JP7165538B2 - Phosphorus recovery material and manufacturing method thereof - Google Patents

Phosphorus recovery material and manufacturing method thereof Download PDF

Info

Publication number
JP7165538B2
JP7165538B2 JP2018160566A JP2018160566A JP7165538B2 JP 7165538 B2 JP7165538 B2 JP 7165538B2 JP 2018160566 A JP2018160566 A JP 2018160566A JP 2018160566 A JP2018160566 A JP 2018160566A JP 7165538 B2 JP7165538 B2 JP 7165538B2
Authority
JP
Japan
Prior art keywords
magnetic powder
phosphorus recovery
mass
content
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018160566A
Other languages
Japanese (ja)
Other versions
JP2019155353A (en
Inventor
利仁 小野寺
雅也 戸田
信孝 美濃和
剛 明戸
保蔵 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Taiheiyo Cement Corp
Onoda Chemical Industry Co Ltd
Original Assignee
Utsunomiya University
Taiheiyo Cement Corp
Onoda Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University, Taiheiyo Cement Corp, Onoda Chemical Industry Co Ltd filed Critical Utsunomiya University
Publication of JP2019155353A publication Critical patent/JP2019155353A/en
Application granted granted Critical
Publication of JP7165538B2 publication Critical patent/JP7165538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、珪酸カルシウム水和物と磁性粉を含み、磁性粉の流出量が少なく、リンの回収率が高い、リン回収材とその製造方法に関する。 TECHNICAL FIELD The present invention relates to a phosphorus recovery material that contains calcium silicate hydrate and magnetic powder, has a low flow rate of magnetic powder, and has a high phosphorus recovery rate, and a method for producing the same.

下水処理場等、リンが集約する施設の排水に含まれているリンを回収する方法としては、HAP法およびMAP法が従来から知られている。HAP法は、排水に水酸化カルシウムまたは塩化カルシウムを添加してヒドロキシアパタイト〔Ca10(PO)(OH)、Hydroxyapatite:HAPと云う〕を晶析させる方法である。MAP法は、消化汚泥脱離液などのように、排水中にリン酸イオンと共にアンモニウムイオンが多い場合に、マグネシウム塩を添加することによって、リン酸マグネシウムアンモニウム〔NHMgPO・6HO、Magnesium Ammonium Phosphate:MAPと云う〕を晶析させる方法である。 The HAP method and the MAP method have been conventionally known as methods for recovering phosphorus contained in waste water from facilities such as sewage treatment plants where phosphorus is concentrated. The HAP method is a method in which calcium hydroxide or calcium chloride is added to waste water to crystallize hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 , hydroxyapatite: HAP]. In the MAP method, magnesium ammonium phosphate [NH 4 MgPO 4.6H 2 O, Magnesium Ammonium Phosphate: MAP] is crystallized.

従来のHAP法は、HAPの成長に時間がかかり、また微小結晶のままでは非常に濾過性が悪いと云う問題あった。一方、MAP法は、配管へのスケーリングが起こるためその除去コストが嵩む問題が指摘されている。 The conventional HAP method has the problem that it takes a long time to grow HAP, and the filterability is very poor if the HAP remains as microcrystals. On the other hand, it has been pointed out that the MAP method has a problem of increased removal cost due to scaling to piping.

上記HAP法の欠点である結晶成長の遅さ(リン除去速度が遅い)や濾過性の問題を解決するリン回収方法として、珪酸カルシウム水和物〔nCaO・SiO・mHO、Amorphous Calcium Silicate Hydrates:CSHと云う)を用いる方法が提案されている。例えば、特許文献1(特開2012-050975号公報)には、CSHと消石灰との凝集体からなるリン回収材が記載されている。 Calcium silicate hydrate [ nCaO.SiO.sub.2.mH.sub.2O , Amorphous Calcium Silicate. Hydrates: called CSH) has been proposed. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2012-050975) describes a phosphorus recovery material composed of aggregates of CSH and slaked lime.

また、特許文献2(特開2017-154047号公報)には、Ca/Siモル比が0.5~3.5、好ましくはCa/Siモル比が0.8~1.5であって、結晶子サイズが6.0nm~16.0nm、好ましくは結晶子サイズが6.5nm~10.0nmの微細結晶質のCSHを50wt%以上含有するリン回収材と該リン回収材を用いる方法について、従来の結晶質CSHよりもリン回収効果に優れることが記載されている。これらのCSHを用いるリン回収方法は、排水中のリン酸イオンとCSHから溶出するカルシウムイオンの反応が逐次的であるため、生成するHAPの過飽和度が低いまま維持されやすいことから、pH管理も容易であると云う利点を有している。 Further, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2017-154047), the Ca/Si molar ratio is 0.5 to 3.5, preferably the Ca/Si molar ratio is 0.8 to 1.5, A phosphorus recovery material containing 50 wt% or more of fine crystalline CSH having a crystallite size of 6.0 nm to 16.0 nm, preferably 6.5 nm to 10.0 nm, and a method of using the phosphorus recovery material, It is described that the phosphorus recovery effect is superior to that of conventional crystalline CSH. In these phosphorus recovery methods using CSH, the reaction between phosphate ions in waste water and calcium ions eluted from CSH is sequential, so the degree of supersaturation of the generated HAP is easily maintained at a low level. It has the advantage of being easy.

一方、CSHを用いたリン回収方法は、HAP法などと同様にリン回収物の固液分離(例えば沈降分離)を行うときに、液中のリンを取り込んだ生成澱物の沈降時間(濾過時間)などがプロセス全体の処理時間の律速になる場合が多く、濾過時間が長いと云う問題がある。 On the other hand, in the phosphorus recovery method using CSH, when solid-liquid separation (for example, sedimentation) of the recovered phosphorus is performed in the same manner as the HAP method, the sedimentation time (filtration time) of the product sediment containing phosphorus in the liquid is ) and the like are often rate-determining for the treatment time of the entire process, and there is a problem that the filtration time is long.

このような濾過時間が長い処理方法の対策として、磁性粉を混合して磁気分離を行うことによって処理時間を短縮することが知られている。例えば、特許文献3(特開2014-487号公報)には、ケイ酸カルシウムおよび二酸化ケイ素を含むリン回収材にさらにマグネタイトなどの磁性体を含有させ、排水中のリンを取り込んだHAP澱物を磁気分離することが記載されている。 As a countermeasure against such long filtration time, it is known to shorten the treatment time by mixing magnetic powder and performing magnetic separation. For example, in Patent Document 3 (Japanese Patent Laid-Open No. 2014-487), a phosphorus recovery material containing calcium silicate and silicon dioxide is further added with a magnetic substance such as magnetite, and HAP sediment that incorporates phosphorus in waste water is produced. Magnetic separation is described.

ところが、CSHに磁性粉を混合して磁気分離を行う場合、CSHのCa/Siモル比の範囲に応じて磁気分離時における磁性粉の流出量が大きく異なり、CSHのCa/Siモル比が適切な範囲を外れると磁性粉の流出量が多くなり、経済的な処理に支障を生じることが見出された。 However, when magnetic powder is mixed with CSH and magnetic separation is carried out, the outflow amount of magnetic powder during magnetic separation greatly varies depending on the range of the Ca/Si molar ratio of CSH, and the Ca/Si molar ratio of CSH is appropriate. It was found that out of the above range, the outflow amount of the magnetic powder increases, which hinders economical treatment.

また、特許文献3の方法は、ケイ酸カルシウムおよび二酸化ケイ素を含むリン回収材を用いており、二酸化ケイ素の一部または全部が非晶質であることによって、凹凸構造ないし多孔質構造にし、ケイ酸カルシウム(CSH)がリンを取り込んでヒドロキシアパタイト(HAP)を生成する際のHAP析出面積を広くしてリン回収率を高めることを意図している(段落[0029])。このため、その製造工程において、溶液に塩酸を加えてpH10.5前後に調整して非晶質の多孔質二酸化ケイ素を生成させている(実施例1:段落[0068]~[0076])。
ところが、二酸化ケイ素は、ヒドロキシアパタイト(HAP)の形成には直接には関与しないので、二酸化ケイ素の含有量が多いと、リン回収物中のリンの含量が低下するという問題がある。
In addition, the method of Patent Document 3 uses a phosphorus recovery material containing calcium silicate and silicon dioxide, and part or all of the silicon dioxide is amorphous, so that it has an uneven structure or a porous structure. It is intended to increase the phosphorus recovery rate by widening the HAP deposition area when calcium acid (CSH) takes up phosphorus to form hydroxyapatite (HAP) (paragraph [0029]). Therefore, in the manufacturing process, hydrochloric acid is added to the solution to adjust the pH to around 10.5 to generate amorphous porous silicon dioxide (Example 1: paragraphs [0068] to [0076]).
However, since silicon dioxide does not directly participate in the formation of hydroxyapatite (HAP), there is a problem that if the content of silicon dioxide is high, the content of phosphorus in the recovered phosphorus is reduced.

特開2012-050975号公報JP 2012-050975 A 特開2017-154047号公報JP 2017-154047 A 特開2014-487号公報JP 2014-487 A

本発明は、従来のリン回収材における上記問題を解決したものであり、珪酸カルシウム水和物(CSH)を主体とし、CSHに磁性粉を混合してなる磁気分離用のリン回収材であって、固液分離の処理時間が短く、しかも磁気分離時における磁性粉の流出量が少なく、また、HAPの形成に直接には関与しない二酸化ケイ素の含有量が少なく、リン回収率の高いリン回収材を提供する。 The present invention solves the above-mentioned problems of the conventional phosphorus recovery material, and is a phosphorus recovery material for magnetic separation, which is mainly composed of calcium silicate hydrate (CSH) mixed with magnetic powder. A phosphorus recovery material with a short solid-liquid separation processing time, a small outflow amount of magnetic powder during magnetic separation, a low content of silicon dioxide that is not directly involved in the formation of HAP, and a high phosphorus recovery rate. I will provide a.

本発明は以下の構成によって上記課題を解決したリン回収材とその製造方法に関する。
〔1〕珪酸カルシウム水和物と磁性粉を含有し、珪酸カルシウム水和物のCa/Siモル比が1.0以上~1.5以下、磁性粉の含有量が5質量%以上であって該磁性粉が上記珪酸カルシウム水和物に取り込まれた状態であり、遊離の二酸化ケイ素の含有量が5質量%以下であり、消石灰の含有量を2質量%以下にして磁気分離時の磁性粉の流出量を20%以下に抑制したことを特徴とするリン回収材。
〔2〕珪酸カルシウム水和物の含有量が55質量%以上~95質量%未満、磁性粉の含有量が5質量%以上~45質量%未満であり、リン回収率が50%以上である上記[1]に記載するリン回収材。
〔3〕消石灰または生石灰と磁性粉の混合スラリーに珪酸ナトリウム溶液を添加し、磁性粉の分散下でpH調整を行わずに珪酸カルシウム水和物を生成させることによって、Ca/Siモル比が1.0以上~1.5以下、上記磁性粉の含有量5質量%以上であって該磁性粉が上記珪酸カルシウム水和物に取り込まれた状態であり遊離の二酸化ケイ素の含有量が5質量%以下であって、消石灰の含有量が2質量%以下であるリン回収材を製造することを特徴とするリン回収材の製造方法。
〔4〕消石灰または生石灰と磁性粉の混合スラリーに、珪酸ナトリウム溶液を少量ずつ添加し、磁性粉の分散下で、pH調整を行わずに珪酸カルシウム水和物を生成させる請求項3に記載するリン回収材の製造方法。
The present invention relates to a phosphorus recovery material and a method for producing the same that solves the above problems by the following configurations.
[1] Contains calcium silicate hydrate and magnetic powder, the calcium silicate hydrate has a Ca/Si molar ratio of 1.0 to 1.5 , and the magnetic powder content is 5% by mass or more . The magnetic powder is in a state in which the magnetic powder is incorporated in the calcium silicate hydrate, the content of free silicon dioxide is 5% by mass or less, and the content of slaked lime is 2% by mass or less. A phosphorus recovery material characterized in that the amount of outflow of is suppressed to 20% or less .
[2] The content of calcium silicate hydrate is 55% by mass or more and less than 95% by mass, the content of magnetic powder is 5% by mass or more and less than 45% by mass, and the phosphorus recovery rate is 50% or more . The phosphorus recovery material described in [1].
[3] A Ca/Si molar ratio of 1 by adding a sodium silicate solution to a mixed slurry of slaked lime or quicklime and magnetic powder to form calcium silicate hydrate without adjusting the pH in the presence of dispersed magnetic powder. 0 to 1.5, the content of the magnetic powder is 5% by mass or more, the magnetic powder is incorporated in the calcium silicate hydrate, and the content of free silicon dioxide is 5% by mass. % or less and the content of slaked lime is 2% by mass or less .
[4] A sodium silicate solution is added little by little to a mixed slurry of slaked lime or quicklime and magnetic powder to generate calcium silicate hydrate while the magnetic powder is dispersed without adjusting the pH . A method for producing a phosphorus recovery material.

〔具体的な説明〕
以下、本発明を具体的に説明する。
本発明のリン回収材は、珪酸カルシウム水和物と磁性粉を含有し、珪酸カルシウム水和物のCa/Siモル比が1.0以上~1.5以下、磁性粉の含有量が5質量%以上であって該磁性粉が上記珪酸カルシウム水和物に取り込まれた状態であり、遊離の二酸化ケイ素の含有量が5質量%以下であり、消石灰の含有量を2質量%以下にして磁気分離時の磁性粉の流出量を20%以下に抑制したことを特徴とするリン回収材である。
さらに具体的には、本発明のリン回収材は、珪酸カルシウム水和物の含有量が55質量%以上~95質量%未満、磁性粉の含有量が5質量%以上~45質量%未満であり、リン回収率が50%以上であるリン回収材である。
[Specific explanation]
The present invention will be specifically described below.
The phosphorus recovery material of the present invention contains calcium silicate hydrate and magnetic powder, the calcium silicate hydrate has a Ca/Si molar ratio of 1.0 or more to 1.5 or less , and the magnetic powder content is 5 mass. % or more , the magnetic powder is incorporated in the calcium silicate hydrate, the content of free silicon dioxide is 5% by mass or less, and the content of slaked lime is 2% by mass or less to obtain a magnetic powder. The phosphorus recovery material is characterized in that the outflow of magnetic powder during separation is suppressed to 20% or less .
More specifically, the phosphorus recovery material of the present invention has a calcium silicate hydrate content of 55% by mass or more and less than 95% by mass, and a magnetic powder content of 5% by mass or more and less than 45% by mass. , a phosphorus recovery material having a phosphorus recovery rate of 50% or more .

〔リン回収材〕
本発明のリン回収材は、珪酸カルシウム水和物(CSH)を主成分とする。珪酸カルシウム水和物(CSH)はリンと反応してヒドロキシアパタイト(HAP)を生成し、リンとの反応性が良いので、リンの回収率を高めることができる。
[Phosphorus recovery material]
The phosphorus recovery material of the present invention contains calcium silicate hydrate (CSH) as a main component. Calcium silicate hydrate (CSH) reacts with phosphorus to form hydroxyapatite (HAP) and has good reactivity with phosphorus, so that the recovery rate of phosphorus can be increased.

珪酸カルシウム水和物(CSH)は、消石灰または生石灰の石灰スラリーに珪酸ナトリウム水溶液を混合して生成することができる。珪酸カルシウム水和物(CSH)の原料である珪酸ナトリウム水溶液は、珪質頁岩、非晶質シリカ、シリカゲル、シリカヒューム、オパール、珪藻土などの珪酸質原料を水酸化ナトリウム水溶液に溶解させて製造することができる。また市販の水ガラスなどを用いることができる。 Calcium silicate hydrate (CSH) can be produced by mixing a lime slurry of slaked or quicklime with an aqueous sodium silicate solution. A sodium silicate aqueous solution, which is a raw material for calcium silicate hydrate (CSH), is produced by dissolving siliceous raw materials such as siliceous shale, amorphous silica, silica gel, silica fume, opal, and diatomaceous earth in an aqueous sodium hydroxide solution. be able to. Commercially available water glass or the like can also be used.

本発明のリン回収材において、珪酸カルシウム水和物(CSH)のCa/Siモル比は1.0以上~1.5以下の範囲である。なお、本発明のリン回収材が未反応の消石灰を含む場合には、上記Ca/Siモル比はリン回収材全体のCa/Siモル比である。該Ca/Siモル比が0.8未満では、リンと反応するCa量が少ないのでリン回収率が低下するため、リン回収率を高めるにはCa/Siモル比は0.8以上が好ましい。さらに、Ca/Siモル比が1.0以上~1.5以下の範囲であれば、リン回収材中の遊離の二酸化ケイ素の含有量を5質量%以下に抑えることができるため好ましい。
In the phosphorus recovery material of the present invention, the Ca/Si molar ratio of calcium silicate hydrate (CSH) is in the range of 1.0 to 1.5 . When the phosphorus recovery material of the present invention contains unreacted slaked lime, the above Ca/Si molar ratio is the Ca/Si molar ratio of the entire phosphorus recovery material. If the Ca/Si molar ratio is less than 0.8, the amount of Ca that reacts with phosphorus is small, resulting in a low phosphorus recovery rate. Furthermore, if the Ca/Si molar ratio is in the range of 1.0 or more to 1.5 or less, the content of free silicon dioxide in the phosphorus recovery material can be suppressed to 5% by mass or less, which is preferable.

一方、該Ca/Siモル比が3.5以上では、磁気分離時に該リン回収材に含まれる磁性粉の流出量が多くなるので好ましくない。具体的には、例えば、該Ca/Siモル比が3.5以上になると、磁気分離時の磁性粉の流出量が20質量%を上回るようになる。Ca/Siモル比が3.5以上では、リン回収材に未反応の消石灰が20.6質量%以上と多く残るようになり、このCSH表面に存在する消石灰のプラス電荷と磁性粉表面のプラス電荷の反発作用により、CSHと磁性粉との結合力が弱まるので、未反応の消石灰が多いと磁性粉の流出率が増加するようになる。従って、磁気分離時の磁性粉の流出量を抑制するには該Ca/Siモル比は3.5未満が良く、1.5以下がより好ましい。このように、Ca/Siモル比が3.5未満であれば、未反応の消石灰の含有量は21質量%以下、好ましくは20.6質量%未満になり、磁性粉の流出を低く抑えることができる。さらに、Ca/Siモル比が1.0以上~1.5以下の範囲であれば、本発明のリン回収材中に含まれる消石灰の量は2質量%以下、好ましくは1.6質量%以下になり、磁性粉の流出量をさらに下げることができる。
On the other hand, if the Ca/Si molar ratio is 3.5 or more, the outflow amount of the magnetic powder contained in the phosphorus recovery material increases during magnetic separation, which is not preferable. Specifically, for example, when the Ca/Si molar ratio is 3.5 or more, the outflow amount of the magnetic powder during magnetic separation exceeds 20% by mass. When the Ca/Si molar ratio is 3.5 or more, a large amount of unreacted slaked lime remains in the phosphorus recovery material at 20.6% by mass or more. Due to the repulsive action of electric charges, the binding force between CSH and magnetic powder is weakened. Therefore, the Ca/Si molar ratio is preferably less than 3.5, more preferably 1.5 or less, in order to suppress the outflow of magnetic powder during magnetic separation. As described above, when the Ca/Si molar ratio is less than 3.5, the content of unreacted slaked lime is 21% by mass or less, preferably less than 20.6% by mass. can be done. Furthermore, when the Ca/Si molar ratio is in the range of 1.0 to 1.5 , the amount of slaked lime contained in the phosphorus recovery material of the present invention is 2% by mass or less, preferably 1.6% by mass or less. , and the amount of outflow of the magnetic powder can be further reduced.

また、リン回収材をリンと炭酸が共存する液に使用したときに、Caと炭酸の反応が進行してCaとリンの反応が抑制されるため、Caが多いとリン回収率が低下する傾向がある。従って、リンと炭酸が共存する液に使用する場合には、該Ca/Siモル比は1.5以下が好ましい。 In addition, when the phosphorus recovery material is used in a liquid in which phosphorus and carbonic acid coexist, the reaction between Ca and carbonic acid proceeds and the reaction between Ca and phosphorus is suppressed. There is Therefore, when used in a liquid in which phosphorus and carbonic acid coexist, the Ca/Si molar ratio is preferably 1.5 or less.

リン回収材の珪酸カルシウム水和物(CSH)の含有量は55質量%~95質量%の範囲が好ましい。珪酸カルシウム水和物(CSH)の含有量が55質量%より少ないとリン回収効果が低下する。一方、珪酸カルシウム水和物(CSH)の含有量が95質量%を上回ると相対的に磁性粉の含有量が少なくなるので磁気分離を行い難くなる。 The content of calcium silicate hydrate (CSH) in the phosphorus recovery material is preferably in the range of 55% by mass to 95% by mass. If the content of calcium silicate hydrate (CSH) is less than 55% by mass, the effect of recovering phosphorus decreases. On the other hand, when the content of calcium silicate hydrate (CSH) exceeds 95% by mass, the magnetic powder content becomes relatively small, making magnetic separation difficult.

本発明のリン回収材は、珪酸カルシウム水和物(CSH)と共に磁性粉を含有する磁気分離用のリン回収材である。磁気分離は、例えば、リンと反応してヒドロキシアパタイト(HAP)を生成したリン回収材を磁気フィルターに通じ、磁気によって該フィルターにリン回収材を吸着させて溶液から分離する方法、あるいは、HAPを生成したリン回収材を磁石に吸着させて溶液から引き上げて分離する方法など、磁気を利用した種々の方法を適用することができる。本発明のリン回収材は、磁気分離を行うことによって、一般的な沈降分離などよりも固液分離時間が短く、処理時間を大幅に短縮することができる。 The phosphorus recovery material of the present invention is a phosphorus recovery material for magnetic separation containing calcium silicate hydrate (CSH) and magnetic powder. Magnetic separation is, for example, a method in which a phosphorus recovery material that has reacted with phosphorus to produce hydroxyapatite (HAP) is passed through a magnetic filter, and the phosphorus recovery material is magnetically adsorbed on the filter to separate it from the solution, or HAP is separated from the solution. Various methods using magnetism can be applied, such as a method of attracting the produced phosphorus recovery material to a magnet and pulling it out of the solution for separation. By magnetically separating the phosphorus recovery material of the present invention, the solid-liquid separation time is shorter than general sedimentation separation, and the treatment time can be greatly shortened.

本発明のリン回収材において、磁性粉の含有量は、Feとして、5質量%~45質量%の範囲が良く、8.8質量%~42質量%の範囲がより好ましい。磁性粉の含有量が5質量%未満であると、固液分離時に十分な磁気効果を得ることができない。一方、磁性粉の含有量が45質量%を超えると、相対的に珪酸カルシウム水和物(CSH)の含有量が少なくなるので、十分なリン回収効果を得ることが難しくなる。 In the phosphorus recovery material of the present invention, the content of the magnetic powder as Fe 2 O 3 is preferably in the range of 5% by mass to 45% by mass, more preferably in the range of 8.8% by mass to 42% by mass. If the magnetic powder content is less than 5% by mass, a sufficient magnetic effect cannot be obtained during solid-liquid separation. On the other hand, if the content of the magnetic powder exceeds 45% by mass, the content of calcium silicate hydrate (CSH) becomes relatively small, making it difficult to obtain a sufficient phosphorus recovery effect.

なお、リン回収材が磁性粉を含むことによって、珪酸カルシウム水和物(CSH)の含有量が相対的に減少するが、CSHに磁性粉が適量含有され分散されていることによって、リンとCSHの反応によって生成したHAPを固液分離する時に、HAPが磁気によって確実に保持されて回収されるので、リン回収率を高めることができる。 The content of calcium silicate hydrate (CSH) is relatively reduced by containing the magnetic powder in the phosphorus recovery material. When the HAP produced by the reaction of (1) is solid-liquid separated, the HAP is reliably retained and recovered by the magnetism, so that the phosphorus recovery rate can be increased.

本発明のリン回収材において、珪酸カルシウム水和物(CSH)と共に磁性粉を含有するとは、磁性粉の分散下でCSHが生成されたものであり、CSHに磁性粉が取り込まれて分散した状態のものである。
In the phosphorus recovery material of the present invention, containing magnetic powder together with calcium silicate hydrate (CSH) means that CSH is generated while magnetic powder is dispersed, and the magnetic powder is taken in and dispersed in CSH. belongs to.

磁性粉の分散下でCSHが生成されたものとは、具体的には、例えば、消石灰または生石灰と磁性粉の混合スラリーに珪酸ナトリウム水溶液を添加して、磁性粉の分散下で、CSHを生成させたものである。CSHが磁性粉の分散下で生成されたものであれば、該CSHの組織中に磁性粉が取り込まれた状態になるので、リンとCSHの反応によって生成したHAPを磁気分離する時に、磁性粉の流出量が格段に抑制される。具体的には、例えば、CSHのCa/Siモル比が1.0以上~1.5以下の範囲で、pH調整せずにCSHを生成させ、リン回収材中に含まれる消石灰の量を2質量%以下にすることによって、磁気分離時の磁性粉の流出量を20質量%以下に抑制することができる。
Specifically, CSH is generated in the presence of dispersed magnetic powder, for example, by adding an aqueous sodium silicate solution to a mixed slurry of slaked lime or quicklime and magnetic powder, and generating CSH in the presence of dispersed magnetic powder. It is what I let you do. If the CSH is produced in the presence of magnetic powder dispersed therein, the magnetic powder will be incorporated into the structure of the CSH. The amount of outflow of is remarkably suppressed. Specifically, for example, when the Ca/Si molar ratio of CSH is in the range of 1.0 or more to 1.5 or less , CSH is generated without pH adjustment, and the amount of slaked lime contained in the phosphorus recovery material is reduced to 2. By setting the amount to 20% by mass or less, the outflow amount of the magnetic powder during magnetic separation can be suppressed to 20% by mass or less.

一方、CSHを生成させた後に磁性粉を混合したものは、CSHの周囲に磁性粉が混在した状態であり、CSHの組織中に磁性粉が取り込まれた状態ではないので、磁気分離時に磁性粉の流出量が多くなる傾向がある。 On the other hand, when CSH is mixed with magnetic powder after generating CSH, the magnetic powder is mixed around CSH, and the magnetic powder is not incorporated into the structure of CSH. outflow tends to increase.

本発明のリン回収材によって回収される沈澱物は、珪酸カルシウム水和物(CSH)と液中のリンとの反応によって生じたヒドロキシアパタイト(HAP)であり、十分な量のリン酸を含むのでリン酸肥料として利用することができる。一般にリン酸肥料として利用するには、副産リン酸肥料の規格上、ク溶性リン酸(C-P)の含有量は15質量%以上であることが求められる。 The sediment recovered by the phosphorus recovery material of the present invention is hydroxyapatite (HAP) produced by the reaction between calcium silicate hydrate (CSH) and phosphorus in the liquid, and contains a sufficient amount of phosphoric acid. It can be used as a phosphate fertilizer. Generally, when used as a phosphate fertilizer, the standard for by-product phosphate fertilizers requires that the content of citric acid (CP 2 O 5 ) be 15% by mass or more.

本発明のリン回収材において、磁性粉の含有量が多くなると、相対的に珪酸カルシウム水和物(CSH)の含有量が少なくなるので、リン回収物に含まれるク溶性リン酸含有量が低下する。概ね、磁性粉の含有量が40質量%を超えると、リン回収物のク溶性リン酸の含有量が15質量%を下回る傾向がある。従って、リン回収物をリン酸肥料として利用する場合には、リン回収材に含まれる磁性粉の量は40質量%以下が好ましい。 In the phosphorus recovery material of the present invention, when the content of magnetic powder increases, the content of calcium silicate hydrate (CSH) relatively decreases, so the content of citric acid phosphoric acid contained in the recovered phosphorus decreases. do. In general, when the magnetic powder content exceeds 40% by mass, the citric acid content of the recovered phosphorus tends to fall below 15% by mass. Therefore, when the recovered phosphorus material is used as a phosphate fertilizer, the amount of magnetic powder contained in the recovered phosphorus material is preferably 40% by mass or less.

本発明のリン回収材に含まれる磁性粉は、マグネタイト等の磁性鉄酸化物、ニッケル亜鉛フェライト等の磁性鉄合金などである。これらの磁性粉は市販品を用いることができる。磁性粉の粒子径は20μm以下が良く、5μm以下がより好ましい。磁性粉の粒子径が150μmより大きいと、リン回収材全体に均一に分散し難くなるので好ましくない。 Magnetic powders contained in the phosphorus recovery material of the present invention include magnetic iron oxides such as magnetite, magnetic iron alloys such as nickel-zinc ferrite, and the like. Commercial products can be used for these magnetic powders. The particle size of the magnetic powder is preferably 20 μm or less, more preferably 5 μm or less. If the particle size of the magnetic powder is larger than 150 μm, it will be difficult to disperse uniformly throughout the phosphorus recovery material, which is not preferable.

本発明のリン回収材は、遊離の二酸化ケイ素の含有量は20質量%以下であり、好ましくは5質量%以下である。特許文献3には、珪酸カルシウム水和物(CSH)と共に二酸化ケイ素を含有するリン回収材に磁性粉末を加えたリン回収材が記載されており、このリン回収材は、リンとの反応によって生成するHAPの表面積を二酸化ケイ素の凹凸構造や多孔質構造によって広げてリン回収効果を高めることを意図しているが、この二酸化ケイ素はHAPの形成には直接には関与しないので、二酸化ケイ素の含有量が多いと、リン回収物中のリンの含量が低下する。 The phosphorus recovery material of the present invention has a free silicon dioxide content of 20% by mass or less, preferably 5% by mass or less. Patent Document 3 describes a phosphorus recovery material in which magnetic powder is added to a phosphorus recovery material containing silicon dioxide together with calcium silicate hydrate (CSH), and this phosphorus recovery material is produced by a reaction with phosphorus. It is intended to increase the phosphorus recovery effect by expanding the surface area of HAP by the uneven structure and porous structure of silicon dioxide, but since this silicon dioxide is not directly involved in the formation of HAP, Higher amounts reduce the phosphorus content in the phosphorus recovery.

例えば、特許文献3のリン回収材は、珪酸塩のアルカリ性水溶液(珪酸ナトリウム水溶液等)にカルシウムを添加し、この前後または同時に磁性粉を添加し、塩酸を添加してpHを調整し、珪酸カルシウム水和物(CSH)を生成させる方法によって製造されている。このようなpH調整によって製造されるリン回収材の二酸化ケイ素含有量は概ね23質量%~28質量%であり、リン回収材全量の約1/4に及ぶ多量の二酸化ケイ素が含まれている。この二酸化ケイ素はリンと反応してHAPを生成する成分ではないので、多量の二酸化ケイ素が含まれていると回収物のリンの含量が低下する。 For example, in the phosphorus recovery material of Patent Document 3, calcium is added to an alkaline aqueous solution of silicate (sodium silicate aqueous solution, etc.), magnetic powder is added before or after or at the same time, hydrochloric acid is added to adjust the pH, and calcium silicate is added. It is manufactured by a process that produces hydrates (CSH). The silicon dioxide content of the phosphorus recovery material produced by such pH adjustment is approximately 23% by mass to 28% by mass, and contains a large amount of silicon dioxide, about 1/4 of the total amount of the phosphorus recovery material. Since this silicon dioxide is not a component that reacts with phosphorus to form HAP, a large amount of silicon dioxide reduces the phosphorus content of the recovered material.

本発明のリン回収材は、珪酸ナトリウムとカルシウムの反応によって珪酸カルシウム水和物(CSH)を生成させる際に、塩酸添加などのpH調整を行わず、遊離の二酸化ケイ素をできるだけ生成させない。従って、本発明のリン回収材は遊離の二酸化ケイ素の含有量が少ない。例えば、本発明のリン回収材は、CSHのCa/Siモル比が0.8ではSiがCaよりやや多いので、遊離の二酸化ケイ素の含有量が20質量%になる場合があるが、CSHのCa/Siモル比が1.0~1.5以下の範囲では、遊離の二酸化ケイ素の含有量は概ね5質量%以下である。
The phosphorus recovery material of the present invention produces as little free silicon dioxide as possible without pH adjustment such as the addition of hydrochloric acid when producing calcium silicate hydrate (CSH) by the reaction of sodium silicate and calcium. Therefore, the phosphorus recovery material of the present invention has a low content of free silicon dioxide. For example, in the phosphorus recovery material of the present invention, when the Ca/Si molar ratio of CSH is 0.8, Si is slightly larger than Ca, so the content of free silicon dioxide may be 20% by mass. When the Ca/Si molar ratio is in the range of 1.0 to 1.5 or less , the content of free silicon dioxide is generally 5 mass % or less.

〔製造方法〕
本発明のリン回収材は、消石灰または生石灰と磁性粉の混合スラリーに珪酸ナトリウム溶液を添加し、好ましくは珪酸ナトリウム溶液を少量ずつ添加し、pH調整を行わずに、珪酸カルシウム水和物(CSH)を生成させることによって製造することができる。この方法によれば、遊離の二酸化ケイ素量が格段に少なく、磁性粉が均一に分散したリン回収材を製造することができる。
〔Production method〕
The phosphorus recovery material of the present invention is obtained by adding a sodium silicate solution to a mixed slurry of slaked lime or quicklime and magnetic powder, preferably by adding the sodium silicate solution little by little, without adjusting the pH, and producing calcium silicate hydrate (CSH ) can be produced by generating According to this method, it is possible to produce a phosphorus recovery material in which the amount of free silicon dioxide is remarkably small and the magnetic powder is uniformly dispersed.

さらに、消石灰または生石灰と磁性粉の混合スラリーに珪酸ナトリウム溶液を添加して珪酸カルシウム水和物を生成させる方法によれば、磁性粉の分散下で珪酸カルシウム水和物が生成され、該珪酸カルシウム水和物の組織中に磁性粉が取り込まれた状態になるので、磁気分離時に磁性粉の流出量が格段に少ないリン回収材を得ることができる。 Furthermore, according to the method of adding a sodium silicate solution to a mixed slurry of slaked lime or quicklime and magnetic powder to form calcium silicate hydrate, the calcium silicate hydrate is produced while the magnetic powder is dispersed. Since the magnetic powder is incorporated into the structure of the hydrate, it is possible to obtain a phosphorus recovery material in which the outflow amount of the magnetic powder during magnetic separation is remarkably small.

特許文献3に記載されているように、上記石灰スラリーに珪酸ナトリウム溶液を添加し、その添加前後に磁性粉を加える方法では、磁性粉が十分に分散しないうちに珪酸カルシウム水和物(CSH)が生成し、磁性粉が珪酸カルシウム水和物(CSH)に十分に取り込まれた状態にならないので、磁気分離時に磁性粉の流出量が多くなる傾向がある。 As described in Patent Document 3, in a method in which a sodium silicate solution is added to the lime slurry and magnetic powder is added before and after the addition, calcium silicate hydrate (CSH) is formed before the magnetic powder is sufficiently dispersed. is generated, and the magnetic powder is not sufficiently incorporated into the calcium silicate hydrate (CSH), so the outflow of the magnetic powder tends to increase during magnetic separation.

また、特許文献3の製造方法では、珪酸塩のアルカリ性水溶液に消石灰等を添加した後に、塩酸を添加してpH5~12、好ましくはpH10前後に調整して二酸化ケイ素を生成させているが、このようなpH調整を行うと遊離の二酸化ケイ素量が多くなるので、本発明の製造方法ではこのようなpH調整を行わない。本発明の製造方法では、消石灰または生石灰と磁性粉の混合スラリーに珪酸ナトリウム溶液を添加し、好ましくは珪酸ナトリウム溶液を少量ずつ添加し、pH調整を行わずに珪酸カルシウム水和物を生成させることによって、遊離の二酸化ケイ素量が5質量%未満のリン回収材を得ることができる。 In addition, in the production method of Patent Document 3, after adding slaked lime or the like to an alkaline aqueous solution of silicate, hydrochloric acid is added to adjust the pH to 5 to 12, preferably around 10, to generate silicon dioxide. Since such pH adjustment increases the amount of free silicon dioxide, such pH adjustment is not performed in the production method of the present invention. In the production method of the present invention, a sodium silicate solution is added to a mixed slurry of slaked lime or quicklime and magnetic powder, preferably the sodium silicate solution is added little by little to produce calcium silicate hydrate without adjusting the pH. It is possible to obtain a phosphorus recovery material having a free silicon dioxide content of less than 5% by mass.

本発明のリン回収材は、珪酸カルシウム水和物(CSH)を主成分とし、該CSHはリンとの反応性が良いのでリン回収率を高めることができる。具体的には、例えば、50質量%以上、好ましくは55質量%以上のリン回収率を得ることができる。 The phosphorus recovery material of the present invention contains calcium silicate hydrate (CSH) as a main component, and the CSH has good reactivity with phosphorus, so that the phosphorus recovery rate can be increased. Specifically, for example, a phosphorus recovery rate of 50% by mass or more, preferably 55% by mass or more can be obtained.

本発明のリン回収材は、珪酸カルシウム水和物(CSH)と共に磁性粉を含む磁気分離用のリン回収材であり、好ましくは磁性粉を5質量%~45質量%、さらに好ましくは8.8質量%~42質量%含む。本発明のリン回収材は磁気分離を行うことによって、一般的な沈降分離に比べて処理時間を大幅に短縮することができる。 The phosphorus recovery material of the present invention is a phosphorus recovery material for magnetic separation containing calcium silicate hydrate (CSH) and magnetic powder. Contains from mass % to 42 mass %. By performing magnetic separation on the phosphorus recovery material of the present invention, the processing time can be greatly reduced compared to general sedimentation separation.

また、本発明のリン回収材は、珪酸カルシウム水和物(CSH)が磁性粉の分散下で、pH調整せずに生成されたものであるので、該CSHのCa/Siモル比が1.0以上~1.5以下の範囲で、リン回収材中に含まれる消石灰の量は2質量%以下になり、磁気分離時の磁性粉の流出率を20質量%以下に抑制することができる。
In the phosphorus recovery material of the present invention, calcium silicate hydrate (CSH) is produced in the presence of magnetic powder without adjusting the pH . Within the range of 0 to 1.5 , the amount of slaked lime contained in the phosphorus recovery material is 2% by mass or less, and the outflow rate of magnetic powder during magnetic separation can be suppressed to 20% by mass or less.

また、本発明のリン回収材は、遊離の二酸化ケイ素の含有量が格段に少なく、具体的には、遊離の二酸化ケイ素の含有量が5質量%以下であるので、相対的に珪酸カルシウム水和物(CSH)の含有量が多くなり、リン回収効果を高めることができる。
In addition, the phosphorus recovery material of the present invention has a remarkably low free silicon dioxide content, specifically, a free silicon dioxide content of 5% by mass or less, so relatively calcium silicate hydration The content of substances (CSH) increases, and the phosphorus recovery effect can be enhanced.

本発明のリン回収材を用いたリン回収物はク溶性リン酸の含有量が高いので、リン酸肥料として利用することができる。 Since the phosphorus recovery material using the phosphorus recovery material of the present invention has a high citric acid content, it can be used as a phosphate fertilizer.

本発明の製造方法は、消石灰または生石灰と磁性粉の混合粉末スラリーに珪酸ナトリウム溶液を添加した後に、pH調整を行わないので処理操作が容易であり、また遊離の二酸化ケイ素の生成する量が少ない。 The production method of the present invention does not adjust the pH after adding the sodium silicate solution to the mixed powder slurry of slaked lime or quicklime and magnetic powder, so the processing operation is easy and the amount of free silicon dioxide produced is small. .

磁性粉添加量とリン回収率の関係を示すグラフ。A graph showing the relationship between the amount of magnetic powder added and the phosphorus recovery rate. 磁性粉添加量と磁性粉流出率の関係を示すグラフ。A graph showing the relationship between the amount of magnetic powder added and the outflow rate of magnetic powder. Ca/Siモル比と磁性粉流出率との関係を示すグラフ。A graph showing the relationship between the Ca/Si molar ratio and the outflow rate of the magnetic powder.

以下、本発明の実施例を示す。なお、添加量ないし含有量の%は質量%である。
〔実施例1:珪酸ナトリウム溶液の調製〕
非晶質シリカを水酸化ナトリウム水溶液に溶解させて珪酸ナトリウム溶液を製造した。表1に珪酸ナトリウム溶液製造の条件を示す。表1に示す量のNaOHと非晶質シリカを水に混合して懸濁液にし、この液量が1kgになるようにし、この懸濁液をウォーターバスにて80℃に加熱し、常圧下、1時間反応させ、水準1から水準4の珪酸ナトリウム溶液を調製した。なお、非晶質シリカはSiOを47.7質量%、水分を49.7質量%含むものを使用した。
水準1の溶液は1時間の加熱では完全な透明にならず、非常に高い粘性を示した。なお、1.5時間加熱したところ完全に溶解した。水準2では80℃1時間の条件で完全に溶解したが、粘性が非常に高かった。水準3と水準4ではどちらも完全に溶解し、粘性も低かった。水準1と水準2の溶液はSi/Naモル比が高いのでCSH合成の珪酸源としては有利であるが、粘性が高く取り扱い難いので、本発明のリン回収材の原料として水準3の溶液を用いた。
Examples of the present invention are shown below. In addition, % of addition amount or content is mass %.
[Example 1: Preparation of sodium silicate solution]
A sodium silicate solution was prepared by dissolving amorphous silica in an aqueous sodium hydroxide solution. Table 1 shows the conditions for producing the sodium silicate solution. The amounts of NaOH and amorphous silica shown in Table 1 were mixed with water to form a suspension, and the liquid volume was adjusted to 1 kg. , reacted for 1 hour to prepare level 1 to level 4 sodium silicate solutions. The amorphous silica used contained 47.7% by mass of SiO 2 and 49.7% by mass of water.
The Level 1 solution did not become completely clear after heating for 1 hour and was very viscous. It was completely dissolved when heated for 1.5 hours. Level 2 was completely dissolved at 80°C for 1 hour, but the viscosity was very high. Levels 3 and 4 both dissolved completely and had low viscosity. The solutions of levels 1 and 2 have a high Si/Na molar ratio and are therefore advantageous as silicic acid sources for CSH synthesis. board.

Figure 0007165538000001
Figure 0007165538000001

〔実施例2:リン回収材A1~A6の製造〕
消石灰(薬仙石灰社製、JIS R 9001:2006 特号消石灰に準拠)と磁性粉(富士フィルム和光純薬社製品マグネタイト:Fe)を混合してスラリーにした。次に、実施例1で製造した水準3の珪酸ナトリウム溶液(NaSiO)67.5gに水96gを添加して49.5mg-SiO/Lの珪酸ナトリウム溶液に希釈したものを用いた。この希釈した珪酸ナトリウム溶液を、最終的にCa/Siモル比が1になるように、常温下で、消石灰と磁性粉の混合スラリーに少量ずつ3分間かけて添加し、添加開始から1時間反応させた。この間、反応槽内が均一になるよう撹拌翼を用いて撹拌し続けた。このようにして、磁性粉の分散下でCSHが生成したm-CSH(Magnetic CSH:磁性CSHと云う)からなるリン回収材を製造した。磁性粉の含有量を変えたリン回収材(A1~A6)を製造した。これらの製造条件を表2A1~A6に示す。
[Example 2: Production of phosphorus recovery materials A1 to A6]
Slaked lime (manufactured by Yakusen Lime Co., Ltd., conforming to JIS R 9001:2006 special issue) and magnetic powder (magnetite: Fe 3 O 4 manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were mixed to form a slurry. Next, 96 g of water was added to 67.5 g of the sodium silicate solution (Na 2 SiO 3 ) of level 3 prepared in Example 1 to dilute it to a sodium silicate solution of 49.5 mg-SiO 2 /L. . This diluted sodium silicate solution was added little by little over 3 minutes at room temperature to the mixed slurry of slaked lime and magnetic powder so that the Ca/Si molar ratio was finally 1, and the reaction was continued for 1 hour from the start of the addition. let me During this time, stirring was continued using a stirring blade so that the inside of the reaction vessel was uniform. Thus, a phosphorus recovery material comprising m-CSH (Magnetic CSH: Magnetic CSH) in which CSH was generated in the presence of magnetic powder was produced. Phosphorus recovery materials (A1 to A6) with different contents of magnetic powder were produced. These production conditions are shown in Tables 2A1-A6.

〔実施例3:リン回収材A7~A11の製造〕
消石灰と磁性粉の混合スラリーの磁性粉量を5gにし、CSHのCa/Siモル比が0.8~3.5になるように、珪酸ナトリウム溶液量とこの希釈水量などを調整した以外は実施例2と同様にして、磁性粉の分散下でCSHが生成した磁性CSH(m-CSH)からなるリン回収材(A7~A11)を製造した。これらの製造条件を表2A7~A11に示す。なお、消石灰の含有率は、セメント協会標準試験方法(JCAS、1997)の遊離酸化カルシウムの定量方法に定められた方法(グリセリン-アルコール法(B法))によって求めた。この際、分析に使用したサンプルはスラリー50mLを吸引ろ過し、スラリーと同量(50mL)のエタノールで洗浄した後、150℃で3時間乾燥させ、良く粉砕して試験に供した。各リン回収材の消石灰含有率は表2A7~A11のほかCSHのCa/Siモル比が1であるA4に示す。
[Example 3: Production of phosphorus recovery materials A7 to A11]
The amount of magnetic powder in the mixed slurry of slaked lime and magnetic powder was 5 g, and the amount of sodium silicate solution and the amount of dilution water were adjusted so that the Ca/Si molar ratio of CSH was 0.8 to 3.5. In the same manner as in Example 2, phosphorus recovery materials (A7 to A11) composed of magnetic CSH (m-CSH) produced by dispersing CSH in magnetic powder were produced. These production conditions are shown in Tables 2A7-A11. The content of slaked lime was obtained by the method (glycerin-alcohol method (method B)) defined in the method for determining free calcium oxide in the standard test method of the Japan Cement Association (JCAS, 1997). At this time, 50 mL of the slurry was suction-filtered for the sample used for the analysis, washed with the same amount of ethanol (50 mL) as the slurry, dried at 150° C. for 3 hours, pulverized well, and subjected to the test. The slaked lime content of each phosphorus recovery material is shown in Table 2A7-A11 and A4 where the Ca/Si molar ratio of CSH is 1.

比較例:リン回収材B1~B8の製造〕
実施例2と同様の消石灰を用い、予め磁性粉を含まないスラリーを用いた以外は実施例2、3と同様にしてCSHを生成させた後に、所定量の磁性粉を添加して磁性粉混合CSHからなるリン回収材(B2~B8)を製造した。これらの製造条件を表2に示す。なお、Ca/Siモル比1のCSHについて、磁性粉を混合しない試料をB1として表2に示した。
[ Comparative Example : Production of phosphorus recovery materials B1 to B8]
After generating CSH in the same manner as in Examples 2 and 3 except that the same slaked lime as in Example 2 was used and a slurry containing no magnetic powder was used in advance, a predetermined amount of magnetic powder was added and the magnetic powder was mixed. Phosphorus recovery materials (B2 to B8) made of CSH were produced. These manufacturing conditions are shown in Table 2. Table 2 shows a sample of CSH with a Ca/Si molar ratio of 1, which was not mixed with magnetic powder, as B1.

〔比較例:C1、C2〕
特許文献3の実施例2、5に基づき、珪酸ナトリウム水溶液(水ガラス)を原料とし、本実施例と同様の富士フィルム和光純薬社製マグネタイト(Fe)を使用し、以下の手順で磁性粉を含むリン回収材を作成した。水ガラスに、1.6NのNaOH水溶液と磁性粉を添加し、よく撹拌後消石灰を加え、500rpmで3分間よく撹拌した。その後、2.9mol/L塩酸を、pH12.5までは10mL/min、pH10.5までは1~2mL/minの速度で添加してpH調整し、最終的にpH10.5±1にした。このようにして磁性粉量の異なるリン回収材(C1、C2)を製造した。製造条件を表2C1、C2に示す。
[Comparative Examples: C1, C2]
Based on Examples 2 and 5 of Patent Document 3, an aqueous sodium silicate solution (water glass) was used as a raw material, and the same magnetite (Fe 3 O 4 ) manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. as in this example was used, and the following procedures were performed. prepared a phosphorus recovery material containing magnetic powder. A 1.6N NaOH aqueous solution and magnetic powder were added to water glass, and after stirring well, slaked lime was added and the mixture was stirred well at 500 rpm for 3 minutes. Thereafter, 2.9 mol/L hydrochloric acid was added at a rate of 10 mL/min up to pH 12.5 and 1 to 2 mL/min up to pH 10.5 to adjust the pH to finally pH 10.5±1. In this manner, phosphorus recovery materials (C1 and C2) having different amounts of magnetic powder were produced. Production conditions are shown in Tables 2C1 and 2C2.

〔実施例5:遊離SiO量の測定〕
表2のA2、A4、A6、A7、A10、B1、B3、B4、B7およびC1,C2の各リン回収材について、遊離二酸化ケイ素の含有量を以下の手順に従って測定した。
リン回収材に2M塩酸を加えて二酸化ケイ素を溶出させた。なお、塩酸をそのまま添加するとシリカゲルが析出してしまうので、乾燥させたリン回収材を210μm全通まで粉砕し、これらのサンプル0.1gに、おのおのCa/Siモル比が1.5になるようにCaCl・2HOを添加し、少量の水でスラリー状にした。その後あらかじめ調製した2M塩酸200mLのうち約半量で上記スラリーを200mLビーカーへ洗い込み、残りの2M塩酸を加え、10分間撹拌した。撹拌後直ちに濾過吸引し(アドバンテック東洋社No.5C濾紙を使用)、濾紙を白金るつぼへ入れて灰化し、1000℃での強熱後重量を測定した。強熱後重量の測定後、(1+5)硫酸を1~2滴下して白金るつぼ中の固形分を潤した後に、フッ化水素酸を5mL加え、加熱・蒸発させた後、再度1000℃で強熱して重量を測定した。遊離二酸化ケイ素の含有率(%)は、〔(強熱後重量-フッ化水素酸添加後の強熱後重量)/サンプル取り量〕×100の式によって求めた。表2に結果を示す。
[Example 5: Measurement of the amount of free SiO2 ]
For each of the phosphorus recovery materials A2, A4, A6, A7, A10, B1, B3, B4, B7 and C1, C2 in Table 2, the content of free silicon dioxide was measured according to the following procedure.
2M hydrochloric acid was added to the phosphorus recovery material to elute silicon dioxide. If hydrochloric acid is added as it is, silica gel will precipitate. CaCl 2 .2H 2 O was added to the solution and slurried with a small amount of water. Then, the slurry was washed into a 200 mL beaker with about half of 200 mL of 2M hydrochloric acid prepared in advance, and the remaining 2M hydrochloric acid was added and stirred for 10 minutes. Immediately after stirring, the mixture was filtered and sucked (Advantech Toyo Co., Ltd. No. 5C filter paper was used), the filter paper was placed in a platinum crucible and incinerated, and the weight was measured after ignition at 1000°C. After igniting and measuring the weight, add 1 to 2 drops of (1+5) sulfuric acid to moisten the solid content in the platinum crucible, add 5 mL of hydrofluoric acid, heat and evaporate, and heat again at 1000 ° C. It was heated and weighed. The content (%) of free silicon dioxide was determined by the formula: [(Weight after ignition--Weight after ignition after addition of hydrofluoric acid)/amount of sample taken].times.100. Table 2 shows the results.

Figure 0007165538000002
Figure 0007165538000002

〔実施例6:リン回収試験〕
模擬排水(KHPO:0.392g/L、NHCl:1.89g/L)5Lを用い、Ca/Pモル比が2になるように各リン回収材(A1~A11、B1~B8、C1,C2)を該模擬排水に添加した。また、比較試料として、消石灰単独と、消石灰および磁性粉の混合試料を該模擬排水に添加してリン回収試験を行った。消石灰単独、および消石灰と磁性粉の混合試料は、少量の水でよく撹拌してスラリー状にしてから模擬排水へ添加した。添加後、常温で1時間反応させた。反応後、磁気分離を行い、リン除去率、リン回収率を調べた。これらの結果を表3に示す。また、磁性粉添加量とリン回収率の関係を図1に示した。同様に、磁性粉添加量と磁性粉流出率の関係を図2に示した。また、Ca/Siモル比と磁性粉流出率との関係を図3に示した。
[Example 6: Phosphorus recovery test]
Using 5 L of simulated waste water (KH 2 PO 4 : 0.392 g/L, NH 4 Cl: 1.89 g/L), each phosphorus recovery material (A1 to A11, B1 to B8, C1, C2) were added to the simulated effluent. As comparative samples, a phosphorus recovery test was conducted by adding slaked lime alone and a mixed sample of slaked lime and magnetic powder to the simulated waste water. Slaked lime alone and mixed samples of slaked lime and magnetic powder were thoroughly stirred with a small amount of water to form a slurry, and then added to the simulated waste water. After the addition, the mixture was allowed to react at room temperature for 1 hour. After the reaction, magnetic separation was performed to examine the phosphorus removal rate and phosphorus recovery rate. These results are shown in Table 3. FIG. 1 shows the relationship between the amount of magnetic powder added and the phosphorus recovery rate. Similarly, the relationship between the amount of magnetic powder added and the outflow rate of magnetic powder is shown in FIG. FIG. 3 shows the relationship between the Ca/Si molar ratio and the outflow rate of the magnetic powder.

磁気分離は、この溶液中に厚さ0.04mmのポリエチレン製の袋に入れた直径30mm厚さ15mmの円柱状ネオジム磁石(最大磁束密度0.5T)を入れて約20秒間浸しつつゆっくり動かして液中から引き上げることによって行った。磁性粉を含む試料についてこの操作を3回繰り返した。引き上げた回収物は濾紙上に移してから吸引ろ過し、その後100℃で恒量になるまで乾燥させた。
なお、磁性粉末を含まない比較試料(B1、D1)は磁気分離ができないため、リン回収反応後に澱物を吸引ろ過し、100℃で恒量になるまで乾燥させた。
Magnetic separation was carried out by putting a cylindrical neodymium magnet with a diameter of 30 mm and a thickness of 15 mm (maximum magnetic flux density of 0.5 T) in a polyethylene bag with a thickness of 0.04 mm into this solution and moving it slowly while immersing it for about 20 seconds. It was carried out by pulling up from the liquid. This operation was repeated three times for samples containing magnetic powder. The collected material was transferred onto a filter paper, filtered by suction, and then dried at 100° C. until it had a constant weight.
Since the comparative samples (B1 and D1) containing no magnetic powder could not be subjected to magnetic separation, the sediment was filtered by suction after the phosphorus recovery reaction, and dried at 100° C. to a constant weight.

懸濁物質(SS)およびリン回収率を以下のようにして求めた。磁気分離後の液(以下、流出水)を予め均一に約250~300mlを2つのビーカーに分取し、1つは懸濁物質(SS)を分析し、その後に磁性粉の分析に供した。もう片方の分取液には(1+1)塩酸を添加してpHを1にし、これを上記No.5B濾紙でろ過してからリン濃度(流出水中全リン量)を求め、(1-流出水中全リン量/初期リン量)×100の式によってP回収率(%)を求めた。 Suspended solids (SS) and phosphorus recovery were determined as follows. About 250 to 300 ml of the liquid after magnetic separation (hereinafter referred to as effluent) was uniformly divided into two beakers. . Add (1 + 1) hydrochloric acid to the other fractionated liquid to adjust the pH to 1, filter this with the above No. 5B filter paper, determine the phosphorus concentration (total amount of phosphorus in the effluent), The P recovery rate (%) was determined by the formula (total amount of phosphorus/initial amount of phosphorus)×100.

リン除去率は、磁気分離を行った後の流出水を上記No.5B濾紙で吸引ろ過し、その濾液中のリンを分析し、(1-濾液中リン量/初期リン量)×100の式によってP除去率(%)を求めた。
磁性粉の漏れの指標となる磁性粉回収率(%)は、(1-流出水中磁性粉濃度/初期磁性粉濃度)×100の式によって求めた。なお、初期磁性粉濃度とは磁気分離前の磁性粉濃度である。
The phosphorus removal rate was obtained by suction-filtrating the effluent water after magnetic separation with the above No. 5B filter paper, analyzing the phosphorus in the filtrate, and calculating the formula (1 - amount of phosphorus in filtrate/initial amount of phosphorus) x 100. The P removal rate (%) was determined by
The magnetic powder recovery rate (%), which is an index of magnetic powder leakage, was obtained by the formula (1-magnetic powder concentration in outflow water/initial magnetic powder concentration)×100. The initial magnetic powder concentration is the magnetic powder concentration before magnetic separation.

各成分の分析方法として、吸引濾過による回収物および磁気分離による回収物のリン酸全量(T-P)とク溶性リン酸(C-P)は、それぞれ肥料分析法で規定されるバナドモリブデン酸アンモニウム法により分析した。 As a method for analyzing each component, the total amount of phosphoric acid (T-P 2 O 5 ) and citric acid (C-P 2 O 5 ) in the material collected by suction filtration and the material collected by magnetic separation were analyzed by the fertilizer analysis method. Analyzed by the prescribed ammonium vanadomolybdate method.

リン除去率を求めるための吸引濾過後の濾液および流出水中のリンについては規格(JIS K 0102「工場排水試験方法」)に規定されるモリブデン青吸光光度法に準じて分析し、流出水中SS(懸濁物質)は規格(JIS K 0102「工場排水試験方法」)に規定される懸濁物質について分析した。磁性粉濃度は鉄の溶存態鉄をゼロとして、SS分析後の懸濁成分を王水により分解後、その希釈液を規格(JIS K 0102「工場排水試験方法」)に規定されるFeについてフレーム原子吸光法によって分析した。 Phosphorus in the filtrate after suction filtration to determine the phosphorus removal rate and in the effluent water was analyzed according to the molybdenum blue spectrophotometry method specified in the standard (JIS K 0102 "Factory wastewater test method"), and the effluent water SS ( Suspended solids) was analyzed for suspended solids specified in the standard (JIS K 0102 "Factory wastewater test method"). Regarding the magnetic powder concentration, assuming that the dissolved iron in iron is zero, the suspended components after the SS analysis are decomposed with aqua regia, and the diluted solution is subjected to the Fe frame specified in the standard (JIS K 0102 "Factory wastewater test method"). Analyzed by atomic absorption spectroscopy.

Figure 0007165538000003
Figure 0007165538000003

表2および表3に示すように、本発明のリン回収材(A3~A6、A8~A10)は、CSHのCa/Siモル比が1.0以上~1.5以下の範囲で、遊離の二酸化ケイ素の含有量が5質量%以下であり、リン回収率が50%以上、好ましくは55%以上である。一方、比較試料C1、C2は、遊離二酸化ケイ素含有量が28.5質量%、23.5質量%であり、何れも20質量%を上回り、リン回収率は30%に達しない。
As shown in Tables 2 and 3, the phosphorus recovery materials ( A3 to A6, A8 to A10 ) of the present invention have free The silicon dioxide content is 5% by mass or less, and the phosphorus recovery rate is 50% or more, preferably 55% or more. On the other hand, the free silicon dioxide contents of Comparative Samples C1 and C2 were 28.5% by mass and 23.5% by mass, both exceeding 20% by mass, and the phosphorus recovery rate did not reach 30%.

また、表2および表3に示すように、リン回収材は、CSHのCa/Siモル比が0.8以上~3.5未満の範囲であれば、磁気分離時の磁性粉の流出量が35%未満であるが、CSHが磁性粉の分散下で生成されたものであって、該CSHのCa/Siモル比が1.0以上~1.5以下の範囲では、磁性粉の含有率が8質量%以上(A3~A10は8.8質量%以上)において、磁気分離時の磁性粉の流出率は20%以下に抑制されている。
Further, as shown in Tables 2 and 3, when the Ca/Si molar ratio of CSH is in the range of 0.8 or more to less than 3.5, the outflow amount of magnetic powder during magnetic separation is Although it is less than 35%, if the CSH is generated in the presence of magnetic powder and the Ca/Si molar ratio of the CSH is in the range of 1.0 or more to 1.5 or less, the content of the magnetic powder is 8% by mass or more (8.8% by mass or more for A3 to A10) , the outflow rate of the magnetic powder during magnetic separation is suppressed to 20% or less.

本発明のリン回収材は、85.9%のリン回収率を最大として、磁性粉の含有量が比較試料D2~D4に比べて明らかに少ない量でも高いリン回収率を示している。比較試料D2~D4では磁性粉に吸着した僅かなリン回収物が引き上げられているだけで、表3に示したように、流出水中のSS量が多く、リン回収効率が非常に低く、磁気分離によるメリットが少ない。本発明の試料A2~A10では磁性粉の含有量が一番少ない試料A2でも流出水中のSS量は比較試料D2の約5割程度であって格段に低く、しかも試料A2のリン回収率は50%であり、概ねリンの半分が回収されている。このように、本発明のリン回収材は、比較試料D2~D4よりもはるかに高い磁気分離効果を有している。 The phosphorus recovery material of the present invention has a maximum phosphorus recovery rate of 85.9%, and exhibits a high phosphorus recovery rate even when the magnetic powder content is clearly lower than that of the comparative samples D2 to D4. In Comparative Samples D2 to D4, only a small amount of recovered phosphorus adsorbed on the magnetic powder was pulled up. There is little benefit from Among Samples A2 to A10 of the present invention, even Sample A2, which has the lowest magnetic powder content, has a remarkably low SS content in the outflow water, which is about 50% of that of Comparative Sample D2. %, and roughly half of the phosphorus is recovered. Thus, the phosphorus recovery material of the present invention has a much higher magnetic separation effect than Comparative Samples D2-D4.

表3に示すように、回収物の全リン酸量(T-P)、ク溶性リン酸量(C-P)、ク溶性リン酸量と全リン酸量の比(C/T-P)について、磁性粉含有率の高いA6を除く本発明の試料A3~A5のC-Pは、肥料取締法で定められた副産りん酸肥料の規格15.0%以上を満足している。

As shown in Table 3, the total amount of phosphoric acid (T-P 2 O 5 ), the amount of citric acid (C-P 2 O 5 ), and the ratio of the amount of citric acid to the total amount of phosphoric acid ( C/T-P), the C-P 2 O 5 of samples A3 to A5 of the present invention, excluding A6, which has a high magnetic powder content, is 15.0, the standard for by-product phosphate fertilizers stipulated by the Fertilizer Regulation Law. % or more satisfied.

表3および図2に示すように、本発明のリン回収材は、流出水中の磁性粉濃度はA6を除いては20mg/L未満と低く、大きく変化しない。一方、比較試料D2~D4は磁性粉量が多いと流出水中の磁性粉濃度も上昇する。このように、本発明の磁性粉を含有するリン回収材は、消石灰を用いた比較試料よりも磁気分離性能が良いので、リン回収率が高い。 As shown in Table 3 and FIG. 2, the magnetic powder concentration in the effluent of the phosphorus recovery material of the present invention is as low as less than 20 mg/L, except for A6, and does not change significantly. On the other hand, in Comparative Samples D2 to D4, when the amount of magnetic powder is large, the concentration of magnetic powder in the outflow water also increases. As described above, the phosphorus recovery material containing the magnetic powder of the present invention has better magnetic separation performance than the comparative sample using slaked lime, so that the phosphorus recovery rate is high.

また、表3および図3に示すように、CSHのCa/Siモル比が0.8~1.5の範囲では流出水中のSS量が49.5mg/L~275mg/Lであるのに対して、Ca/Siモル比が3.5では流出水中のSS量が356mg/L~402mg/Lであり、約7倍~約2倍に急激に増加している。流出水中のSSは主に磁性粉であり、CSHのCa/Siモル比を0.8~1.5の範囲に制御することによって、磁性粉の流出量を大幅に抑制することができる。 Also, as shown in Table 3 and FIG. 3, when the Ca/Si molar ratio of CSH is in the range of 0.8 to 1.5, the amount of SS in the effluent is 49.5 mg/L to 275 mg/L. Therefore, when the Ca/Si molar ratio is 3.5, the amount of SS in the effluent is 356 mg/L to 402 mg/L, which is a sharp increase of about 7 to about 2 times. The SS in the effluent is mainly magnetic powder, and by controlling the Ca/Si molar ratio of CSH in the range of 0.8 to 1.5, the outflow of magnetic powder can be greatly suppressed.

〔固液分離時間の比較〕
実施例6のリン回収試験において、A1~A11のリン回収材の磁気分離に要した時間と、B1の沈降分離に要した時間、およびB1の吸引濾過に要した時間を比較した。A1~A11のリン回収材の磁気分離は、実施例6に示したように、円柱状ネオジム磁石を反応後の溶液に入れて約20秒間浸して液中から引き上げる操作を3回繰り返すことによって行っており、この操作(20秒×3回=1分)を磁気分離に要する時間とした。一方、B1のリン回収材については、沈降分離時間と吸引ろ過時間を測定し、溶液5L全てをろ過するのに要した時間を所要時間とした。吸引ろ過は、アドバンテック東洋社製No.5B濾紙(直径110mm)を使用した。
B1の吸引ろ過には溶液5L全てをろ過するまでの時間は17分であった。また、重力沈降によりろ布などで固液分離する場合、重力沈降(濃縮)した後にろ過するので、沈降時間と濾過時間の合計を所要時間とした。CSHの沈降には、粒径のばらつきから、5分程度で沈降するものもあれば30分たっても沈降を続けるものがあり、最終的(数時間後)には上澄みは透明になるが、概ね所要時間は30分であった。一方、磁気分離では沈降時間を必要とせずに固液分離可能であり、沈降時間は0分である。この結果を表4に示した。
[Comparison of solid-liquid separation time]
In the phosphorus recovery test of Example 6, the time required for magnetic separation of the phosphorus recovery materials A1 to A11, the time required for sedimentation separation of B1, and the time required for suction filtration of B1 were compared. The magnetic separation of the phosphorus recovery materials A1 to A11 was carried out, as shown in Example 6, by immersing a cylindrical neodymium magnet in the solution after reaction for about 20 seconds and pulling it out of the solution, which was repeated three times. This operation (20 seconds x 3 times = 1 minute) was defined as the time required for magnetic separation. On the other hand, for the phosphorus recovery material B1, the sedimentation separation time and the suction filtration time were measured, and the time required to filter all 5 L of the solution was taken as the required time. Suction filtration was performed using Advantech Toyo Co., Ltd. No. 5B filter paper (110 mm diameter) was used.
The suction filtration of B1 took 17 minutes to filter all 5 L of solution. In addition, when solid-liquid separation is performed with a filter cloth or the like by gravity settling, filtration is performed after gravity settling (concentration). Depending on the particle size, some CSH settles in about 5 minutes, while others continue to settle even after 30 minutes. The required time was 30 minutes. On the other hand, magnetic separation enables solid-liquid separation without requiring a sedimentation time, and the sedimentation time is 0 minutes. The results are shown in Table 4.

この結果に示すように、A1~A11の磁気分離による固液分離の処理時間はB1の処理時間の約1/47であり、固液分離時間を大幅に短縮することができる。ちなみに、排水の流量を250L/h(=4.2L/min)と仮定し、固液分離プロセスにおける水理学的滞留時間(HRT)を、B1では固液分離時間47分として計算すると、約196Lの容積が全量処理に必要となる。同様の流量で磁気分離を行うと、HRTは1分なので約4Lの容積があれば同様の処理を行うことができうることになる。このように、固液分離時間が短縮される利点は非常に大きい。なお、B1の沈降時間を無視しても、A1~A11の固液分離時間はB1の1/17であり、固液分離時間は十分に短い。 As shown in this result, the processing time for solid-liquid separation by magnetic separation in A1 to A11 is about 1/47 of the processing time for B1, and the solid-liquid separation time can be greatly shortened. By the way, assuming that the flow rate of wastewater is 250 L/h (= 4.2 L/min), the hydraulic retention time (HRT) in the solid-liquid separation process is calculated as 47 minutes for solid-liquid separation in B1, about 196 L of volume is required for total processing. If magnetic separation is performed at the same flow rate, the HRT is 1 minute, so if there is a volume of about 4 L, the same treatment can be performed. Thus, the advantage of shortening the solid-liquid separation time is very large. Even if the sedimentation time of B1 is ignored, the solid-liquid separation time of A1 to A11 is 1/17 of B1, and the solid-liquid separation time is sufficiently short.

Figure 0007165538000004
Figure 0007165538000004

磁気分離に関する式として、分離対象物質を球形と想定した場合の磁気力は次式[1]によって表される(排水・汚水処理技術集成 エヌ・ティー・エス社、2007 p543-552 渡辺「磁気分離による排水・汚水処理のメカニズムと応用」)。

Figure 0007165538000005
式[1]において、Fm:磁性粒子にかかる磁気力、V:分離対象物質の体積、μ0:真空の透磁率、χ、χ:それぞれ粒子と流体(水)の磁化率、H:磁界度、grad H:磁気勾配である。
マグネタイトのような強磁性体では、粒子に働く磁気力は水に働く磁気力よりも格段に大きいため水に働く磁気力は無視できる。さらに、χは一定では無いので、「磁化の強さ」をMとして表すことによって、強磁性粒子に働く磁気力は粒子の体積と磁化の強さと磁気勾配の積から次式[2]のように近似できる。
Figure 0007165538000006
As a formula related to magnetic separation, the magnetic force when the substance to be separated is assumed to be spherical is represented by the following formula [1] (Watanabe "Magnetic Separation Mechanism and Application of Wastewater and Sewage Treatment”).
Figure 0007165538000005
In formula [1], Fm: magnetic force applied to magnetic particles, V: volume of substance to be separated, μ 0 : vacuum magnetic permeability, χ p , χ f : magnetic susceptibility of particles and fluid (water), respectively, H: Magnetic field intensity, grad H: Magnetic gradient.
In ferromagnetic materials such as magnetite, the magnetic force acting on particles is much larger than that acting on water, so the magnetic force acting on water can be ignored. Furthermore, since χ p is not constant, by expressing the "strength of magnetization" as M, the magnetic force acting on the ferromagnetic particles is given by the following equation [2] from the product of the volume of the particles, the strength of magnetization, and the magnetic gradient: can be approximated as
Figure 0007165538000006

式[2]に示すように、磁性粒子の粒子径が大きくなると働く磁気力が大きくなることが分かる。これを表3の結果に当てはめてみると、本発明のリン回収材(A2~A6)は、磁性粉がCSHの構造に取り込まれているため体積Vが大きく、磁気分離性能が高い(粒子にかかる磁気力が大きい)と考えられる。一方で、比較試料D2~D4は磁性粉が消石灰スラリーと共に分散しているため、粒子にかかる磁気力も小さくなり、磁性粉が流出している。具体的には、例えば、本発明品のリン回収材の平均粒径(メジアン径)は25μm、磁性粉の平均粒径は2.5μmであるため、粒子が両者とも球形であると仮定すると、式〔2〕の体積比は、25/2.5=1000である。一方、磁性粉の含有率は、A4の試料を例に取れば、20/100=1/5である。それゆえ、粒子にかかる磁場が一定であると仮定した場合、磁気力は、1000/5=200倍も本発明のリン回収材の方が高い。このように、本発明のリン回収材はCSHに磁性粉が取り込まれているため、磁気分離効果が高い。 As shown in the formula [2], it can be seen that the larger the particle size of the magnetic particles, the greater the magnetic force that acts. When this is applied to the results in Table 3, the phosphorus recovery materials (A2 to A6) of the present invention have a large volume V because the magnetic powder is incorporated into the structure of CSH, and the magnetic separation performance is high. The magnetic force applied is large). On the other hand, in Comparative Samples D2 to D4, since the magnetic powder was dispersed together with the slaked lime slurry, the magnetic force acting on the particles was reduced and the magnetic powder flowed out. Specifically, for example, the average particle diameter (median diameter) of the phosphorus recovery material of the present invention is 25 μm, and the average particle diameter of the magnetic powder is 2.5 μm. The volume ratio of formula [2] is 25 3 /2.5 3 =1000. On the other hand, the content of magnetic powder is 20/100=1/5, taking an A4 sample as an example. Therefore, assuming a constant magnetic field on the particles, the magnetic force is 1000/5=200 times higher in the phosphorus recovery material of the invention. As described above, the phosphorus recovery material of the present invention has a high magnetic separation effect because the magnetic powder is incorporated into the CSH.

Claims (4)

珪酸カルシウム水和物と磁性粉を含有し、珪酸カルシウム水和物のCa/Siモル比が1.0以上~1.5以下、磁性粉の含有量が5質量%以上であって該磁性粉が上記珪酸カルシウム水和物に取り込まれた状態であり、遊離の二酸化ケイ素の含有量が5質量%以下であり、消石灰の含有量を2質量%以下にして磁気分離時の磁性粉の流出量を20%以下に抑制したことを特徴とするリン回収材。 A magnetic powder containing calcium silicate hydrate and magnetic powder, wherein the Ca/Si molar ratio of the calcium silicate hydrate is 1.0 or more and 1.5 or less , and the content of the magnetic powder is 5% by mass or more . is incorporated in the calcium silicate hydrate, the content of free silicon dioxide is 5% by mass or less, and the content of slaked lime is 2% by mass or less, and the outflow amount of magnetic powder during magnetic separation is suppressed to 20% or less . 珪酸カルシウム水和物の含有量が55質量%以上~95質量%未満、磁性粉の含有量が5質量%以上~45質量%未満であり、リン回収率が50%以上である請求項1に記載するリン回収材。 The content of calcium silicate hydrate is 55% by mass or more and less than 95% by mass, the content of magnetic powder is 5% by mass or more and less than 45% by mass, and the phosphorus recovery rate is 50% or more . Phosphorus recovery material as described. 消石灰または生石灰と磁性粉の混合スラリーに珪酸ナトリウム溶液を添加し、磁性粉の分散下でpH調整を行わずに珪酸カルシウム水和物を生成させることによって、Ca/Siモル比が1.0以上~1.5以下、上記磁性粉の含有量5質量%以上であって該磁性粉が上記珪酸カルシウム水和物に取り込まれた状態であり遊離の二酸化ケイ素の含有量が5質量%以下であって、消石灰の含有量が2質量%以下であるリン回収材を製造することを特徴とするリン回収材の製造方法。 A Ca/Si molar ratio of 1.0 or more by adding a sodium silicate solution to a mixed slurry of slaked lime or quicklime and magnetic powder to form calcium silicate hydrate without adjusting the pH while the magnetic powder is dispersed. ~1.5 or less, the content of the magnetic powder is 5% by mass or more, the magnetic powder is incorporated in the calcium silicate hydrate, and the content of free silicon dioxide is 5% by mass or less. A method for producing a phosphorus recovery material, comprising producing a phosphorus recovery material having a slaked lime content of 2% by mass or less . 消石灰または生石灰と磁性粉の混合スラリーに、珪酸ナトリウム溶液を少量ずつ添加し、磁性粉の分散下で、pH調整を行わずに珪酸カルシウム水和物を生成させる請求項3に記載するリン回収材の製造方法。
4. The phosphorus recovery material according to claim 3, wherein a sodium silicate solution is added little by little to a mixed slurry of slaked lime or quicklime and magnetic powder to form calcium silicate hydrate while the magnetic powder is dispersed without adjusting the pH. manufacturing method.
JP2018160566A 2018-03-08 2018-08-29 Phosphorus recovery material and manufacturing method thereof Active JP7165538B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018041633 2018-03-08
JP2018041633 2018-03-08

Publications (2)

Publication Number Publication Date
JP2019155353A JP2019155353A (en) 2019-09-19
JP7165538B2 true JP7165538B2 (en) 2022-11-04

Family

ID=67992148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018160566A Active JP7165538B2 (en) 2018-03-08 2018-08-29 Phosphorus recovery material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7165538B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285636A (en) 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method
WO2013176244A1 (en) 2012-05-25 2013-11-28 太平洋セメント株式会社 Phosphorus recovery material, method for producing phosphorus recovery material, and phosphorus recovery method
JP2014000487A (en) 2012-06-14 2014-01-09 Shikoku Research Institute Inc Phosphorus recovery material and method for manufacturing the same
JP2017154047A (en) 2016-02-29 2017-09-07 小野田化学工業株式会社 Phosphorus recovery material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285636A (en) 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method
WO2013176244A1 (en) 2012-05-25 2013-11-28 太平洋セメント株式会社 Phosphorus recovery material, method for producing phosphorus recovery material, and phosphorus recovery method
JP2013244466A (en) 2012-05-25 2013-12-09 Taiheiyo Cement Corp Phosphorus recovery material, method for producing phosphorus recovery material, and phosphorus recovery method
JP2014000487A (en) 2012-06-14 2014-01-09 Shikoku Research Institute Inc Phosphorus recovery material and method for manufacturing the same
JP2017154047A (en) 2016-02-29 2017-09-07 小野田化学工業株式会社 Phosphorus recovery material

Also Published As

Publication number Publication date
JP2019155353A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP2939659B2 (en) Precipitated calcium carbonate
TW311905B (en)
TWI681929B (en) High purity silica sol and its production method
AU2008292349B2 (en) Ferric arsenate powder
US4857290A (en) Process for producing silica of high purity
EP0720587A1 (en) A method for manufacturing spherical silica from olivine
JP3837754B2 (en) Method for producing crystalline ceric oxide
JPH0481526B2 (en)
JP7165538B2 (en) Phosphorus recovery material and manufacturing method thereof
JP3023323B2 (en) Process for producing basic polyaluminum chlorosulfate and its use
TWI564252B (en) A water treatment device and a water treatment method
JP2659508B2 (en) Method for producing additive-containing magnesium hydroxide and method for producing additive-containing magnesium oxide using the same
JP5946105B2 (en) Phosphorus recovery material and phosphorus recovery method
JP2014000487A (en) Phosphorus recovery material and method for manufacturing the same
JPH07206423A (en) Production of acid-resistant filter aid using calcium silicate
JP6047395B2 (en) High purity silica sol and method for producing the same
Adu-Wusu et al. Kinetics of silicate reaction with gibbsite
JP4753182B2 (en) Treatment method for fluorine-containing wastewater
JPS6321212A (en) Production of high purity silica
JP2015196146A (en) Phosphorus recovery material for phosphorus-containing water and phosphorus recovery method using the phosphorus recovery material
JP3301126B2 (en) Production method of high-purity ammonium silicofluoride and high-purity silica
JP2934826B2 (en) Method for producing acid-resistant calcium silicate filter aid
JPS6117416A (en) High-purity silica and its preparation
WO2012101868A1 (en) Method for recovering abrasive material component from used abrasive material slurry, and cerium oxide recovered through method
JP3032814B2 (en) Manufacturing method of acid resistant filter aid

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R150 Certificate of patent or registration of utility model

Ref document number: 7165538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150