JP2017154087A - Method for producing hollow particle and hollow particle - Google Patents

Method for producing hollow particle and hollow particle Download PDF

Info

Publication number
JP2017154087A
JP2017154087A JP2016040078A JP2016040078A JP2017154087A JP 2017154087 A JP2017154087 A JP 2017154087A JP 2016040078 A JP2016040078 A JP 2016040078A JP 2016040078 A JP2016040078 A JP 2016040078A JP 2017154087 A JP2017154087 A JP 2017154087A
Authority
JP
Japan
Prior art keywords
particles
hollow
liquid
monomer
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016040078A
Other languages
Japanese (ja)
Other versions
JP6677018B2 (en
Inventor
竜也 牧野
Tatsuya Makino
竜也 牧野
寛之 泉
Hiroyuki Izumi
寛之 泉
寿典 幕田
Hisanori Makuta
寿典 幕田
岳往 濱田
Takeyuki Hamada
岳往 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016040078A priority Critical patent/JP6677018B2/en
Publication of JP2017154087A publication Critical patent/JP2017154087A/en
Application granted granted Critical
Publication of JP6677018B2 publication Critical patent/JP6677018B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel hollow particle different in structure from conventional hollow particles.SOLUTION: The present invention provides a method for producing a hollow particle comprising a shell part with a hollow. The method comprises a step of generating foam comprising a monomer in liquid comprising a metal oxide particle; and, at an interface between the foam and the liquid, bringing the liquid and the monomer into contact with each other, to form the shell part, which comprises a layer comprising a polymer derived from the monomer and a metal oxide particle carried on the surface of the layer.SELECTED DRAWING: Figure 1

Description

本開示は、中空粒子の製造方法及び中空粒子に関し、特に金属酸化物粒子が表面に付着した中空粒子の製造方法及び該製造方法により得られる中空粒子に関する。   The present disclosure relates to a method for producing hollow particles and hollow particles, and more particularly, to a method for producing hollow particles having metal oxide particles attached to the surface thereof and a hollow particle obtained by the production method.

内部が気体で外部が固体の構造を有する中空粒子は、密度が低く、音や熱の伝達を抑制することもできるため、材料の比重調整や防音材・断熱材等へ用いられているほか、液体中で浮上する特性を利用して液体表面の流れを可視化するトレーサ等にも用いられている。近年では、中空粒子の超音波に対する周波数応答性を利用して、超音波診断用造影剤やドラッグデリバリーの薬剤輸送担体等の医療材料として中空粒子を用いる先進医療の研究も行われている。   Hollow particles that have a gas structure inside and a solid outside structure are low in density and can also suppress the transmission of sound and heat, so they are used for adjusting the specific gravity of materials, soundproofing materials, heat insulating materials, etc. It is also used for tracers that visualize the flow of the liquid surface by utilizing the characteristics of floating in the liquid. In recent years, advanced medical research using hollow particles as a medical material such as a contrast agent for ultrasonic diagnosis and a drug transport carrier for drug delivery has been conducted using the frequency response of the hollow particles to ultrasonic waves.

従来の中空粒子としては、中空のシリカ粒子や、中空の樹脂粒子が知られている(例えば、特許文献1及び2)。   As conventional hollow particles, hollow silica particles and hollow resin particles are known (for example, Patent Documents 1 and 2).

特開2004−203683号公報JP 2004-203683 A 特開2011−068774号公報JP 2011-068774 A

本発明は、従来の中空粒子とは異なる構成を有する、新規な中空粒子を提供することを目的とする。   An object of this invention is to provide the novel hollow particle which has a structure different from the conventional hollow particle.

本発明は、中空を有する殻部を備える中空粒子の製造方法であって、金属酸化物粒子を含む液体中でモノマーを含む気泡を発生させ、気泡及び液体の界面において、液体及びモノマーの接触により、モノマー由来のポリマーを含む層及び該層表面に担持された金属酸化物粒子を備える殻部を形成する工程を備える、製造方法を提供する。   The present invention relates to a method for producing a hollow particle having a hollow shell, wherein a bubble containing a monomer is generated in a liquid containing metal oxide particles, and contacted between the liquid and the monomer at the interface between the bubble and the liquid. And a manufacturing method comprising a step of forming a shell including a layer containing a monomer-derived polymer and metal oxide particles supported on the surface of the layer.

本発明において、金属酸化物粒子がシリカ粒子であることが好ましい。   In the present invention, the metal oxide particles are preferably silica particles.

本発明において、金属酸化物粒子がコロイダル粒子であることが好ましい。   In the present invention, the metal oxide particles are preferably colloidal particles.

本発明において、金属酸化物粒子の平均一次粒子径が1〜200nmであることが好ましい。   In the present invention, the average primary particle diameter of the metal oxide particles is preferably 1 to 200 nm.

本発明において、モノマーがシアノアクリレート系化合物を含むことが好ましい。   In the present invention, the monomer preferably contains a cyanoacrylate compound.

本発明において、液体が水であることが好ましい。   In the present invention, the liquid is preferably water.

本発明は、また、中空を有する殻部を備え、該殻部がポリマーを含む層及び該層表面に担持された金属酸化物粒子を備える、中空粒子を提供する。   The present invention also provides a hollow particle comprising a shell having a hollow, the shell comprising a layer containing a polymer and metal oxide particles supported on the surface of the layer.

本発明によれば、従来の中空粒子とは異なる構成を有する、新規な中空粒子を提供することができる。本発明の製造方法は、特に以下の特徴を有していると言える。
・液体や固体を芯とした粒子から内部の芯を除去あるいは気化することによる中空化工程を必要とせず、簡便に中空粒子を作製することができる。
・固体膜となるモノマーは気体として液体中に供給され気泡の主成分となるため、気液界面に効率よくモノマーを供給することができる。
・金属酸化物粒子を液体中に分散することで、金属酸化物粒子が気液界面に効率よく吸着し、モノマー重合体からなる固体膜表面に金属酸化物粒子が付着した中空粒子を簡便に作製することができる。
ADVANTAGE OF THE INVENTION According to this invention, the novel hollow particle which has a structure different from the conventional hollow particle can be provided. It can be said that the production method of the present invention has the following characteristics in particular.
-Hollow particles can be easily produced without the need for a hollowing step by removing or vaporizing the inner core from liquid or solid core particles.
-Since the monomer used as a solid film is supplied in the liquid as a gas, and becomes a main component of a bubble, a monomer can be efficiently supplied to a gas-liquid interface.
・ By dispersing metal oxide particles in the liquid, the metal oxide particles are efficiently adsorbed on the gas-liquid interface, and hollow particles with metal oxide particles attached to the surface of a solid film made of a monomer polymer are easily produced. can do.

中空粒子の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of a hollow particle. 中空粒子の生成機構を示す模式図である。It is a schematic diagram which shows the production | generation mechanism of a hollow particle. 実施例1の中空粒子の電子顕微鏡画像である。2 is an electron microscopic image of hollow particles of Example 1. FIG. 実施例2の中空粒子の電子顕微鏡画像である。2 is an electron microscopic image of hollow particles of Example 2. FIG. 実施例3の中空粒子の電子顕微鏡画像である。4 is an electron microscopic image of hollow particles of Example 3. FIG. 実施例4の中空粒子の電子顕微鏡画像である。4 is an electron microscopic image of hollow particles of Example 4. FIG. 実施例5の中空粒子の電子顕微鏡画像である。6 is an electron microscopic image of hollow particles of Example 5. FIG. 実施例6の中空粒子の電子顕微鏡画像である。7 is an electron microscopic image of hollow particles of Example 6. FIG. 実施例7の中空粒子の電子顕微鏡画像である。7 is an electron microscopic image of hollow particles of Example 7. FIG. 実施例8の中空粒子の電子顕微鏡画像である。10 is an electron microscopic image of hollow particles of Example 8. FIG. 実施例9の中空粒子の電子顕微鏡画像である。10 is an electron microscopic image of hollow particles of Example 9. 実施例10の中空粒子の電子顕微鏡画像である。2 is an electron microscopic image of hollow particles of Example 10. FIG. 実施例11の中空粒子の電子顕微鏡画像である。2 is an electron microscopic image of hollow particles of Example 11. FIG. 実施例12の中空粒子の電子顕微鏡画像である。It is an electron microscope image of the hollow particles of Example 12.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

<中空粒子の製造方法>
本実施形態の中空粒子の製造方法は、中空を有する殻部を備える中空粒子の製造方法であって、金属酸化物粒子を含む液体中でモノマーを含む気泡を発生させ、気泡及び液体の界面において、液体及びモノマーの接触により、モノマー由来のポリマーを含む層及び該層表面に担持された金属酸化物粒子を備える殻部を形成する工程を備える。以下、本実施形態の製造方法について、図1を参照して説明する。
<Method for producing hollow particles>
The method for producing a hollow particle according to the present embodiment is a method for producing a hollow particle having a hollow shell, in which a bubble containing a monomer is generated in a liquid containing metal oxide particles, and at the interface between the bubble and the liquid. And a step of forming a shell including a layer containing a monomer-derived polymer and metal oxide particles supported on the surface of the layer by contacting the liquid and the monomer. Hereinafter, the manufacturing method of this embodiment is demonstrated with reference to FIG.

図1は、中空粒子の製造工程を示す模式図である。まず、供給ガス発生装置1により供給される供給ガス1aが、送気管3を通りモノマーの気化容器2に供給され、気化容器2内において供給ガス1aと気化されたモノマー(モノマーガス)2aとが混合される。この混合ガス4が、送気手段5を用いて、送気管3を通り気泡発生手段6に供給される。気泡発生手段6の気泡発生部分は、金属酸化物粒子9を分散させた液体7中に挿入されている(浸漬している)。そして、気泡発生手段6により、混合ガス4を含む気泡8が液体7中で発生する。その際、金属酸化物粒子9が、気泡8及び液体7の気液界面に吸着すると共に、当該界面において気泡8中のモノマー2aと液体7が接触することにより、モノマー2aが重合する。このようにして、モノマー2a由来のポリマーを含む層表面に金属酸化物粒子9が付着した状態の固体膜(殻部)が形成され、中空粒子10が生成する。   FIG. 1 is a schematic view showing a process for producing hollow particles. First, the supply gas 1a supplied by the supply gas generator 1 is supplied to the monomer vaporization vessel 2 through the air supply pipe 3, and the supply gas 1a and the monomer (monomer gas) 2a vaporized in the vaporization vessel 2 are obtained. Mixed. This mixed gas 4 is supplied to the bubble generating means 6 through the air supply pipe 3 using the air supply means 5. The bubble generating part of the bubble generating means 6 is inserted (immersed) in the liquid 7 in which the metal oxide particles 9 are dispersed. Then, bubbles 8 containing the mixed gas 4 are generated in the liquid 7 by the bubble generating means 6. At that time, the metal oxide particles 9 are adsorbed on the gas-liquid interface between the bubbles 8 and the liquid 7, and the monomer 2 a in the bubbles 8 and the liquid 7 come into contact with each other at the interface, whereby the monomer 2 a is polymerized. In this way, a solid film (shell) in which the metal oxide particles 9 are attached to the surface of the layer containing the polymer derived from the monomer 2a is formed, and the hollow particles 10 are generated.

図2は、中空粒子10の生成機構を示す模式図である。まず、図2(a)に示すように、モノマー2aを含む混合ガス4が、金属酸化物粒子9を分散させた液体7中に気泡8として供給される。次に、図2(b)に示すように、金属酸化物粒子9が液体7と気泡8の気液界面に吸着すると共に、モノマー2aの重合反応が気泡8内側から起こる。そして、図2(c)に示すように、モノマー重合体からなる固体膜の表面(外表面)に金属酸化物粒子9が付着した、すなわち中空(中空部10b)を有する殻部10aを備える中空粒子10を簡便に製造することができる。なお、殻部10aにおいて、金属酸化物粒子9は、モノマー由来のポリマーを含む層表面に静電的に付着しているのではなく、粒子の一部がポリマーの層に取り込まれ(埋まり)担持された状態である。   FIG. 2 is a schematic diagram showing a mechanism for generating the hollow particles 10. First, as shown in FIG. 2A, the mixed gas 4 containing the monomer 2 a is supplied as bubbles 8 in the liquid 7 in which the metal oxide particles 9 are dispersed. Next, as shown in FIG. 2B, the metal oxide particles 9 are adsorbed on the gas-liquid interface between the liquid 7 and the bubbles 8, and the polymerization reaction of the monomer 2 a occurs from inside the bubbles 8. And as shown in FIG.2 (c), the hollow provided with the shell part 10a which the metal oxide particle 9 adhered to the surface (outer surface) of the solid film which consists of a monomer polymer, ie, has a hollow (hollow part 10b). The particles 10 can be easily produced. In the shell portion 10a, the metal oxide particles 9 are not electrostatically attached to the surface of the layer containing the monomer-derived polymer, but a part of the particles are taken in (embedded) in the polymer layer. It is the state that was done.

このようにして得られる中空粒子10の平均粒子径は特に制限されず、例えば0.05〜50μm程度とすることができる。   The average particle diameter of the hollow particles 10 thus obtained is not particularly limited, and can be, for example, about 0.05 to 50 μm.

供給ガス発生装置1としては特に制限されず、高圧ボンベ、ダイアフラムポンプ、ギアポンプ等が例示される。   The supply gas generator 1 is not particularly limited, and examples thereof include a high pressure cylinder, a diaphragm pump, and a gear pump.

供給ガス1aについては限定的ではなく、空気、窒素、酸素、二酸化炭素、アルゴン、六フッ化硫黄等が例示されるが、モノマー2aが反応することなくの液体7中に供給されるようにする観点から、空気、窒素、二酸化炭素、アルゴンであることが好ましい。なお、最終的に生成する、金属酸化物粒子が表面に付着した中空粒子10に内包される(中空部10bに含まれる)ガス成分については、これらの供給ガス1aの種類に応じて変えることができる。   The supply gas 1a is not limited, and air, nitrogen, oxygen, carbon dioxide, argon, sulfur hexafluoride and the like are exemplified, but the monomer 2a is supplied into the liquid 7 without reacting. From the viewpoint, air, nitrogen, carbon dioxide, and argon are preferable. In addition, about the gas component (it is contained in the hollow part 10b) included in the hollow particle 10 which the metal oxide particle adhere | attached on the surface finally produced | generated, it can change according to the kind of these supply gas 1a. it can.

気化容器2としては、モノマー2aを保持可能であり、公知の加熱または減圧手段によってモノマー2aを沸点以上に加熱して、あるいは蒸気圧以下に減圧して、気化できる機能を有していれば特に制限はなく、例えばガラス製や金属製の容器が挙げられる。なお、気化容器2を用いた加熱又は減圧方法としては、容器をアルコールランプ、ガスバーナー、ホットプレート等で加熱する方法、あるいは真空ポンプ等で減圧する方法が例示される。気化容器2は、モノマー2aが常温で気体の際には必須ではない。   The vaporization vessel 2 can hold the monomer 2a, and has a function capable of vaporizing by heating the monomer 2a to a boiling point or higher by a known heating or depressurizing means or reducing the vapor pressure to a vapor pressure or lower. There is no restriction | limiting, For example, the container made from glass or metal is mentioned. Examples of the heating or decompression method using the vaporization container 2 include a method of heating the container with an alcohol lamp, a gas burner, a hot plate, or the like, or a method of decompressing with a vacuum pump or the like. The vaporization container 2 is not essential when the monomer 2a is a gas at normal temperature.

モノマー2aとしては、液体7あるいは液体7に溶解した成分と反応性を有していれば特に制限はない。モノマー2aと液体7の組み合わせとしては、シリコーン系組成物と水、湿気硬化型ウレタン系組成物と水、アクリル系組成物とラジカル重合開始剤を含有していてもよい水、アクリル系組成物とラジカル重合開始剤を含有していてもよい有機溶剤等が例示される。これらの中でも、反応機構がシンプルであり、また室温で容易に反応が進むという観点から、シアノアクリレート系化合物と水の組み合わせが好ましい。シアノアクリレート系化合物としては特に制限されず、メチルシアノアクリレート、エチルシアノアクリレート、プロピルシアノアクリレート、イソプロピルシアノアクリレート、ブチルシアノアクリレート等が挙げられる。   The monomer 2a is not particularly limited as long as it has reactivity with the liquid 7 or a component dissolved in the liquid 7. The combination of the monomer 2a and the liquid 7 includes a silicone composition and water, a moisture-curable urethane composition and water, an acrylic composition and water that may contain a radical polymerization initiator, an acrylic composition, Examples thereof include an organic solvent that may contain a radical polymerization initiator. Among these, a combination of a cyanoacrylate compound and water is preferable from the viewpoint that the reaction mechanism is simple and the reaction proceeds easily at room temperature. The cyanoacrylate compound is not particularly limited, and examples thereof include methyl cyanoacrylate, ethyl cyanoacrylate, propyl cyanoacrylate, isopropyl cyanoacrylate, and butyl cyanoacrylate.

固体膜形成に要する時間は、目詰まりや反応界面消失の防止の観点から、気泡の発生に要する時間より長く、気泡が溶解又は浮上によって消失する時間より短いことが好ましい。膜形成時間の範囲についてより具体的には、20kHz超音波による気泡発生の基準時間である50マイクロ秒以上、液体中で安定に気泡が存在可能な4時間以下が特に好ましい。ただし、気泡の発生に要する時間は気泡発生手段によって、そして気泡が溶解又は浮上によって消失する時間は気泡内包成分の液体に対する溶解度、液体の粘度等気泡周囲の環境によってそれぞれ大きく影響を受けるため、固体膜形成に要する時間は前記範囲に限定されるものではない。   The time required for forming the solid film is preferably longer than the time required for the generation of bubbles and shorter than the time required for the bubbles to disappear by dissolution or floating from the viewpoint of preventing clogging and disappearance of the reaction interface. More specifically, the range of the film formation time is particularly preferably 50 microseconds or more, which is a reference time for generating bubbles by 20 kHz ultrasonic waves, and 4 hours or less in which bubbles can stably exist in a liquid. However, the time required for the generation of bubbles is greatly affected by the bubble generating means, and the time for the bubbles to disappear due to dissolution or floating is greatly affected by the environment surrounding the bubbles, such as the solubility of the bubble inclusion component in the liquid and the viscosity of the liquid. The time required for film formation is not limited to the above range.

混合ガス4中のモノマー2aの濃度は特に制限されない。また、混合ガス4中のモノマー2aの濃度が100体積%の場合には、供給ガス1aは必須ではない。   The concentration of the monomer 2a in the mixed gas 4 is not particularly limited. When the concentration of the monomer 2a in the mixed gas 4 is 100% by volume, the supply gas 1a is not essential.

送気手段5としては、気泡発生手段6に供給ガス1aとモノマー2aの混合ガス4を供給できれば特に制限はなく、ダイアフラムポンプ、ギアポンプ、ロータリーポンプ、チューブポンプ等が例示される。供給ガス発生装置1を用いて供給ガス1aを加圧して送気する場合には、送気手段5は必須ではない。   The air supply means 5 is not particularly limited as long as the mixed gas 4 of the supply gas 1a and the monomer 2a can be supplied to the bubble generating means 6, and examples thereof include a diaphragm pump, a gear pump, a rotary pump, and a tube pump. In the case where the supply gas 1a is pressurized using the supply gas generator 1 to supply air, the air supply means 5 is not essential.

気泡発生手段6としては、混合ガス4を液体7中に気泡として供給できるものであれば特に制限はない。このような手段としては、微小孔を有する管または多孔質体を通して気体を液体中に噴出させる手段、噴流や旋回流中で生じるせん断力を利用して気相を液相に巻き込む手段、超音波を用いて気液界面を振動させ微細な気泡を生成する手段等が例示される。好ましい例としては、超音波の周期で瞬間的に微細な気泡を発生することにより、膜形成反応による目詰まりが発生しない、超音波を用いて気液界面を振動させ微細な気泡を生成する手段が挙げられる。   The bubble generating means 6 is not particularly limited as long as the mixed gas 4 can be supplied as bubbles in the liquid 7. Examples of such means include means for ejecting a gas into a liquid through a tube having a micropore or a porous body, means for entraining a gas phase in a liquid phase using a shearing force generated in a jet flow or a swirling flow, ultrasonic waves A means for generating a fine bubble by oscillating the gas-liquid interface by using the above is exemplified. As a preferred example, means for generating fine bubbles by vibrating ultrasonically the gas-liquid interface, which does not cause clogging due to film formation reaction, by generating fine bubbles instantaneously in the cycle of ultrasonic waves. Is mentioned.

液体7としては、モノマー2aと反応する成分または触媒が含まれていれば構成に特に制限はなく、水や有機溶媒が挙げられる。液体7は、反応成分又は触媒のみで構成された液体、反応成分又は触媒が溶解した溶液、反応成分又は触媒が乳化分散した溶液(エマルション)等いずれの状態でも良い。   The liquid 7 is not particularly limited in configuration as long as it contains a component or catalyst that reacts with the monomer 2a, and examples thereof include water and an organic solvent. The liquid 7 may be in any state such as a liquid composed only of the reaction component or catalyst, a solution in which the reaction component or catalyst is dissolved, or a solution (emulsion) in which the reaction component or catalyst is emulsified and dispersed.

液体7には、モノマー2aの反応速度の制御のためにpHを調整するべく、必要に応じて酸又はアルカリを添加することができる。酸の種類としては、特に制限はなく、塩酸、硝酸、硫酸等の無機酸、酢酸、酒石酸、クエン酸、リンゴ酸等の有機酸を用いることができる。モノマー2aと液体7との組み合わせが、シアノアクリレート系化合物と水の場合、シアノアクリレート系化合物の反応速度制御性の観点から、酒石酸を用いることが好ましい。また、アルカリとしては、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、アンモニア等の無機アルカリ、テトラメチルアンモニウムヒドロキシド、イミダゾール系化合物等の有機アルカリを用いることできる。   An acid or an alkali can be added to the liquid 7 as necessary in order to adjust the pH in order to control the reaction rate of the monomer 2a. There is no restriction | limiting in particular as a kind of acid, Organic acids, such as inorganic acids, such as hydrochloric acid, nitric acid, a sulfuric acid, acetic acid, tartaric acid, a citric acid, malic acid, can be used. When the combination of the monomer 2a and the liquid 7 is a cyanoacrylate compound and water, it is preferable to use tartaric acid from the viewpoint of reaction rate controllability of the cyanoacrylate compound. As the alkali, inorganic alkalis such as sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, and ammonia, and organic alkalis such as tetramethylammonium hydroxide and imidazole compounds can be used.

液体7には、モノマー2aを含む気泡の微細化及び安定化のために、必要に応じて界面活性剤を添加することができる。界面活性剤としては、気泡8及び液体7の気液界面に吸着し、表面張力を下げる働きをするものであれば特に制限はなく、ポリビニルアルコール、メチルセルロース、ゼラチン、一価アルコール、ポリオキシエチレンソルビタンモノラウレート、ドデシル硫酸ナトリウム、セチルトリメチルアンモニウムブロミド等が例示される。   If necessary, a surfactant can be added to the liquid 7 in order to refine and stabilize the bubbles containing the monomer 2a. The surfactant is not particularly limited as long as it is adsorbed on the gas-liquid interface between the bubbles 8 and the liquid 7 and functions to lower the surface tension. Polyvinyl alcohol, methyl cellulose, gelatin, monohydric alcohol, polyoxyethylene sorbitan Examples include monolaurate, sodium dodecyl sulfate, cetyltrimethylammonium bromide and the like.

金属酸化物粒子9を構成する金属酸化物としては、特に制限はなく、例えばシリカ、アルミナ、チタニア、ジルコニア、セリア、酸化鉄、酸化銅などが挙げられる。これらの中でも、入手や表面処理の容易性の観点から、シリカ粒子であることが好ましい。   There is no restriction | limiting in particular as a metal oxide which comprises the metal oxide particle 9, For example, a silica, an alumina, a titania, a zirconia, a ceria, iron oxide, copper oxide etc. are mentioned. Among these, silica particles are preferable from the viewpoint of availability and surface treatment.

金属酸化物粒子の製法から分類される種類としては、特に制限はなく、例えばコロイダル粒子、ゾルゲル粒子、ヒュームド粒子等が挙げられる。これらの中でも、液体中での分散安定性の観点から、コロイダル粒子であることが好ましい。   There are no particular restrictions on the type classified from the method for producing metal oxide particles, and examples include colloidal particles, sol-gel particles, and fumed particles. Among these, colloidal particles are preferable from the viewpoint of dispersion stability in a liquid.

金属酸化物粒子の平均一次粒子径としては、モノマー2aを含む気泡と、液体7との反応により生成する中空粒子の粒子径よりも、小さければ特に制限はないが、中空粒子に効率よく付着させる観点から、1〜200nmであることが好ましく、1〜150nmであることがより好ましく、1〜100nmであることがさらに好ましい。   The average primary particle size of the metal oxide particles is not particularly limited as long as it is smaller than the particle size of the hollow particles produced by the reaction between the bubbles containing the monomer 2a and the liquid 7, but it is efficiently attached to the hollow particles. From the viewpoint, it is preferably 1 to 200 nm, more preferably 1 to 150 nm, and further preferably 1 to 100 nm.

次に、下記の実施例により本開示をさらに詳しく説明するが、これらの実施例は本開示を制限するものではない。   Next, the present disclosure will be described in more detail with reference to the following examples, but these examples do not limit the present disclosure.

(実施例1)
エチルシアノアクリレート4.0gを空気吸入口および混合ガス放出口を設けた50mL三角フラスコに封入し、ホットスターラによって250℃で加熱しエチルシアノアクリレート蒸気を発生させた。また、三角フラスコに吸入される空気にはオゾナイザーによって一部オゾン化され80ppmの濃度でオゾンガスを混入させた。加熱によって発生したエチルシアノアクリレート蒸気を、オゾンガスが混入した空気と共に流量計によって流量750mL/minに調整して中空超音波ホーンに送気した。そして、この混合ガスを、500mLビーカー中で冷却水循環装置によって12℃に維持された、酒石酸0.2g、コロイダルシリカとしてスノーテックスZL(日産化学工業株式会社製、製品名、粒子径70〜100nm、シリカ粒子濃度40%)2.0gを含む純水400mLの混合液中に中空超音波ホーンから放出することによって微細な気泡を発生させた。中空超音波ホーンの出口径は内径6.0mmであり、共振周波数14.45kHz、振幅60μmで振動することにより、混合ガスが瞬時に1mm以下の気泡に微細化された。このようにして発生させた気泡と水との界面において、エチルシアノアクリレートが水と接触して重合反応が開始され、その際水に分散しているシリカ粒子を取り込みながら固体膜が形成されることにより、微細な中空粒子が生成した。中空粒子の生成、分散により、透明な水相は時間と共に白濁した。白濁した水中より採取した、実施例1の中空粒子の電子顕微鏡画像を図3に示す。同図により、70〜100nmのシリカ粒子が表面に付着した大きさ600〜800nmの粒子が確認できることから、内部に空気吸入口から取り込んだ空気を含んだナノオーダーの中空粒子の作製が確認された。
Example 1
4.0 g of ethyl cyanoacrylate was sealed in a 50 mL Erlenmeyer flask provided with an air inlet and a mixed gas outlet, and heated at 250 ° C. with a hot stirrer to generate ethyl cyanoacrylate vapor. The air sucked into the Erlenmeyer flask was partially ozonized by an ozonizer and mixed with ozone gas at a concentration of 80 ppm. The ethyl cyanoacrylate vapor generated by heating was adjusted to a flow rate of 750 mL / min with a flow meter together with air mixed with ozone gas and sent to a hollow ultrasonic horn. And this mixed gas was maintained at 12 ° C. by a cooling water circulating device in a 500 mL beaker, 0.2 g of tartaric acid, Snowtex ZL (product name, particle size 70-100 nm, manufactured by Nissan Chemical Industries, Ltd.) Fine bubbles were generated by discharging from a hollow ultrasonic horn into a mixed solution of 400 mL of pure water containing 2.0 g of silica particle concentration 40%). The exit diameter of the hollow ultrasonic horn was 6.0 mm in inner diameter, and the mixed gas was instantly refined into bubbles of 1 mm or less by vibrating at a resonance frequency of 14.45 kHz and an amplitude of 60 μm. At the interface between the bubbles and water generated in this way, ethyl cyanoacrylate comes into contact with water to initiate the polymerization reaction, and a solid film is formed while capturing silica particles dispersed in water. As a result, fine hollow particles were produced. Due to the formation and dispersion of the hollow particles, the transparent aqueous phase became cloudy with time. FIG. 3 shows an electron microscope image of the hollow particles of Example 1 collected from the cloudy water. According to the figure, since particles having a size of 600 to 800 nm with silica particles of 70 to 100 nm adhering to the surface can be confirmed, it was confirmed that nano-order hollow particles containing air taken in from the air suction port were produced. .

(実施例2)
実施例1のスノーテックスZL2.0g添加をスノーテックス50(日産化学工業株式会社製、製品名、粒子径20〜25nm、粒子濃度48%)1.0g添加に変えたこと以外は実施例1と同じ手順によって、中空粒子を作製した。図4は、実施例2の中空粒子の電子顕微鏡画像を示す。同図に示すように20〜25nmのシリカ粒子が表面に付着した大きさ600〜800nmの粒子が確認できることから、内部に空気吸入口から取り込んだ空気を含むナノオーダーの中空粒子の作製が確認された。
(Example 2)
Example 1 with the exception that 2.0 g of Snowtex ZL in Example 1 was changed to 1.0 g of Snowtex 50 (manufactured by Nissan Chemical Industries, Ltd., product name, particle size 20 to 25 nm, particle concentration 48%). Hollow particles were made by the same procedure. FIG. 4 shows an electron microscope image of the hollow particles of Example 2. As shown in the figure, since particles having a size of 600 to 800 nm with silica particles of 20 to 25 nm attached to the surface can be confirmed, it was confirmed that nano-order hollow particles containing air taken in from the air suction port were produced. It was.

(実施例3)
実施例1のスノーテックスZL2.0g添加をスノーテックスXS(日産化学工業株式会社製、製品名、粒子径4〜6nm、粒子濃度20%)0.5g添加に変えたこと以外は実施例1と同じ手順によって、中空粒子を作製した。図5は、実施例3の中空粒子の電子顕微鏡画像を示す。同図に示すように4〜6nmの球形粒子が表面に付着した大きさ400〜600nmの粒子が確認できることから、内部に空気吸入口から取り込んだ空気を含むナノオーダーの中空粒子の作製が確認された。
(Example 3)
Example 1 except that the addition of 2.0 g of Snowtex ZL in Example 1 was changed to 0.5 g of Snowtex XS (manufactured by Nissan Chemical Industries, product name, particle size 4-6 nm, particle concentration 20%). Hollow particles were made by the same procedure. FIG. 5 shows an electron microscope image of the hollow particles of Example 3. As shown in the figure, since a particle having a size of 400 to 600 nm in which spherical particles of 4 to 6 nm are attached to the surface can be confirmed, the production of nano-order hollow particles containing air taken in from the air inlet is confirmed. It was.

(実施例4)
実施例1のスノーテックスZL2.0g添加をスノーテックス50(日産化学工業株式会社製、製品名、粒子径20〜25nm、粒子濃度48%)1.0g添加に変え、さらに供給気体の流量750mL/minを1100mL/minに変えたこと以外は実施例1と同じ手順によって、中空粒子を作製した。図6は、実施例4の中空粒子の電子顕微鏡画像を示す。同図に示すように20〜25nmの球形粒子が表面に付着した大きさ600〜800nmの粒子が確認できることから、内部に空気吸入口から取り込んだ空気を含むナノオーダーの中空粒子の作製が確認された。
Example 4
The addition of 2.0 g of Snowtex ZL in Example 1 was changed to 1.0 g of Snowtex 50 (manufactured by Nissan Chemical Industries, Ltd., product name, particle size 20 to 25 nm, particle concentration 48%), and the flow rate of the supply gas was 750 mL / Hollow particles were produced by the same procedure as in Example 1 except that min was changed to 1100 mL / min. FIG. 6 shows an electron microscope image of the hollow particles of Example 4. As shown in the figure, since particles having a size of 600 to 800 nm in which spherical particles of 20 to 25 nm are adhered to the surface can be confirmed, the production of nano-order hollow particles containing air taken in from the air inlet is confirmed. It was.

(実施例5)
実施例1のスノーテックスZL2.0g添加をスノーテックス50(粒子径20〜25nm、粒子濃度48%)1.0g添加に変え、さらに供給気体の流量750mL/minを500mL/minに変えたこと以外は実施例1と同じ手順によって、中空粒子を作製した。図7は、実施例5の中空粒子の電子顕微鏡画像を示す。同図に示すように20〜25nmの球形粒子が表面に付着した大きさ600〜800nmの粒子が確認できることから、内部に空気吸入口から取り込んだ空気を含むナノオーダーの中空粒子の作製が確認された。
(Example 5)
The addition of 2.0 g of Snowtex ZL in Example 1 was changed to 1.0 g of Snowtex 50 (particle size 20 to 25 nm, particle concentration 48%), and the flow rate of the supplied gas was changed to 500 mL / min. Produced hollow particles by the same procedure as in Example 1. FIG. 7 shows an electron microscope image of the hollow particles of Example 5. As shown in the figure, since particles having a size of 600 to 800 nm in which spherical particles of 20 to 25 nm are adhered to the surface can be confirmed, the production of nano-order hollow particles containing air taken in from the air inlet is confirmed. It was.

(実施例6)
実施例1のスノーテックスZL2.0g添加をスノーテックスO−40(日産化学工業株式会社製、製品名、粒子径20〜25nm、粒子濃度40%、酸性タイプ)1.1g添加に変えたこと以外は実施例1と同じ手順によって、中空粒子を作製した。図8は、実施例6の中空粒子の電子顕微鏡画像を示す。同図に示すように20〜25nmの球形粒子が表面に付着した大きさ600〜800nmの粒子が確認できることから、内部に空気吸入口から取り込んだ空気を含むナノオーダーの中空粒子の作製が確認された。
(Example 6)
Except for changing the addition of 2.0 g of Snowtex ZL in Example 1 to 1.1 g of Snowtex O-40 (manufactured by Nissan Chemical Industries, Ltd., product name, particle size 20 to 25 nm, particle concentration 40%, acidic type) Produced hollow particles by the same procedure as in Example 1. FIG. 8 shows an electron microscopic image of the hollow particles of Example 6. As shown in the figure, since particles having a size of 600 to 800 nm in which spherical particles of 20 to 25 nm are adhered to the surface can be confirmed, the production of nano-order hollow particles containing air taken in from the air inlet is confirmed. It was.

(実施例7)
実施例1のスノーテックスZL2.0g添加をスノーテックス50(粒子径20〜25nm、粒子濃度48%)1.0g添加に変え、中空超音波ホーン出口の内径6.0mm単一穴形状を内径3.5mm3つ穴形状に変えたこと以外は実施例1と同じ手順によって、中空粒子を作製した。図9は、実施例7の中空粒子の電子顕微鏡画像を示す。同図に示すように20〜25nmの球形粒子が表面に付着した大きさ600〜800nmの粒子が確認できることから、内部に空気吸入口から取り込んだ空気を含むナノオーダーの中空粒子の作製が確認された。
(Example 7)
The addition of 2.0 g of Snowtex ZL in Example 1 was changed to 1.0 g of Snowtex 50 (particle size 20 to 25 nm, particle concentration 48%), and the inner diameter of the hollow ultrasonic horn outlet 6.0 mm was changed to a single hole shape 3 Hollow particles were produced by the same procedure as in Example 1 except that the shape was changed to a 3 mm 3 hole shape. FIG. 9 shows an electron microscopic image of the hollow particles of Example 7. As shown in the figure, since particles having a size of 600 to 800 nm in which spherical particles of 20 to 25 nm are adhered to the surface can be confirmed, the production of nano-order hollow particles containing air taken in from the air inlet is confirmed. It was.

(実施例8)
実施例1のスノーテックスZL2.0g添加をスノーテックス50(粒子径20〜25nm、粒子濃度48%)1.0g添加に変え、中空超音波ホーン出口の内径6.0mm単一穴形状を内径2.3mm7つ穴形状に変えたこと以外は実施例1と同じ手順によって、中空粒子を作製した。図10は、実施例8の中空粒子の電子顕微鏡画像を示す。同図に示すように20〜25nmの球形粒子が表面に付着した大きさ600〜800nmの粒子が確認できることから、内部に空気吸入口から取り込んだ空気を含むナノオーダーの中空粒子の作製が確認された。
(Example 8)
The addition of 2.0 g of Snowtex ZL in Example 1 was changed to 1.0 g of Snowtex 50 (particle size 20 to 25 nm, particle concentration 48%), and the inner diameter of the hollow ultrasonic horn outlet 6.0 mm was changed to a single hole shape of 2 Hollow particles were produced by the same procedure as in Example 1 except that the shape was changed to a 3 mm 7 hole shape. FIG. 10 shows an electron microscopic image of the hollow particles of Example 8. As shown in the figure, since particles having a size of 600 to 800 nm in which spherical particles of 20 to 25 nm are adhered to the surface can be confirmed, the production of nano-order hollow particles containing air taken in from the air inlet is confirmed. It was.

(実施例9)
実施例1のスノーテックスZL2.0g添加をスノーテックス50(粒子径20〜25nm、粒子濃度48%)1.0g添加に変え、中空超音波ホーン出口の内径6.0mm単一穴形状を内径2.0mm9つ穴形状に変えたこと以外は実施例1と同じ手順によって、中空粒子を作製した。図11は、実施例9の中空粒子の電子顕微鏡画像を示す。同図に示すように20〜25nmの球形粒子が表面に付着した大きさ600〜800nmの粒子が確認できることから、内部に空気吸入口から取り込んだ空気を含むナノオーダーの中空粒子の作製が確認された。
Example 9
The addition of 2.0 g of Snowtex ZL in Example 1 was changed to 1.0 g of Snowtex 50 (particle size 20 to 25 nm, particle concentration 48%), and the inner diameter of the hollow ultrasonic horn outlet 6.0 mm was changed to a single hole shape of 2 Hollow particles were produced by the same procedure as in Example 1 except that the hole shape was changed to 0.0 mm and 9 holes. FIG. 11 shows an electron microscopic image of the hollow particles of Example 9. As shown in the figure, since particles having a size of 600 to 800 nm in which spherical particles of 20 to 25 nm are adhered to the surface can be confirmed, the production of nano-order hollow particles containing air taken in from the air inlet is confirmed. It was.

(実施例10)
実施例1のスノーテックスZL2.0g添加をスノーテックスO−40(粒子径20〜25nm、粒子濃度40%)1.1g添加に変え、供給気体の流量750mL/minを1100mL/minに変えたこと以外は実施例1と同じ手順によって、中空粒子を作製した。図12は、実施例10の中空粒子の電子顕微鏡画像を示す。同図に示すように20〜25nmの球形粒子が表面に付着した大きさ600〜800nmの粒子が確認できることから、内部に空気吸入口から取り込んだ空気を含むナノオーダーの中空粒子の作製が確認された。
(Example 10)
The addition of 2.0 g of Snowtex ZL in Example 1 was changed to 1.1 g of Snowtex O-40 (particle size 20 to 25 nm, particle concentration 40%), and the flow rate of the supply gas was changed to 1100 mL / min. Except for the above, hollow particles were produced by the same procedure as in Example 1. FIG. 12 shows an electron microscopic image of the hollow particles of Example 10. As shown in the figure, since particles having a size of 600 to 800 nm in which spherical particles of 20 to 25 nm are adhered to the surface can be confirmed, the production of nano-order hollow particles containing air taken in from the air inlet is confirmed. It was.

(実施例11)
実施例1のスノーテックスZL2.0g添加をスノーテックスO−40(粒子径20〜25nm、粒子濃度40%)1.1g添加に変え、供給気体の流量750mL/minを1100mL/minに変え、供給気体の乾燥空気を二酸化炭素に変えたこと以外は実施例1と同じ手順によって、中空粒子を作製した。図13は、実施例11の中空粒子の電子顕微鏡画像を示す。同図に示すように20〜25nmの球形粒子が表面に付着した大きさ400〜700nmの粒子が確認できることから、内部に空気吸入口から取り込んだ空気を含むナノオーダーの中空粒子の作製が確認された。
(Example 11)
The addition of 2.0 g of Snowtex ZL in Example 1 was changed to 1.1 g of Snowtex O-40 (particle size 20 to 25 nm, particle concentration 40%), the supply gas flow rate was changed to 750 mL / min, and the supply was performed. Hollow particles were produced by the same procedure as in Example 1 except that the gaseous dry air was changed to carbon dioxide. FIG. 13 shows an electron microscopic image of the hollow particles of Example 11. As shown in the figure, since particles having a size of 400 to 700 nm with spherical particles of 20 to 25 nm attached to the surface can be confirmed, the production of nano-order hollow particles containing air taken in from the air inlet is confirmed. It was.

(実施例12)
実施例1のスノーテックスZL2.0g添加をスノーテックスO−40(粒子径20〜25nm、粒子濃度40%)1.1g添加に変え、供給気体の流量750mL/minを1100mL/minに変え、供給気体の乾燥空気をアルゴンに変えたこと以外は実施例1と同じ手順によって、中空粒子を作製した。図14は、実施例12の中空粒子の電子顕微鏡画像を示す。同図に示すように20〜25nmの球形粒子が表面に付着した大きさ400〜700nmの粒子が確認できることから、内部に空気吸入口から取り込んだ空気を含むナノオーダーの中空粒子の作製が確認された。
(Example 12)
The addition of 2.0 g of Snowtex ZL in Example 1 was changed to 1.1 g of Snowtex O-40 (particle size 20 to 25 nm, particle concentration 40%), the supply gas flow rate was changed to 750 mL / min, and the supply was performed. Hollow particles were produced by the same procedure as in Example 1 except that the gaseous dry air was changed to argon. FIG. 14 shows an electron microscopic image of the hollow particles of Example 12. As shown in the figure, since particles having a size of 400 to 700 nm with spherical particles of 20 to 25 nm attached to the surface can be confirmed, the production of nano-order hollow particles containing air taken in from the air inlet is confirmed. It was.

本発明で提供する製造方法では、モノマーを液体中に溶解させるのではなく、モノマーガスを含む気泡を液体中に供給するため、反応場である気液界面に選択的に材料を供給することができる。また、あらかじめ金属酸化物粒子を液体中に分散させることによって、金属酸化物粒子を気液界面に吸着させることができるため、モノマー重合により生じる固体膜表面に効率よく金属酸化物粒子を付着させることができる。このようにして得られた、モノマー重合体を固体膜として備える、表面に金属酸化物粒子が付着した中空粒子は、断熱材、防音材、感熱材、緩衝材、軽量化材料、衝撃吸収剤、光学材料、塗料、化粧品、医薬品等様々な用途に有効である。   In the production method provided by the present invention, instead of dissolving the monomer in the liquid, the bubbles containing the monomer gas are supplied into the liquid. Therefore, the material can be selectively supplied to the gas-liquid interface as a reaction field. it can. Moreover, since the metal oxide particles can be adsorbed to the gas-liquid interface by dispersing the metal oxide particles in the liquid in advance, the metal oxide particles can be efficiently attached to the surface of the solid film generated by the monomer polymerization. Can do. The thus obtained hollow particles having a monomer polymer as a solid film and having metal oxide particles attached to the surface are heat insulating materials, soundproofing materials, heat-sensitive materials, buffer materials, weight-reducing materials, shock absorbers, It is effective for various applications such as optical materials, paints, cosmetics, and pharmaceuticals.

1…供給ガス発生装置、1a…供給ガス、2…気化容器、2a…モノマー(モノマーガス)、3…送気管、4…混合ガス、5…送気手段、6…気泡発生手段、7…液体、8…気泡、9…金属酸化物粒子、10…中空粒子、10a…殻部、10b…中空部。
DESCRIPTION OF SYMBOLS 1 ... Supply gas generator 1a ... Supply gas, 2 ... Vaporization container, 2a ... Monomer (monomer gas), 3 ... Air supply pipe, 4 ... Mixed gas, 5 ... Air supply means, 6 ... Bubble generation means, 7 ... Liquid 8 ... bubbles, 9 ... metal oxide particles, 10 ... hollow particles, 10a ... shell parts, 10b ... hollow parts.

Claims (7)

中空を有する殻部を備える中空粒子の製造方法であって、
金属酸化物粒子を含む液体中でモノマーを含む気泡を発生させ、前記気泡及び前記液体の界面において、前記液体及び前記モノマーの接触により、前記モノマー由来のポリマーを含む層及び該層表面に担持された前記金属酸化物粒子を備える前記殻部を形成する工程を備える、製造方法。
A method for producing a hollow particle comprising a shell having a hollow,
A bubble containing a monomer is generated in a liquid containing metal oxide particles, and is supported on the layer containing the monomer-derived polymer and the surface of the layer by contact of the liquid and the monomer at the interface between the bubble and the liquid. A manufacturing method comprising the step of forming the shell portion including the metal oxide particles.
前記金属酸化物粒子がシリカ粒子である、請求項1に記載の製造方法。   The manufacturing method of Claim 1 whose said metal oxide particle is a silica particle. 前記金属酸化物粒子がコロイダル粒子である、請求項1又は2に記載の製造方法。   The production method according to claim 1, wherein the metal oxide particles are colloidal particles. 前記金属酸化物粒子の平均一次粒子径が1〜200nmである、請求項1〜3のいずれか一項に記載の製造方法。   The manufacturing method as described in any one of Claims 1-3 whose average primary particle diameters of the said metal oxide particle are 1-200 nm. 前記モノマーがシアノアクリレート系化合物を含む、請求項1〜4のいずれか一項に記載の製造方法。   The manufacturing method as described in any one of Claims 1-4 with which the said monomer contains a cyanoacrylate type compound. 前記液体が水である、請求項1〜5のいずれか一項に記載の製造方法。   The manufacturing method as described in any one of Claims 1-5 whose said liquid is water. 中空を有する殻部を備え、該殻部がポリマーを含む層及び該層表面に担持された金属酸化物粒子を備える、中空粒子。
A hollow particle comprising a shell having a hollow, the shell comprising a layer containing a polymer and metal oxide particles supported on the surface of the layer.
JP2016040078A 2016-03-02 2016-03-02 Method for producing hollow particles and hollow particles Expired - Fee Related JP6677018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016040078A JP6677018B2 (en) 2016-03-02 2016-03-02 Method for producing hollow particles and hollow particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016040078A JP6677018B2 (en) 2016-03-02 2016-03-02 Method for producing hollow particles and hollow particles

Publications (2)

Publication Number Publication Date
JP2017154087A true JP2017154087A (en) 2017-09-07
JP6677018B2 JP6677018B2 (en) 2020-04-08

Family

ID=59807656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016040078A Expired - Fee Related JP6677018B2 (en) 2016-03-02 2016-03-02 Method for producing hollow particles and hollow particles

Country Status (1)

Country Link
JP (1) JP6677018B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210106364A (en) 2020-02-20 2021-08-30 아지노모토 가부시키가이샤 Resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210106364A (en) 2020-02-20 2021-08-30 아지노모토 가부시키가이샤 Resin composition
US11884814B2 (en) 2020-02-20 2024-01-30 Ajinomoto Co., Inc. Resin composition

Also Published As

Publication number Publication date
JP6677018B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
Kudo et al. Effect of ultrasonic frequency on size distributions of nanosized mist generated by ultrasonic atomization
JP3051945B2 (en) Inorganic uniform microsphere and method for producing the same
JP4931001B2 (en) Method for accelerating cavitation reaction and method for producing metal nanoparticles using the same
JP2007021315A (en) Method for producing hollow microcapsule
JP2017029876A (en) Hollow particle made from bubbles and method for producing the same
JP2006187757A (en) High-speed centrifugal type ozone water producing method and system
JP6677018B2 (en) Method for producing hollow particles and hollow particles
JP5709130B2 (en) Method and apparatus for producing crystalline fine particles with excellent mixing efficiency
JP5590666B2 (en) Hollow particles made from bubbles and method for producing the same
JP6629828B2 (en) Method of generating mechanical and electrochemical cavitation, method of changing surface geometry and electrochemical properties of material, method of stripping rare metal, and apparatus for generating mechanical and electrochemical cavitation
JP6212537B2 (en) Products and methods for producing uniform spherical acrylic polymer beads
Kobayashi et al. Microbubble generation with rapid dissolution of ammonia (NH3)-hydrogen (H2) mixed gas fed from a nozzle into water
JP2009062321A (en) Method and device for reducing carbon dioxide
JP2015085251A (en) Hollow particle made from air bubble and production device therefor
JP6525137B2 (en) Method of manufacturing dispersion liquid and manufacturing apparatus of dispersion liquid
JP4300291B2 (en) Method and apparatus for generating microbubbles with uniform diameter
JP2002113340A (en) Method and device for generating micro air bubble using ultrasonic wave
JP2019094226A (en) Method for producing hollow particles
KAJIHARA et al. Preparation of Hollow Silica Nanoparticles Using Ultrasonically Generated Microbubbles as a Template
JP5508854B2 (en) Method for producing inorganic spherical body and emulsifying device
JP2020138168A (en) Method for producing hollow particle
Koda et al. Sonochemical Engineering Processes
JP2016159291A (en) Production method of polymer nanoparticle, polymer nanoparticle, and formation method of nanobubble
YUYAMA et al. Fabrication of Cyanoacrylate Hollow Particles using Microbubble Generation Technique
JP2005097420A (en) Method for surface modification of fine particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R151 Written notification of patent or utility model registration

Ref document number: 6677018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees