment of the method for producing a flexographic printing plate of the present invention. 同図(a)〜(c)は、それぞれ図1の例の製造方法の続きの工程を説明する断面図である。FIGS. 7A to 7C are cross-sectional views for explaining subsequent steps of the manufacturing method of the example of FIG. 同図(a)(b)は、図1、図2の例の製造方法のうち、平板状の支持基板の表面に粗面化シートを着脱自在に固定する方法の一例を説明する断面図である。FIGS. 2A and 2B are cross-sectional views for explaining an example of a method for removably fixing a roughened sheet to the surface of a flat support substrate in the manufacturing methods of the examples of FIGS. is there.

《フレキソ印刷版》
本発明のフレキソ印刷版は、平板状のフレキソ樹脂層を備え、当該フレキソ樹脂層は、ショアA硬さが40度以上、50度以下である本体樹脂層、および当該本体樹脂層の片面に積層されて露出した表面が印刷面とされた、前記本体樹脂層よりも軟らかい表層樹脂層を含み、かつ本体樹脂層の反対面には補強シートが積層され、一体化されたことを特徴とする。
〈感光性樹脂組成物〉
上記フレキソ樹脂層を構成する本体樹脂層および表層樹脂層は、ともに感光性樹脂組成物を用いて、後述する本発明の製造方法によって製造するのが好ましい。
《Flexographic printing plate》
The flexographic printing plate of the present invention includes a flat flexo resin layer, and the flexo resin layer is laminated on one side of the main body resin layer having a Shore A hardness of 40 degrees or more and 50 degrees or less. are exposed surface is a printing surface, the soft look including the surface resin layer than the body resin layer, and on the opposite side of the main body resin layer are laminated reinforcing sheet, wherein the integrated .
<Photosensitive resin composition>
Both the main body resin layer and the surface resin layer constituting the flexo resin layer are preferably produced by the production method of the present invention described later using a photosensitive resin composition.

感光性樹脂組成物としては、例えば1,2−ブタジエン構造を有するとともに末端にエチレン性二重結合を有するプレポリマ、少なくとも1種以上のエチレン性不飽和基を有するモノマ、および光重合開始剤を含む組成物が挙げられる。
また光重合開始剤としてはベンゾインアルキルエーテルが好ましく、特に蛍光灯などからの可視光によって反応してフレキソ印刷版を黄変させる原因となるベンゾインの割合が感光性樹脂組成物の総量の500ppm以下であるものが好適に使用される。これにより短期間で黄変しない耐候性に優れたフレキソ印刷版を得ることができる。
The photosensitive resin composition includes, for example, a prepolymer having a 1,2-butadiene structure and having an ethylenic double bond at the end, a monomer having at least one ethylenically unsaturated group, and a photopolymerization initiator. A composition.
The photopolymerization initiator is preferably a benzoin alkyl ether, and the ratio of benzoin that causes yellowing of the flexographic printing plate by reacting with visible light from a fluorescent lamp or the like is 500 ppm or less of the total amount of the photosensitive resin composition. Some are preferably used. Thereby, it is possible to obtain a flexographic printing plate excellent in weather resistance that does not turn yellow in a short period of time.

本体樹脂層と表層樹脂層の硬さを違えるには、例えば感光性樹脂組成物を構成するプレポリマやモノマの種類や配合割合、光重合開始剤の配合割合等を調整すればよい。
〈本体樹脂層〉
本体樹脂層は、先述したように従来の単層構造のフレキソ樹脂層と同程度の硬さを有する層とすることができる。すなわち本体樹脂層の硬さは、ショアA硬さで表して40度以上、50度以下であ
In order to change the hardness of the main body resin layer and the surface resin layer, for example, the kind and blending ratio of the prepolymer and monomer constituting the photosensitive resin composition, the blending ratio of the photopolymerization initiator, and the like may be adjusted.
<Main body resin layer>
The main body resin layer can be a layer having the same degree of hardness as a conventional flexo resin layer having a single layer structure as described above. That the hardness of the main body resin layer, on to 40 degrees or expressed in Shore A hardness, Ru der than 50 degrees.

本体樹脂層のショアA硬さがこの範囲未満では当該本体樹脂層が柔らかすぎるため、フレキソ樹脂層の全体が印刷時にせん断方向に大きく変形しやすくなって印刷精度が低下す。また印刷を繰り返した際にフレキソ樹脂層の全体がへたりを生じやすくなって耐久性が低下す
一方、本体樹脂層のショアA硬さが上記の範囲を超える場合には、例えばフレキソ印刷版をフレキソ印刷機の版胴に巻き付けて取り付ける際の作業性等、フレキソ印刷版の取り扱い性が低下す
For Shore A hardness of the main body resin layer is the main resin layer is too soft is less than this range, the whole printing accuracy increased easily deformed in the shearing direction when printing flexographic resin layer you decrease. Also you reduced durability is liable to sag overall flexographic resin layer upon repeated printing.
On the other hand, when the Shore A hardness of the main body resin layer exceeds the above range, the handleability of the flexographic printing plate such as the workability when the flexographic printing plate is wound around the plate cylinder of a flexographic printing machine is lowered. The

これに対し、本体樹脂層のショアA硬さを上記の範囲とすることにより、フレキソ印刷版の取り扱い性を、従来の単層構造のものと同等程度に維持しながら、高い印刷精度と耐久性とを確保することが可能となる。
なお本発明では、本体樹脂層および表層樹脂層のショアA硬さを、日本工業規格JIS K6253−3:2012「加硫ゴム及び熱可塑性ゴム−硬さの求め方−第3部:デュロメータ硬さ」所載の測定方法に則って常温(5〜35℃)で測定した押し込み15秒後のタイプAデュロメータ硬さ値でもって表すこととする。
On the other hand, by making the Shore A hardness of the main body resin layer within the above range, high printing accuracy and durability are maintained while maintaining the handling property of the flexographic printing plate at the same level as that of the conventional single layer structure. Can be secured.
In the present invention, the Shore A hardness of the main body resin layer and the surface resin layer is determined by the Japanese Industrial Standard JIS K6253-3 : 2012 “Vulcanized Rubber and Thermoplastic Rubber—How to Obtain Hardness—Part 3: Durometer Hardness “It shall be expressed as a type A durometer hardness value after 15 seconds of indentation measured at room temperature (5-35 ° C.) in accordance with the measurement method described.

本体樹脂層の厚みは、積層する表層樹脂層の厚みや、あるいはフレキソ樹脂層の厚み、すなわち本体樹脂層と表層樹脂層の合計の厚み等に応じて任意に設定できる。
このうち両層の合計の厚みは、従来の単層構造のフレキソ樹脂層の厚みと同等程度に設定するのが、フレキソ印刷版の取り扱い性等の点で好ましい。
すなわち両樹脂層の合計の厚みは1.5mm以上、特に2mm以上であるのが好ましく、3.5mm以下、特に3mm以下であるのが好ましい。
The thickness of the main body resin layer can be arbitrarily set according to the thickness of the surface resin layer to be laminated, or the thickness of the flexo resin layer, that is, the total thickness of the main body resin layer and the surface resin layer.
Of these, the total thickness of both layers is preferably set to the same level as the thickness of a conventional flexo resin layer having a single-layer structure, from the viewpoint of the handleability of the flexographic printing plate.
That is, the total thickness of both resin layers is 1.5 mm or more, particularly 2 mm or more, preferably 3.5 mm or less, particularly 3 mm or less.

また本体樹脂層の厚みは、上記合計の厚みから表層樹脂層の厚みを差し引いた値とするのが好ましい。すなわち表層樹脂層の厚みに応じて、合計の厚みが上記の範囲となるように本体樹脂層の厚みを設定すればよい。
〈表層樹脂層〉
表層樹脂層は、先述のように本体樹脂層よりも軟らかい層である必要がある。
The thickness of the main resin layer is preferably a value obtained by subtracting the thickness of the surface resin layer from the total thickness. That is, according to the thickness of the surface resin layer, the thickness of the main body resin layer may be set so that the total thickness is in the above range.
<Surface resin layer>
As described above, the surface resin layer needs to be a softer layer than the main body resin layer.

表層樹脂層を本体樹脂層よりどの程度軟らかくするかは任意に設定できるものの、当該表層樹脂層を、本体樹脂層とのショアA硬さの差で表して3度以上の範囲で軟らかくするのが好ましく、21度以下の範囲で軟らかくするのが好ましい。
すなわち両樹脂層のショアA硬さの差がこの範囲未満では、当該両樹脂層の具体的なショアA硬さの範囲にもよるが表層樹脂層を十分に軟らかくできないため、当該表層樹脂層の露出した表面である印刷面の、凹凸に対する追従性を向上する効果が十分に得られないおそれがある。
Although it can be arbitrarily set how much the surface resin layer is softer than the main body resin layer, the surface resin layer is expressed by the difference in Shore A hardness with the main body resin layer and is softened in a range of 3 degrees or more. Preferably, the softening is preferably performed within a range of 21 degrees or less.
That is, if the difference in Shore A hardness between the two resin layers is less than this range, the surface resin layer cannot be sufficiently softened depending on the specific Shore A hardness range of the two resin layers. There is a possibility that the effect of improving the followability of the printed surface, which is the exposed surface, with respect to the unevenness cannot be sufficiently obtained.

そのため上記印刷面を、例えば液晶パネル用基板の表面の凹凸に対して良好に追従させることができず、当該液晶パネル用基板の表面に厚みが均一でピンホールのない液晶配向膜を形成できない場合がある。
一方、両樹脂層のショアA硬さの差が上記の範囲を超える場合には表層樹脂層が柔らかくなりすぎるため、印刷を繰り返した際に当該表層樹脂層が短期間でへたりを生じやすくなってフレキソ印刷版の耐久性が低下するおそれがある。
Therefore, for example, when the printed surface cannot follow the unevenness of the surface of the liquid crystal panel substrate satisfactorily, and a liquid crystal alignment film having a uniform thickness and no pinholes cannot be formed on the surface of the liquid crystal panel substrate There is.
On the other hand, if the difference in Shore A hardness between the two resin layers exceeds the above range, the surface resin layer becomes too soft, so that when the printing is repeated, the surface resin layer tends to sag in a short period of time. This may reduce the durability of the flexographic printing plate.

これに対し、両樹脂層のショアA硬さの差を3度以上、21度以下とすることにより、表層樹脂層のへたりを生じにくくしてフレキソ印刷版の高い耐久性を維持しながら、当該表層樹脂層の露出した表面である印刷面の追従性を向上できる。
なお、かかる効果をより一層向上することを考慮すると、表層樹脂層を、本体樹脂層とのショアA硬さの差で表して5度以上の範囲で軟らかくするのが好ましく、12度以下の範囲で軟らかくするのが好ましい。
On the other hand, by setting the difference in Shore A hardness between the two resin layers to 3 degrees or more and 21 degrees or less, while maintaining the high durability of the flexographic printing plate by making the surface resin layer difficult to sag, The followability of the printed surface, which is the exposed surface of the surface resin layer, can be improved.
In consideration of further improving this effect, the surface resin layer is preferably expressed as a difference in Shore A hardness from the main body resin layer and is preferably softened in a range of 5 degrees or more, and in a range of 12 degrees or less. It is preferable to make it soft.

また表層樹脂層の厚みは0.1mm以上であるのが好ましく、0.8mm以下であるのが好ましい。
表層樹脂層の厚みが上記の範囲未満では、たとえ表層樹脂層が十分に柔らかくても、当該表層樹脂層の厚み方向の変形量が制限されるため、かかる表層樹脂層の露出した表面である印刷面の、凹凸に対する追従性が低下するおそれがある。
The thickness of the surface resin layer is preferably 0.1 mm or more, and preferably 0.8 mm or less.
If the thickness of the surface resin layer is less than the above range, even if the surface resin layer is sufficiently soft, the deformation amount in the thickness direction of the surface resin layer is limited. There is a possibility that the followability of the surface with respect to the unevenness is lowered.

そのため上記印刷面を、例えば液晶パネル用基板の表面の凹凸に対して良好に追従させることができず、当該液晶パネル用基板の表面に厚みが均一でピンホールのない液晶配向膜を形成できない場合がある。
一方、厚みが上記の範囲を超える場合には表層樹脂層が印刷時にせん断方向に大きく変形しやすくなってフレキソ印刷版の印刷精度が低下するおそれがある。また印刷を繰り返した際に表層樹脂層が短期間でへたりを生じやすくなってフレキソ印刷版の耐久性が低下するおそれもある。
Therefore, for example, when the printed surface cannot follow the unevenness of the surface of the liquid crystal panel substrate satisfactorily, and a liquid crystal alignment film having a uniform thickness and no pinholes cannot be formed on the surface of the liquid crystal panel substrate There is.
On the other hand, when the thickness exceeds the above range, the surface resin layer is likely to be greatly deformed in the shear direction during printing, and the printing accuracy of the flexographic printing plate may be lowered. Further, when the printing is repeated, the surface resin layer tends to sag in a short period of time, and the durability of the flexographic printing plate may be lowered.

これに対し、表層樹脂層の厚みを0.1mm以上、0.8mm以下とすることにより、当該表層樹脂層のせん断方向への変形を抑制して高い印刷精度を維持するとともに、表層樹脂層のへたりを生じにくくして高い耐久性を維持しながら、当該表層樹脂層の露出した表面である印刷面の追従性を向上できる。
なお、かかる効果をより一層向上することを考慮すると、表層樹脂層の厚みは、上記の範囲でも0.2mm以上であるのが好ましく、0.6mm以下であるのが好ましい。
On the other hand, by setting the thickness of the surface resin layer to 0.1 mm or more and 0.8 mm or less, the surface resin layer can be prevented from being deformed in the shear direction and high printing accuracy can be maintained. The followability of the printed surface, which is the exposed surface of the surface resin layer, can be improved while maintaining high durability by making it difficult to sag.
In consideration of further improving this effect, the thickness of the surface resin layer is preferably 0.2 mm or more, and more preferably 0.6 mm or less even in the above range.

なお表層樹脂層の具体的なショアA硬さは、先述した本体樹脂層のショアA硬さの好ましい範囲から、上記差を差し引いた値とすればよい。
ただし上で説明した表層樹脂層を軟らかくすることによる効果をさらに向上することを考慮すると、表層樹脂層のショアA硬さは、その中でも19度以上、特に30度以上であるのが好ましく、38度以下、特に36度以下であるのが好ましい。
The specific Shore A hardness of the surface resin layer may be a value obtained by subtracting the above difference from the preferred range of the Shore A hardness of the main body resin layer described above.
However, in consideration of further improving the effect of softening the surface resin layer described above, the Shore A hardness of the surface resin layer is preferably 19 degrees or more, particularly preferably 30 degrees or more, and 38 It is preferable that the angle is not higher than 36 degrees, particularly not higher than 36 degrees.

〈補強シート〉
本発明のフレキソ印刷版は、本体樹脂層の、表層樹脂層が積層された側と反対面に、従来同様に補強シートを備えてい。これによりフレキソ印刷版の全体の、面方向の引張強度を高めて、例えばフレキソ印刷版をフレキソ印刷機の版胴に巻き付けて取り付ける際の作業性等の、フレキソ印刷版の取り扱い性をさらに向上できる。
<Reinforcing sheet>
The flexographic printing plate of the present invention, the main body resin layer, to the side where the surface resin layer is laminated opposite surface, that have a conventional Similarly reinforcing sheet. This increases the overall tensile strength of the flexographic printing plate and further improves the handling of the flexographic printing plate, such as workability when the flexographic printing plate is wrapped around a plate cylinder of a flexographic printing press. .

補強シートとしては、例えばポリエチレン(PE)、ポリプロピレン(PP)、熱可塑性ポリウレタン(TPU)、ポリエチレンテレフタレート(PET)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)等の熱可塑性樹脂からなるシートや金属シート、両者のラミネートシート等が使用可能である。
補強シートの厚みは任意に設定できる。
As a reinforcing sheet, for example, a sheet made of a thermoplastic resin such as polyethylene (PE), polypropylene (PP), thermoplastic polyurethane (TPU), polyethylene terephthalate (PET), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), etc. Or a metal sheet, a laminate sheet of both, etc. can be used.
The thickness of the reinforcing sheet can be arbitrarily set.

《フレキソ印刷版の製造方法》
図1(a)〜(d)、図2(a)〜(c)は、それぞれ本発明のフレキソ印刷版の製造方法の、実施の形態の一例の各工程を説明する断面図である。
なお図の例では本発明のフレキソ印刷版のうち、表層樹脂層の露出した表面である印刷面が粗面化されたものを製造する場合を例にとって説明するが、本発明のフレキソ印刷版、およびその製造方法はかかる例に限定されるものではない。
<Production method of flexographic printing plate>
1 (a) to 1 (d) and FIGS. 2 (a) to 2 (c) are cross-sectional views illustrating respective steps of an example of the embodiment of the method for producing a flexographic printing plate of the present invention.
Note Of flexographic printing plate of the present invention in the example of figure, illustrating a case of manufacturing the printing surface is the exposed surface of the surface layer a resin layer is roughened for example, flexographic printing plate of the present invention The manufacturing method is not limited to such an example.

図1(a)を参照して、この例の製造方法においては、まずガラスやアクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂等の硬質樹脂などの硬質材料からなり、なおかつ感光性樹脂組成物を硬化反応させることができる紫外線等の活性光線に対する透過性を有する支持基板1を用意する。
そして支持基板1の図において上側の表面2に、片面が印刷面の形状に対応した凹凸形状を有する粗面化された賦形面3とされた粗面化シート4を、当該賦形面3を上、反対側の面(反対面)5を下にして反対面5を表面2に接触させながら、例えば図1(a)に一点鎖線の矢印で示すようにその一端から他端へかけて順に重ねる等して着脱自在に固定する。
Referring to FIG. 1 (a), in the manufacturing method of this example, first, it is made of a hard material such as glass, acrylic resin, polycarbonate resin, polyester resin or the like, and the photosensitive resin composition is cured. A supporting substrate 1 having transparency to actinic rays such as ultraviolet rays is prepared.
Then, on the upper surface 2 in the figure of the support substrate 1, a roughened sheet 4 having a roughened shaped surface 3 having a concavo-convex shape corresponding to the shape of the printing surface on one side is applied to the shaped surface 3. With the opposite surface (opposite surface) 5 facing down and the opposite surface 5 in contact with the surface 2, for example, from one end to the other as shown by the dashed line arrow in FIG. Fix in a detachable manner, for example by stacking in order.

なお図では、賦形面3を構成する凹凸をわかり易いように大きめに強調して描いているが、実際の凹凸は印刷する液晶配向膜の形状等に影響を及ぼさないために、図に示した粗面化シート4の大きさと比較すると判別できない程度の微小なものである。
粗面化シート4としては、例えばPE、PP、TPU、PET、FEP等の熱可塑性樹脂からなり、なおかつ活性光線に対する透過性を有するシートの表面を例えばエンボスロールを用いた加圧シート成形等によって粗面化して形成されたものを用いるのが好ましい。
In the drawing, the unevenness constituting the shaping surface 3 is drawn with a large emphasis so as to be easily understood. However, the actual unevenness is shown in the figure because it does not affect the shape of the liquid crystal alignment film to be printed. It is a minute one that cannot be distinguished from the size of the roughened sheet 4.
The roughened sheet 4 is made of, for example, a thermoplastic resin such as PE, PP, TPU, PET, FEP, and the surface of the sheet having transparency to actinic rays is formed by, for example, pressure sheet molding using an embossing roll. It is preferable to use a roughened surface.

かかる加圧シート成形によれば、例えば大画面の液晶表示素子に対応した大面積の粗面化シート4であっても連続的かつ多量に生産するのが容易であるという利点がある。
なお上記の中でもPE、PP、TPU等の比較的軟質の熱可塑性樹脂からなり、かつ比較的薄手(例えば150μm以下程度)の粗面化シート4はそれ自体のコシが弱く、フラットな支持基板1の表面2にシワなく均一に密着させるのが難しい場合がある。
According to such pressure sheet molding, for example, there is an advantage that even a roughened sheet 4 having a large area corresponding to a liquid crystal display element having a large screen can be easily produced continuously and in large quantities.
Of the above, the roughened sheet 4 made of a relatively soft thermoplastic resin such as PE, PP, TPU, etc. and relatively thin (for example, about 150 μm or less) is weak in itself and has a flat support substrate 1. In some cases, it is difficult to uniformly adhere to the surface 2 without wrinkles.

その場合には粗面化シート4の反対面5に、例えばPET等からなり活性光線に対する透過性を有する補強シートを貼り合わせる等すればよい。
粗面化シート4は、当該粗面化シート4上に液状の感光性樹脂組成物を塗り拡げる際のせん断力や、あるいは感光性樹脂組成物の硬化時の収縮力等によって支持基板1に対して位置ずれするのを防止するとともに、使用後の粗面化シート4の交換を容易にするため、例えば下記(i)〜(iii)のいずれかの方法によって支持基板1の表面2に着脱自在に固定しておくのが好ましい。
In that case, a reinforcing sheet made of, for example, PET or the like and having transparency to actinic rays may be bonded to the opposite surface 5 of the roughened sheet 4.
The roughened sheet 4 is applied to the support substrate 1 by a shearing force when the liquid photosensitive resin composition is spread on the roughened sheet 4 or a shrinkage force when the photosensitive resin composition is cured. In order to prevent misalignment and facilitate replacement of the roughened sheet 4 after use, it can be detachably attached to the surface 2 of the support substrate 1 by any of the following methods (i) to (iii), for example. It is preferable to fix to.

(i) 活性光線に対する透過性を有する材料からなる弱粘着層を介して支持基板1の表面2に着脱自在に粘着固定。
(ii) 支持基板1の表面2に図示しない吸引溝を形成し、当該吸引溝を介して真空吸引することによって上記表面2に着脱自在に吸着固定。
(iii) 支持基板1の面方向の寸法よりも間隔を隔てた一対のチャック治具間に展張させた状態で当該支持基板1の表面に着脱自在に圧接固定。
(i) Removably attached to the surface 2 of the support substrate 1 through a weak adhesive layer made of a material having transparency to actinic rays.
(ii) A suction groove (not shown) is formed on the surface 2 of the support substrate 1, and vacuum suction is performed through the suction groove so as to be detachably attached to the surface 2 by suction.
(iii) Removably press-fixed to the surface of the support substrate 1 in a state of being stretched between a pair of chuck jigs spaced apart from the dimension in the surface direction of the support substrate 1.

このうち(i)の粘着固定に用いる弱粘着層としては支持基板1、および粗面化シート4の形成材料に対して弱粘着性を有し、かつ活性光線に対する透過性を有する種々の粘着剤からなる層がいずれも採用可能である。弱粘着層は、支持基板1の表面2、および粗面化シート4の反対面5のうちの少なくとも一方に粘着剤を、例えばスプレー塗布等の種々の塗布方法によって塗布することで形成される。   Among these, as the weak adhesive layer used for the adhesive fixation of (i), various adhesives having weak adhesiveness to the forming material of the support substrate 1 and the roughened sheet 4 and having transparency to actinic rays Any of these layers can be used. The weak adhesive layer is formed by applying an adhesive to at least one of the surface 2 of the support substrate 1 and the opposite surface 5 of the roughened sheet 4 by various application methods such as spray application.

弱粘着層を支持基板1の表面2、および/または粗面化シート4の反対面5に形成したのち、図1(a)に一点鎖線の矢印で示すように粗面化シート4を支持基板1の表面2の一端から他端へかけて、反対面5と表面2との間に空気が入らないように注意しながら順に重ねると、弱粘着層の粘着力により粗面化シート4を表面2上に固定できる。
また固定した粗面化シート4を表面2から取り外すには、当該粗面化シート4を例えば図1(a)の矢印とは逆に支持基板1の他端から一端へかけて弱粘着層の粘着力に抗しながら順に引き剥がす等すればよい。
After the weak adhesive layer is formed on the surface 2 of the support substrate 1 and / or the opposite surface 5 of the roughened sheet 4, the roughened sheet 4 is supported on the support substrate as shown by the dashed line arrow in FIG. When the layers 1 are overlapped in order from one end of the surface 2 to the other end, taking care not to allow air to enter between the opposite surface 5 and the surface 2, the surface of the roughened sheet 4 is surfaced by the adhesive force of the weak adhesive layer. 2 can be fixed.
Further, in order to remove the fixed roughened sheet 4 from the surface 2, the roughened sheet 4 is removed from the other end of the support substrate 1 to one end, for example, opposite to the arrow in FIG. What is necessary is just to peel off in order, resisting adhesive force.

(ii)の吸着固定をするには、支持基板1の表面2を平滑に仕上げるとともに、かかる表面2の略全面に吸引溝を形成する。吸引溝は真空ポンプ等を含む真空系に接続する。
そして粗面化シート4を、反対面5を下にして支持基板1の表面2に重ねた状態で真空系を作動させるか、あるいは先に作動させておいた真空系を吸引溝と接続する等して当該吸引溝を介して真空吸引することにより、粗面化シート4を表面2上に固定できる。
In order to perform the adsorption fixation of (ii), the surface 2 of the support substrate 1 is finished smoothly, and suction grooves are formed on substantially the entire surface 2. The suction groove is connected to a vacuum system including a vacuum pump.
Then, the vacuum system is operated with the roughened sheet 4 placed on the surface 2 of the support substrate 1 with the opposite surface 5 facing down, or the previously operated vacuum system is connected to the suction groove, etc. The roughened sheet 4 can be fixed on the surface 2 by vacuum suction through the suction groove.

固定した粗面化シート4を表面2から取り外すには真空系を停止させるか、あるいは真空系と吸引溝との接続を遮断すればよい。
図3(a)(b)は、先の(iii)の圧接固定の方法を説明する断面図である。
両図を参照してこの圧接固定法では、例えば液晶表示素子の画面の形状に対応させて矩形状に形成した粗面化シート4の、互いに平行な2辺をその全長に亘って保持する一対のチャック治具Cを用意する。
To remove the fixed roughened sheet 4 from the surface 2, the vacuum system may be stopped or the connection between the vacuum system and the suction groove may be interrupted.
3 (a) and 3 (b) are cross-sectional views for explaining the method of pressing and fixing (iii) above.
With reference to both the drawings, in this press-contact fixing method, for example, a pair of roughened sheets 4 formed in a rectangular shape corresponding to the shape of the screen of the liquid crystal display element is held over the entire length of two sides parallel to each other. The chuck jig C is prepared.

粗面化シート4としては、上記2辺間の長さLが同じく矩形状に形成した支持基板1の対応する2辺間の寸法Lよりも長いものを用意し、かかる2辺をその全長に亘ってチャック治具Cによって保持する。粗面化シート4は、図示していないが賦形面3を図において上側に向けた状態で保持する。
そしてチャック治具Cを、支持基板1の寸法Lよりも間隔を隔てて配置することで、両チャック治具C間に粗面化シート4をたるみなく展張させた状態とする(図3(a))。
As the roughened sheet 4, a sheet having a length L 1 between the two sides that is longer than the corresponding dimension L 2 of the support substrate 1 that is also formed in a rectangular shape is prepared. The entire length is held by the chuck jig C. Although not shown, the roughened sheet 4 holds the shaping surface 3 with the shaping surface 3 facing upward in the drawing.
Then, by placing the chuck jig C at a distance from the dimension L 2 of the support substrate 1, the roughened sheet 4 is stretched between the chuck jigs C without sagging (FIG. 3 ( a)).

次いでこの状態でチャック治具Cを図において下方に移動させることで、当該チャック治具C間に展張させた粗面化シート4を図3(a)に白抜きの矢印で示すように支持基板1の表面2の方向に下降させて、図3(b)に示すように表面2に隙間なく圧接させると、粗面化シート4を表面2上に固定できる。
また固定した粗面化シート4を表面2から取り外すには、当該粗面化シート4を一対のチャック治具Cごと、図3(a)の矢印とは逆に表面2から上方へ移動させればよい。
Next, in this state, the chuck jig C is moved downward in the figure, so that the roughened sheet 4 stretched between the chuck jigs C is supported by the support substrate as shown by the white arrow in FIG. When the surface is lowered in the direction of the surface 2 and pressed against the surface 2 without a gap as shown in FIG. 3B, the roughened sheet 4 can be fixed on the surface 2.
Further, in order to remove the fixed roughened sheet 4 from the surface 2, the roughened sheet 4 is moved together with the pair of chuck jigs C from the surface 2 in the opposite direction to the arrow in FIG. That's fine.

図1(b)を参照して、次にこの例の製造方法では、上記いずれかの方法で支持基板1の表面2上に固定した粗面化シート4の賦形面3上に、表層樹脂層のもとになる液状の感光性樹脂組成物6を供給し、例えばブレード7を用いて図中に一点鎖線の矢印で示すように支持基板1の表面2の一端から他端へかけて所定の厚みとなるように塗り拡げることで、当該感光性樹脂組成物6からなり表層樹脂層のもとになる第一前駆層8を形成する。   Next, referring to FIG. 1B, in the manufacturing method of this example, the surface layer resin is formed on the shaping surface 3 of the roughened sheet 4 fixed on the surface 2 of the support substrate 1 by any one of the above methods. A liquid photosensitive resin composition 6 that is the basis of the layer is supplied and, for example, by using a blade 7, a predetermined distance from one end to the other end of the surface 2 of the support substrate 1 is indicated by a one-dot chain arrow in the figure. The first precursor layer 8 made of the photosensitive resin composition 6 and serving as the basis of the surface resin layer is formed by spreading the coating so as to have a thickness of.

次いで図1(c)を参照して、上記第一前駆層8上に、本体樹脂層のもとになる液状の感光性樹脂組成物9を供給し、例えばブレード10を用いて図中に一点鎖線の矢印で示すように支持基板1の表面2の一端から他端へかけて所定の厚みとなるように塗り拡げることで、当該感光性樹脂組成物9からなり本体樹脂層のもとになる第二前駆層11を形成しながら、ほぼ同時に、当該第二前駆層11との間に空気が入らないように注意しながら、上記一点鎖線の矢印で示すように支持基板1の表面2の一端から他端へかけて順に補強シート12を重ね合わせる。   Next, referring to FIG. 1 (c), a liquid photosensitive resin composition 9 that becomes the base resin layer is supplied onto the first precursor layer 8. As indicated by the chain line arrow, the surface of the support substrate 1 is spread from one end to the other end so as to have a predetermined thickness, thereby forming the main body resin layer made of the photosensitive resin composition 9. While forming the second precursor layer 11, almost at the same time, taking care not to enter air between the second precursor layer 11, one end of the surface 2 of the support substrate 1 as indicated by the dashed line arrow above. The reinforcing sheets 12 are overlapped in order from the other end to the other end.

なお感光性樹脂組成物6、9の塗布方法はブレード7、10を用いた塗り拡げには限定されず、従来公知の種々の塗布方法がいずれも採用可能である。
次いで図1(d)を参照して、補強シート12上に対向基板13の対向面14を接触させる。
そして対向基板13の対向面14を表面2との間に一定の間隔を隔てて平行に維持しながら、当該対向基板13を図1(d)に黒矢印で示すように支持基板1の方向に押圧することで、第一前駆層8を粗面化シート4の賦形面3に圧着させるとともに、当該第一前駆層8、第二前駆層11、および補強シート12を互いに圧着させる。
In addition, the coating method of the photosensitive resin compositions 6 and 9 is not limited to the spreading using the blades 7 and 10, and any of various conventionally known coating methods can be employed.
Next, referring to FIG. 1 (d), the opposing surface 14 of the opposing substrate 13 is brought into contact with the reinforcing sheet 12.
And while maintaining the opposing surface 14 of the opposing substrate 13 parallel to the surface 2 with a certain distance, the opposing substrate 13 is directed in the direction of the support substrate 1 as indicated by the black arrow in FIG. By pressing, the first precursor layer 8 is pressure-bonded to the shaping surface 3 of the roughened sheet 4, and the first precursor layer 8, the second precursor layer 11, and the reinforcing sheet 12 are pressure-bonded to each other.

そしてこの状態で両前駆層8、11を、図1(d)に実線の矢印で示すように支持基板1および粗面化シート4を通して活性光線によって露光して、当該両前駆層8、11を形成する感光性樹脂組成物6、9を硬化反応させて表層樹脂層15と本体樹脂層16を形成するとともに両樹脂層15、16を一体化させて2層構造のフレキソ樹脂層17を形成し、なおかつ当該フレキソ樹脂層17の本体樹脂層16側の面に補強シート12を一体化させる(図1(d)、図2(a)参照)。   Then, in this state, both precursor layers 8 and 11 are exposed with actinic rays through the support substrate 1 and the roughened sheet 4 as indicated by solid arrows in FIG. The photosensitive resin compositions 6 and 9 to be formed are cured to form the surface resin layer 15 and the main body resin layer 16, and the resin layers 15 and 16 are integrated to form a flexo resin layer 17 having a two-layer structure. In addition, the reinforcing sheet 12 is integrated with the surface of the flexo resin layer 17 on the main body resin layer 16 side (see FIGS. 1D and 2A).

この際、支持基板1の表面2と対向基板13の対向面14との間の間隔は、製造するフレキソ印刷版のフレキソ樹脂層17の厚み、つまり本体樹脂層16と表層樹脂層15の合計の厚みに粗面化シート4の厚みと補強シート12の厚みを加えた寸法を維持するようにする。
なお対向基板13は、金属、ガラス、硬質樹脂等の任意の材料によって形成できる。
At this time, the distance between the surface 2 of the support substrate 1 and the opposing surface 14 of the opposing substrate 13 is the thickness of the flexographic resin layer 17 of the flexographic printing plate to be manufactured, that is, the total of the main body resin layer 16 and the surface resin layer 15. The dimension obtained by adding the thickness of the roughened sheet 4 and the thickness of the reinforcing sheet 12 to the thickness is maintained.
The counter substrate 13 can be formed of any material such as metal, glass, or hard resin.

特に対向基板13を支持基板1と同様の、活性光線に対する透過性を有する材料によって形成し、また補強シート12も粗面化シート4と同様の、活性光線に対する透過性を有する材料によって形成して、当該対向基板13の側からも第一および第二前駆層8、11を形成する感光性樹脂組成物6、9を活性光線によって露光して硬化反応させるようにしてもよい。   In particular, the counter substrate 13 is formed of a material having transparency to actinic rays similar to the support substrate 1, and the reinforcing sheet 12 is also formed of a material having transparency to actinic rays similar to the roughened sheet 4. The photosensitive resin compositions 6 and 9 that form the first and second precursor layers 8 and 11 may also be exposed to an actinic ray to cause a curing reaction from the counter substrate 13 side.

次いで図2(a)(b)を参照して、補強シート12、本体樹脂層16、表層樹脂層15、および粗面化シート4の積層体18を支持基板1と対向基板13の間から取り出し、上下逆転させて補強シート12を下にして作業台19の上に載置する。
そして図2(b)に一点鎖線の矢印で示すように粗面化シート4を、上記積層体18の一端から他端へかけて順に引き剥がすと、表層樹脂層15の図において上面側が、粗面化シート4の賦形面3の凹凸形状が転写されて粗面化された印刷面20とされる。
Next, referring to FIGS. 2 (a) and 2 (b), the laminate 18 of the reinforcing sheet 12, the main body resin layer 16, the surface layer resin layer 15, and the roughened sheet 4 is taken out from between the support substrate 1 and the counter substrate 13. Then, it is turned upside down and placed on the work table 19 with the reinforcing sheet 12 facing downward.
Then, when the roughened sheet 4 is sequentially peeled from one end to the other end of the laminate 18 as shown by the dashed line arrow in FIG. 2B, the upper surface side of the surface resin layer 15 is roughened. The uneven surface of the shaping surface 3 of the surfaced sheet 4 is transferred to form a roughened printing surface 20.

次いで図2(c)に示すように印刷面20の、印刷パターンに対応する領域以外の領域を、例えば表層樹脂層15ごとレーザヘッド21から炭酸ガスレーザ22等を走査しながら照射して熱的に除去したり、あるいは図示していないが機械的に除去したりすることにより、当該印刷面20が所定の印刷パターンに対応させてパターン化されたフレキソ印刷版23が製造される。   Next, as shown in FIG. 2C, a region other than the region corresponding to the printing pattern on the printing surface 20 is irradiated with, for example, the surface resin layer 15 while scanning the carbon dioxide laser 22 from the laser head 21 and thermally. By removing or mechanically removing although not shown, the flexographic printing plate 23 in which the printing surface 20 is patterned so as to correspond to a predetermined printing pattern is manufactured.

なお図1(b)の工程で形成した第一前駆層8は、図1(c)の工程でその上に第二前駆層11を積層する前に、活性光線を短時間照射して半硬化の状態としておいてもよい。これにより第一前駆層8を硬化反応させて形成される表層樹脂層15の厚みの均一性を向上できる。
しかも第一前駆層8は半硬化の状態であるため、その上に感光性樹脂組成物9を塗布して第二前駆層11を形成したのち全体に活性光線を照射して両前駆層8、11を硬化反応させて形成される表層樹脂層15と本体樹脂層16の積層体、すなわちフレキソ樹脂層17の一体性を、第一前駆層8をあらかじめ半硬化させない場合と同等程度に向上でき、フレキソ印刷版23の使用時に両樹脂層間で層間剥離が生じるのを確実に防止できる。
The first precursor layer 8 formed in the step of FIG. 1 (b) is semi-cured by irradiating actinic rays for a short time before the second precursor layer 11 is laminated thereon in the step of FIG. 1 (c). It may be in the state of. Thereby, the uniformity of the thickness of the surface resin layer 15 formed by the curing reaction of the first precursor layer 8 can be improved.
And since the 1st precursor layer 8 is a semi-hardened state, after apply | coating the photosensitive resin composition 9 on it and forming the 2nd precursor layer 11, it irradiates actinic light to the whole, both precursor layers 8, 11, the integrity of the surface resin layer 15 and the main body resin layer 16 formed by curing reaction, that is, the integrity of the flexo resin layer 17 can be improved to the same extent as when the first precursor layer 8 is not semi-cured in advance. It is possible to reliably prevent delamination between the resin layers when the flexographic printing plate 23 is used.

また本発明のフレキソ印刷版23は、場合によっては印刷面20をパターン化しない状態で完成形とすることもできる。またパターン化する場合は、表層樹脂層15だけでなく本体樹脂層16の厚み方向の一部まで除去してもよいし、逆に表層樹脂層15の、印刷面20を含む厚み方向の一部のみを除去するだけでもよい。
《液晶表示素子の製造方法》
本発明は、上記本発明のフレキソ印刷版を用いて、フレキソ印刷により液晶パネル用基板の液晶配向膜を形成する工程を含む液晶表示素子の製造方法である。
Further, the flexographic printing plate 23 of the present invention can be formed into a finished form in some cases without the printing surface 20 being patterned. When patterning, not only the surface resin layer 15 but also a part in the thickness direction of the main body resin layer 16 may be removed. Conversely, a part of the surface resin layer 15 in the thickness direction including the printing surface 20 may be removed. You may just remove it.
<< Method for manufacturing liquid crystal display element >>
This invention is a manufacturing method of the liquid crystal display element including the process of forming the liquid crystal aligning film of the board | substrate for liquid crystal panels by flexographic printing using the flexographic printing plate of the said invention.

本発明によれば、フレキソ印刷版の印刷面を液晶パネル用基板の表面の凹凸の微細化に対応して当該凹凸に良好に追従させることができるため厚みが均一でピンホールのない液晶配向膜を備えた液晶表示素子を製造できる。
本発明の製造方法のその他の工程は、従来同様に実施できる。
すなわちガラス基板等の透明基板の表面に、所定のマトリクスパターン等に対応した透明電極層を形成した上に、本発明のフレキソ印刷版を用いたフレキソ印刷によって液晶配向膜を形成し、さらに液晶配向膜の表面を必要に応じてラビング等によって配向処理して液晶パネル用基板を作製する。
According to the present invention, the printing surface of the flexographic printing plate can be made to follow the unevenness on the surface of the liquid crystal panel substrate in accordance with the miniaturization of the surface, so that the liquid crystal alignment film has a uniform thickness and no pinholes. Can be manufactured.
Other steps of the production method of the present invention can be carried out in the same manner as in the prior art.
That is, a transparent electrode layer corresponding to a predetermined matrix pattern or the like is formed on the surface of a transparent substrate such as a glass substrate, and then a liquid crystal alignment film is formed by flexographic printing using the flexographic printing plate of the present invention. A liquid crystal panel substrate is produced by subjecting the surface of the film to orientation treatment by rubbing or the like, if necessary.

次いでこの液晶パネル用基板を2枚用意し、それぞれの透明電極層を位置合わせした状態で、2枚の液晶パネル用基板の間に液晶材料を挟みこんで互いに固定して積層体を形成するとともに、さらに必要に応じてこの積層体の両外側に偏光板を配設して液晶表示素子が製造される。   Next, two liquid crystal panel substrates are prepared, and in a state where the transparent electrode layers are aligned, a liquid crystal material is sandwiched between the two liquid crystal panel substrates and fixed to each other to form a laminate. Further, if necessary, a polarizing plate is disposed on both outer sides of the laminate to produce a liquid crystal display element.

〈実施例1〉
(感光性樹脂組成物)
表層樹脂層15用の感光性樹脂組成物6としては、硬化後のショアA硬さが20度となる紫外線硬化型の液状の感光性樹脂組成物を用意した。
また本体樹脂層16用の感光性樹脂組成物9としては、硬化後のショアA硬さが41度となる紫外線硬化型の液状の感光性樹脂組成物〔住友ゴム工業(株)製のNK樹脂〕を用意した。
<Example 1>
(Photosensitive resin composition)
As the photosensitive resin composition 6 for the surface resin layer 15, an ultraviolet curable liquid photosensitive resin composition having a Shore A hardness of 20 degrees after curing was prepared.
The photosensitive resin composition 9 for the main body resin layer 16 is an ultraviolet curable liquid photosensitive resin composition having an Shore A hardness of 41 degrees after curing [NK resin manufactured by Sumitomo Rubber Industries, Ltd. ] Was prepared.

(補強シート12)
補強シート12としてはPETシート〔住友ゴム工業(株)製のBF/CF〕を用意した。
(粗面化シート4)
粗面化シート4としては、片面に厚み100μmのPETシートを補強シートとして貼り合わせたTPUのシート〔大倉工業(株)製のシルクロン(登録商標)SNESS80−150μm〕の露出したTPUの表面を粗面化した賦形面3としたものを用意した。
(Reinforcing sheet 12)
As the reinforcing sheet 12, a PET sheet [BF / CF manufactured by Sumitomo Rubber Industries, Ltd.] was prepared.
(Roughening sheet 4)
As the roughened sheet 4, the exposed TPU surface of a TPU sheet [Silklon (registered trademark) SNSESS 80-150 μm manufactured by Okura Kogyo Co., Ltd.] obtained by bonding a PET sheet having a thickness of 100 μm on one side as a reinforcing sheet is roughened A surface forming shaped surface 3 was prepared.

(フレキソ印刷版23の製造)
図1(a)〜(d)を参照して、支持基板1としての紫外線透過性を有する平滑透明ガラス板と、対向基板13とを備えたフレキソ印刷版の製造装置の上記支持基板1の表面2に、先の粗面化シート4を賦形面3を上、反対面5を下にして当該反対面5が表面2に接するようにスプレー粘着剤の層を介して着脱自在に固定した。
(Manufacture of flexographic printing plate 23)
Referring to FIGS. 1A to 1D, the surface of the support substrate 1 of the flexographic printing plate manufacturing apparatus provided with a smooth transparent glass plate having ultraviolet transparency as the support substrate 1 and a counter substrate 13. 2, the previous roughened sheet 4 was detachably fixed through a layer of spray adhesive so that the shaping surface 3 was up and the opposite surface 5 was down so that the opposite surface 5 was in contact with the surface 2.

次いで賦形面3上に、表層樹脂層15用の感光性樹脂組成物6を供給し、ブレード7を用いて塗り拡げて第一前駆層8を形成した。感光性樹脂組成物6の塗布厚みは、次工程以下を経て形成される表層樹脂層15の厚みが0.10mmとなるように設定した。
次にこの第一前駆層8上に、本体樹脂層16用の感光性樹脂組成物9を供給し、ブレード10を用いて塗り拡げて第二前駆層11を形成しながら、その上に先の補強シート12を積層した。感光性樹脂組成物9の塗布厚みは、次工程以下を経て形成される本体樹脂層16の厚みが2.26mmとなるように設定した。
Next, a photosensitive resin composition 6 for the surface resin layer 15 was supplied onto the shaping surface 3 and spread using a blade 7 to form a first precursor layer 8. The coating thickness of the photosensitive resin composition 6 was set such that the thickness of the surface resin layer 15 formed through the following steps and below was 0.10 mm.
Next, the photosensitive resin composition 9 for the main body resin layer 16 is supplied onto the first precursor layer 8 and spread using the blade 10 to form the second precursor layer 11. A reinforcing sheet 12 was laminated. The coating thickness of the photosensitive resin composition 9 was set so that the thickness of the main body resin layer 16 formed through the following steps was 2.26 mm.

次いで積層した補強シート12上に、対向基板13の対向面14を接触させた。
そしてこの対向面14を支持基板1の表面2との間に一定の間隔を隔てて平行に維持しながら、図1(d)に黒矢印で示すように対向基板13を支持基板1の方向に押圧することで、第一前駆層8を粗面化シート4の賦形面3に圧着させるとともに、当該第一前駆層8、第二前駆層11、および補強シート12を互いに圧着させた。
Next, the opposing surface 14 of the opposing substrate 13 was brought into contact with the laminated reinforcing sheet 12.
The counter substrate 13 is moved in the direction of the support substrate 1 as indicated by the black arrow in FIG. By pressing, the first precursor layer 8 was pressure-bonded to the shaping surface 3 of the roughened sheet 4, and the first precursor layer 8, the second precursor layer 11, and the reinforcing sheet 12 were pressure-bonded to each other.

そしてこの状態で、両前駆層8、11を、図1(d)に実線の矢印で示すように支持基板1および粗面化シート4を通して活性光線によって露光して、当該両前駆層8、11を形成する感光性樹脂組成物6、9を硬化反応させて表層樹脂層15と本体樹脂層16を形成するとともに両樹脂層15、16を一体化させて2層構造のフレキソ樹脂層17を形成し、なおかつ当該フレキソ樹脂層17の本体樹脂層16側の面に補強シート12を一体化させた(図1(d)、図2(a)参照)。光源としてはフィリップス社製のUV光源を用いた。   In this state, both precursor layers 8 and 11 are exposed to active rays through the support substrate 1 and the roughened sheet 4 as indicated by solid arrows in FIG. The surface resin layer 15 and the main body resin layer 16 are formed by curing reaction of the photosensitive resin compositions 6 and 9 forming the resin, and the two-layer structure flexo resin layer 17 is formed by integrating both the resin layers 15 and 16. In addition, the reinforcing sheet 12 was integrated with the surface of the flexo resin layer 17 on the main body resin layer 16 side (see FIGS. 1D and 2A). A UV light source manufactured by Philips was used as the light source.

この際、支持基板1の表面2と対向基板13の対向面14との間の間隔は、製造するフレキソ印刷版23のフレキソ樹脂層17の厚み、つまり本体樹脂層16と表層樹脂層15の合計の厚みに粗面化シート4の厚みと補強シート12の厚みを加えた寸法を維持するようにした。
次に図2(a)(b)を参照して、補強シート12、本体樹脂層16、表層樹脂層15、および粗面化シート4の積層体18を支持基板1と対向基板13の間から取り出し、上下逆転させて補強シート12を下にして作業台19の上に載置した。
At this time, the distance between the surface 2 of the support substrate 1 and the opposing surface 14 of the counter substrate 13 is the thickness of the flexo resin layer 17 of the flexographic printing plate 23 to be manufactured, that is, the total of the main resin layer 16 and the surface resin layer 15. The dimension obtained by adding the thickness of the roughened sheet 4 and the thickness of the reinforcing sheet 12 to the thickness of was maintained.
Next, referring to FIGS. 2 (a) and 2 (b), a laminate 18 of the reinforcing sheet 12, the main body resin layer 16, the surface layer resin layer 15, and the roughened sheet 4 is interposed between the support substrate 1 and the counter substrate 13. The sheet was taken out, turned upside down, and placed on the work table 19 with the reinforcing sheet 12 facing downward.

そして図2(b)に一点鎖線の矢印で示すように粗面化シート4を、上記積層体18の一端から他端へかけて順に引き剥がして、表層樹脂層15の図において上面側が、粗面化シート4の賦形面3の凹凸形状が転写されて粗面化された印刷面20とされたフレキソ印刷版23を製造した。
次いで、図2(c)に示すように印刷面20の、印刷パターンに対応する領域以外の領域を表層樹脂層15ごと、レーザヘッド21から炭酸ガスレーザ22を走査しながら照射して熱的に除去することにより、当該印刷面20を所定の印刷パターンに対応させてパターン化した。
Then, as shown by the one-dot chain line arrow in FIG. 2B, the roughened sheet 4 is peeled off in order from one end to the other end of the laminate 18, and the upper surface side of the surface layer resin layer 15 is roughened. A flexographic printing plate 23 having a roughened printing surface 20 by transferring the uneven shape of the shaping surface 3 of the surfaced sheet 4 was produced.
Next, as shown in FIG. 2 (c), the area other than the area corresponding to the printing pattern on the printing surface 20 is thermally removed by irradiating the surface resin layer 15 together with the carbon dioxide laser 22 from the laser head 21 while scanning. As a result, the printing surface 20 was patterned to correspond to a predetermined printing pattern.

パターン化の条件は、炭酸ガスレーザの出力:400W×2ビーム、ビーム径:20μm、送りピッチ:60μm、送り速度140cm/秒とした。
パターン化後は、融除飛沫樹脂による汚れを、太陽化学(株)製の商品名KS−HGシンナを用いて洗浄したのち、十分に乾燥させた。
製造したフレキソ印刷版23における表層樹脂層15の厚みは0.1mm、本体樹脂層16の厚みは2.26mm、表層樹脂層15と本体樹脂層16のショアA硬さの差は21度であった。
The conditions for patterning were carbon dioxide laser output: 400 W × 2 beams, beam diameter: 20 μm, feed pitch: 60 μm, and feed rate of 140 cm / second.
After the patterning, the soil with the ablation resin was washed using a trade name KS-HG thinner manufactured by Taiyo Kagaku Co., Ltd. and then sufficiently dried.
In the manufactured flexographic printing plate 23, the thickness of the surface resin layer 15 is 0.1 mm, the thickness of the main body resin layer 16 is 2.26 mm, and the difference in Shore A hardness between the surface resin layer 15 and the main body resin layer 16 is 21 degrees. It was.

〈実施例2〉
表層樹脂層15用の感光性樹脂組成物6として、硬化後のショアA硬さが27度となる紫外線硬化型の液状の感光性樹脂組成物を用いるとともに、両樹脂層15、16用の感光性樹脂組成物6、9の塗布厚みなどを調整して表層樹脂層15の厚みを0.15mm、本体樹脂層16の厚みを2.21mmとしたこと以外は実施例1と同様にしてフレキソ印刷版23を製造し、印刷面20をパターン化した。
<Example 2>
As the photosensitive resin composition 6 for the surface resin layer 15, an ultraviolet curable liquid photosensitive resin composition having a cured Shore A hardness of 27 degrees is used, and the photosensitive resin composition for both the resin layers 15 and 16 is used. Flexographic printing in the same manner as in Example 1 except that the thickness of the surface resin layer 15 was adjusted to 0.15 mm and the thickness of the main body resin layer 16 was adjusted to 2.21 mm by adjusting the coating thickness of the adhesive resin compositions 6 and 9. A plate 23 was produced and the printing surface 20 was patterned.

製造したフレキソ印刷版23における表層樹脂層15と本体樹脂層16のショアA硬さの差は14度であった。
〈実施例3〉
表層樹脂層15用の感光性樹脂組成物6として、硬化後のショアA硬さが32度となる紫外線硬化型の液状の感光性樹脂組成物を用いるとともに、両樹脂層15、16用の感光性樹脂組成物6、9の塗布厚みなどを調整して表層樹脂層15の厚みを0.25mm、本体樹脂層16の厚みを2.11mmとしたこと以外は実施例1と同様にしてフレキソ印刷版23を製造し、印刷面20をパターン化した。
The difference in Shore A hardness between the surface resin layer 15 and the main body resin layer 16 in the manufactured flexographic printing plate 23 was 14 degrees.
<Example 3>
As the photosensitive resin composition 6 for the surface resin layer 15, an ultraviolet curable liquid photosensitive resin composition having a cured Shore A hardness of 32 degrees is used, and the photosensitive resin composition for both the resin layers 15 and 16 is used. Flexographic printing is performed in the same manner as in Example 1 except that the thickness of the surface resin layer 15 is adjusted to 0.25 mm and the thickness of the main body resin layer 16 is set to 2.11 mm by adjusting the coating thickness of the adhesive resin compositions 6 and 9. A plate 23 was produced and the printing surface 20 was patterned.

製造したフレキソ印刷版23における表層樹脂層15と本体樹脂層16のショアA硬さの差は9度であった。
〈実施例4〉
表層樹脂層15用の感光性樹脂組成物6として、硬化後のショアA硬さが34度となる紫外線硬化型の液状の感光性樹脂組成物を用いるとともに、両樹脂層15、16用の感光性樹脂組成物6、9の塗布厚みなどを調整して表層樹脂層15の厚みを0.45mm、本体樹脂層16の厚みを1.91mmとしたこと以外は実施例1と同様にしてフレキソ印刷版23を製造し、印刷面20をパターン化した。
The difference in Shore A hardness between the surface resin layer 15 and the main body resin layer 16 in the manufactured flexographic printing plate 23 was 9 degrees.
<Example 4>
As the photosensitive resin composition 6 for the surface resin layer 15, an ultraviolet curable liquid photosensitive resin composition having a cured Shore A hardness of 34 degrees is used, and the photosensitive resin composition for both the resin layers 15 and 16 is used. Flexographic printing in the same manner as in Example 1 except that the thickness of the surface resin layer 15 is adjusted to 0.45 mm and the thickness of the main body resin layer 16 is set to 1.91 mm by adjusting the coating thickness of the adhesive resin compositions 6 and 9. A plate 23 was produced and the printing surface 20 was patterned.

製造したフレキソ印刷版23における表層樹脂層15と本体樹脂層16のショアA硬さの差は7度であった。
〈実施例5〉
表層樹脂層15用の感光性樹脂組成物6として、硬化後のショアA硬さが36度となる紫外線硬化型の液状の感光性樹脂組成物を用いるとともに、両樹脂層15、16用の感光性樹脂組成物6、9の塗布厚みなどを調整して表層樹脂層15の厚みを0.35mm、本体樹脂層16の厚みを2.01mmとしたこと以外は実施例1と同様にしてフレキソ印刷版23を製造し、印刷面20をパターン化した。
The difference in Shore A hardness between the surface resin layer 15 and the body resin layer 16 in the manufactured flexographic printing plate 23 was 7 degrees.
<Example 5>
As the photosensitive resin composition 6 for the surface resin layer 15, an ultraviolet curable liquid photosensitive resin composition having a cured Shore A hardness of 36 degrees is used, and the photosensitive resin composition for both the resin layers 15 and 16 is used. Flexographic printing is performed in the same manner as in Example 1 except that the thickness of the surface resin layer 15 is adjusted to 0.35 mm and the thickness of the main body resin layer 16 is set to 2.01 mm by adjusting the coating thickness of the adhesive resin compositions 6 and 9. A plate 23 was produced and the printing surface 20 was patterned.

製造したフレキソ印刷版23における表層樹脂層15と本体樹脂層16のショアA硬さの差は5度であった。
〈実施例6〉
表層樹脂層15用の感光性樹脂組成物6として、硬化後のショアA硬さが38度となる紫外線硬化型の液状の感光性樹脂組成物を用いるとともに、両樹脂層15、16用の感光性樹脂組成物6、9の塗布厚みなどを調整して表層樹脂層15の厚みを0.45mm、本体樹脂層16の厚みを1.91mmとしたこと以外は実施例1と同様にしてフレキソ印刷版23を製造し、印刷面20をパターン化した。
The difference in Shore A hardness between the surface resin layer 15 and the main body resin layer 16 in the manufactured flexographic printing plate 23 was 5 degrees.
<Example 6>
As the photosensitive resin composition 6 for the surface resin layer 15, an ultraviolet curable liquid photosensitive resin composition having a cured Shore A hardness of 38 degrees is used, and the photosensitive resin composition for both the resin layers 15 and 16 is used. Flexographic printing in the same manner as in Example 1 except that the thickness of the surface resin layer 15 is adjusted to 0.45 mm and the thickness of the main body resin layer 16 is set to 1.91 mm by adjusting the coating thickness of the adhesive resin compositions 6 and 9. A plate 23 was produced and the printing surface 20 was patterned.

製造したフレキソ印刷版23における表層樹脂層15と本体樹脂層16のショアA硬さの差は3度であった。
〈実施例7〉
表層樹脂層15用の感光性樹脂組成物6として、硬化後のショアA硬さが38度となる紫外線硬化型の液状の感光性樹脂組成物を用いるとともに、両樹脂層15、16用の感光性樹脂組成物6、9の塗布厚みなどを調整して表層樹脂層15の厚みを0.80mm、本体樹脂層16の厚みを1.56mmとしたこと以外は実施例1と同様にしてフレキソ印刷版23を製造し、印刷面20をパターン化した。
The difference in Shore A hardness between the surface resin layer 15 and the main resin layer 16 in the manufactured flexographic printing plate 23 was 3 degrees.
<Example 7>
As the photosensitive resin composition 6 for the surface resin layer 15, an ultraviolet curable liquid photosensitive resin composition having a cured Shore A hardness of 38 degrees is used, and the photosensitive resin composition for both the resin layers 15 and 16 is used. Flexographic printing in the same manner as in Example 1 except that the thickness of the surface resin layer 15 was adjusted to 0.80 mm and the thickness of the main body resin layer 16 was adjusted to 1.56 mm by adjusting the coating thickness of the adhesive resin compositions 6 and 9. A plate 23 was produced and the printing surface 20 was patterned.

製造したフレキソ印刷版23における表層樹脂層15と本体樹脂層16のショアA硬さの差は3度であった。
〈実施例8〉
表層樹脂層15用の感光性樹脂組成物6として、硬化後のショアA硬さが36度となる紫外線硬化型の液状の感光性樹脂組成物を用い、かつ本体樹脂層16用の感光性樹脂組成物9として、硬化後のショアA硬さが48度となる紫外線硬化型の液状の感光性樹脂組成物を用いるとともに、両樹脂層15、16用の感光性樹脂組成物6、9の塗布厚みなどを調整して表層樹脂層15の厚みを0.55mm、本体樹脂層16の厚みを1.81mmとしたこと以外は実施例1と同様にしてフレキソ印刷版23を製造し、印刷面20をパターン化した。
The difference in Shore A hardness between the surface resin layer 15 and the main resin layer 16 in the manufactured flexographic printing plate 23 was 3 degrees.
<Example 8>
As the photosensitive resin composition 6 for the surface resin layer 15, an ultraviolet curable liquid photosensitive resin composition having a cured Shore A hardness of 36 degrees is used, and the photosensitive resin for the main body resin layer 16 is used. As the composition 9, an ultraviolet curable liquid photosensitive resin composition having a Shore A hardness of 48 degrees after curing is used, and the photosensitive resin compositions 6 and 9 for both the resin layers 15 and 16 are applied. A flexographic printing plate 23 is produced in the same manner as in Example 1 except that the thickness of the surface resin layer 15 is adjusted to 0.55 mm and the thickness of the main body resin layer 16 is set to 1.81 mm by adjusting the thickness and the like. Patterned.

製造したフレキソ印刷版23における表層樹脂層15と本体樹脂層16のショアA硬さの差は12度であった。
〈実施例9〉
表層樹脂層15用の感光性樹脂組成物6として、硬化後のショアA硬さが39度となる紫外線硬化型の液状の感光性樹脂組成物を用いるとともに、両樹脂層15、16用の感光性樹脂組成物6、9の塗布厚みなどを調整して表層樹脂層15の厚みを0.80mm、本体樹脂層16の厚みを1.56mmとしたこと以外は実施例1と同様にしてフレキソ印刷版23を製造し、印刷面20をパターン化した。
The difference in Shore A hardness between the surface resin layer 15 and the main body resin layer 16 in the manufactured flexographic printing plate 23 was 12 degrees.
<Example 9>
As the photosensitive resin composition 6 for the surface resin layer 15, an ultraviolet curable liquid photosensitive resin composition having a cured Shore A hardness of 39 degrees is used, and the photosensitive resin composition for both the resin layers 15 and 16 is used. Flexographic printing in the same manner as in Example 1 except that the thickness of the surface resin layer 15 was adjusted to 0.80 mm and the thickness of the main body resin layer 16 was adjusted to 1.56 mm by adjusting the coating thickness of the adhesive resin compositions 6 and 9. A plate 23 was produced and the printing surface 20 was patterned.

製造したフレキソ印刷版23における表層樹脂層15と本体樹脂層16のショアA硬さの差は1度であった。
〈実施例10〉
表層樹脂層15用の感光性樹脂組成物6として、硬化後のショアA硬さが18度となる紫外線硬化型の液状の感光性樹脂組成物を用いるとともに、両樹脂層15、16用の感光性樹脂組成物6、9の塗布厚みなどを調整して表層樹脂層15の厚みを0.15mm、本体樹脂層16の厚みを2.21mmとしたこと以外は実施例1と同様にしてフレキソ印刷版23を製造し、印刷面20をパターン化した。
The difference in Shore A hardness between the surface resin layer 15 and the main body resin layer 16 in the manufactured flexographic printing plate 23 was 1 degree.
<Example 10>
As the photosensitive resin composition 6 for the surface resin layer 15, an ultraviolet curable liquid photosensitive resin composition having a cured Shore A hardness of 18 degrees is used, and the photosensitive resin composition for both the resin layers 15 and 16 is used. Flexographic printing in the same manner as in Example 1 except that the thickness of the surface resin layer 15 was adjusted to 0.15 mm and the thickness of the main body resin layer 16 was adjusted to 2.21 mm by adjusting the coating thickness of the adhesive resin compositions 6 and 9. A plate 23 was produced and the printing surface 20 was patterned.

製造したフレキソ印刷版23における表層樹脂層15と本体樹脂層16のショアA硬さの差は23度であった。
〈実施例11〉
表層樹脂層15用の感光性樹脂組成物6として、硬化後のショアA硬さが20度となる紫外線硬化型の液状の感光性樹脂組成物を用いるとともに、両樹脂層15、16用の感光性樹脂組成物6、9の塗布厚みなどを調整して表層樹脂層15の厚みを0.05mm、本体樹脂層16の厚みを2.31mmとしたこと以外は実施例1と同様にしてフレキソ印刷版23を製造し、印刷面20をパターン化した。
The difference in Shore A hardness between the surface resin layer 15 and the body resin layer 16 in the manufactured flexographic printing plate 23 was 23 degrees.
<Example 11>
As the photosensitive resin composition 6 for the surface resin layer 15, an ultraviolet curable liquid photosensitive resin composition having a cured Shore A hardness of 20 degrees is used, and the photosensitive resin composition for both the resin layers 15 and 16 is used. Flexographic printing in the same manner as in Example 1 except that the thickness of the surface resin layer 15 was adjusted to 0.05 mm and the thickness of the main body resin layer 16 was adjusted to 2.31 mm by adjusting the coating thickness of the adhesive resin compositions 6 and 9. A plate 23 was produced and the printing surface 20 was patterned.

製造したフレキソ印刷版23における表層樹脂層15と本体樹脂層16のショアA硬さの差は21度であった。
〈実施例12〉
表層樹脂層15用の感光性樹脂組成物6として、硬化後のショアA硬さが34度となる紫外線硬化型の液状の感光性樹脂組成物を用いるとともに、両樹脂層15、16用の感光性樹脂組成物6、9の塗布厚みなどを調整して表層樹脂層15の厚みを1.00mm、本体樹脂層16の厚みを1.36mmとしたこと以外は実施例1と同様にしてフレキソ印刷版23を製造し、印刷面20をパターン化した。
The difference in Shore A hardness between the surface resin layer 15 and the main body resin layer 16 in the manufactured flexographic printing plate 23 was 21 degrees.
<Example 12>
As the photosensitive resin composition 6 for the surface resin layer 15, an ultraviolet curable liquid photosensitive resin composition having a cured Shore A hardness of 34 degrees is used, and the photosensitive resin composition for both the resin layers 15 and 16 is used. Flexographic printing is performed in the same manner as in Example 1 except that the thickness of the surface resin layer 15 is adjusted to 1.00 mm and the thickness of the main body resin layer 16 is 1.36 mm by adjusting the coating thickness of the adhesive resin compositions 6 and 9. A plate 23 was produced and the printing surface 20 was patterned.

製造したフレキソ印刷版23における表層樹脂層15と本体樹脂層16のショアA硬さの差は7度であった。
〈比較例1〉
硬化後のショアA硬さが41度となる液状の感光性樹脂組成物を用いて、単層で厚みが2.36mmであるフレキソ樹脂層を形成したこと以外は実施例1と同様にしてフレキソ印刷版を製造し、印刷面をパターン化した。
The difference in Shore A hardness between the surface resin layer 15 and the body resin layer 16 in the manufactured flexographic printing plate 23 was 7 degrees.
<Comparative example 1>
A flexo resin layer having a single layer thickness of 2.36 mm was formed using a liquid photosensitive resin composition having a Shore A hardness of 41 degrees after curing, in the same manner as in Example 1, except that the flexo resin layer was formed. A printing plate was produced and the printing surface was patterned.

〈比較例2〉
硬化後のショアA硬さが20度となる液状の感光性樹脂組成物を用いて、単層で厚みが2.36mmであるフレキソ樹脂層を形成したこと以外は実施例1と同様にしてフレキソ印刷版を製造し、印刷面をパターン化した。
〈実機試験〉
(フレキソ印刷)
液晶配向膜印刷用のフレキソ印刷機〔ナカンテクノ(株)製のA45〕に実施例、比較例で製造したフレキソ印刷版と、アニロックスロール#220〔セル容積6.5cc/m〕とを組み込んだ。
<Comparative example 2>
A flexo resin layer having a single layer thickness of 2.36 mm was formed using a liquid photosensitive resin composition having a Shore A hardness of 20 degrees after curing, in the same manner as in Example 1, except that the flexo resin layer was formed. A printing plate was produced and the printing surface was patterned.
<Real machine test>
(Flexo printing)
A flexographic printing machine for liquid crystal alignment film printing (A45 manufactured by Nakan Techno Co., Ltd.) was incorporated with flexographic printing plates produced in Examples and Comparative Examples, and anilox roll # 220 (cell volume 6.5 cc / m 2 ). .

そして液晶配向膜用のインキ〔JSR(株)製のオプトマー(登録商標)AL17901〕を、上記フレキソ印刷機を用いて液晶パネル用の模擬基板の表面に印刷したのち120℃で30分間予備乾燥させて液晶配向膜を形成した。液晶配向膜の予備乾燥後の設定厚みは900Åとした。
上記模擬基板としては、5インチ角のエリアに画素数420ppiの密度でドットを構築したものを用いた。凹凸のピッチは3〜15μm、高さは0.3〜1μmであった。
The ink for liquid crystal alignment film [Optomer (registered trademark) AL17901 manufactured by JSR Co., Ltd.] is printed on the surface of the simulated substrate for the liquid crystal panel using the flexographic printing machine, and then pre-dried at 120 ° C. for 30 minutes. Thus, a liquid crystal alignment film was formed. The set thickness after preliminary drying of the liquid crystal alignment film was 900 mm.
As the simulated substrate, a substrate in which dots were constructed at a density of 420 ppi in a 5-inch square area was used. The uneven pitch was 3 to 15 μm and the height was 0.3 to 1 μm.

(厚みの均一性評価)
予備乾燥後の液晶配向膜の厚みを測定して、下記の基準で厚みの均一性を評価した。
○○○:厚みの範囲は900±36Å以内であった。秀。
○○:厚みの範囲は900±65Å以内であった。優。
○:厚みの範囲は900±90Å以内であった。良。
(Thickness uniformity evaluation)
The thickness of the liquid crystal alignment film after preliminary drying was measured, and the thickness uniformity was evaluated according to the following criteria.
OO: The thickness range was within 900 ± 36 mm. Hide.
◯: The thickness range was within 900 ± 65 mm. Excellent.
○: The thickness range was within 900 ± 90 mm. Good.

△:厚みの範囲は900±135Å以内であった。可。
×:厚みの範囲は900±135Åを超えていた。不可。
(印刷精度の評価)
上記フレキソ印刷を2000枚連続して実施し、印刷1枚目と2000枚目の印刷開始位置のずれ量を測定して、下記の基準で印刷精度の良否を評価した。
Δ: The thickness range was within 900 ± 135 mm. Yes.
X: The thickness range exceeded 900 ± 135 mm. Impossible.
(Evaluation of printing accuracy)
The above flexographic printing was continuously performed for 2000 sheets, the amount of deviation between the printing start positions of the first and 2000th printing sheets was measured, and the quality of printing accuracy was evaluated according to the following criteria.

○○○:ずれ量は±200μm以内であった。秀。
○○:ずれ量は±400μm以内であった。優。
○:ずれ量は±600μm以内であった。良。
△:ずれ量は±800μm以内であった。可。
×:ずれ量は±800μmを超えていた。不可。
OO: Deviation amount was within ± 200 μm. Hide.
◯: Deviation amount was within ± 400 μm. Excellent.
○: Deviation amount was within ± 600 μm. Good.
Δ: Deviation amount was within ± 800 μm. Yes.
X: The amount of deviation exceeded ± 800 μm. Impossible.

(耐久性評価)
印刷した液晶配向膜の厚みを継続して測定しながら、上記フレキソ印刷を連続して実施した。そしてフレキソ樹脂層のへたりによる印圧の低下に伴う液晶配向膜の厚みの低下量と、印刷枚数との関係を求めて、下記の基準でフレキソ印刷版の耐久性の良否を評価した。
(Durability evaluation)
The flexographic printing was continuously performed while continuously measuring the thickness of the printed liquid crystal alignment film. The relationship between the amount of decrease in the thickness of the liquid crystal alignment film accompanying the decrease in printing pressure due to the sag of the flexo resin layer and the number of printed sheets was determined, and the quality of the flexographic printing plate was evaluated based on the following criteria.

○○○:2万枚以上印刷しても液晶配向膜の厚みの低下量は65Å以内であった。秀。
○○:1.5万枚以上、2万枚未満の印刷では液晶配向膜の厚みの低下量は65Å以内であった。優。
○:1.5万枚の印刷で液晶配向膜の厚みの低下量は90Å以内であった。良。
△:0.5万枚未満の印刷では液晶配向膜の厚みの低下量は90Å以内であった。可。
OO: Even when 20,000 sheets or more were printed, the amount of decrease in the thickness of the liquid crystal alignment film was within 65 mm. Hide.
◯: When printing 15,000 sheets or more and less than 20,000 sheets, the amount of decrease in the thickness of the liquid crystal alignment film was within 65 mm. Excellent.
A: The amount of decrease in the thickness of the liquid crystal alignment film after printing 15,000 sheets was within 90 mm. Good.
Δ: In printing of less than 55,000 sheets, the amount of decrease in the thickness of the liquid crystal alignment film was within 90 mm. Yes.

×:0.5万枚未満の印刷で液晶配向膜の厚みの低下量が90Åを超えていた。不可。
以上の結果を表1、表2に示す。
X: The amount of decrease in the thickness of the liquid crystal alignment film exceeded 90 mm after printing less than 55,000 sheets. Impossible.
The above results are shown in Tables 1 and 2.

Figure 0006322871
Figure 0006322871

Figure 0006322871
Figure 0006322871

表2の比較例1の結果より、単層の通常の硬さのフレキソ樹脂層では凹凸に対する印刷面の追従性が不十分で、液晶パネル用基板の表面に厚みが均一でピンホールのない液晶配向膜を形成できないことが判った。
また比較例2の結果より、上記印刷面の追従性を高めるために単層のフレキソ樹脂層の全体を柔らかくすると、当該フレキソ樹脂層が印刷時にせん断方向に大きく変形してフレキソ印刷版の印刷精度が低下したり、印刷を繰り返した際にフレキソ樹脂層が短期間でへたりを生じてフレキソ印刷版の耐久性が低下したりすることが判った。
From the results of Comparative Example 1 in Table 2, a single-layer normal flexographic resin layer has insufficient followability of the printed surface against unevenness, and the liquid crystal panel substrate has a uniform thickness and no pinholes on the surface. It was found that an alignment film cannot be formed.
Further, from the result of Comparative Example 2, when the entire flexo resin layer is softened in order to improve the followability of the printing surface, the flexo resin layer is greatly deformed in the shearing direction during printing, and the printing accuracy of the flexographic printing plate is increased. It has been found that when the printing is repeated, the flexographic resin layer sags in a short period of time and the durability of the flexographic printing plate is lowered.

これに対し表1、表2の実施例1〜12の結果より、フレキソ樹脂層17を表層樹脂層15と本体樹脂層16の2層構造とし、なおかつ表層樹脂層15を本体樹脂層16よりも軟らかくすることにより、フレキソ樹脂層17の全体のせん断方向への変形を抑制して高い印刷精度を維持するとともに、へたりを生じにくくして高い耐久性を維持しながら、凹凸に対する印刷面20の追従性を向上して、液晶パネル用基板の表面に厚みが均一でピンホールのない液晶配向膜を形成できることが判った。   On the other hand, from the results of Examples 1 to 12 in Tables 1 and 2, the flexo resin layer 17 has a two-layer structure of the surface resin layer 15 and the main body resin layer 16, and the surface resin layer 15 is more than the main body resin layer 16. By making it soft, the deformation of the entire flexo resin layer 17 in the shear direction is suppressed to maintain high printing accuracy, and the printing surface 20 with respect to unevenness is maintained while maintaining high durability by making it difficult to sag. It was found that the followability was improved and a liquid crystal alignment film having a uniform thickness and no pinholes could be formed on the surface of the liquid crystal panel substrate.

また実施例1〜12の結果より、かかる効果をより一層向上することを考慮すると、表層樹脂層15を、本体樹脂層16よりもショアA硬さの差で表して3度以上、特に5度以上の範囲で軟らかくするのが好ましく、21度以下、特に12度以下の範囲で軟らかくするのが好ましいことが判った。
また上記の効果をより一層向上することを考慮すると、表層樹脂層15の厚みを0.1mm以上、特に0.2mm以上とするのが好ましく、0.8mm以下、特に0.6mm以下とするのが好ましいことが判った。
Moreover, considering that the effect is further improved from the results of Examples 1 to 12, the surface resin layer 15 is expressed by a difference in Shore A hardness from the main body resin layer 16 by 3 degrees or more, particularly 5 degrees. It has been found that it is preferable to soften in the above range, and it is preferable to soften in the range of 21 degrees or less, particularly 12 degrees or less.
In consideration of further improving the above effect, the thickness of the surface resin layer 15 is preferably 0.1 mm or more, particularly preferably 0.2 mm or more, and is preferably 0.8 mm or less, particularly 0.6 mm or less. Was found to be preferable.

さらに実施例1〜7と実施例8の結果より、本体樹脂層16のショアA硬さが違う系でも、層樹脂層15を本体樹脂層16より軟らかくすれば同様の効果が得られることが判った。   Further, from the results of Examples 1 to 7 and Example 8, it is understood that the same effect can be obtained even in a system in which the shore A hardness of the main body resin layer 16 is different by making the layer resin layer 15 softer than the main body resin layer 16. It was.

1 支持基板
2 表面
3 賦形面
4 粗面化シート
5 反対面
6 感光性樹脂組成物
7 ブレード
8 第一前駆層
9 感光性樹脂組成物
10 ブレード
11 第二前駆層
12 補強シート
13 対向基板
14 対向面
15 表層樹脂層
16 本体樹脂層
17 フレキソ樹脂層
18 積層体
19 作業台
20 印刷面
21 レーザヘッド
22 炭酸ガスレーザ
23 フレキソ印刷版
C チャック治具
長さ
寸法
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Surface 3 Shaping surface 4 Roughening sheet 5 Opposite surface 6 Photosensitive resin composition 7 Blade 8 First precursor layer 9 Photosensitive resin composition 10 Blade 11 Second precursor layer 12 Reinforcement sheet 13 Counter substrate 14 Opposing surface 15 Surface resin layer 16 Main body resin layer 17 Flexo resin layer 18 Laminate 19 Work table 20 Printing surface 21 Laser head 22 Carbon dioxide laser 23 Flexographic printing plate C Chuck jig L 1 Length L 2 Dimensions

Claims (7)

平板状のフレキソ樹脂層を備え、当該フレキソ樹脂層は、ショアA硬さが40度以上、50度以下である本体樹脂層、および当該本体樹脂層の片面に積層されて露出した表面が印刷面とされた、前記本体樹脂層よりも軟らかい表層樹脂層を含み、かつ本体樹脂層の反対面には補強シートが積層され、一体化されたフレキソ印刷版。 The flexo resin layer is provided with a plate-like flexo resin layer, and the flexo resin layer has a main surface resin layer having a Shore A hardness of 40 degrees or more and 50 degrees or less , and a surface exposed by being laminated on one side of the main body resin layer. is a, the saw including a soft surface layer resin layer than the body resin layer, and on the opposite side of the main body resin layer reinforced sheet is laminated, integrated flexographic printing plate. 前記表層樹脂層は、前記本体樹脂層よりもショアA硬さで表して3度以上、21度以下の範囲で軟らかい請求項1に記載のフレキソ印刷版。   2. The flexographic printing plate according to claim 1, wherein the surface resin layer is softer in a range of 3 degrees or more and 21 degrees or less in terms of Shore A hardness than the main body resin layer. 前記表層樹脂層は、厚みが0.1mm以上、0.8mm以下である請求項1または2に記載のフレキソ印刷版。   The flexographic printing plate according to claim 1, wherein the surface resin layer has a thickness of 0.1 mm or more and 0.8 mm or less. 前記本体樹脂層、および表層樹脂層はそれぞれ感光性樹脂組成物からなる請求項1ないし3のいずれか1項に記載のフレキソ印刷版。   4. The flexographic printing plate according to claim 1, wherein each of the main body resin layer and the surface resin layer is made of a photosensitive resin composition. 前記本体樹脂層、および前記表層樹脂層のもとになる感光性樹脂組成物を硬化反応させるための活性光線に対する透過性を有する材料からなり、片面が前記印刷面の形状に対応した賦形面とされた型材の前記賦形面に、前記表層樹脂層のもとになる感光性樹脂組成物を塗布して第一前駆層を形成する工程、
前記第一前駆層上に、前記本体樹脂層のもとになる感光性樹脂組成物を塗布して第二前駆層を積層する工程、
前記第二前駆層上に前記補強シートを積層する工程、ならびに
前記第一および前記第二前駆層を、前記型材を通して前記活性光線の照射によって硬化反応させて前記表層樹脂層と前記本体樹脂層と前記補強シートとの積層体を形成したのち、当該積層体を前記賦形面から剥離する工程、
を含む前記請求項1ないしのいずれか1項に記載のフレキソ印刷版の製造方法。
Said body resin layer, and makes a photosensitive resin composition comprising the original surface layer resin layer of a material transparent to active rays for curing reaction, one side corresponding to the shape of the printing surface Fukatachimen A step of forming a first precursor layer by applying a photosensitive resin composition on which the surface resin layer is based on the shaping surface of the mold material,
A step of applying a photosensitive resin composition on which the main body resin layer is based on the first precursor layer and laminating a second precursor layer,
Laminating the reinforcing sheet to the second precursor layer, and said first and said second precursor layer, and the surface resin layer by curing reaction by irradiation of the active light through the mold member and said body resin layer Forming the laminate with the reinforcing sheet, and then peeling the laminate from the shaping surface;
The manufacturing method of the flexographic printing plate of any one of the said Claims 1 thru | or 4 containing these.
少なくとも前記印刷面を、所定の印刷パターンに対応させてパターン化する工程をも含む請求項に記載のフレキソ印刷版の製造方法。 The method for producing a flexographic printing plate according to claim 5 , further comprising a step of patterning at least the printing surface in correspondence with a predetermined printing pattern. 前記請求項1ないしのいずれか1項に記載のフレキソ印刷版を用いて、フレキソ印刷により、液晶パネル用の液晶配向膜を形成する工程を含む液晶表示素子の製造方法。 The manufacturing method of a liquid crystal display element including the process of forming the liquid crystal aligning film for liquid crystal panels by flexographic printing using the flexographic printing plate of any one of the said Claim 1 thru | or 4 .
JP2014102687A 2014-05-16 2014-05-16 Flexographic printing plate and manufacturing method thereof, and manufacturing method of liquid crystal display element Active JP6322871B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014102687A JP6322871B2 (en) 2014-05-16 2014-05-16 Flexographic printing plate and manufacturing method thereof, and manufacturing method of liquid crystal display element
KR1020150050705A KR20150131950A (en) 2014-05-16 2015-04-10 Flexographic printing plate and method of manufacturing the same, and method of manufacturing liquid crystal display device
CN201510191180.0A CN105082818B (en) 2014-05-16 2015-04-21 The manufacturing method of flexographic printing plates and its manufacturing method and liquid crystal display element
TW104112789A TWI645985B (en) 2014-05-16 2015-04-22 Flexographic printing plate, method for manufacturing the same and method for manufacturing liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014102687A JP6322871B2 (en) 2014-05-16 2014-05-16 Flexographic printing plate and manufacturing method thereof, and manufacturing method of liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2015217595A JP2015217595A (en) 2015-12-07
JP6322871B2 true JP6322871B2 (en) 2018-05-16

Family

ID=54564518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014102687A Active JP6322871B2 (en) 2014-05-16 2014-05-16 Flexographic printing plate and manufacturing method thereof, and manufacturing method of liquid crystal display element

Country Status (4)

Country Link
JP (1) JP6322871B2 (en)
KR (1) KR20150131950A (en)
CN (1) CN105082818B (en)
TW (1) TWI645985B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017185737A (en) * 2016-04-07 2017-10-12 住友ゴム工業株式会社 Flexographic printing plate and method for manufacturing the same, and method for manufacturing liquid crystal display element
JP6802973B2 (en) * 2016-09-27 2020-12-23 住友ゴム工業株式会社 Manufacturing method of resin original plate for printing, manufacturing method of flexographic printing plate, and manufacturing method of liquid crystal display element
CN108932074B (en) * 2017-05-27 2021-05-25 和鑫光电股份有限公司 Display device
JP7257100B2 (en) * 2017-09-11 2023-04-13 東洋製罐グループホールディングス株式会社 Transparent substrate, thin film supporting substrate
CN107571658B (en) * 2017-09-19 2019-09-20 京东方科技集团股份有限公司 A kind of galley and preparation method thereof
CN109188783B (en) * 2018-10-09 2022-02-01 张家港康得新光电材料有限公司 Transfer printing device and transfer printing liquid transfer printing method
CN109709725B (en) 2019-02-13 2021-06-22 武汉华星光电半导体显示技术有限公司 Preparation method of display panel
CN111180862A (en) * 2020-01-16 2020-05-19 南昌欧菲光科技有限公司 Cover plate assembly, manufacturing method thereof and intelligent terminal

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69929087T2 (en) * 1998-12-25 2006-08-31 Asahi Kasei Chemicals Corp. FLEXODRUCKPLATTE AND THEIR ROHLING
DE10258668A1 (en) * 2002-12-13 2004-06-24 Basf Ag Flexographic plate production uses element with protective film that is peeled from photopolymerizable, relief-forming layer of elastomer binder, ethylenically unsaturated monomer and photoinitiator after exposure and before engraving
JP2005178135A (en) * 2003-12-18 2005-07-07 Noritsu Koki Co Ltd Laminateed sheet and lamination method
US7754415B2 (en) * 2004-01-27 2010-07-13 Asahi Kasei Chemicals Corporation Process for producing laser engravable printing substrate
US8252514B2 (en) * 2006-03-14 2012-08-28 Day International, Inc. Flexographic printing plate assembly
DE102006028640A1 (en) * 2006-06-22 2008-01-03 Flint Group Germany Gmbh Photopolymerizable layer composite for the production of flexographic printing elements
JP5427225B2 (en) * 2011-12-06 2014-02-26 住友ゴム工業株式会社 Manufacturing method of printing resin original plate
WO2013115081A1 (en) * 2012-01-30 2013-08-08 富士フイルム株式会社 Resin composition for laser engraving, laser engraving-type flexographic printing plate mold and production method therefor, and flexographic printing plate and plate-making method therefor
JP6012098B2 (en) * 2012-08-06 2016-10-25 株式会社光金属工業所 Resin product and method for producing resin product
JP5727526B2 (en) * 2013-01-09 2015-06-03 住友ゴム工業株式会社 Flexographic printing plate and manufacturing method thereof, and manufacturing method of substrate for liquid crystal panel

Also Published As

Publication number Publication date
CN105082818A (en) 2015-11-25
JP2015217595A (en) 2015-12-07
CN105082818B (en) 2018-11-30
KR20150131950A (en) 2015-11-25
TWI645985B (en) 2019-01-01
TW201544358A (en) 2015-12-01

Similar Documents

Publication Publication Date Title
JP6322871B2 (en) Flexographic printing plate and manufacturing method thereof, and manufacturing method of liquid crystal display element
JP5727526B2 (en) Flexographic printing plate and manufacturing method thereof, and manufacturing method of substrate for liquid crystal panel
JP5427225B2 (en) Manufacturing method of printing resin original plate
WO2011089964A1 (en) Method for manufacturing hard translucent plate laminate and apparatus for bonding hard translucent plates
WO2011089963A1 (en) Process for producing laminate of light-transmitting rigid plates and device for laminating light-transmitting rigid plates
JP6551737B2 (en) Method for producing flexographic printing plate and method for producing liquid crystal display element
JP2014133336A (en) Flexographic printing plate and method for manufacturing the same, and method for manufacturing substrate for liquid crystal panel
JP4901173B2 (en) Flexographic printing method
JP6395301B2 (en) Flexographic printing plate for testing, manufacturing method thereof, and manufacturing method of liquid crystal display element
JP6306715B2 (en) Method for producing flexographic printing plate and method for producing liquid crystal display element
TW201625422A (en) Manufacture method of resin original plate for printing and flexible printing plate
JP5702006B1 (en) Flexographic printing plate and liquid crystal display device manufacturing method using the same
JP6802973B2 (en) Manufacturing method of resin original plate for printing, manufacturing method of flexographic printing plate, and manufacturing method of liquid crystal display element
JP2019014133A (en) Method for manufacturing flexographic printing plate, and method for manufacturing liquid crystal display element
JP6660568B2 (en) Roughened sheet, method for producing printing resin original plate using the same, and method for producing flexographic printing plate
TW201800255A (en) Surface-roughened sheet and use thereof
JP2018051835A (en) Rough-surfaced sheet and manufacturing method therefor
TW201722710A (en) Roughened surface sheet material and manufacturing method thereof, manufacturing method of raw resin board for printing, manufacturing method of flexible printed board, and manufacturing method of liquid-crystal display device to coat a surface layer made of thermoplastic elastomer having silicone rubber affinity on a base material film made of PET, with the middle layer made of thermoplastic Polyurethane disposed therebetween
JP2018086807A (en) Manufacturing method for printing resin original plate, manufacturing method for flexographic printing plate, and manufacturing method for liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180323

R150 Certificate of patent or registration of utility model

Ref document number: 6322871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250