JP2017154047A - Phosphorus recovery material - Google Patents

Phosphorus recovery material Download PDF

Info

Publication number
JP2017154047A
JP2017154047A JP2016037523A JP2016037523A JP2017154047A JP 2017154047 A JP2017154047 A JP 2017154047A JP 2016037523 A JP2016037523 A JP 2016037523A JP 2016037523 A JP2016037523 A JP 2016037523A JP 2017154047 A JP2017154047 A JP 2017154047A
Authority
JP
Japan
Prior art keywords
phosphorus
calcium silicate
silicate hydrate
csh
phosphorus recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016037523A
Other languages
Japanese (ja)
Other versions
JP6670534B2 (en
Inventor
大起 松澤
Hiroki Matsuzawa
大起 松澤
信孝 美濃和
Nobutaka Minowa
信孝 美濃和
剛 明戸
Takeshi Meido
剛 明戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Onoda Chemical Industry Co Ltd
Original Assignee
Taiheiyo Cement Corp
Onoda Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Onoda Chemical Industry Co Ltd filed Critical Taiheiyo Cement Corp
Priority to JP2016037523A priority Critical patent/JP6670534B2/en
Publication of JP2017154047A publication Critical patent/JP2017154047A/en
Application granted granted Critical
Publication of JP6670534B2 publication Critical patent/JP6670534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phosphorous recovery material having a high phosphorus recovery rate even in a crystalline calcium silicate hydrate, and a method for producing the same.SOLUTION: Provided is a phosphorus recovery material containing fine crystalline calcium silicate hydrate with a crystallite size of 6.0 to 16.0 mm, preferably, of 6.5 to 10.0 mm by 50 wt% or higher, preferably by 80 wt% or higher, and in which a Ca/Si molar ratio is 0.5 to 3.5, preferably 0.8 to 1.5, and also provided is a method for producing the phosphorus recovery material made of a calcium silicate hydrate with the Ca/Si molar ratio in the above range and the crystalline size in the above range by controlling an addition odor at ordinary temperature using slaked lime and water glass.SELECTED DRAWING: None

Description

本発明は、微細結晶質の珪酸カルシウムリン水和物からなり、回収率が高く、ク溶性リン酸の含有量が高いリン回収材およびその製造方法に関する。   The present invention relates to a phosphorus recovery material made of fine crystalline calcium silicate phosphorus hydrate, having a high recovery rate and a high content of soluble phosphoric acid, and a method for producing the same.

珪酸カルシウムを主成分とする脱リン剤が従来から知られている。例えば、特開昭61−263636号公報(特許文献1)にはCaO/SiOモル比が1.5〜5の珪酸カルシウム水和物を主成分とする水処理剤が記載されている。また、特公平02−20315号公報(特許文献2)には空隙率50〜90%の独立気泡を有する珪酸カルシウム水和物からなる脱リン材が記載されている。さらに、特開平10−235344号公報(特許文献3)には珪酸カルシウム水和物を主成分とした直径数ミリ程度の球状または中空状に成形した脱リン材が記載されている。特開2000−135493号公報(特許文献4)には珪灰石を用いた脱リン方法が提案されている。 A dephosphorizing agent mainly composed of calcium silicate is conventionally known. For example, JP 61-263636 (Patent Document 1) describes a water treatment agent CaO / SiO 2 molar ratio is mainly composed of calcium silicate hydrate 1.5-5. Japanese Patent Publication No. 02-20315 (Patent Document 2) describes a dephosphorization material made of calcium silicate hydrate having closed cells with a porosity of 50 to 90%. Furthermore, Japanese Patent Laid-Open No. 10-235344 (Patent Document 3) describes a dephosphorization material formed into a spherical or hollow shape having a diameter of about several millimeters, the main component of which is calcium silicate hydrate. JP 2000-135493 A (Patent Document 4) proposes a dephosphorization method using wollastonite.

従来の珪酸カルシウムを主成分とする脱リン材を用いる処理方法は、回収物の脱水性や有機物混入の問題をある程度回避できるものの、リンとの反応速度が遅いため、回収物のリン濃度を上げるためには長い反応時間を必要とする。また、回収物に含まれるリン含有量が少ないため、リン酸肥料として有効に利用できないなどの問題がある。   Although the conventional treatment method using a dephosphorization material mainly composed of calcium silicate can avoid the problem of dehydration and organic matter contamination of the recovered material to some extent, the reaction rate with phosphorus is slow, so the phosphorus concentration of the recovered material is increased. This requires a long reaction time. Moreover, since there is little phosphorus content contained in collection | recovery, there exists a problem that it cannot utilize effectively as a phosphate fertilizer.

この問題を解決するリン回収資材として、平均粒子径(メジアン径)150μm以下の微粉末であって細孔容積0.3cm/g以上の多孔質珪酸カルシウム水和物からなるリン回収資材(特許文献5)、あるいはBET比表面積80m/g以上、細孔容積0.5cm/g以上の多孔質の珪酸カルシウム水和物からなるリン回収資材が知られている(特許文献6)。
また、リン発生源の排水中のリンを非晶質ケイ酸カルシウム系の材料からなるリン回収材に吸着させて回収することを特徴とするリン回収方法(特許文献7)、珪酸ナトリウム水溶液と石灰を、非加熱下で混合して生成した非晶質珪酸カルシウム水和物単体または非晶質珪酸カルシウム水和物とCa(OH)との複合物からなり、該水和物単体または該複合物のCa/Siモル比が0.8〜1.5であるリン回収材(特許文献8)が知られている。
As a phosphorus recovery material that solves this problem, a phosphorus recovery material made of porous calcium silicate hydrate having a mean particle diameter (median diameter) of 150 μm or less and a pore volume of 0.3 cm 3 / g or more (patented) Document 5), or a phosphorus recovery material made of porous calcium silicate hydrate having a BET specific surface area of 80 m 2 / g or more and a pore volume of 0.5 cm 3 / g or more is known (Patent Document 6).
In addition, a phosphorus recovery method (Patent Document 7) characterized by adsorbing and recovering phosphorus in wastewater from a phosphorus generation source by a phosphorus recovery material made of an amorphous calcium silicate-based material, sodium silicate aqueous solution and lime Consisting of an amorphous calcium silicate hydrate simple substance or a composite of amorphous calcium silicate hydrate and Ca (OH) 2 produced by mixing without heating. A phosphorus recovery material (Patent Document 8) having a Ca / Si molar ratio of 0.8 to 1.5 is known.

特開昭61−263636号公報JP-A 61-263636 特公平02−020315号公報Japanese Examined Patent Publication No. 02-020315 特開平10−235344号公報JP-A-10-235344 特開2000−135493号公報JP 2000-135493 A 特開2009−285635号公報JP 2009-285635 A 特開2009−285636号公報JP 2009-285636 A 特開2013−27865号公報JP 2013-27865 A 特開2013−244466号公報JP 2013-244466 A

特許文献5〜特許文献8に記載されているリン回収材は非晶質の珪酸カルシウム水和物であり、非晶質珪酸カルシウム水和物は結晶質の珪酸カルシウム水和物よりもリンとの反応性が良いことを利点にしている。例えば、特許文献1の珪酸カルシウム水和物は、非晶質と記載されているが、実際は結晶格子サイズが約90nm前後の結晶質珪酸カルシウム水和物であるためリンとの反応が遅い。一方、特許文献5〜特許文献8に記載されているリン回収資材は、リンとの反応性が高く、リン濃度を急激に低減することができ、リンの回収率が高い利点を有している。   The phosphorus collection | recovery material described in patent document 5-patent document 8 is an amorphous calcium silicate hydrate, and an amorphous calcium silicate hydrate is a thing with phosphorus rather than crystalline calcium silicate hydrate. The advantage is good reactivity. For example, although the calcium silicate hydrate of Patent Document 1 is described as being amorphous, the reaction with phosphorus is slow because it is actually a crystalline calcium silicate hydrate having a crystal lattice size of about 90 nm. On the other hand, the phosphorus collection | recovery material described in patent document 5-patent document 8 has the high reactivity with phosphorus, can reduce phosphorus concentration rapidly, and has the advantage that the recovery rate of phosphorus is high. .

しかし、本発明において、結晶質の珪酸カルシウム水和物についても、一定範囲の結晶子サイズであればリンとの反応性が良く、高いリン回収率を有することが確認された。本発明は、一定範囲の結晶子サイズからなる珪酸カルシウム水和物を一定量以上含むことによって、リンとの反応性が良く、高いリン回収率を有するリン回収材およびその製造方法を提供する。   However, in the present invention, it was confirmed that crystalline calcium silicate hydrate has good reactivity with phosphorus and a high phosphorus recovery rate if the crystallite size is within a certain range. The present invention provides a phosphorus recovery material having a high reactivity with phosphorus and a high phosphorus recovery rate, and a method for producing the same, by containing a certain amount or more of calcium silicate hydrate having a crystallite size within a certain range.

本発明は以下の構成からなるリン回収材とその製造方法に関する。
〔1〕結晶が6.0nm〜16.0nmの微細結晶質の珪酸カルシウム水和物を50wt%以上含有し、Ca/Siモル比が0.5〜3.5であることを特徴とするリン回収材。
〔2〕珪酸カルシウム水和物の結晶子サイズが6.5nm〜10.0nmであって、Ca/Siモル比が0.8〜1.5である上記[1]に記載するリン回収材。
〔3〕生成する珪酸カルシウム水和物のCa/Siモル比が0.5〜3.5になる量の消石灰スラリーと水ガラスを用い、常温下、消石灰スラリーに水ガラスを3分以上の時間で添加し、あるいは消石灰スラリーと水ガラスを同時に3分以上の時間で添加することによって結晶子サイズが6.0nm〜16.0nmの微細結晶質の珪酸カルシウム水和物を生成させ、該珪酸カルシウム水和物を固液分離してリン回収材を得ることを特徴とするリン回収材の製造方法。
The present invention relates to a phosphorus recovery material having the following configuration and a method for producing the same.
[1] Phosphorus characterized in that it contains 50 wt% or more of fine crystalline calcium silicate hydrate of 6.0 nm to 16.0 nm and a Ca / Si molar ratio of 0.5 to 3.5. Collected material.
[2] The phosphorus recovery material according to the above [1], wherein the crystallite size of calcium silicate hydrate is 6.5 nm to 10.0 nm, and the Ca / Si molar ratio is 0.8 to 1.5.
[3] Using slaked lime slurry and water glass in such an amount that the Ca / Si molar ratio of the calcium silicate hydrate to be generated is 0.5 to 3.5, and water glass is added to the slaked lime slurry at room temperature for 3 minutes or more. Or by adding slaked lime slurry and water glass at the same time for 3 minutes or more to produce fine crystalline calcium silicate hydrate having a crystallite size of 6.0 nm to 16.0 nm. A method for producing a phosphorus recovery material, characterized by obtaining a phosphorus recovery material by solid-liquid separation of a hydrate.

〔具体的な説明〕
本発明のリン回収材は、Ca/Siモル比が0.5〜3.5、好ましくはCa/Siモル比が0.8〜1.5であって、結晶子サイズが6.0nm〜16.0nm、好ましくは結晶子サイズが6.5nm〜10.0nmの微細結晶質の珪酸カルシウム水和物(CSHと云う)を50wt%以上含有することを特徴とするリン回収材である。
[Specific description]
The phosphorus recovery material of the present invention has a Ca / Si molar ratio of 0.5-3.5, preferably a Ca / Si molar ratio of 0.8-1.5, and a crystallite size of 6.0 nm-16. A phosphorus recovery material characterized by containing 50 wt% or more of fine crystalline calcium silicate hydrate (referred to as CSH) having a crystallite size of 6.5 nm to 10.0 nm.

〔リン回収材:珪酸カルシウム水和物〕
本発明のリン回収材として用いられる珪酸カルシウム水和物(CSH)は、結晶子サイズが6.0nm〜16.0nm、好ましくは結晶子サイズが6.5nm〜10.0nmの微細結晶質の珪酸カルシウム水和物である。
実施例で示すように、結晶子サイズが6.0nm〜16.0nmの珪酸カルシウム水和物からなる本発明のCSHはリンとの反応性が良いので、リンを含む排水など(リン含有水と云う)に使用したときに、リンと反応して良く溶解し、高いリン回収率を得ることができる。なお、珪酸カルシウム水和物の結晶子サイズは、珪酸カルシウム水和物の乾燥体について、X線回折ピークの半値幅からシェラー式に従って求められる。
[Phosphorus recovery material: calcium silicate hydrate]
The calcium silicate hydrate (CSH) used as the phosphorus recovery material of the present invention has a fine crystalline silicic acid having a crystallite size of 6.0 nm to 16.0 nm, preferably a crystallite size of 6.5 nm to 10.0 nm. Calcium hydrate.
As shown in the examples, the CSH of the present invention comprising calcium silicate hydrate having a crystallite size of 6.0 nm to 16.0 nm has good reactivity with phosphorus, so that waste water containing phosphorus (phosphorus-containing water and When it is used, it reacts with phosphorus and dissolves well, and a high phosphorus recovery rate can be obtained. In addition, the crystallite size of calcium silicate hydrate is calculated | required according to the Scherrer formula from the half value width of an X-ray diffraction peak about the dried body of calcium silicate hydrate.

一方、結晶子サイズが6.0nm未満の珪酸カルシウム水和物からなるCSHは含水固形物の含水率が高く、珪酸カルシウム水和物を脱水乾燥するコストがかかるので好ましくない。また、珪酸カルシウム水和物の結晶子サイズが16.0nmを上回るとCSHとリンの反応性が低くなり、結晶子サイズが20.0nmより大きいとCSHのリン回収率が大幅に低下する傾向がある。   On the other hand, CSH made of calcium silicate hydrate having a crystallite size of less than 6.0 nm is not preferable because the water content of the hydrated solid is high and the cost of dehydrating and drying the calcium silicate hydrate is high. In addition, when the crystallite size of calcium silicate hydrate exceeds 16.0 nm, the reactivity of CSH and phosphorus decreases, and when the crystallite size exceeds 20.0 nm, the CSH phosphorus recovery rate tends to decrease significantly. is there.

本発明のCSHのCa/Siモル比は0.5〜3.5であり、好ましくは0.8〜1.5である。該Ca/Siモル比が0.5未満では、リンと反応するCa量が少なく、リン回収率が低下する。リン回収率を高めるにはCa/Siモル比は0.8以上が好ましい。一方、該Ca/Siモル比が3.5を上回ると、リンと炭酸が共存する液に使用したときに、Caと炭酸の反応が進行してCaとリンの反応が抑制されるため、リン回収率が低下する傾向がある。リンと炭酸が共存する液に使用する場合には、CSHのCa/Siモル比は0.8〜1.5が好ましい。   The CSH Ca / Si molar ratio of the present invention is 0.5 to 3.5, preferably 0.8 to 1.5. If the Ca / Si molar ratio is less than 0.5, the amount of Ca that reacts with phosphorus is small, and the phosphorus recovery rate decreases. In order to increase the phosphorus recovery rate, the Ca / Si molar ratio is preferably 0.8 or more. On the other hand, when the Ca / Si molar ratio exceeds 3.5, when used in a liquid in which phosphorus and carbonic acid coexist, the reaction between Ca and carbonic acid proceeds to suppress the reaction between Ca and phosphorus. Recovery tends to decrease. When used in a liquid in which phosphorus and carbonic acid coexist, the Ca / Si molar ratio of CSH is preferably 0.8 to 1.5.

本発明のリン回収材は上記CSHを50wt%以上、好ましくは80wt%以上含有する。消石灰スラリーと水ガラスを水和反応させて珪酸カルシウム水和物を生成させる場合、未反応の消石灰[Ca(OH)]が残留すると、生成物が上記CSHと消石灰を含むが、CSH含有量が50wt%以上、好ましくは80wt%以上であれば良い。CSH含有量が50wt%未満ではCSHによるリン回収効果が不十分になるので好ましくない。 The phosphorus recovery material of the present invention contains 50 wt% or more, preferably 80 wt% or more of the CSH. When calcium silicate hydrate is produced by hydrating slaked lime slurry and water glass, if unreacted slaked lime [Ca (OH 2 )] remains, the product contains the above CSH and slaked lime, but the CSH content Is 50 wt% or more, preferably 80 wt% or more. If the CSH content is less than 50 wt%, the phosphorus recovery effect by CSH becomes insufficient, which is not preferable.

本発明のリン回収材は、リン含有水に対して使用したときに、リンがCSHと反応してリン酸カルシウムを生成することによってリンがCSHに取り込まれ、リンを回収することができる。   When the phosphorus recovery material of the present invention is used for phosphorus-containing water, phosphorus reacts with CSH to produce calcium phosphate, whereby phosphorus is taken into CSH, and phosphorus can be recovered.

〔製造方法〕
本発明のリン回収材は、生成する珪酸カルシウム水和物のCa/Siモル比が0.5〜3.5になる量、好ましくはCa/Siモル比が0.8〜1.5になる量の消石灰スラリーと水ガラスを用い、常温下、消石灰スラリーに水ガラスを3分以上の時間で添加し、あるいは消石灰スラリーと水ガラスを同時に3分以上の時間で添加することによって結晶子サイズが6.0nm〜16.0nmの微細結晶質の珪酸カルシウム水和物を生成させ、該珪酸カルシウム水和物を固液分離することによって製造される。
〔Production method〕
The phosphorus recovery material of the present invention is such that the Ca / Si molar ratio of the calcium silicate hydrate to be produced is 0.5 to 3.5, preferably the Ca / Si molar ratio is 0.8 to 1.5. Using a quantity of slaked lime slurry and water glass, the crystallite size can be reduced by adding water glass to the slaked lime slurry at room temperature for a period of 3 minutes or more, or by simultaneously adding the slaked lime slurry and water glass for a period of 3 minutes or more. It is produced by producing a fine crystalline calcium silicate hydrate of 6.0 nm to 16.0 nm and solid-liquid separation of the calcium silicate hydrate.

本発明の製造方法は、消石灰スラリーと水ガラス(珪酸ナトリウム水溶液:NaSiO)を用いる。未反応の消石灰残量が少なく、結晶子サイズが6.0nm〜16.0nmの微細結晶の珪酸カルシウムを生成させるには、珪酸が十分に溶解した状態で消石灰と反応させる必要があるので、珪酸源としては水ガラスが好ましい。他の珪酸化合物を用い、反応時に溶解させて消石灰と反応させる方法では、珪酸の溶解が十分ではなく、未反応の珪酸が残留するため目的の微細結晶の珪酸カルシウムを生成させるのが難しい。 The production method of the present invention uses slaked lime slurry and water glass (sodium silicate aqueous solution: Na 2 SiO 3 ). In order to produce calcium carbonate silicate with a small amount of unreacted slaked lime and a crystallite size of 6.0 nm to 16.0 nm, it is necessary to react with slaked lime in a state where silicic acid is sufficiently dissolved. Water glass is preferred as the source. In the method of using other silicic acid compounds and dissolving them in the reaction and reacting with slaked lime, the silicic acid is not sufficiently dissolved, and unreacted silicic acid remains, so that it is difficult to produce the desired fine crystalline calcium silicate.

消石灰スラリーの濃度は3wt%〜10wt%が好ましい。水ガラスの濃度は珪酸濃度として1wt%〜10wt%が好ましい。また、消石灰スラリーと水ガラスの反応量は、生成する珪酸カルシウム水和物のCa/Siモル比が0.5〜3.5になる量、好ましくはCa/Siモル比が0.8〜1.5になる量である。   The concentration of the slaked lime slurry is preferably 3 wt% to 10 wt%. The concentration of water glass is preferably 1 wt% to 10 wt% as the silicic acid concentration. The reaction amount of the slaked lime slurry and water glass is such that the Ca / Si molar ratio of the calcium silicate hydrate to be generated is 0.5 to 3.5, preferably the Ca / Si molar ratio is 0.8 to 1. It is the quantity which becomes .5.

本発明の製造方法では、消石灰スラリーに水ガラスを3分以上の時間で添加し、あるいは消石灰スラリーと水ガラスを同時に3分以上の時間で添加する。消石灰スラリーと水ガラスを少量ずつ用い、3分以上の時間をかけて、消石灰スラリーに水ガラスを添加し、あるいは消石灰スラリーと水ガラスを互いに同時に添加することによって、未反応の消石灰残量が少なく、結晶子サイズが6.0nm〜16.0nm、好ましくは6.5nm〜10.0nmの珪酸カルシウムを生成させることができる。なお、消石灰スラリーと水ガラスについて少量ずつとは、3分以上の時間をかけて添加する量であり、例えば、上記Ca/Siモル比になるように、消石灰スラリー1Lあたり、水ガラス900〜1200mlを3分以上の時間をかけて消石灰スラリーに添加する。あるいは、消石灰スラリー1000mlと水ガラス900〜1200mlを同時に3分以上の時間をかけて添加すると良い。   In the production method of the present invention, the water glass is added to the slaked lime slurry in a time of 3 minutes or more, or the slaked lime slurry and the water glass are simultaneously added in a time of 3 minutes or more. By using slaked lime slurry and water glass in small amounts, spend 3 minutes or more, add water glass to slaked lime slurry, or add slaked lime slurry and water glass to each other at the same time, thereby reducing the amount of unreacted slaked lime. , Calcium silicate having a crystallite size of 6.0 nm to 16.0 nm, preferably 6.5 nm to 10.0 nm can be produced. The small amount of slaked lime slurry and water glass is an amount to be added over 3 minutes or more, for example, 900 to 1200 ml of water glass per liter of slaked lime slurry so as to have the above Ca / Si molar ratio. Is added to the slaked lime slurry over a period of 3 minutes or more. Alternatively, 1000 ml of slaked lime slurry and 900 to 1200 ml of water glass may be added simultaneously over 3 minutes or more.

一方、水ガラスに消石灰スラリーを添加する方法では、生成する珪酸カルシウム水和物の結晶子サイズが6.0nmよりも小さくなり、さらには非晶質になる傾向がある。さらに、水ガラスに消石灰スラリーを添加する方法で生成させた珪酸カルシウム水和物は、リン含有水に使用したときに、リン回収率およびク溶性リン酸の含有率が低い。   On the other hand, in the method of adding slaked lime slurry to water glass, the crystallite size of the resulting calcium silicate hydrate tends to be smaller than 6.0 nm and further becomes amorphous. Furthermore, the calcium silicate hydrate produced | generated by the method of adding slaked lime slurry to water glass has a low phosphorus collection | recovery rate and the content rate of a soluble phosphoric acid, when it uses for phosphorus containing water.

また、消石灰スラリーに水ガラスを添加する方法、あるいは消石灰スラリーと水ガラスを同時に添加する方法でも、消石灰スラリーの全量と水ガラスの全量を一気に添加すると、珪酸カルシウム水和物の結晶子サイズが6.0nmよりも小さくなり、さらには非晶質になる傾向があるので、何れの方法も好ましくない。   Moreover, even if the method of adding water glass to slaked lime slurry or the method of adding slaked lime slurry and water glass simultaneously, when the total amount of slaked lime slurry and the total amount of water glass are added all at once, the crystallite size of calcium silicate hydrate is 6 Neither method is preferred because it tends to be smaller than 0.0 nm and even amorphous.

本発明のリン回収材は、結晶子サイズが6.0nm〜16.0nmの微細結晶の珪酸カルシウム水和物(CSH)を50wt%以上、好ましくは80wt%以上含み、Ca/Siモル比が0.5〜3.5であるので、リンとの反応性が良く、リン含有水に使用したときに、CSHの溶解率が55%以上であり、70%以上の高いリン回収率を得ることができる。また、リン回収材のCa/Siモル比が0.5〜1.5であってCSHの結晶子サイズが6.0nm〜10.0nmであるリン回収材は、リン含有水に使用したときに、60%以上のCSH溶解率を示し、80%以上のリン回収率を得ることができ、リン含有水に炭酸が共存している場合でも、75%以上のリン回収率を得ることができる。   The phosphorus recovery material of the present invention contains fine crystal calcium silicate hydrate (CSH) having a crystallite size of 6.0 nm to 16.0 nm in an amount of 50 wt% or more, preferably 80 wt% or more, and has a Ca / Si molar ratio of 0. Since it is .5 to 3.5, the reactivity with phosphorus is good, and when used in phosphorus-containing water, the dissolution rate of CSH is 55% or more, and a high phosphorus recovery rate of 70% or more can be obtained. it can. Further, when the phosphorus recovery material having a Ca / Si molar ratio of the phosphorus recovery material of 0.5 to 1.5 and the CSH crystallite size of 6.0 nm to 10.0 nm is used for phosphorus-containing water, It exhibits a CSH dissolution rate of 60% or higher, a phosphorus recovery rate of 80% or higher, and a phosphorus recovery rate of 75% or higher even when carbonic acid coexists in phosphorus-containing water.

さらに、本発明のリン回収材は、リン含有水に使用したときに、高いリン回収率を有すると共に、生成したリン酸カルシウムの大部分がク溶性リン酸であり、ク溶性リン酸の含有率が15wt%以上であるので、使用後のリン回収材を副産リン酸肥料として利用することができる。   Further, the phosphorus recovery material of the present invention has a high phosphorus recovery rate when used in phosphorus-containing water, and most of the generated calcium phosphate is soluble phosphonic acid, and the soluble soluble phosphoric acid content is 15 wt. % Or more, the used phosphorus recovery material can be used as a by-product phosphate fertilizer.

以下、本発明の実施例を比較例と共に示す。以下の例において、珪酸カルシウム水和物(CSH)の結晶子サイズ、CSH溶解率、リン回収率は以下のようにして測定した。使用後のク溶性リン酸含有率は回収物を肥料分析法に従って測定した。   Examples of the present invention are shown below together with comparative examples. In the following examples, the crystallite size, CSH dissolution rate, and phosphorus recovery rate of calcium silicate hydrate (CSH) were measured as follows. The content of soluble phosphonic acid after use was measured according to the fertilizer analysis method.

CSHの結晶子サイズ(D)は、CSHでは29°付近に特徴的なピークが見られるため、CSH乾燥物についてX線回折の解析ピークの半値幅からシェラー式に従って求めた。
シェラー式:D(nm)=K×λ(β×cosθ)/10
Kはシェラー定数0.94、λは使用X線管球の波長、βは結晶子の大きさによる回折線の拡がり、θは回折角2θ/θである。
X線回折装置はBruker社製品(D8 Advance)を使用した。測定条件は電流350mA、電圧35kV、スキャンスピード0.13sec/step、測定範囲5°〜65°とした。
Since the CSH crystallite size (D) has a characteristic peak around 29 ° in CSH, the CSH dried product was determined from the half-value width of the X-ray diffraction analysis peak according to the Scherrer equation.
Scherrer formula: D (nm) = K × λ (β × cos θ) / 10
K is the Scherrer constant 0.94, λ is the wavelength of the X-ray tube used, β is the spread of the diffraction line depending on the crystallite size, and θ is the diffraction angle 2θ / θ.
The X-ray diffractometer was a Bruker product (D8 Advance). The measurement conditions were a current of 350 mA, a voltage of 35 kV, a scan speed of 0.13 sec / step, and a measurement range of 5 ° to 65 °.

リン回収率は、濾液のリン酸濃度を規格(JIS K 0102「工場排水試験方法」)に規定するモリブデン青吸光光度法に準拠して測定し、次式によってリン回収率を求めた。
リン回収率(%)=(1−濾液のP濃度/初期P濃度)×100
The phosphorus recovery rate was measured in accordance with the molybdenum blue spectrophotometry method stipulated in the standard (JIS K 0102 “Factory drainage test method”), and the phosphorus recovery rate was determined by the following formula.
Phosphorus recovery (%) = (1−P concentration of filtrate / initial P concentration) × 100

CSH溶解率は、規格(JIS R 5202「ポルトランドセメントの化学分析方法」)に準拠してCSH量を定量し、使用前のCSH量を全量とし、使用前後のCSH量に基づき、次式〔1〕によって求めた。
CSH溶解率(%)=(使用前CSH量−使用後CSH量)/使用前CSH量×100・・〔1〕
The CSH dissolution rate is determined according to the standard (JIS R 5202 “Chemical analysis method for Portland cement”). The CSH amount before use is defined as the total amount of CSH before use. ].
CSH dissolution rate (%) = (CSH amount before use-CSH amount after use) / CSH amount before use x 100 ··· [1]

CSH量は次式〔2〕によって求めた。
CSH量(%)=(全SiO−未反応SiO)+(全CaO−炭酸カルシウムCaO−消石灰CaO)+(Ig-Loss−炭酸カルシウムCO−消石灰H2O)・・・〔2〕
未反応SiOは塩酸不溶解分を未反応SiOとした。結合水はIg-Loss(1000℃)から炭酸カルシウム由来のCOと消石灰由来のHOを差し引いた分をCSHの結合水と見なした。COは工業用石灰の無水炭酸迅速定量方法に準拠して炭酸カルシウム量を求めた。消石灰CaOはセメント協会標準試験方法の遊離酸化カルシウムの定量方法に準拠して測定した。
The amount of CSH was determined by the following equation [2].
CSH amount (%) = (total SiO 2 −unreacted SiO 2 ) + (total CaO−calcium carbonate CaO−slaked lime CaO) + (Ig-Loss−calcium carbonate CO 2 −slaked lime H 2 O) (2)
In the unreacted SiO 2, the insoluble portion of hydrochloric acid was regarded as unreacted SiO 2 . The amount of bound water obtained by subtracting calcium carbonate-derived CO 2 and slaked lime-derived H 2 O from Ig-Loss (1000 ° C.) was regarded as CSH-bound water. CO 2 was determined a calcium carbonate content in compliance with the carbonate anhydride Rapid determination method of industrial lime. Slaked lime CaO was measured in accordance with a method for determining free calcium oxide in a standard test method of the Cement Association.

CSHおよびリン回収物のろ過時間は、スラリー100mlを減圧吸引ろ過するのに要した時間とした。また、含水率は減圧吸引ろ過により得た固形分について、乾燥前の重量と150℃で3時間加熱した後の重量に基づいて求めた。汚泥沈降率(SV)は、30分静置した後の沈殿汚泥の容積(ml)の割合(%)を示す。   The filtration time of the CSH and the phosphorus recovery product was the time required for vacuum filtration of 100 ml of the slurry. Moreover, the water content was calculated | required based on the weight after drying for 3 hours at 150 degreeC and the weight before drying about the solid content obtained by vacuum suction filtration. The sludge sedimentation rate (SV) indicates the ratio (%) of the volume (ml) of the precipitated sludge after standing for 30 minutes.

〔実施例1〕
試料1〜8を表1に示した条件で合成した。試料1〜6は、表1に示すCa/Siモル比になるように、ケイ酸源として3号水ガラス(SiO29%)を用い、石灰源として消石灰を用い、表1に記載する水量の半量で水ガラスを希釈し、残りの水量で消石灰をスラリーにし、この消石灰スラリーに水ガラスの希釈液を3分の時間をかけて添加して撹拌し、珪酸カルシウム水和物(CSH)を生成させた。反応温度と反応時間は表1に示した通りである。
試料7はケイ酸源として珪質頁岩(SiO量 50wt%)を用い、試料8はケイ酸源として非晶質ケイ酸(SiO量 55wt%)を用い、おのおの外割りで0.5wt%のNaOHを添加して85℃に加熱し、そのシリカ懸濁液に消石灰を添加して、85℃の温度で6時間撹拌して珪酸カルシウム水和物(CSH)を生成させた。
生成条件を表1に示す。生成したCSHの組成を表2に示す。試料1〜6はCSH含有量が50wt%以上であり、そのうち試料1〜3はCSH含有量が80wt%以上である。何れも未反応のシリカを含まない。試料4はCa/Siモル比が高いので消石灰量が多い。
生成したCSHを回収して乾燥し、CSHの結晶子サイズを測定した。この結晶子サイズを表2に示す。さらに、回収したCSHをリン回収材として用い、リン含有水(PO4 −3300mg/L)2Lに対して、Ca/Pモル比が2.0に相当する量のリン回収材を投入して撹拌し、30分間反応させて、CSHにリンを取り込ませて回収した。リン回収率、CSH溶解率、ク溶性リン酸含有率を表2に示す。
[Example 1]
Samples 1 to 8 were synthesized under the conditions shown in Table 1. Samples 1 to 6 use No. 3 water glass (SiO 2 29%) as the silicic acid source and slaked lime as the lime source so that the Ca / Si molar ratio shown in Table 1 is obtained. Dilute the water glass with half the amount of water, make slaked lime into a slurry with the remaining amount of water, add the water glass dilution to the slaked lime slurry over a period of 3 minutes, stir, and add calcium silicate hydrate (CSH). Generated. The reaction temperature and reaction time are as shown in Table 1.
Sample 7 uses siliceous shale (SiO 2 content 50 wt%) as the silicic acid source, and sample 8 uses amorphous silicic acid (SiO 2 content 55 wt%) as the silicic acid source, each 0.5% by weight. Of NaOH was added and heated to 85 ° C., slaked lime was added to the silica suspension and stirred for 6 hours at a temperature of 85 ° C. to produce calcium silicate hydrate (CSH).
Table 1 shows the generation conditions. The composition of the produced CSH is shown in Table 2. Samples 1 to 6 have a CSH content of 50 wt% or more, and Samples 1 to 3 have a CSH content of 80 wt% or more. None contain unreacted silica. Since sample 4 has a high Ca / Si molar ratio, the amount of slaked lime is large.
The produced CSH was recovered and dried, and the crystallite size of CSH was measured. The crystallite size is shown in Table 2. Further, using the recovered CSH as a phosphorus recovery material, an amount of phosphorus recovery material corresponding to a Ca / P molar ratio of 2.0 is added to 2 L of phosphorus-containing water (PO 4 -3 300 mg / L). The mixture was stirred and allowed to react for 30 minutes, and phosphorus was taken up into CSH and collected. Table 2 shows phosphorus recovery rate, CSH dissolution rate, and soluble phosphoric acid content.

表2に示すように、珪酸カルシウム水和物の結晶子サイズが16.0nmよりも大きい試料7、試料8はCSH溶解率が低く、40%台であるためリン回収率が低く65.9%以下である。一方、本発明の試料1〜6は、珪酸カルシウム水和物の結晶子サイズが16.0nm以下であり、CSH溶解率は高く55%以上であるため、70%以上の高いリン回収率を有する。さらに、珪酸カルシウムの結晶格子サイズが10.0nm以下の試料1〜3は80%以上の高いリン回収率を有する。   As shown in Table 2, Sample 7 and Sample 8 in which the crystallite size of calcium silicate hydrate is larger than 16.0 nm have a low CSH dissolution rate and are in the 40% range, so that the phosphorus recovery rate is low and 65.9%. It is as follows. On the other hand, samples 1 to 6 of the present invention have a high phosphorus recovery rate of 70% or more because the crystallite size of calcium silicate hydrate is 16.0 nm or less and the CSH dissolution rate is 55% or more. . Furthermore, Samples 1 to 3 having a calcium silicate crystal lattice size of 10.0 nm or less have a high phosphorus recovery rate of 80% or more.

Figure 2017154047
Figure 2017154047

Figure 2017154047
Figure 2017154047

〔実施例2〕
実施例1のリン回収材(試料1〜4)について、炭酸を含むリン含有水(PO4 −3300mg/L、炭酸濃度1g/L)2Lに対して、Ca/Pモル比が2.0に相当する量のリン回収材を投入して撹拌し、30分間反応させて、CSHにリンを取り込ませて回収した。リン回収率、ク溶性リン酸含有率を表3に示す。試料1〜3(Ca/Siモル比=0.8〜1.5)は何れもリン回収率が75%以上であり、ク溶性リン酸量(C-PO量)は17%以上である。一方、試料4(Ca/Siモル比=3.5)はリン回収率が53%であり、Ca/Siモル比=3.5になるとリン回収率が低下する。従って、本発明のリン回収材をリンと炭酸が共存する排水等に使用する場合には、リン回収材のCa/Siモル比は0.8〜1.5が好ましい。
[Example 2]
Phosphorus recovery material of Example 1 (Samples 1-4), phosphorus-containing water containing carbonate (PO 4 -3 300mg / L, carbonate concentration 1 g / L) against 2L, Ca / P molar ratio of 2.0 An amount of phosphorus recovery material corresponding to 1 was added and stirred, reacted for 30 minutes, and phosphorus was taken into CSH and recovered. Table 3 shows the phosphorus recovery rate and the soluble phosphoric acid content. Samples 1 to 3 (Ca / Si molar ratio = 0.8 to 1.5) all have a phosphorus recovery rate of 75% or more and a soluble phosphonic acid amount (CP 2 O 5 amount) of 17% or more. . On the other hand, Sample 4 (Ca / Si molar ratio = 3.5) has a phosphorus recovery rate of 53%, and when the Ca / Si molar ratio = 3.5, the phosphorus recovery rate decreases. Therefore, when using the phosphorus collection | recovery material of this invention for the waste_water | drain etc. in which phosphorus and carbonic acid coexist, the Ca / Si molar ratio of a phosphorus collection | recovery material has preferable 0.8-1.5.

Figure 2017154047
Figure 2017154047

〔実施例3〕
消石灰スラリー(Ca濃度3.7wt%)と水ガラス(珪酸濃度4.9wt%)を用い、Ca/Siモル比が1.0になるように、消石灰スラリーに水ガラスを3分以上の時間をかけて添加し撹拌して珪酸カルシウム水和物(CSH)を生成させた(標準添加:試料10〜12)。また、この消石灰スラリーと水ガラスを3分以上の時間をかけて同時に連続的に添加し撹拌して珪酸カルシウム水和物(CSH)を生成させた(同時添加:試料20〜21)。一方、試料10〜12とは逆に、水ガラスに消石灰スラリーを添加して撹拌し珪酸カルシウム水和物(CSH)を生成させた(逆添加:試料30〜32)。試料の添加順序および添加時間を表4に示す。これらのCSHのろ過時間、含水率、汚泥沈降率(SV) 、結晶子サイズを測定し、表4に示した。
生成したCSHを回収して乾燥して得たリン回収材を、実施例1と同様にしてリン含有水に使用し、反応時間30分後のリン回収率およびク溶性リン酸量を調べた。また、使用後のCSHについて、ろ過時間、含水率、汚泥沈降率(SV)を使用前のCSHと同様の方法で測定した。この結果を表5に示した。
Example 3
Use slaked lime slurry (Ca concentration 3.7 wt%) and water glass (silicic acid concentration 4.9 wt%), and add water glass to the slaked lime slurry for 3 minutes or more so that the Ca / Si molar ratio is 1.0. And stirred to produce calcium silicate hydrate (CSH) (standard addition: samples 10-12). Moreover, this slaked lime slurry and water glass were added continuously continuously over 3 minutes or more and stirred to produce calcium silicate hydrate (CSH) (simultaneous addition: samples 20 to 21). On the other hand, contrary to samples 10-12, slaked lime slurry was added to water glass and stirred to produce calcium silicate hydrate (CSH) (reverse addition: samples 30-32). Table 4 shows the sample addition sequence and the addition time. The filtration time, water content, sludge sedimentation rate (SV) and crystallite size of these CSH were measured and shown in Table 4.
The phosphorus recovery material obtained by recovering and drying the produced CSH was used in phosphorus-containing water in the same manner as in Example 1, and the phosphorus recovery rate and the amount of soluble phosphoric acid after 30 minutes of reaction time were examined. Moreover, about CSH after use, the filtration time, the moisture content, and the sludge sedimentation rate (SV) were measured by the same method as CSH before use. The results are shown in Table 5.

標準添加の試料10〜12は結晶子サイズが7.0nm〜7.2nmであるのでリンとの反応性が良く、76.6%〜85.1%の高いリン回収率を示す。また同時添加の試料20〜21も結晶子サイズが6.3nm〜8.5nmであるのでリン回収率は高く、74.4%〜84.5%である。一方、逆添加の試料30〜31は何れも結晶子サイズが6.0nm未満であるためリン回収率は低く、57.9%〜72.7%であり、またク溶性リン酸量も低い。この結果から、75%以上の高いリン回収率を得るにはCSHの結晶子サイズは6.0nm以上が好ましいことが分かる。
なお、逆添加の試料32は結晶子サイズが6.0nm以上であるが、リン回収後の含水率が10.6g/gであり、試料1〜2,20〜22の約2倍であるので脱水に時間がかかる。同様に、逆添加の試料30〜32は、CSHの汚泥沈降率(SV)と含水率が高く、固液分離や乾燥コストがかさむため望ましくない。一方、同時添加の試料20〜21は、CSHの含水率が3.0g/g未満であり、標準添加の試料より低いので有利であり、さらに逆添加の試料より含水率が格段に低く、逆添加の試料よりも脱水の負担を大幅に低減することができる。
Samples 10 to 12 with standard addition have a crystallite size of 7.0 nm to 7.2 nm, and thus have good reactivity with phosphorus, and show a high phosphorus recovery rate of 76.6% to 85.1%. In addition, the samples 20 to 21 added simultaneously have a crystallite size of 6.3 nm to 8.5 nm, so that the phosphorus recovery rate is high, ie, 74.4% to 84.5%. On the other hand, the reverse addition samples 30 to 31 each have a crystallite size of less than 6.0 nm, so that the phosphorus recovery rate is low, 57.9% to 72.7%, and the amount of soluble phosphoric acid is also low. From this result, it can be seen that the crystallite size of CSH is preferably 6.0 nm or more in order to obtain a high phosphorus recovery rate of 75% or more.
The reverse addition sample 32 has a crystallite size of 6.0 nm or more, but the water content after phosphorus recovery is 10.6 g / g, which is about twice that of samples 1-2 and 20-22. Dehydration takes time. Similarly, the reverse addition samples 30 to 32 are not desirable because they have high CSH sludge sedimentation rate (SV) and moisture content, and increase the cost of solid-liquid separation and drying. On the other hand, the samples 20 to 21 added at the same time are advantageous because the moisture content of CSH is less than 3.0 g / g, which is lower than that of the standard addition sample, and the moisture content is much lower than that of the sample added reversely. The burden of dehydration can be greatly reduced as compared with the added sample.

Figure 2017154047
Figure 2017154047

Figure 2017154047
Figure 2017154047

Claims (3)

結晶子サイズが6.0nm〜16.0nmの微細結晶質の珪酸カルシウム水和物を50wt%以上含有し、Ca/Siモル比が0.5〜3.5であることを特徴とするリン回収材。 Phosphorus recovery characterized in that it contains 50 wt% or more of fine crystalline calcium silicate hydrate having a crystallite size of 6.0 nm to 16.0 nm and a Ca / Si molar ratio of 0.5 to 3.5. Wood. 珪酸カルシウム水和物の結晶子サイズが6.5nm〜10.0nmであって、Ca/Siモル比が0.8〜1.5である請求項1に記載するリン回収材。 The phosphorus recovery material according to claim 1, wherein the calcium silicate hydrate has a crystallite size of 6.5 nm to 10.0 nm and a Ca / Si molar ratio of 0.8 to 1.5. 生成する珪酸カルシウム水和物のCa/Siモル比が0.5〜3.5になる量の消石灰スラリーと水ガラスを用い、常温下、消石灰スラリーに水ガラスを3分以上の時間で添加し、あるいは消石灰スラリーと水ガラスを同時に3分以上の時間で添加することによって結晶子サイズが6.0nm〜16.0nmの微細結晶質の珪酸カルシウム水和物を生成させ、該珪酸カルシウム水和物を固液分離してリン回収材を得ることを特徴とするリン回収材の製造方法。



Using water slaked lime slurry and water glass in an amount such that the Ca / Si molar ratio of the calcium silicate hydrate to be generated is 0.5 to 3.5, water glass is added to the slaked lime slurry at room temperature for 3 minutes or more. Alternatively, by adding slaked lime slurry and water glass at the same time for 3 minutes or more, fine crystalline calcium silicate hydrate having a crystallite size of 6.0 nm to 16.0 nm is formed, and the calcium silicate hydrate A method for producing a phosphorus recovery material, characterized in that a phosphorus recovery material is obtained by solid-liquid separation.



JP2016037523A 2016-02-29 2016-02-29 Phosphorus recovery material and method for producing the same Active JP6670534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037523A JP6670534B2 (en) 2016-02-29 2016-02-29 Phosphorus recovery material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037523A JP6670534B2 (en) 2016-02-29 2016-02-29 Phosphorus recovery material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017154047A true JP2017154047A (en) 2017-09-07
JP6670534B2 JP6670534B2 (en) 2020-03-25

Family

ID=59808937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037523A Active JP6670534B2 (en) 2016-02-29 2016-02-29 Phosphorus recovery material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6670534B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008180A (en) * 2016-07-11 2018-01-18 太平洋セメント株式会社 Water treatment material and production method thereof
JP2019155353A (en) * 2018-03-08 2019-09-19 国立大学法人宇都宮大学 Phosphorus recovery material and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120641A (en) * 2006-11-14 2008-05-29 Tokyo Institute Of Technology Method for producing calcium silicate
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method
JP2012192397A (en) * 2011-02-28 2012-10-11 Onoda Chemical Industry Co Ltd Phosphorus recovery material and method for producing the same
JP2013244466A (en) * 2012-05-25 2013-12-09 Taiheiyo Cement Corp Phosphorus recovery material, method for producing phosphorus recovery material, and phosphorus recovery method
WO2014036211A2 (en) * 2012-08-30 2014-03-06 Nclear Ip Llc Compositions and methods for the removal of phosphates and other contaminants from aqueous solutions
JP2015196146A (en) * 2014-04-02 2015-11-09 三國製薬工業株式会社 Phosphorus recovery material for phosphorus-containing water and phosphorus recovery method using the phosphorus recovery material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120641A (en) * 2006-11-14 2008-05-29 Tokyo Institute Of Technology Method for producing calcium silicate
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method
JP2012192397A (en) * 2011-02-28 2012-10-11 Onoda Chemical Industry Co Ltd Phosphorus recovery material and method for producing the same
JP2013244466A (en) * 2012-05-25 2013-12-09 Taiheiyo Cement Corp Phosphorus recovery material, method for producing phosphorus recovery material, and phosphorus recovery method
WO2014036211A2 (en) * 2012-08-30 2014-03-06 Nclear Ip Llc Compositions and methods for the removal of phosphates and other contaminants from aqueous solutions
JP2015533633A (en) * 2012-08-30 2015-11-26 エヌクリア アイピー エルエルシー Compositions and methods for removing phosphates and other contaminants from aqueous solutions
JP2015196146A (en) * 2014-04-02 2015-11-09 三國製薬工業株式会社 Phosphorus recovery material for phosphorus-containing water and phosphorus recovery method using the phosphorus recovery material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008180A (en) * 2016-07-11 2018-01-18 太平洋セメント株式会社 Water treatment material and production method thereof
JP2019155353A (en) * 2018-03-08 2019-09-19 国立大学法人宇都宮大学 Phosphorus recovery material and method for producing the same
JP7165538B2 (en) 2018-03-08 2022-11-04 国立大学法人宇都宮大学 Phosphorus recovery material and manufacturing method thereof

Also Published As

Publication number Publication date
JP6670534B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
JP5201455B2 (en) Phosphorus recovery material, its manufacturing method and phosphorus recovery method
JP5931369B2 (en) Phosphorus recovery material and method for producing the same
JP5972050B2 (en) Method for producing phosphorus recovery material
JP5864045B2 (en) Method for producing phosphorus recovery material
CN103635433B (en) The recovery of phosphorus and Fertilizer Transformed method
CN107848816B (en) Method for producing calcium silicate hydrate used as hardening accelerator in concrete or cement material and calcium silicate hydrate produced by the method
US20100086474A1 (en) Process for Preparing alpha Calcium Sulfate Hemihydrate
JP6670534B2 (en) Phosphorus recovery material and method for producing the same
US4243429A (en) Process for producing tobermorite and ettringite
WO2004056704A1 (en) Process for the production of synthetic magnesium silicate compositions
JP5946105B2 (en) Phosphorus recovery material and phosphorus recovery method
JP4330182B2 (en) Synthesis method of carbonated hydrocalumite
US4226636A (en) Production of calcium silicate having high specific bulk volume and calcium silicate-gypsum composite
JP2006335578A (en) Leaflet-like gypsum dihydrate and its manufacturing method
GB2031393A (en) Alkali Calcium Silicates and Process for Preparation Thereof
JP4638979B2 (en) Silica-containing apatite
JP4512689B2 (en) Hydroxyapatite-coated silica porous material and method for producing the same
JP4753182B2 (en) Treatment method for fluorine-containing wastewater
JP3957660B2 (en) Method for synthesizing reactive oxygen species inclusion materials
JP3970208B2 (en) Method for synthesizing reactive oxygen species inclusion materials
JP4822007B2 (en) Fluorine removal agent and method for producing the same
JP6158385B1 (en) Method for producing sulfur compound remover
WO2011064836A1 (en) Process for producing calcium hydrogen phosphate dihydrate and fluorine insolubilizer
JP6769161B2 (en) How to make stabilized Schwertmanite
JP2024061601A (en) Method for producing zeolite and zeolite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200229

R150 Certificate of patent or registration of utility model

Ref document number: 6670534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250