JP2017153351A - Non-contact power transmission circuit and non-contact power transmission device - Google Patents
Non-contact power transmission circuit and non-contact power transmission device Download PDFInfo
- Publication number
- JP2017153351A JP2017153351A JP2017026350A JP2017026350A JP2017153351A JP 2017153351 A JP2017153351 A JP 2017153351A JP 2017026350 A JP2017026350 A JP 2017026350A JP 2017026350 A JP2017026350 A JP 2017026350A JP 2017153351 A JP2017153351 A JP 2017153351A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- power transmission
- current
- contact
- contact power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 104
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 239000003990 capacitor Substances 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000000696 magnetic material Substances 0.000 abstract description 5
- 230000005389 magnetism Effects 0.000 abstract 1
- 230000008878 coupling Effects 0.000 description 35
- 238000010168 coupling process Methods 0.000 description 35
- 238000005859 coupling reaction Methods 0.000 description 35
- 230000000052 comparative effect Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000001646 magnetic resonance method Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 2
- 238000005549 size reduction Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Inverter Devices (AREA)
Abstract
Description
本発明は、一方側(電力を供給する側:一次側)から他方側(電力が供給される側:二次側)に非接触で電力を送る非接触電力伝送回路及び非接触電力伝送装置に関する。 The present invention relates to a non-contact power transmission circuit and a non-contact power transmission device that send power in a non-contact manner from one side (power supply side: primary side) to the other side (power supply side: secondary side). .
一方側(電力を供給する側:一次側)から他方側(電力が供給される側:二次側)に非接触で電力を送る非接触充電技術としては、電磁誘導を利用した非接触充電方式と、磁気共鳴を利用した非接触充電方式とが知られている。磁気共鳴方式を利用した電力伝送の技術として、特許文献1に開示する非接触給電システムが知られている。特許文献1に開示された技術は、一次側、二次側のコイルとして複数のコイルを並設し、一次側のコイルから二次側のコイルに磁気共鳴方式を利用して電力を伝送する電力伝送回路を有している。 Non-contact charging technology that uses electromagnetic induction as a non-contact charging technology to send power in a non-contact manner from one side (power supply side: primary side) to the other side (power supply side: secondary side) In addition, a non-contact charging method using magnetic resonance is known. As a power transmission technique using a magnetic resonance method, a non-contact power feeding system disclosed in Patent Document 1 is known. In the technique disclosed in Patent Document 1, a plurality of coils are arranged in parallel as primary and secondary coils, and power is transmitted from the primary coil to the secondary coil using a magnetic resonance method. It has a transmission circuit.
一次側、二次側のコイルとして複数のコイルを並設したことで、一次側のコイルの間隔(一次側コイルの幅)、及び、二次側のコイルの間隔(二次側コイルの幅)をある程度大きくする必要はあるが、上記非接触給電システムは、例えば、電気自動車に対する充電装置や、電気自動車と家屋との双方向の送電装置に適用することができる。 By arranging a plurality of coils side by side as primary and secondary coils, the primary coil spacing (primary coil width) and secondary coil spacing (secondary coil width) However, the non-contact power feeding system can be applied to, for example, a charging device for an electric vehicle or a bidirectional power transmission device between an electric vehicle and a house.
一方、一次側から二次側に非接触で電力を送る非接触充電技術の適用として、高い箇所に設置された電力消費部材への給電、例えば、送電鉄塔の航空障害灯への給電に適用することが考えられる。非接触充電技術を適用することにより、電気絶縁距離を確保しながらの給電が可能になる。これまで、送電鉄塔の航空障害灯への給電に非接触で電力を供給する技術を適用する場合、架空地線からの誘導電流や太陽光発電付蓄電池等が用いられている。しかしながら、架空地線からの誘導電流を用いた場合には、雷撃による電圧の上昇が生じる問題があり、太陽光発電付蓄電池を用いた場合には、蓄電池の保守点検のための高所作業が必要になってしまう。 On the other hand, as an application of contactless charging technology that sends power in a contactless manner from the primary side to the secondary side, it is applied to power supply to power consuming members installed at high places, for example, power supply to aviation obstacle lights on power transmission towers It is possible. By applying the non-contact charging technology, it is possible to supply power while ensuring an electrical insulation distance. Up to now, when applying a technology for supplying power in a contactless manner to power supply to an aircraft obstacle light of a power transmission tower, an induction current from an overhead ground wire, a storage battery with photovoltaic power generation, or the like has been used. However, when an induced current from an overhead ground wire is used, there is a problem that the voltage rises due to lightning strikes. When a storage battery with photovoltaic power generation is used, work at a high place for maintenance inspection of the storage battery is not possible. It becomes necessary.
電圧の上昇や高所作業を減らすため、磁気共鳴方式における一次側のコイル、二次側のコイルとして複数のコイルを並設し、非接触で高所まで電力を供給することが考えられる。この場合、一次側のコイル部材と二次側のコイル部材との間に中間コイル部材を適切に配置することで、中間コイル部材を介して一方コイル部材から他方コイル部材に向けてコイル電流を確保し、各コイル部材の間の距離のトータルにより、一方側の一方コイル部材と他方側の他方コイル部材との距離を確保することができる。 In order to reduce the increase in voltage and work at high places, it is conceivable that a plurality of coils are arranged in parallel as primary side coils and secondary side coils in the magnetic resonance system, and power is supplied to high places without contact. In this case, the coil current is secured from one coil member to the other coil member through the intermediate coil member by appropriately arranging the intermediate coil member between the primary side coil member and the secondary side coil member. And the distance of one coil member of one side and the other coil member of the other side is securable by the total of the distance between each coil member.
しかしながら、特定のコイル部材の間の距離の利用に着目すると、それ以外の距離(一次側コイルの幅や二次側コイルの幅)については、非接触電力伝送回路の大型化を招く無駄な空間となる。上記非接触充電技術の適用分野によっては、非接触電力伝送回路を備えた非接触電力伝送装置の小型化や高効率化を求められる場合があり、対応が困難となる。 However, paying attention to the use of the distance between specific coil members, the other spaces (the width of the primary side coil and the width of the secondary side coil) are useless spaces that lead to an increase in the size of the non-contact power transmission circuit. It becomes. Depending on the field of application of the contactless charging technology, it may be required to reduce the size and increase the efficiency of the contactless power transmission device including the contactless power transmission circuit, which makes it difficult to respond.
本発明は上記状況に鑑みてなされたもので、一方側(電力を供給する側:一次側)から他方側(電力が供給される側:二次側)に非接触で電力を送ることができ、小型化及び高効率化を実現することが可能な非接触電力伝送回路を提供することを目的とする。 The present invention has been made in view of the above circumstances, and can transmit power in a non-contact manner from one side (power supply side: primary side) to the other side (power supply side: secondary side). Another object of the present invention is to provide a non-contact power transmission circuit capable of realizing miniaturization and high efficiency.
また、本発明は上記状況に鑑みてなされたもので、一方側から他方側に非接触で電力を送ることができ、小型化及び高効率化を図ることが可能な非接触電力伝送回路を備えた非接触電力伝送装置を提供することを目的とする。 In addition, the present invention has been made in view of the above situation, and includes a non-contact power transmission circuit that can transmit power from one side to the other side in a non-contact manner, and can be downsized and highly efficient. Another object of the present invention is to provide a non-contact power transmission device.
上記目的を達成するための請求項1にかかる本発明の非接触電力伝送回路は、一方側の一方コイルと前記一方コイルに並列又は直列に接続された一方コンデンサとで閉回路を形成して一方コイル部材とし、他方側の他方コイルと前記他方コイルに並列又は直列に接続された他方コンデンサとで閉回路を形成して他方コイル部材とする一方、中間コイルと前記中間コイルに並列に接続された中間コンデンサとで閉回路を形成して中間コイル部材とし、前記一方コイル部材と前記他方コイル部材との間に、複数の前記中間コイル部材を配置した非接触電力伝送回路であって、前記一方コイル及び前記他方コイルは、円盤状に巻回されたコイル本体と、前記コイル本体に並設された磁性体と、前記コイル本体及び前記磁性体の前記中間コイル部材とは反対側である外側に配置された金属磁気遮蔽板とからそれぞれ構成され、前記中間コイルは、円盤状に巻回されたコイル本体と、前記コイル本体に並設され、前記コイル本体を部分的に被覆する磁性体とから構成されることを特徴とする。 In order to achieve the above object, a non-contact power transmission circuit of the present invention according to claim 1 forms a closed circuit with one coil on one side and one capacitor connected in parallel or in series with the one coil. A coil member is formed, and the other coil on the other side and the other capacitor connected in parallel or in series with the other coil form a closed circuit to form the other coil member, while the intermediate coil and the intermediate coil are connected in parallel. A non-contact power transmission circuit in which a closed circuit is formed with an intermediate capacitor to form an intermediate coil member, and a plurality of the intermediate coil members are disposed between the one coil member and the other coil member, wherein the one coil And the other coil includes a coil body wound in a disc shape, a magnetic body arranged in parallel to the coil body, the coil body and the intermediate coil member of the magnetic body, Each of the intermediate coils is arranged in parallel with the coil body, and the coil body is partially arranged on the coil body. It is comprised from the magnetic body to coat | cover.
請求項1にかかる本発明では、一方コイル及び他方コイルにおいて、コイル本体及び磁性体の中間コイル部材とは反対側である外側に金属磁気遮蔽板をそれぞれ配置したので、発生した磁界が各金属磁気遮蔽板の中間コイル部材とは反対側である外側に回り込まないようにすることができ、漏洩を防止することができる。 In the present invention according to claim 1, in the one coil and the other coil, the metal magnetic shielding plate is disposed on the outer side opposite to the coil body and the intermediate coil member of the magnetic body. It is possible to prevent the shielding plate from going around to the outside opposite to the intermediate coil member, and to prevent leakage.
また、中間コイルにおいて、コイル本体に並設され、コイル本体を部分的に被覆する磁性体を配置したので、コイル間の結合が小さくなり、無駄な空間を大幅に短縮することができると共に、自己インダクタンスが増加するため、コイル電流が減少しジュール損失が減少する。 In addition, in the intermediate coil, a magnetic body that is arranged in parallel with the coil body and partially covers the coil body is disposed, so that the coupling between the coils is reduced, and the useless space can be greatly shortened. As inductance increases, coil current decreases and Joule loss decreases.
そして、請求項2にかかる本発明の非接触電力伝送回路は、請求項1に記載の非接触電力伝送回路において、前記中間コイルにおける前記磁性体は、複数の棒状又は扇型形状の磁性体からなり、前記複数の棒状又は扇型形状の磁性体は、放射状に配置されていることを特徴とする。 And the non-contact power transmission circuit of the present invention according to claim 2 is the non-contact power transmission circuit according to claim 1, wherein the magnetic body in the intermediate coil is composed of a plurality of rod-shaped or fan-shaped magnetic bodies. Thus, the plurality of rod-shaped or fan-shaped magnetic bodies are arranged radially.
請求項2にかかる本発明では、請求項1にかかる本発明と同様にして、無駄な空間の大幅な短縮と、自己インダクタンスの増加によるコイル電流の減少を実現することができると共に、ジュール損失が減少することで電源容量を必要最低限に抑えることができ、コスト性にも優れている。 In the present invention according to claim 2, in the same manner as the present invention according to claim 1, it is possible to realize a significant reduction in wasted space and a reduction in coil current due to an increase in self-inductance, and a Joule loss. By reducing the power source capacity, it is possible to suppress the power capacity to the minimum necessary, and the cost is excellent.
上記目的を達成するための請求項3にかかる本発明の非接触電力伝送装置は、請求項1又は請求項2に記載の非接触電力伝送回路と、直流電源が接続され、前記直流電源の直流出力電圧を交流電圧に変換すると共に、変換した前記交流電圧が前記他方コイルに印加されるように前記一方コイルが接続されてインバータとして駆動される一方電力変換装置と、前記他方コイルに接続され、前記他方コイルを介して印加される前記交流電圧を直流出力電圧に変換し、前記直流出力電圧を直流負荷に印加するコンバータとして駆動される他方電力変換装置とを備えたことを特徴とする。 In order to achieve the above object, a non-contact power transmission apparatus according to a third aspect of the present invention is configured such that the non-contact power transmission circuit according to the first or second aspect and a direct current power source are connected, and the direct current of the direct current power source is connected. While converting the output voltage into an AC voltage, the one coil is connected and driven as an inverter so that the converted AC voltage is applied to the other coil, and connected to the other coil, And a second power conversion device driven as a converter for converting the AC voltage applied through the other coil into a DC output voltage and applying the DC output voltage to a DC load.
請求項3にかかる本発明では、コイル間の無駄な空間を大幅に短縮できると共に、自己インダクタンスの増加によりコイル電流が減少しジュール損失が減少した状態で、小型、小容量化したインバータ及びコンバータを介した電力伝送を行うことができる。 According to the third aspect of the present invention, a wasteful space between the coils can be significantly shortened, and a small and small capacity inverter and converter can be provided in a state where the coil current is reduced due to the increase of the self-inductance and the joule loss is reduced. Power transmission can be performed.
本発明では、一方側(電力を供給する側:一次側)から他方側(電力が供給される側:二次側)に非接触で電力を送ることができ、小型化及び高効率化を実現することが可能な非接触電力伝送回路を提供することが可能になる。 In the present invention, electric power can be sent from one side (power supply side: primary side) to the other side (power supply side: secondary side) in a non-contact manner, realizing miniaturization and high efficiency. It is possible to provide a non-contact power transmission circuit that can be used.
また、本発明では、一方側から他方側に非接触で電力を送ることができ、小型化及び高効率化を実現することが可能な非接触電力伝送回路を備えた非接触電力伝送装置とすることが可能になる。 Moreover, in this invention, it is set as the non-contact electric power transmission apparatus provided with the non-contact electric power transmission circuit which can send electric power non-contact from one side to the other side, and can implement | achieve size reduction and high efficiency. It becomes possible.
図1から図3に基づいて本発明の非接触電力伝送回路、及び、非接触電力伝送装置の構成を説明する。 The configuration of the contactless power transmission circuit and the contactless power transmission device of the present invention will be described with reference to FIGS. 1 to 3.
図1には、本発明の一実施形態にかかる非接触電力伝送回路を備えた非接触電力伝送装置の全体の概略を説明する概略系統、図2には、非接触電力伝送回路を構成する一方コイル部材、他方コイル部材、及び中間コイル部材の配置の状況を示してある。また、図3には、一方コイル部材及び中間コイル部材の各構成要素の配置の状況を示してある。尚、図3では、説明の便宜上、厚さ方向に切断して半円盤状にした各部材を示しているが、実際の各部材は円盤状である。また、説明では各部材の形状は円盤状としたが、これに限らず、例えば正方形にしてもよい。 FIG. 1 is a schematic system for explaining the overall outline of a contactless power transmission device including a contactless power transmission circuit according to an embodiment of the present invention, and FIG. The arrangement of the coil member, the other coil member, and the intermediate coil member is shown. FIG. 3 shows the arrangement of the components of the one coil member and the intermediate coil member. In FIG. 3, for convenience of explanation, each member cut in the thickness direction into a semi-disc shape is shown, but each actual member has a disc shape. In the description, the shape of each member is a disk shape, but is not limited thereto, and may be a square, for example.
図1に示すように、非接触電力伝送装置1は、一方コイル部材2を備えた一方側(電力を供給する側:一次側)の設備(電源装置)である一次側設備3と、他方コイル部材5を備えた他方側(電力が供給される側:二次側)の設備である二次側設備6とを備えている。 As shown in FIG. 1, the non-contact power transmission device 1 includes a primary side equipment 3 which is equipment (power supply device) on one side (a power supply side: primary side) provided with one coil member 2, and the other coil. The secondary side equipment 6 which is the equipment of the other side (electric power supply side: secondary side) provided with the member 5 is provided.
二次側設備6の例としては、例えば、電気自動車に対する充電装置に適用されて実施される。 As an example of the secondary side equipment 6, for example, it is applied to a charging device for an electric vehicle.
図2(a)に示すように、一方コイル部材2は、一方コイル4と一方コイル4に並列に接続された一方コンデンサ8とで閉回路が形成されて構成されており、他方コイル部材5は、他方コイル7と他方コイル7に並列に接続された他方コンデンサ9とで閉回路が形成されて構成されている。或いは、図2(b)に示すように、一方コイル部材2は、一方コイル4と一方コイル4に直列に接続された一方コンデンサ8とで閉回路が形成され、他方コイル部材5は、他方コイル7と他方コイル7に直列に接続された他方コンデンサ9とで閉回路が形成されてもよい。 As shown in FIG. 2A, the one coil member 2 is configured by forming a closed circuit with one coil 4 and one capacitor 8 connected in parallel to the one coil 4, and the other coil member 5 is The other coil 7 and the other capacitor 9 connected in parallel to the other coil 7 form a closed circuit. Alternatively, as shown in FIG. 2 (b), one coil member 2 forms a closed circuit with one coil 4 and one capacitor 8 connected in series to one coil 4, and the other coil member 5 is composed of the other coil. 7 and the other capacitor 9 connected in series to the other coil 7 may form a closed circuit.
図1に示すように、一次側設備3には直流電源11が備えられ、直流電源11には一方電力変換装置としてのインバータ12が接続され、インバータ12には一方コイル部材2の一方コイル4が接続されている。インバータ12は、直流電源11の直流出力電圧を交流電圧に変換し、一方コイル4を介して変換した交流電圧が他方コイル7に印加されるように駆動される。 As shown in FIG. 1, the primary side equipment 3 is provided with a DC power supply 11, and an inverter 12 as one power converter is connected to the DC power supply 11, and one coil 4 of one coil member 2 is connected to the inverter 12. It is connected. The inverter 12 is driven so that the DC output voltage of the DC power supply 11 is converted into an AC voltage, and the AC voltage converted through the one coil 4 is applied to the other coil 7.
二次側設備6には負荷15(直流負荷:例えば、車載バッテリ)が備えられ、負荷15には他方電力変換装置としての整流器16が接続され、整流器16は他方コイル部材5の他方コイル7に接続されている。整流器16は、他方コイル7を介して印加される交流電圧を直流出力電圧に変換し、直流出力電圧を負荷15に印加するコンバータとして駆動される。 The secondary side equipment 6 is provided with a load 15 (DC load: for example, an in-vehicle battery), and a rectifier 16 as the other power converter is connected to the load 15. The rectifier 16 is connected to the other coil 7 of the other coil member 5. It is connected. The rectifier 16 is driven as a converter that converts the AC voltage applied through the other coil 7 into a DC output voltage and applies the DC output voltage to the load 15.
図1及び図2に示すように、一方コイル部材2と他方コイル部材5の間には、中間コイル部材21が2つ配置されている。中間コイル部材21は、中間コイル22と中間コイル22に並列に接続された中間コンデンサ23とで閉回路が形成されて構成されている。非接触電力伝送装置1には、複数の中間コイル部材21が配置されていれば数は問わないが、少なくとも2つ配置されていることが好ましく、或いは3つ以上配置されていてもよい。そして、隣接するコイル部材同士(コイル同士)が共振回路を構成している。 As shown in FIGS. 1 and 2, two intermediate coil members 21 are arranged between the one coil member 2 and the other coil member 5. The intermediate coil member 21 is configured by forming a closed circuit with an intermediate coil 22 and an intermediate capacitor 23 connected in parallel to the intermediate coil 22. The contactless power transmission device 1 may have any number as long as a plurality of intermediate coil members 21 are arranged, but at least two are preferably arranged, or three or more may be arranged. Adjacent coil members (coils) constitute a resonance circuit.
本実施形態では、一方コイル部材2と他方コイル部材5の間に中間コイル部材21を配置したので、磁気共鳴方式において、中間コイル部材21(中間コイル22)を介して一方コイル部材2から他方コイル部材5に向けてコイル電流を確保することができる。 In the present embodiment, since the intermediate coil member 21 is disposed between the one coil member 2 and the other coil member 5, in the magnetic resonance system, the one coil member 2 to the other coil via the intermediate coil member 21 (intermediate coil 22). A coil current can be secured toward the member 5.
次に、図1及び図3を参照して、各コイルの構成について詳細に説明する。図1及び図3(a)に示すように、一方コイル4は、円盤状に巻回されたコイル本体41と、コイル本体41に並設された円盤状の磁性体42と、コイル本体41及び磁性体42の中間コイル部材21とは反対側である外側に配置された金属磁気遮蔽板43とから構成されている。コイル本体41から発生する磁界が金属磁気遮蔽板43に到達すると、金属磁気遮蔽板43表面に渦電流が生じて損失が発生する。本実施形態では、コイル本体41と金属磁気遮蔽板43との間に磁性体42を挿入することで、渦電流損失を緩和させると共に、コイル本体41の自己インダクタンスを増加させることで、コイル電流が減少し、ジュール損失を減少させることができる。 Next, the configuration of each coil will be described in detail with reference to FIGS. 1 and 3. As shown in FIGS. 1 and 3A, the one coil 4 includes a coil body 41 wound in a disk shape, a disk-shaped magnetic body 42 arranged in parallel with the coil body 41, a coil body 41, and It is comprised from the metal magnetic shielding board 43 arrange | positioned on the outer side which is the opposite side to the intermediate coil member 21 of the magnetic body 42. FIG. When the magnetic field generated from the coil body 41 reaches the metal magnetic shielding plate 43, an eddy current is generated on the surface of the metal magnetic shielding plate 43, and loss occurs. In the present embodiment, by inserting the magnetic body 42 between the coil body 41 and the metal magnetic shield plate 43, the eddy current loss is reduced and the self-inductance of the coil body 41 is increased so that the coil current is reduced. Can reduce Joule loss.
一方、他方コイル7は、円盤状に巻回されたコイル本体71と、コイル本体71に並設された円盤状の磁性体72と、コイル本体71及び磁性体72の中間コイル部材21とは反対側である外側に配置された金属磁気遮蔽板73とから構成されている。尚、一方コイル4と他方コイル7の構成及び材質は同一であるので、他方コイル7の各部材の説明は適宜省略する。 On the other hand, the other coil 7 is opposite to the coil body 71 wound in a disk shape, the disk-shaped magnetic body 72 arranged in parallel to the coil body 71, and the intermediate coil member 21 of the coil body 71 and the magnetic body 72. It is comprised from the metal magnetic shielding board 73 arrange | positioned on the outer side which is a side. In addition, since the structure and material of the one coil 4 and the other coil 7 are the same, description of each member of the other coil 7 is abbreviate | omitted suitably.
本実施形態では、コイル本体41,71及び磁性体42,72の中間コイル部材21とは反対側である外側に金属磁気遮蔽板43,73を配置したので、発生した磁界が金属磁気遮蔽板43,73の中間コイル部材21とは反対側である外側に回り込まないようにすることで、漏洩を防止することができる。 In the present embodiment, since the metal magnetic shielding plates 43 and 73 are arranged on the outer side of the coil bodies 41 and 71 and the magnetic bodies 42 and 72 opposite to the intermediate coil member 21, the generated magnetic field is generated by the metal magnetic shielding plate 43. , 73 can be prevented from leaking out to the outside, which is the opposite side to the intermediate coil member 21.
コイル本体41,71は、例えば外径が3mmのリッツ線(複数のエナメル素線を束ねてねじり、その素線束を束ねて更にねじった構造で複合撚りRopeLayとも呼ばれる)を直径r(図2参照)が20cmの円盤状になるように27回巻回した。また、磁性体42,72は、コイル本体41,71の直径rよりも大きな直径を有する円板であり、フェライト等の磁性体材料からなる。更に、金属磁気遮蔽板43,73は、磁性体42,72の直径よりも大きな直径を有する円板であり、磁気遮蔽効果を有するアルミ等の金属材料からなる。ただし、必要に応じてコイル本体41,71、磁性体42,72及び金属磁気遮蔽板43,73の構成及び材質は適宜変更され得る。 The coil bodies 41 and 71 have, for example, a litz wire (also referred to as a composite twisted rope layer having a structure in which a plurality of enamel strands are bundled and twisted, and the strand bundles are further twisted) having a diameter r (see FIG. 2). ) Was wound 27 times so as to form a 20 cm disk. The magnetic bodies 42 and 72 are discs having a diameter larger than the diameter r of the coil bodies 41 and 71, and are made of a magnetic material such as ferrite. Furthermore, the metal magnetic shielding plates 43 and 73 are circular plates having a diameter larger than that of the magnetic bodies 42 and 72, and are made of a metal material such as aluminum having a magnetic shielding effect. However, the configurations and materials of the coil bodies 41 and 71, the magnetic bodies 42 and 72, and the metal magnetic shielding plates 43 and 73 can be changed as necessary.
一方、図1及び図3(b)に示すように、中間コイル22は、一方コイル4に配置されたコイル本体41と同様の構成及び材質であるコイル本体221と、コイル本体221に並設され、コイル本体221を部分的に覆う磁性体222とから構成される。磁性体222の材質は、一方コイル4に配置された磁性体42と同様であるが、磁性体222の構成は異なる。即ち、磁性体222は、例えば、複数(ここでは8本)の棒状の磁性体(棒状磁性体)224からなり、これらの棒状磁性体224は、放射状に配置され、コイル本体221を部分的に覆うことが好ましい。コイル本体221の全体に対する磁性体222の被覆率は、中間コイル22と一方コイル4との距離S1(図2参照)を接近させるに従って大きくする必要がある。例えば、上述の仕様であれば、距離S1が7cmの場合には、被覆率は0%でよいが、距離S1が3cmとなるように両者を接近させると、被覆率を25%とすることが必要となる。各棒状磁性体224として、長手方向の幅が10cm、短手方向の幅が1cm及び厚さが3mmの矩形状の板を8本用いた場合には、磁性体222の被覆率は、下記式(1)に示す通り概ね25%となる。
100×(8×10×1)/(π×102)≒25 ・・・(1)
On the other hand, as shown in FIGS. 1 and 3B, the intermediate coil 22 is arranged in parallel to the coil body 221 and the coil body 221, which has the same configuration and material as the coil body 41 disposed in the one coil 4. And a magnetic body 222 that partially covers the coil body 221. The material of the magnetic body 222 is the same as that of the magnetic body 42 disposed on the one coil 4, but the configuration of the magnetic body 222 is different. That is, the magnetic body 222 is composed of, for example, a plurality (eight in this case) of rod-shaped magnetic bodies (bar-shaped magnetic bodies) 224, and these bar-shaped magnetic bodies 224 are arranged in a radial manner, and the coil body 221 is partially covered. It is preferable to cover. The coverage of the magnetic body 222 with respect to the entire coil body 221 needs to be increased as the distance S 1 (see FIG. 2) between the intermediate coil 22 and the one coil 4 approaches. For example, if the specification of the above, if the distance S 1 is of 7cm, the coverage may be 0%, but the distance S 1 is when the close both so that 3 cm, the coverage is 25% It will be necessary. When each of the rod-shaped magnetic bodies 224 is eight rectangular plates having a longitudinal width of 10 cm, a short-side width of 1 cm, and a thickness of 3 mm, the coverage of the magnetic body 222 is expressed by the following formula: As shown in (1), it is approximately 25%.
100 × (8 × 10 × 1) / (π × 10 2 ) ≈25 (1)
本実施形態では、8本の棒状磁性体224からなる磁性体222を、コイル本体221の厚さ方向に対する面に放射状に配置したので、無駄な空間を大幅に短縮することができると共に、自己インダクタンスが増加するため、コイル電流が減少しジュール損失を減少させることができる。また、インバータ12や直流電源11の容量を必要最低限に抑えることができ、コスト性にも優れている。尚、本実施形態では、8本の棒状磁性体224からなる磁性体222を用いたが、磁性体222は、複数の扇型形状の磁性体から構成されてもよい。 In the present embodiment, since the magnetic body 222 composed of the eight bar-shaped magnetic bodies 224 is radially arranged on the surface of the coil main body 221 in the thickness direction, the useless space can be greatly reduced and the self-inductance can be reduced. Therefore, the coil current can be reduced and the Joule loss can be reduced. Moreover, the capacity | capacitance of the inverter 12 and the DC power supply 11 can be suppressed to the minimum necessary, and it is excellent also in cost efficiency. In the present embodiment, the magnetic body 222 including the eight rod-shaped magnetic bodies 224 is used. However, the magnetic body 222 may be composed of a plurality of fan-shaped magnetic bodies.
図4には、上述した非接触電力伝送回路の等価回路を示しており、(a)には一方コイル及び他方コイルに接続された各コンデンサを並列に配置した等価回路、(b)には一方コイル及び他方コイルに接続された各コンデンサを直列に配置した等価回路を示している。本実施形態では、各コンデンサC0,C3の配置は、上記の通り並列でも直列でも構わない。図4に示した通り、直流電源11から負荷15に電力を伝送する回路において、伝送側(一次側)から順に各コイル(一方コイル4、中間コイル22、中間コイル22、他方コイル7)の自己インダクタンスをL0,L1,L2,L3とし、各コイルの巻線抵抗をr0,r1,r2,r3とし、共振コンデンサをC0,C1,C2,C3としている。 FIG. 4 shows an equivalent circuit of the above-described contactless power transmission circuit, where (a) shows an equivalent circuit in which capacitors connected to one coil and the other coil are arranged in parallel, and (b) shows one circuit. The equivalent circuit which has arrange | positioned each capacitor connected to the coil and the other coil in series is shown. In the present embodiment, the capacitors C 0 and C 3 may be arranged in parallel or in series as described above. As shown in FIG. 4, in the circuit for transmitting power from the DC power supply 11 to the load 15, the self of each coil (one coil 4, intermediate coil 22, intermediate coil 22, and other coil 7) in order from the transmission side (primary side). The inductance is L 0 , L 1 , L 2 , L 3 , the winding resistance of each coil is r 0 , r 1 , r 2 , r 3 , and the resonant capacitors are C 0 , C 1 , C 2 , C 3. Yes.
また、一方コイル4と一方コイル4に隣接する中間コイル22との間の結合係数をk01、中間コイル22同士の間の結合係数をk12、他方コイル7に隣接する中間コイル22と他方コイル7との間の結合係数をk23、一方コイル4と他方コイル7に隣接する中間コイル22との間の結合係数をk02、一方コイル4に隣接する中間コイル22と他方コイル7との間の結合係数をk13、一方コイル4と他方コイル7との間の結合係数をk03としている。本実施形態では、上述した通りに各コイルが配置されることにより、結合係数k01,k12,及びk23の比率が概ね2:1:2となるが、これに限定されない。全体として電力が伝送できる範囲であれば、結合係数k01,k12,及びk23の比率が2:1:2から多少前後してもよい。 The coupling coefficient between the one coil 4 and the intermediate coil 22 adjacent to the one coil 4 is k 01 , the coupling coefficient between the intermediate coils 22 is k 12 , and the intermediate coil 22 and the other coil adjacent to the other coil 7 are combined. the coupling coefficient between the 7 k 23, whereas between the intermediate coil 22 and the other coil 7 adjacent the coupling coefficient between the intermediate coil 22 to k 02, whereas the coil 4 which is adjacent to the coil 4 and the other coil 7 K 13 , and the coupling coefficient between one coil 4 and the other coil 7 is k 03 . In the present embodiment, the ratio of the coupling coefficients k 01 , k 12 , and k 23 is approximately 2: 1: 2 by arranging the coils as described above, but the present invention is not limited to this. As long as the power can be transmitted as a whole, the ratio of the coupling coefficients k 01 , k 12 , and k 23 may be slightly different from 2: 1: 2.
直流電源11から見た入力インピーダンスと電力の伝送効率は、コイルにかかる電圧、コイルに流れる電流との関係に基づき与えられ、相互インダクタンスは、結合係数、及び、自己インダクタンスを用いて導き出すことができる。そして、各コイルの損失は、電流の値、及び、コイルの巻線抵抗に基づく発熱量により導き出すことができる。 The input impedance viewed from the DC power source 11 and the power transmission efficiency are given based on the relationship between the voltage applied to the coil and the current flowing through the coil, and the mutual inductance can be derived using the coupling coefficient and the self-inductance. . The loss of each coil can be derived from the amount of heat generated based on the current value and the winding resistance of the coil.
本実施形態では、各コイルが上述した通りの構造を有することにより、図2に示すように、一方コイル部材2と中間コイル部材21の間の距離S1は3cm、中間コイル部材21の間の距離S2は10cm、中間コイル部材21と他方コイル部材5の間の距離S3は3cmにそれぞれ設定される。ただし、各コイル間の距離S1,S2及びS3は、上記値に限定されることはなく、各コイルの配置などに応じて適宜変更され得る。 In the present embodiment, since each coil has the structure as described above, as shown in FIG. 2, the distance S 1 between the one coil member 2 and the intermediate coil member 21 is 3 cm, and between the intermediate coil members 21. the distance S 2 is 10 cm, the distance S 3 between the intermediate coil member 21 and the other coil member 5 are respectively set to 3 cm. However, the distances S 1 , S 2 and S 3 between the coils are not limited to the above values, and can be appropriately changed according to the arrangement of the coils.
上記構成の非接触電力伝送回路を備えた非接触電力伝送装置1では、直流電源11からの直流出力電圧が、インバータ12により交流電圧に変換され、変換された交流電圧が一方コイル4を介して中間コイル22を介して他方コイル7に印加される。他方コイル7に印加された交流電圧が整流器16により直流出力電圧に変換され、直流出力電圧が負荷15に印加される。これにより、直流電源11からの電力が磁気共鳴方式によって非接触で負荷15に供給される。 In the non-contact power transmission device 1 including the non-contact power transmission circuit having the above configuration, the DC output voltage from the DC power source 11 is converted into an AC voltage by the inverter 12, and the converted AC voltage is passed through the one coil 4. It is applied to the other coil 7 through the intermediate coil 22. On the other hand, the AC voltage applied to the coil 7 is converted into a DC output voltage by the rectifier 16, and the DC output voltage is applied to the load 15. Thereby, the electric power from the DC power supply 11 is supplied to the load 15 in a non-contact manner by the magnetic resonance method.
上述した非接触電力伝送回路を備えた非接触電力伝送装置1は、中間コイル22において、コイル本体221に並設され、コイル本体221を部分的に被覆する磁性体222を配置したので、無駄な空間を大幅に短縮しても、結合係数が過大とならないよう適切な値に維持することができると共に、自己インダクタンスの増加によりコイル電流が減少してジュール損失も減少した状態となることから、小容量化したインバータ及びコンバータを介した電力伝送を行うことができる。 In the non-contact power transmission device 1 including the above-described non-contact power transmission circuit, the intermediate coil 22 is disposed in parallel with the coil main body 221, and the magnetic body 222 that partially covers the coil main body 221 is disposed. Even if the space is greatly shortened, it can be maintained at an appropriate value so that the coupling coefficient does not become excessive, and the coil current decreases due to the increase of the self-inductance and the joule loss also decreases. It is possible to perform power transmission via the inverter and the converter that have been increased in capacity.
これにより、小型化及び高効率化を実現することが可能な非接触電力伝送回路を備えた非接触電力伝送装置1とすることが可能になる。 Thereby, it becomes possible to set it as the non-contact electric power transmission apparatus 1 provided with the non-contact electric power transmission circuit which can implement | achieve size reduction and high efficiency.
また、上述した非接触電力伝送装置1は、電気自動車等、電力を要する車両に対する給電に適用することができる。 Moreover, the non-contact electric power transmission apparatus 1 mentioned above is applicable to the electric power feeding with respect to vehicles which require electric power, such as an electric vehicle.
尚、上述した実施形態における非接触電力伝送回路は、直流電源11から負荷15に一方向で給電を行う例を挙げて説明したが、電力変換装置(インバータ12、整流器16)の回路を適宜変更することにより、双方向で電力を伝送する装置とすることができる。 The contactless power transmission circuit in the above-described embodiment has been described with reference to an example in which power is supplied from the DC power supply 11 to the load 15 in one direction. However, the circuit of the power conversion device (inverter 12, rectifier 16) is changed as appropriate. By doing so, it can be set as the apparatus which transmits electric power bidirectionally.
次に、以下の実施例及び比較例を参照して、本発明を更に詳細に説明する。 Next, the present invention will be described in more detail with reference to the following examples and comparative examples.
(実施例1)
実施例1では、上述した非接触電力伝送回路を備えた非接触電力伝送装置1を用いて、周波数に対する電流及び電力伝送効率を求めた。図5には、実施例1で用いた非接触電力伝送回路の構成について、各コイルの配置の状況を示した。また、図6には、周波数に対する電流及び電力伝送効率を求めた結果を示した。尚、ここでいう電力伝送効率とは、詳細は後述するが、1kWを出力するための効率である。
Example 1
In Example 1, the current and power transmission efficiency with respect to the frequency were obtained using the non-contact power transmission device 1 including the above-described non-contact power transmission circuit. FIG. 5 shows the arrangement of the coils in the configuration of the non-contact power transmission circuit used in Example 1. FIG. 6 shows the results of obtaining the current and power transmission efficiency with respect to the frequency. The power transmission efficiency here is an efficiency for outputting 1 kW, as will be described in detail later.
図5に示した通り、実施例1で用いた非接触電力伝送回路では、一方コイル4と中間コイル22の距離S1を3cm、中間コイル22同士の距離S2を10cm、中間コイル22と他方コイル7の距離S3を3cmとし、各コイルに配置されているコイル本体41、コイル本体221、コイル本体221及びコイル本体71の直径rをそれぞれ20cmとした。また、一次側設備3の出力ピーク電圧Vpは±200V及び出力電力Pは1kW、二次側設備6の負荷抵抗Rは20Ωであった。 As shown in FIG. 5, in the contactless power transmission circuit used in Example 1, whereas the coil 4 and 3cm distance S 1 of the intermediate coil 22, 10 cm distance S 2 between the intermediate coil 22, the intermediate coil 22 and the other the distance S 3 of the coil 7 and 3 cm, the coil body 41 is disposed in each coil, the coil body 221, the diameter r of the coil body 221 and the coil body 71 was 20cm respectively. Moreover, the output peak voltage Vp of the primary side equipment 3 was ± 200 V, the output power P was 1 kW, and the load resistance R of the secondary side equipment 6 was 20Ω.
上述した通り、直流電源11から見た入力インピーダンスと電力の伝送効率は、コイルにかかる電圧、コイルの流れる電流との関係に基づき与えられ、相互インダクタンスは、結合係数、及び、自己インダクタンスを用いて導き出すことができる。そして、各コイルの損失は、電流の値、及び、コイルの巻線抵抗に基づく発熱量により導き出すことができる。導き出した各パラメータを下記表1に示した。また、下記表2には、各コイルの配置により設定された各コイル間の結合係数を示した。実施例1では、一方コイル4と一方コイル4に隣接する中間コイル22との間の結合係数をk01、中間コイル22同士の間の結合係数をk12、他方コイル7に隣接する中間コイル22と他方コイル7との間の結合係数をk23、一方コイル4と他方コイル7に隣接する中間コイル22との間の結合係数をk02、一方コイル4に隣接する中間コイル22と他方コイル7との間の結合係数をk13、一方コイル4と他方コイル7との間の結合係数をk03とした。 As described above, the input impedance viewed from the DC power source 11 and the power transmission efficiency are given based on the relationship between the voltage applied to the coil and the current flowing through the coil, and the mutual inductance is determined using the coupling coefficient and the self-inductance. Can be derived. The loss of each coil can be derived from the amount of heat generated based on the current value and the winding resistance of the coil. The derived parameters are shown in Table 1 below. Table 2 below shows the coupling coefficient between the coils set according to the arrangement of the coils. In the first embodiment, the coupling coefficient between the one coil 4 and the intermediate coil 22 adjacent to the one coil 4 is k 01 , the coupling coefficient between the intermediate coils 22 is k 12 , and the intermediate coil 22 adjacent to the other coil 7 is used. intermediate coil 22 and the other coil 7 adjacent the coupling coefficient between the intermediate coil 22 to k 02, whereas the coil 4 a coupling coefficient k 23, whereas adjacent to the coil 4 and the other coil 7 between the other coil 7 and the coupling coefficient between the coupling coefficient and k 13, whereas the coil 4 and the other coil 7 between was k 03.
図6に示した通り、コイルの最大効率となる周波数は81190Hzであり、一方コイル4のコイル電流(入力電流)は7.60Aであり、一方コイル4と隣接する中間コイル22のコイル電流(中間共振電流)は11.35Aであり、他方コイル7と隣接する中間コイル22のコイル電流(中間共振電流)は12.21Aであり、他方コイル7のコイル電流(出力電流)は7.09Aであった。また、コイルの最大効率は91.8%であった。表2に示した通り、各コイル間の結合係数k01、結合係数k12及び結合係数k23の比率をおよそ2:1:2にできた。 As shown in FIG. 6, the frequency at which the maximum efficiency of the coil is 81190 Hz, while the coil current (input current) of the coil 4 is 7.60 A, while the coil current (intermediate of the intermediate coil 22 adjacent to the coil 4 is intermediate). Resonance current) is 11.35 A, the coil current (intermediate resonance current) of the intermediate coil 22 adjacent to the other coil 7 is 12.21 A, and the coil current (output current) of the other coil 7 is 7.09 A. It was. The maximum efficiency of the coil was 91.8%. As shown in Table 2, the ratio of the coupling coefficient k 01 , the coupling coefficient k 12 and the coupling coefficient k 23 between the coils was approximately 2: 1: 2.
(比較例1)
比較例1では、2つの中間コイル22を配置せずに、一方コイル4と他方コイル7の距離を10cmにしたこと以外は実施例1で用いた非接触電力伝送回路と同様の回路を用いた。図7には、周波数に対する電流及び電力伝送効率を求めた結果を示し、導き出した各パラメータ及び各コイル間の結合係数を下記表3に示した。
(Comparative Example 1)
In Comparative Example 1, a circuit similar to the non-contact power transmission circuit used in Example 1 was used except that the distance between one coil 4 and the other coil 7 was set to 10 cm without arranging the two intermediate coils 22. . FIG. 7 shows the results of obtaining the current and power transmission efficiency with respect to the frequency, and the derived parameters and the coupling coefficients between the coils are shown in Table 3 below.
図7に示した通り、コイルの最大効率となる周波数は87210Hzであり、一方コイル4のコイル電流(入力電流)は22.14A(過電流:20A以上)であり、他方コイル7のコイル電流(出力電流)は7.09Aであった。また、コイルの最大効率は88.2%であった。 As shown in FIG. 7, the frequency at which the maximum efficiency of the coil is 87210 Hz, the coil current (input current) of the coil 4 is 22.14 A (overcurrent: 20 A or more), and the coil current of the other coil 7 ( The output current was 7.09A. The maximum efficiency of the coil was 88.2%.
(比較例2)
比較例2では、2つの中間コイル22に磁性体222をそれぞれ配置せずに、一方コイル4と中間コイル22の距離及び他方コイル7と中間コイル22の距離をそれぞれ7cmにしたこと以外は実施例1で用いた非接触電力伝送回路と同様の回路を用いた。図8には、周波数に対する電流及び電力伝送効率を求めた結果を示し、導き出した各パラメータを下記表4に、各コイル間の結合係数を下記表5に示した。
(Comparative Example 2)
In Comparative Example 2, the magnetic body 222 was not disposed on each of the two intermediate coils 22, but the distance between the one coil 4 and the intermediate coil 22 and the distance between the other coil 7 and the intermediate coil 22 were each 7 cm. The same circuit as the non-contact power transmission circuit used in 1 was used. FIG. 8 shows the results of obtaining the current and the power transmission efficiency with respect to the frequency. The derived parameters are shown in Table 4 below, and the coupling coefficients between the coils are shown in Table 5 below.
図8に示した通り、コイルの最大効率となる周波数は82180Hzであり、一方コイル4のコイル電流(入力電流)は7.27Aであり、一方コイル4と隣接する中間コイル22のコイル電流(中間共振電流)は16.53Aであり、他方コイル7と隣接する中間コイル22のコイル電流(中間共振電流)は14.77Aであり、他方コイル7のコイル電流(出力電流)は7.10Aであった。また、コイルの最大効率は88.6%であった。表5に示した通り、磁性体222を用いない替りに、距離を3cmから7cmに離すことで、各コイル間の結合係数k01、結合係数k12及び結合係数k23の比率をおよそ2:1:2にできた。 As shown in FIG. 8, the frequency at which the maximum efficiency of the coil is 82180 Hz, while the coil current (input current) of the coil 4 is 7.27 A, while the coil current (intermediate of the intermediate coil 22 adjacent to the coil 4 is intermediate). Resonance current) is 16.53 A, coil current (intermediate resonance current) of the intermediate coil 22 adjacent to the other coil 7 is 14.77 A, and coil current (output current) of the other coil 7 is 7.10 A. It was. The maximum efficiency of the coil was 88.6%. As shown in Table 5, instead of using the magnetic body 222, the ratio of the coupling coefficient k 01 , the coupling coefficient k 12 and the coupling coefficient k 23 between the coils is approximately 2: 1: 2.
(比較例3)
比較例3では、2つの中間コイル22におけるコイル本体221の一方の側の全面に磁性体222(形状は磁性体42と同一)をそれぞれ配置し、一方コイル4と中間コイル22の距離及び他方コイル7と中間コイル22の距離をそれぞれ1cmにしたこと以外は実施例1で用いた非接触電力伝送回路と同様の回路を用いた。図9には、周波数に対する電流及び電力伝送効率を求めた結果を示し、導き出した各パラメータを下記表6に、各コイル間の結合係数を下記表7に示した。
(Comparative Example 3)
In Comparative Example 3, the magnetic body 222 (the shape is the same as that of the magnetic body 42) is disposed on the entire surface of one side of the coil body 221 in the two intermediate coils 22, and the distance between the one coil 4 and the intermediate coil 22 and the other coil. A circuit similar to the non-contact power transmission circuit used in Example 1 was used except that the distance between each of 7 and the intermediate coil 22 was 1 cm. FIG. 9 shows the results of obtaining the current and power transmission efficiency with respect to the frequency. The derived parameters are shown in Table 6 below, and the coupling coefficients between the coils are shown in Table 7 below.
図9に示した通り、コイルの最大効率となる周波数は81960Hzであり、一方コイル4のコイル電流(入力電流)は19.93Aであり、一方コイル4と隣接する中間コイル22のコイル電流(中間共振電流)は20.79A(過電流:20A以上)であり、他方コイル7と隣接する中間コイル22のコイル電流(中間共振電流)は28.95A(過電流:20A以上)であり、他方コイル7のコイル電流(出力電流)は7.08Aであった。また、コイルの最大効率は69.0%であった。更に、表7に示した通り、たとえ距離を3cmから1cmに接近させたとしても、全面の磁性体222(形状は磁性体42と同一)が各コイル間の結合を妨げるため、各コイル間の結合係数k01、結合係数k12及び結合係数k23の比率を2:1:2にできなかった。 As shown in FIG. 9, the frequency at which the maximum efficiency of the coil is 81960 Hz, while the coil current (input current) of the coil 4 is 19.93 A, while the coil current of the intermediate coil 22 adjacent to the coil 4 (intermediate) Resonance current) is 20.79 A (overcurrent: 20 A or more), and the coil current (intermediate resonance current) of the intermediate coil 22 adjacent to the other coil 7 is 28.95 A (overcurrent: 20 A or more). The coil current (output current) of 7 was 7.08A. The maximum efficiency of the coil was 69.0%. Further, as shown in Table 7, even if the distance is made closer to 3 cm to 1 cm, the magnetic body 222 (the shape is the same as the magnetic body 42) on the entire surface prevents the coupling between the coils. The ratio of the coupling coefficient k 01 , the coupling coefficient k 12 and the coupling coefficient k 23 could not be 2: 1: 2.
実施例1及び比較例1を比較すると、実施例1では、一方コイル4と他方コイル7との間に2つの中間コイル22を配置することで、一方コイル4の過電流(過熱)が解消された。 Comparing Example 1 and Comparative Example 1, in Example 1, the two intermediate coils 22 are arranged between the one coil 4 and the other coil 7, thereby eliminating the overcurrent (overheating) of the one coil 4. It was.
比較例1及び比較例2を比較すると、比較例2では、一方コイル4と他方コイル7との間に2つの中間コイル22を配置してコイルの枚数が増えることで、ジュール損失(コイル電流)の減少と分散を促進させることができた。これにより、巻線を軽量化(断面積の減少)して回路の小型化を実現できる。更に、実施例1及び比較例2を比較すると、実施例1では、中間コイル22に磁性体222を配置したことで、コイル間の間隔が小さくなり、回路の小型化を実現することができる。また、各中間コイル22の自己インダクタンスがそれぞれ増加(概ね30%)したので、更に各コイル電流が減少し、また、コイルの最大効率は91.8%であり、電力伝送効率が向上したことが分かった。これにより、回路の高効率化を実現することができる。 Comparing Comparative Example 1 and Comparative Example 2, in Comparative Example 2, Joule loss (coil current) is obtained by arranging two intermediate coils 22 between one coil 4 and the other coil 7 to increase the number of coils. It was possible to promote the decrease and dispersion. This makes it possible to reduce the size of the circuit by reducing the weight of the winding (reducing the cross-sectional area). Furthermore, when Example 1 and Comparative Example 2 are compared, in Example 1, the magnetic body 222 is disposed in the intermediate coil 22, so that the interval between the coils is reduced, and the circuit can be reduced in size. In addition, since the self-inductance of each intermediate coil 22 increased (approximately 30%), each coil current further decreased, and the maximum efficiency of the coil was 91.8%, indicating that the power transmission efficiency was improved. I understood. Thereby, high efficiency of the circuit can be realized.
実施例1及び比較例3を比較すると、実施例1では、中間コイル22に磁性体222を部分的に配置したことで、各コイル間の結合係数について、結合係数k01、結合係数k12及び結合係数k23の比率をおよそ2:1:2にすることができ、コイルの最大効率を増加させることができた。これにより、回路の高効率化を実現することができる。 When Example 1 and Comparative Example 3 are compared, in Example 1, the magnetic body 222 is partially disposed in the intermediate coil 22, so that the coupling coefficient k 01 , the coupling coefficient k 12, and the coupling coefficient between the coils are compared. coupling coefficient k a ratio of 23 about 2: 1: can be 2, it was possible to increase the maximum efficiency of the coil. Thereby, high efficiency of the circuit can be realized.
図10から図13に基づいて参考例に関して説明する。 A reference example will be described with reference to FIGS.
図10には参考例としての非接触電力伝送回路を備えた非接触電力伝送装置の全体の概略を説明する概略系統を示してある。尚、図1に示した実施例と同一部材には同一符号を付して重複する説明は省略してある。 FIG. 10 shows a schematic system for explaining the outline of the entire contactless power transmission device including a contactless power transmission circuit as a reference example. Note that the same members as those in the embodiment shown in FIG.
図10に示した非接触電力伝送装置51は、図1に示した中間コイル部材21に代えて、中間空芯コイル52を間隔H(例えば、10cm)で配したものである。その他の構成は、図1に示した非接触電力伝送装置1と同じである。中間空芯コイル52としては、例えば、外径が20cm、巻線には素線径0.12mmのエナメル銅線を228本より合わせたリッツ線を用いた。巻数については、リッツ線の外径3.15mmより、27巻となった。 A non-contact power transmission device 51 shown in FIG. 10 has an intermediate air-core coil 52 arranged at an interval H (for example, 10 cm) instead of the intermediate coil member 21 shown in FIG. Other configurations are the same as those of the non-contact power transmission apparatus 1 shown in FIG. As the intermediate air-core coil 52, for example, a litz wire obtained by combining 228 enameled copper wires having an outer diameter of 20 cm and a wire diameter of 0.12 mm was used for the winding. The number of turns was 27 from the outer diameter of the litz wire of 3.15 mm.
図11には、図10に示した参考例の非接触電力伝送装置と、図1に示した実施例の非接触電力伝送装置の基本波電流に対する比率(dB)の状況を示してある。 FIG. 11 shows the ratio (dB) with respect to the fundamental current of the non-contact power transmission apparatus of the reference example shown in FIG. 10 and the non-contact power transmission apparatus of the embodiment shown in FIG.
図11中、黒い棒線が第3高調波電流、斜線の傍線が第5高調波電流、白抜きの棒線が第7高調波電流の基本波電流に対する比率である。図に示したように、第3高調波電流、第5高調波電流、第7高調波電流は、参考例の非接触電力伝送装置に対して、実施例の非接触電力伝送装置のほうが比率は大きくなっている。つまり、放射ノイズ源となる高調波電流を抑制することができることになる。 In FIG. 11, the black bar represents the third harmonic current, the hatched side line represents the fifth harmonic current, and the white bar represents the ratio of the seventh harmonic current to the fundamental current. As shown in the figure, the ratio of the third harmonic current, the fifth harmonic current, and the seventh harmonic current is higher in the non-contact power transmission apparatus of the embodiment than the non-contact power transmission apparatus of the reference example. It is getting bigger. That is, the harmonic current that becomes a radiation noise source can be suppressed.
このため、図1に示した実施例の非接触電力伝送装置を用いると、中間コイル部材21がノイズフィルタとして機能することで、他の機器の動作を阻害する原因となる放射ノイズを抑制でき、電磁両立性(EMC)許容値をクリアすることが容易になる。例えば、電気自動車の充電装置として用いた場合、住宅地等、電磁両立性(EMC)許容値が厳しい地域で充電装置の設備を構築することが可能になる。 For this reason, when the non-contact power transmission apparatus of the embodiment shown in FIG. 1 is used, the intermediate coil member 21 functions as a noise filter, so that it is possible to suppress radiated noise that hinders the operation of other devices, It becomes easier to clear the electromagnetic compatibility (EMC) tolerance. For example, when used as a charging device for an electric vehicle, it is possible to construct a charging device facility in a residential area or the like where an electromagnetic compatibility (EMC) tolerance is severe.
図12には、図10に示した参考例の非接触電力伝送装置51と、図1に示した実施例の非接触電力伝送装置1の、周波数(kHz)とコイルの効率(%)の関係を示してある。 12 shows the relationship between the frequency (kHz) and the coil efficiency (%) of the contactless power transmission device 51 of the reference example shown in FIG. 10 and the contactless power transmission device 1 of the embodiment shown in FIG. Is shown.
図12中□印が図10に示した参考例の非接触電力伝送装置51の周波数(kHz)に対するコイルの効率(%)の関係であり、図12中△印が図1に示した実施例の非接触電力伝送装置1の周波数(kHz)に対するコイルの効率(%)の関係である。図に示したように、実施例の非接触電力伝送装置1では、参考例の非接触電力伝送装置51に比べて、高周波数側にシフトしたものの、高いコイルの効率を維持することができることがわかる。 12 indicates the relationship of the coil efficiency (%) to the frequency (kHz) of the non-contact power transmission device 51 of the reference example shown in FIG. 10, and the Δ mark in FIG. 12 indicates the embodiment shown in FIG. It is the relationship of the efficiency (%) of the coil with respect to the frequency (kHz) of the non-contact electric power transmission apparatus 1 of. As shown in the figure, in the non-contact power transmission device 1 of the embodiment, compared with the non-contact power transmission device 51 of the reference example, although shifted to the high frequency side, it is possible to maintain high coil efficiency. Recognize.
このため、実施例の非接触電力伝送装置1では、中間コンデンサ23の微調整により、例えば、電気自動車の充電装置として用いる場合の周波数の領域で、高い効率を維持して適用することが可能になる。 For this reason, in the non-contact power transmission device 1 of the embodiment, the fine adjustment of the intermediate capacitor 23 can be applied while maintaining high efficiency, for example, in a frequency region when used as a charging device for an electric vehicle. Become.
図13には、図10に示した参考例の非接触電力伝送装置51と、図1に示した実施例の非接触電力伝送装置1の、DC負荷電圧(V)とコイルの効率(%)の関係を示してある。 FIG. 13 shows the DC load voltage (V) and coil efficiency (%) of the contactless power transmission device 51 of the reference example shown in FIG. 10 and the contactless power transmission device 1 of the embodiment shown in FIG. The relationship is shown.
図13中□印が図10に示した参考例の非接触電力伝送装置51のDC負荷電圧(V)に対するコイルの効率(%)の関係であり、図13中△印が図1に示した実施例の非接触電力伝送装置1のDC負荷電圧(V)に対するコイルの効率(%)の関係である。図に示したように、実施例の非接触電力伝送装置1では、参考例の非接触電力伝送装置51に比べて、DC負荷電圧(V)の最適値(効率がピークとなる電圧値)が高電圧側にシフトしていることがわかる。 In FIG. 13, the □ marks indicate the efficiency (%) of the coil with respect to the DC load voltage (V) of the non-contact power transmission device 51 of the reference example shown in FIG. 10, and the Δ marks in FIG. It is the relationship of the efficiency (%) of the coil with respect to DC load voltage (V) of the non-contact electric power transmission apparatus 1 of an Example. As shown in the figure, in the non-contact power transmission device 1 of the example, the optimum value of the DC load voltage (V) (voltage value at which efficiency reaches a peak) is higher than that of the non-contact power transmission device 51 of the reference example. It turns out that it has shifted to the high voltage side.
このため、実施例の非接触電力伝送装置1では、インダクタンスを減らし軽量化を図ることが可能になる。 For this reason, in the non-contact electric power transmission apparatus 1 of an Example, it becomes possible to reduce an inductance and to achieve weight reduction.
本発明は、一方側(電力を供給する側:一次側)から他方側(電力が供給される側:二次側)に非接触で電力を送る非接触電力伝送回路及び非接触電力伝送装置の産業分野で利用することができる。 The present invention relates to a non-contact power transmission circuit and a non-contact power transmission device that send power in a non-contact manner from one side (power supply side: primary side) to the other side (power supply side: secondary side). Can be used in industrial fields.
1、51 非接触電力伝送装置
2 一方コイル部材
3 一次側設備
4 一方コイル
5 他方コイル部材
6 二次側設備
7 他方コイル
8 一方コンデンサ
9 他方コンデンサ
11 直流電源
12 インバータ
15 負荷
16 整流器
21 中間コイル部材
22 中間コイル
23 中間コンデンサ
41,71,221 コイル本体
42,72,222 磁性体
43,73 金属磁気遮蔽板
52 中間空芯コイル
224 棒状磁性体
DESCRIPTION OF SYMBOLS 1, 51 Non-contact electric power transmission apparatus 2 One coil member 3 Primary side equipment 4 One coil 5 Other coil member 6 Secondary side equipment 7 Other coil 8 One capacitor 9 Other capacitor 11 DC power supply 12 Inverter 15 Load 16 Rectifier 21 Intermediate coil member 22 intermediate coil 23 intermediate capacitor 41, 71, 221 coil body 42, 72, 222 magnetic body 43, 73 metal magnetic shielding plate 52 intermediate air core coil 224 rod-shaped magnetic body
Claims (3)
他方側の他方コイルと前記他方コイルに並列又は直列に接続された他方コンデンサとで閉回路を形成して他方コイル部材とする一方、
中間コイルと前記中間コイルに並列に接続された中間コンデンサとで閉回路を形成して中間コイル部材とし、
前記一方コイル部材と前記他方コイル部材との間に、複数の前記中間コイル部材を配置した非接触電力伝送回路であって、
前記一方コイル及び前記他方コイルは、円盤状に巻回されたコイル本体と、前記コイル本体に並設された磁性体と、前記コイル本体及び前記磁性体の前記中間コイル部材とは反対側である外側に配置された金属磁気遮蔽板とからそれぞれ構成され、
前記中間コイルは、円盤状に巻回されたコイル本体と、前記コイル本体に並設され、前記コイル本体を部分的に被覆する磁性体とから構成される
ことを特徴とする非接触電力伝送回路。 A closed circuit is formed by one coil on one side and one capacitor connected in parallel or in series with the one coil to form one coil member,
While forming the closed circuit with the other coil on the other side and the other capacitor connected in parallel or in series with the other coil, the other coil member,
A closed circuit is formed by an intermediate coil and an intermediate capacitor connected in parallel to the intermediate coil to form an intermediate coil member,
A non-contact power transmission circuit in which a plurality of the intermediate coil members are arranged between the one coil member and the other coil member,
The one coil and the other coil are opposite to the coil body wound in a disk shape, the magnetic body arranged in parallel to the coil body, and the intermediate coil member of the coil body and the magnetic body. Each is composed of a metal magnetic shielding plate arranged on the outside,
The intermediate coil includes a coil body wound in a disk shape, and a magnetic body that is provided side by side on the coil body and partially covers the coil body. .
前記中間コイルにおける前記磁性体は、複数の棒状又は扇型形状の磁性体からなり、前記複数の棒状又は扇型形状の磁性体は、放射状に配置されている
ことを特徴とする非接触電力伝送回路。 The contactless power transmission circuit according to claim 1,
The magnetic body in the intermediate coil is composed of a plurality of rod-shaped or fan-shaped magnetic bodies, and the plurality of rod-shaped or fan-shaped magnetic bodies are arranged radially. circuit.
直流電源が接続され、前記直流電源の直流出力電圧を交流電圧に変換すると共に、変換した前記交流電圧が前記他方コイルに印加されるように前記一方コイルが接続されてインバータとして駆動される一方電力変換装置と、
前記他方コイルに接続され、前記他方コイルを介して印加される前記交流電圧を直流出力電圧に変換し、前記直流出力電圧を直流負荷に印加するコンバータとして駆動される他方電力変換装置とを備えた
ことを特徴とする非接触電力伝送装置。 The contactless power transmission circuit according to claim 1 or 2,
One power that is connected as a DC power source and converts the DC output voltage of the DC power source into an AC voltage, and the one coil is connected and driven as an inverter so that the converted AC voltage is applied to the other coil. A conversion device;
A power converter connected to the other coil, and that is driven as a converter that converts the AC voltage applied through the other coil into a DC output voltage and applies the DC output voltage to a DC load. A non-contact power transmission device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016030349 | 2016-02-19 | ||
JP2016030349 | 2016-02-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017153351A true JP2017153351A (en) | 2017-08-31 |
JP6780909B2 JP6780909B2 (en) | 2020-11-04 |
Family
ID=59739249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017026350A Expired - Fee Related JP6780909B2 (en) | 2016-02-19 | 2017-02-15 | Non-contact power transmission circuit and non-contact power transmission device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6780909B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109637795A (en) * | 2019-01-21 | 2019-04-16 | 中车青岛四方机车车辆股份有限公司 | Contactless power supply system transmitting terminal and its unit, vehicle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009124878A (en) * | 2007-11-15 | 2009-06-04 | Meleagros Corp | Power transmitter, and power transmitting device and power receiving device for power transmitter |
JP2010173503A (en) * | 2009-01-30 | 2010-08-12 | Showa Aircraft Ind Co Ltd | Non-contact power supply device |
JP2010239848A (en) * | 2009-03-31 | 2010-10-21 | Fujitsu Ltd | Power transmission apparatus |
JP2014217117A (en) * | 2013-04-23 | 2014-11-17 | 一般財団法人電力中央研究所 | Non-contact power feeding system |
JP2015088665A (en) * | 2013-10-31 | 2015-05-07 | パイオニア株式会社 | Coil unit and power transmission system |
-
2017
- 2017-02-15 JP JP2017026350A patent/JP6780909B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009124878A (en) * | 2007-11-15 | 2009-06-04 | Meleagros Corp | Power transmitter, and power transmitting device and power receiving device for power transmitter |
JP2010173503A (en) * | 2009-01-30 | 2010-08-12 | Showa Aircraft Ind Co Ltd | Non-contact power supply device |
JP2010239848A (en) * | 2009-03-31 | 2010-10-21 | Fujitsu Ltd | Power transmission apparatus |
JP2014217117A (en) * | 2013-04-23 | 2014-11-17 | 一般財団法人電力中央研究所 | Non-contact power feeding system |
JP2015088665A (en) * | 2013-10-31 | 2015-05-07 | パイオニア株式会社 | Coil unit and power transmission system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109637795A (en) * | 2019-01-21 | 2019-04-16 | 中车青岛四方机车车辆股份有限公司 | Contactless power supply system transmitting terminal and its unit, vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP6780909B2 (en) | 2020-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2884504B1 (en) | Wireless power transmission device with power feeding coil unit | |
JP6371364B2 (en) | Non-contact power supply device | |
US10014105B2 (en) | Coil unit and wireless power transmission device | |
US10002708B2 (en) | Coil unit and wireless power transmission device | |
US9716386B2 (en) | Contactless power supply system | |
JP5592124B2 (en) | Non-contact power feeding device | |
JP6432251B2 (en) | Power transmission coil unit and wireless power transmission device | |
JP6179375B2 (en) | Coil unit | |
WO2012108432A1 (en) | Contactless electrical-power-supplying device | |
CN105845404B (en) | The transmitting coil structure and its winding method of a kind of high quality factor | |
US11056927B2 (en) | Inductor device, non-contact power charging/supplying system and electric vehicle | |
JP6460373B2 (en) | Coil unit and wireless power transmission device | |
JP2017153351A (en) | Non-contact power transmission circuit and non-contact power transmission device | |
JP2015106938A (en) | Power transmission coil unit and wireless power transmission device | |
JP6455798B2 (en) | Coil unit | |
JP6340968B2 (en) | Coil unit and wireless power transmission device | |
JP6304276B2 (en) | Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device | |
JP2015106580A (en) | Power transmission coil unit and wireless power transmission device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201009 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201014 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201014 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6780909 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |