JP2017151731A - 需要量予測プログラム、需要量予測方法、及び情報処理装置 - Google Patents

需要量予測プログラム、需要量予測方法、及び情報処理装置 Download PDF

Info

Publication number
JP2017151731A
JP2017151731A JP2016033591A JP2016033591A JP2017151731A JP 2017151731 A JP2017151731 A JP 2017151731A JP 2016033591 A JP2016033591 A JP 2016033591A JP 2016033591 A JP2016033591 A JP 2016033591A JP 2017151731 A JP2017151731 A JP 2017151731A
Authority
JP
Japan
Prior art keywords
value
correction
keyword
correction value
demand amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016033591A
Other languages
English (en)
Other versions
JP6617605B6 (ja
JP6617605B2 (ja
Inventor
孝将 伊原
Takamasa Ihara
孝将 伊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016033591A priority Critical patent/JP6617605B6/ja
Publication of JP2017151731A publication Critical patent/JP2017151731A/ja
Application granted granted Critical
Publication of JP6617605B2 publication Critical patent/JP6617605B2/ja
Publication of JP6617605B6 publication Critical patent/JP6617605B6/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】需要量の予測精度の向上に寄与する。【解決手段】予測値算出部20は、過去の需要量の実績値を基に、将来の需要量の予測値を算出し、修正情報受付部22は、需要量の予測値を修正する修正値の入力を受け付け、キーワード抽出部24は、修正値に対応付けて、修正根拠の情報をキーワードとして設定し、信頼度算出部30は、修正値に基づいて修正した予測値と需要量の実績値とに基づいて、キーワードに対応する修正値の信頼度を算出する。そして、修正反映部32は、過去に入力された修正値を利用した予測値の修正に関連して、過去に入力された修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する。【選択図】図3

Description

本発明は、需要量予測プログラム、需要量予測方法、及び情報処理装置
に関する。
従来、製品や半製品、部材、原料、材料等の発注や調達を行うサプライチェーンのプロセスにおいて、過去の需要に基づいて未来の需要を予測し、商品の販売計画等を立案する技術が知られている。
例えば、需要量の予測の際に、ユーザの経験的な知識(ノウハウ)から作成した補正ルールを用いて補正処理を行う需要量予測方法が知られている(例えば、特許文献1等参照)。また、クラスタ分析を用いて欠落した属性(性別・大きさ等のデータのカラムに相当)の値を予測する際に、ユーザの知識をクラスタ分析のルールに組み込めるようにするデータ分析装置が知られている(例えば、特許文献2等参照)。
特開2003−346070号公報 特開2001−134577号公報
しかしながら、従来においては、どの知識を予測や分析に用いるかは、ユーザの経験等に基づいて判断されているため、将来の需要を適切に予測できない可能性がある。
1つの側面では、本発明は、需要量の予測精度の向上に寄与することが可能な需要量予測プログラム、需要量予測方法、及び情報処理装置を提供することを目的とする。
一つの態様では、需要量予測プログラムは、過去の需要量の実績値を基に、将来の需要量を予測し、予測した前記将来の需要量を修正する修正値の入力を受け付け、前記修正値に対応付けて、修正根拠の情報及び/又は前記修正値の入力に付随して蓄積した情報をキーワードとして設定し、前記修正値に基づいて修正した前記将来の需要量と前記需要量の実績値とに基づいて、前記キーワードに対応する前記修正値の信頼度を算出し、過去に入力された前記修正値を利用した将来の需要量の予測値の修正に関連して、過去に入力された前記修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する、処理をコンピュータに実行させるプログラムである。
需要量の予測精度の向上に寄与することができる。
第1の実施形態に係る需要量予測システムの構成を概略的に示す図である。 図2(a)は、サーバのハードウェア構成を示す図であり、図2(b)は、利用者端末のハードウェア構成を示す図である。 サーバの機能ブロック図である。 予測値DBのデータ構造の一例を示す図である。 キーワードDBのデータ構造の一例を示す図である。 予測データ蓄積処理の一例を示すフローチャート(その1)である。 予測データ蓄積処理の一例を示すフローチャート(その2)である。 図8(a)は、実績値と予測値を示す画面の一例を示す図であり、図8(b)は、ユーザによって図8(a)の画面に修正値と修正根拠が入力された状態を示す図である。 指定期間予測値DBのデータ構造の一例を示す図である。 図10(a)は実績値と修正後予測値の一例を示すグラフであり、図10(b)は、実績値DBのデータ構造の一例を示す図である。 図11(a)は、実績データセットを示す図であり、図11(b)は、基本データセットを示す図であり、図11(c)、図11(d)は、修正データセットを示す図である。 図12(a)は、相関行列の一例を示す図であり、図12(b)は、因子負荷行列の一例を示す図であり、図12(c)は、ステップS34の処理により得られるプロット結果を示す図である。 図13(a)は、グループ化について説明するための図であり、図13(b)は、グループDBのデータ構造の一例を示す図である。 図14(a)、図14(b)は、信頼度の算出方法について説明するための図であり、図14(c)は、信頼度DBのデータ構造の一例を示す図である。 予測処理の一例を示すフローチャートである。 図16(a)は、新たに算出された予測値を示す図であり、図16(b)は、推奨修正値の情報や推奨外のキーワード又はグループの情報を表示する画面の一例を示す図である。 第2の実施形態における、予測値の修正値を入力するための画面の一例を示す図である。 図18(a)は、第2の実施形態で用いられる予測値DBのデータ構造の一例を示す図であり、図18(b)は、第2の実施形態で用いられる実績値DBのデータ構造の一例を示す図である。 図19(a)は、第2の実施形態において表示される画面の一例を示す図であり、図19(b)は、第2の実施形態で用いられる信頼度DBのデータ構造の一例を示す図である。 図20(a)は、第3の実施形態における2ユーザの修正結果の一例を示す図であり、図20(b)は、第3の実施形態で用いる指定期間予測値DBのデータ構造の一例を示す図である。 図21(a)〜図21(d)は、図20(b)のデータを外部情報と、キーワードごとにまとめたデータを示す図である。 図22(a)〜図22(c)は、第3の実施形態におけるサーバの処理を説明するための図であり、図22(d)は、第3の実施形態の別例について説明するための図(その1)である。 第3の実施形態の別例について説明するための図(その2)である。
《第1の実施形態》
以下、需要量予測システムの第1の実施形態について、図1〜図16に基づいて詳細に説明する。本第1の実施形態の需要量予測システムは、製品や半製品、部材、原料、材料等の発注、或いは調達を行うサプライチェーンのプロセスにおいて何個調達すべきか、どのくらい必要かという未来の需要量を予測するためのシステムである。
図1には、第1の実施形態に係る需要量予測システム100の構成が概略的に示されている。図1に示すように、需要量予測システム100は、情報処理装置としてのサーバ10と、利用者端末70と、を備える。サーバ10と利用者端末70は、インターネットなどのネットワーク80を介して、接続されている。
サーバ10は、将来の需要量を予測する装置である。図2(a)には、サーバ10のハードウェア構成が示されている。図2(a)に示すように、サーバ10は、CPU(Central Processing Unit)90、ROM(Read Only Memory)92、RAM(Random Access Memory)94、記憶部(ここではHDD(Hard Disk Drive))96、ネットワークインタフェース97、及び可搬型記憶媒体用ドライブ99等を備えている。これらサーバ10の構成各部は、バス98に接続されている。サーバ10では、ROM92あるいはHDD96に格納されているプログラム(需要量予測プログラムを含む)、或いは可搬型記憶媒体用ドライブ99が可搬型記憶媒体91から読み取ったプログラム(需要量予測プログラムを含む)をCPU90が実行することにより、図3に示す各部として機能する。なお、本第1の実施形態では、サーバ10が1台のサーバである場合について説明したが、これに限られるものではない。例えばサーバ10は、Webサーバ、アプリケーションサーバ、DBサーバを含む3層構造を有していてもよい。また、サーバ10は複数のサーバを含み、該複数のサーバで負荷分散するようにしてもよい。
図3には、サーバ10の機能ブロック図が示されている。図3に示すように、サーバ10は、CPU90がプログラムを実行することで、予測部としての予測値算出部20、修正情報受付部22、キーワード抽出部24、修正値格納部26、実績データ取得部28、信頼度算出部30、出力部及び修正部としての修正反映部32、として機能する。なお、図3には、HDD96等に格納されるキーワードDB38、予測値DB40、指定期間予測値DB41、実績値DB42、グループDB44、及び信頼度DB46も図示されている。
予測値算出部20は、過去の需要量の実績値に基づいて将来の需要量の予測値の算出を実行する。予測値算出部20は、算出した予測値を予測値DB40に格納する。ここで、予測値DB40は、予測値や予測値の修正に関する情報を格納するデータベースであり、図4に示すようなデータ構造を有する。なお、予測値DB40の詳細については後述する。
修正情報受付部22は、ユーザが利用者端末70を介して入力した予測値の修正に関する情報(修正値及び修正根拠)を取得し、キーワード抽出部24及び修正値格納部26に送信する。ここで、修正とは、予測値に対しユーザが独自の観点で数値調整を行うことを意味する。修正値は、予測値を調整するための数値であり、修正根拠は「なぜ修正を加えたのか」の情報であり、入力形式は単語のみであってもよいし、文章形式であってもよい。
キーワード抽出部24は、ユーザによって入力された修正根拠が文章形式であった場合に、該文章形式の修正根拠からキーワードを抽出し、キーワードDB38及び予測値DB40に格納する。また、キーワード抽出部24は、ユーザによって入力された修正根拠が単語であった場合には、該修正根拠をキーワードとし、キーワードDB38及び予測値DB40に格納する。ここで、キーワードDB38は、図5に示すようなデータ構造を有する。具体的には、キーワードDB38は、図5に示すように、「キーワードID」、「予測対象」、「時間軸」、「キーワード」の各フィールドを有する。「キーワードID」のフィールドには、キーワードごとに付与される識別情報が格納される。「予測対象」のフィールドには、需要量を予測する対象(製品等)の情報(名称等)が格納される。「時間軸」のフィールドには、ユーザが修正した予測値がどの時間範囲の需要量を予測したものであるかの情報が格納される。なお、図5の時間軸のフィールドには、1年の何週目から何週目までかを示す情報が格納されている。「キーワード」のフィールドには、キーワードそのものが格納される。
修正値格納部26は、修正情報受付部22から受信した修正値(ユーザが入力した修正値)を予測値DB40に格納する。ここで、予測値DB40について、説明する。予測値DB40は、図4に示すように、「予測対象」、「時間軸」、「予測値名称」、「キーワード」、「予測値」、「修正値」、「修正後予測値」の各フィールドを有する。「予測対象」のフィールドには、需要量を予測する対象(製品等)の情報(名称等)が格納される。「時間軸」のフィールドには、需要量が予測された期間の情報が格納される。「予測値名称」のフィールドには、予測値算出部20が自動的に決定する名称が格納される。「キーワード」のフィールドには、ユーザが予測値を修正した場合にユーザによって入力された修正根拠のキーワードが格納される。「予測値」のフィールドには、予測値算出部20が算出した予測値が格納され、「修正値」のフィールドには、ユーザが入力した修正値が格納され、「修正後予測値」のフィールドには、予測値を修正値で修正した後の値が格納される。
実績データ取得部28は、需要量が予測された期間における実際の需要量(実績値)を取得し、実績値DB42に格納する。ここで、実績値DB42は、予測対象(製品等)ごとに用意されており、図10(b)に示すようなデータ構造を有する。具体的には、実績値DB42は、図10(b)に示すように、「時間軸」、「名称」、「実績値」のフィールドを有する。「時間軸」のフィールドには、実績値を取得した期間を示す情報(例えば、1年の何週目かの情報)が格納される。「名称」のフィールドには、「実績値」と格納される。「実績値」のフィールドには、需要量の実績値が格納される。実績値DB42に格納されたデータは、予測値算出部20が予測値を算出する際に利用される。
信頼度算出部30は、予測値DB40及び実績値DB42を参照し、修正値に基づいて修正した将来の需要量の予測値と、過去の需要量の実績値とに基づいて、キーワードに対応する予測値それぞれについての信頼度を計算する。また、キーワードを組合せてグループが作成できる場合には、信頼度算出部30は、キーワードのグループに対応する予測値の信頼度を計算する。信頼度算出部30は、信頼度の計算において、指定期間予測値DB41(図9参照)及びグループDB44(図13(b)参照)を用いるものとする。指定期間予測値DB41は、予測値DB40から取得される指定期間のデータを一時的に格納するデータベースである。信頼度算出部30は、グループDB44は、キーワードのグループに関する情報を格納するデータベースであり、図13(b)に示すように、「グループID」、「予測対象」、「時間軸」、「キーワード」の各フィールドを有する。「グループID」のフィールドには、グループごとに付与される識別情報が格納される。「予測対象」、「時間軸」のフィールドは、キーワードDB38の「予測対象」、「時間軸」のフィールドと同様である。「キーワード」のフィールドには、グループに属するキーワードが格納される。信頼度算出部30は、計算した信頼度を信頼度DB46に格納する。ここで、信頼度DB46は、図14(c)に示すようなデータ構造を有する。具体的には、信頼度DB46は、図14(c)に示すように、「予測対象」、「時間軸」、「キーワードorグループID」、「信頼度」の各フィールドを有する。「予測対象」、「時間軸」のフィールドは、キーワードDB38の「予測対象」、「時間軸」のフィールドと同様である。「キーワードorグループID」には、キーワードやグループのIDが格納され、「信頼度」のフィールドには、キーワード又はグループに基づく修正が信頼できるかを示す値が格納される。信頼度は、0〜1の値をとり、値が大きいほど信頼度が高いものとする。
修正反映部32は、過去に入力された修正値を利用した将来の需要量の予測値を出力する際に、信頼度DB46に基づいて、推奨する修正値及び対応するキーワードを決定する。そして、修正反映部32は、推奨する修正値で修正した予測値や、推奨する修正値に対応するキーワードを利用者端末70に出力する。また、修正反映部32は、推奨外のキーワード及び信頼度も利用者端末70に出力する。更に、修正反映部32は、ユーザが利用者端末70において推奨外の修正値を選択したという情報を取得すると、選択された修正値を用いた予測値の修正を実行し、修正結果を利用者端末70に出力する。
利用者端末70は、PC(Personal Computer)や、スマートフォンなどの携帯端末などの情報処理装置である。図2(b)には、利用者端末70のハードウェア構成が示されている。図2(b)に示すように、利用者端末70は、CPU190、ROM192、RAM194、記憶部(HDD)196、ネットワークインタフェース197、表示部193、入力部195及び可搬型記憶媒体191に記憶されたデータ等の読み取りが可能な可搬型記憶媒体用ドライブ199等を備えている。表示部193は液晶ディスプレイ等を含み、入力部195は、キーボードやタッチパネル等を含む。これら利用者端末70の構成各部は、バス198に接続されている。利用者端末70では、サーバ10が予測した需要量の予測値を表示部193に表示したり、ユーザが入力部195を介して入力した予測値に関する修正情報(修正値や修正根拠)を取得し、サーバ10に送信したりする。
次に、本実施形態のサーバ10による処理について説明する。なお、サーバ10は、予測データ蓄積処理と、予測処理を実行する。
<予測データ蓄積処理>
以下、予測データ蓄積処理について、図6、図7のフローチャートに沿って説明する。本処理は、将来の期間における需要量の予測値を算出し、算出した予測値がユーザによって修正された場合に、修正を分析し、分析結果を管理する処理である。
本処理では、まずステップS10において、予測値算出部20が、需要量の予測値の算出を実行する。具体的には、予測値算出部20は、過去の実績値(実績値DB42に格納されている)に基づいて、例えば特許文献1,2等に記載されているような一般的な予測計算方法を用いて需要量の予測値を算出する。本実施形態では、一例として、1か月に1回、翌月(n週〜n+3週)の需要量の予測値を予測対象(プロダクト1など)ごとに算出するものとする。予測値算出部20は、図8(a)に示すような実績値と予測値を示す画面を、利用者端末70の表示部193に表示させる。なお、図8(a)の実績値は、実績値DB42から読み出される。また、図8(a)には、ユーザが修正値と修正根拠を入力するための入力欄が設けられている。
次いで、ステップS12では、修正情報受付部22は、修正値及び修正根拠を取得する。すなわち、ユーザが利用者端末70の入力部195を介して、図8(b)に示すように時間軸を特定して修正値及び修正根拠を入力すると、修正情報受付部22は、入力された情報を取得する。そして、修正情報受付部22は、修正根拠をキーワード抽出部24に送信するとともに、修正値を修正値格納部26に送信する。ここで、修正値格納部26は、修正値を予測値DB40に格納する際に、予測値に修正値を反映させた修正後予測値を算出し、予測値DB40に格納するものとする。
次いで、ステップS14では、キーワード抽出部24が、修正根拠からキーワードを抽出する。本ステップS14では、ユーザによって入力された「修正根拠」が文章形式であった場合に、キーワード抽出部24が、文章から単語を抽出する。例えば、キーワード抽出部24は、従来から一般的に利用されている形態素解析等の技術を用いて単語を抽出する。なお、ユーザによって入力された「修正根拠」が単語であった場合には、キーワード抽出部24は、入力された単語を取得する。そして、キーワード抽出部24は、ステップS14において抽出した単語又は取得した単語は「キーワード」として、キーワードDB38(図5)に格納する。
次いで、ステップS16では、信頼度算出部30が、指定期間のデータを予測値DB40から取得する。ここで、「指定期間」とは、需要量の予測が行われ、ユーザが修正値を入力した未来方向への範囲である。すなわち、指定期間は図8(b)において特定された時間軸の期間である。本ステップS16では、信頼度算出部30は、n〜n+3週のデータ(キーワード、予測値、修正値、修正後予測値等)を予測値DB40から取得する。
次いで、ステップS20では、信頼度算出部30は、取得したデータを指定期間予測値DB41に格納する。なお、信頼度算出部30は、指定期間内に少なくとも一部の時間軸で修正していれば、指定期間内の修正がされていない時間軸のデータも全て取得する。
次いで、ステップS22では、実績データ取得部28が、指定期間(例えば1ヶ月)経過後に実績値を取得し、実績値DB42(図10(b))に格納する。なお、図10(a)は、実績値と修正後予測値の一例を示している。
次いで、図7のステップS24に移行すると、信頼度算出部30は、各種データセットの相関係数を作成する。なお、「データセット」とは、指定期間のデータをまとめたデータ集合である。具体的には、図9の指定期間予測値DB41の1〜8行目までのデータセットを「修正データセット」と呼ぶものとする。また、図9の9〜12行目までの修正がされていないデータセットを「基本データセット」、図10(b)の実績値DB42のデータセットを「実績データセット」と呼ぶものとする。なお、修正データセットは、図11(c)、図11(d)に示すような指定期間のデータを含む。また、基本データセットは、図11(b)に示すような指定期間のデータを含み、実績データセットは、図11(a)に示すような指定期間のデータを含む。本ステップS24では、指定期間内における「修正データセット」、「基本データセット」、「実績データセット」の相関を求める。なお、修正データセットは、図11(c)、図11(d)に示すように、キーワードごとのデータセットとなる。なお、この場合の「相関」とは、統計分野における相関係数を意味する。
ここで、本実施形態では、修正データセットと実績データセットの傾向の相似度合を測る指標として相関を用いることとしているが、相関を求めるためには複数のデータが必要となる。例えば修正後予測値を利用する場合に、修正したのが1週分だけであった場合には、修正後予測値は1レコードしか無いのに対して、実績値は多数のレコードがあることとなる。このため、修正した1週分の修正が修正していない予測値よりも実績値に近かったとしても、相関を求めるには不足である。そこで本実施形態では、修正後予測値を取得する際に、指定期間内の修正をしなかった期間については修正値=0を取得することで、修正データセットとして複数データを取得するようにしている。
次いで、ステップS26では、信頼度算出部30は、相関行列を作成する。具体的には、信頼度算出部30は、ステップS24で作成した相関係数を行列の形式で並べた表を作成する。ここで得る相関行列は、「実績値」、「予測値」、「修正後予測値」の相関関係を表現する行列となり、一例として、図12(a)に示すような行列となる。なお、図12(a)のA〜Dは、図11(a)〜図11(d)のA〜Dと対応している。
次いで、ステップS28では、信頼度算出部30は、相関行列の固有値を算出する。なお、1つの行列に対して固有値は複数求まる。次いで、ステップS30では、信頼度算出部30は、固有値に基づいて因子数を決定する。ここでは、信頼度算出部30は、固有値から求まる寄与率に基づき、寄与率が高くなるように因子(潜在変数)の数を任意に決定する。
次いで、ステップS32では、信頼度算出部30は、因子負荷行列を作成する。本実施形態では、統計分野における多変量解析の一手法である「因子分析」により、各種計算を行うものとする。因子分析においては、「実績値」、「予測値」、「修正後予測値」に対して、決定した因子数の分だけ「因子負荷量」という統計量が算出される。この「因子負荷量」は、因子分析における「因子」と呼ばれる潜在的な変数が、「実績値」、「予測値」、「修正後予測値」に対してどれだけの影響力を持っているかを示す統計量である。なお、本実施形態では、因子分析を用いることとしているが、「因子」に相当するような、関係性を分析できる統計手法であればその他の方法を用いてもよい。ステップS32において作成される因子負荷行列は、図12(b)に示すような表で表される。
次いで、ステップS34では、信頼度算出部30は、因子軸上に各種データセットをプロットする。ここで、相関行列の固有値から、図12(b)のf1〜f4がそれぞれどの程度A,B,C,Dの関係性を説明できるかを示す寄与率を求めることができる。例えば、f1とf2の2因子のみで高い寄与率を示す場合には、f3、f4を使用しなくてもA,B,C,Dの関係性を十分に説明することができる。f1〜f4は因子であり、この個数は修正後予測値の種類の数によって変動する。因子分析の計測上で導き出されるもので、各因子を軸とした空間上に因子負荷量を座標としてプロットすると、分析するデータの関係性を視覚化することができる。今回は、f1とf2を選択するものとする。ステップS34により得られるプロット結果は、図12(c)のようなものとなる。上昇傾向を示したAに対し傾向が似ているのはC,Dであり、AとC,Dを結びつける因子が潜んでいるということがf1として導き出される。a1はf1がAにかかる重みであり、f1という因子によってAがよく説明されていることを示す。C,Dも同じ上昇傾向であるため、c1,d1が高くなる。Bは下降傾向なので全く別の因子が働いていることになり、そのことによりf2軸のb2が高く、f1軸のb1が低くなっている。
次いで、ステップS36では、信頼度算出部30は、「実績値」以外のプロット同士で距離を取得する。修正根拠に複数のキーワードが含まれている場合には、修正後予測値は図12(c)において複数プロットされるので、キーワード同士の関係を評価するために、実績値以外のプロット間の距離を取得する。
次いで、ステップS38では、信頼度算出部30は、距離の近いプロット同士をグルーピングする。ここでは、実績値以外のプロット間の距離をパラメータとして、クラスタ分析等の既存のグルーピング手法により、距離の近いプロットにグルーピングの情報を付与する。本ステップS38により、キーワードとして実績値にどの程度の近さを持っているかを評価するのに加え、近い傾向を持ったキーワード群をグルーピングし、そのグループが実績値にどの程度の近さを持っているかを評価することができる。本実施形態では、例えば、図13(a)に示すように、CとDは同座標であり、距離は0であるため、全く同じ傾向を示すキーワードとしてグルーピングを行う。グルーピングは一般的なクラスタ分析等の手法を用いて行う。グルーピングを行うことで、「夏季」と「特需」を結び付けており、両キーワードによる修正も考慮することとしている。
次いで、ステップS40では、信頼度算出部30は、グルーピングのデータを図13(b)に示すようなグループDB44に蓄積する。この場合、信頼度算出部30は、キーワードDB38にキーワードを蓄積した場合と同様に、グループDB44にグループに関するデータも蓄積する。また、1グループに1つのグループIDを付与し、属するキーワードを保持する構造でデータ蓄積を行う。
次いで、ステップS42では、信頼度算出部30は、実績値のプロットと他のプロットとの距離を算出する。具体的には、信頼度算出部30は、実績値のプロットと予測値のプロット又は修正後予測値のプロットとの距離を算出する。例えば、図14(a)に示すように、A、B間の距離を算出する。
次いで、ステップS44では、実績プロットとグループとの距離を算出する。この場合、グループの座標は、グループに属するキーワードに紐づく修正後予測値のプロット群の重心であるものとする。例えば、グループG1の座標は、図14(b)に示すように、((c1+d1)/2,(c2+d2)/2)となる。
次いで、ステップS46では、信頼度算出部30は、距離の近い順に各データセットに紐づくキーワードの信頼度を決定する。具体的には、信頼度算出部30は、実績値のプロットと他のプロットとの距離に基づいて重み付けを行い、他のプロットの信頼度として定義する。なお、信頼度とは、予測値のプロットの場合は修正を行わない場合の予測の信頼性を表す量を意味する。また、キーワードに対応する修正後予測値のプロットの場合は、信頼度は、修正を行った場合のキーワードごとの予測の信頼性を表す量を意味する。また、グループのプロットの場合は、信頼度は、グループに属するキーワードが組み合わされた場合の信頼性を表す量を意味する。例えば、図14(a)のように、距離が長い場合には、信頼度が低くなり、図14(b)のように、距離が短い場合には、信頼度が高くなる。
次いで、ステップS48では、信頼度算出部30は、データ蓄積を実行する。具体的には、信頼度算出部30は、図14(c)に示す信頼度DB46に、各キーワードID又はグループIDに対応して、信頼度を格納する。なお、本実施形態では、図14(c)のように、キーワードなしの場合の信頼度が0.1、キーワードK1(夏季)、K2(特需)、グループG1(夏季と特需)の場合の信頼度が0.9と算出され、信頼度DB46に格納されたものとする。
なお、図6、図7の処理は、任意の周期で(例えば1ヶ月ごとに)繰り返し実行される。これにより、順次、信頼度のデータが信頼度DB46に蓄積されることになる。
<予測処理>
次に、図15に基づいて、予測処理について詳細に説明する。なお、図15の処理は、修正がある程度の回数実行され、予測値DB40等に所定以上のデータがたまった段階で、予測値の予測タイミングで(例えば1ヶ月ごとに)実行される処理である。
図15の処理では、まず、ステップS60において、予測値算出部20が、予測値を算出する。このステップS60では、前述した図4のステップS10と同様にして予測値を算出する。ここでは、予測値算出部20は、n〜n+3週のプロダクト1の需要量の予測値を算出し、修正反映部32に送信したものとする。
次いで、ステップS62に移行すると、修正反映部32が、信頼度に基づいて修正に用いるキーワード又はグループ(推奨キーワード又はグループ)を選定する。本実施形態では、信頼度DB46から、ステップS60の予測値と同一の予測対象かつ同一の時間軸(n〜n+3週)で、信頼度が最も高い(最も信頼できる)キーワード又はデータを選定する。
次いで、ステップS64では、修正反映部32が、選定された推奨キーワード又はグループに対応する修正値で予測値を修正した結果をユーザに提供するとともに、推奨外のキーワード又はグループの情報をユーザに提供する。例えば、図16(a)に示すような予測値が得られ、かつ信頼度0.9のグループG1(キーワード「夏季」、「特需」を含む)が推奨グループとして選定されたとする。この場合、図16(b)のように、n週〜n+3週の修正値が+10、+30、+50、+70であったとすると、修正反映部32は、修正値に信頼度(0.9)を積算した値(+9、+27、+45、+63)を推奨修正値とする。そして、修正反映部32は、図16(b)に示すような画面を作成し、利用者端末70に送信して、利用者端末70の表示部193に当該画面を表示させる。なお、図16(b)の画面には、各推奨修正値を用いた修正後予測値のグラフ、推奨グループと信頼度、推奨修正値の情報のほか、推奨外のキーワード又はグループのアイコン82や信頼度も表示される。なお、修正反映部32は、推奨修正値を用いた修正の内容を予測値DB40に格納する。
次いで、ステップS66では、修正反映部32が、推奨外のキーワード又はグループを使用するか否かを判断する。具体的には、修正反映部32は、ユーザが利用者端末70の入力部195を介して推奨外のキーワード又はグループのアイコン82を選択したか否かを判断する。このステップS66の判断が否定された場合には、ステップS66が繰り返されるが、肯定された場合には、ステップS68に移行する。
ステップS68に移行すると、修正反映部32は、ユーザによって指定されたキーワード又はグループに基づく修正に切り替える。修正反映部32は、ユーザによって指定されたキーワード又はグループに対応する修正値に信頼度を積算した値を新たな推奨修正値として、予測値を修正した結果を用いて、図16(b)の画面を更新する。なお、修正反映部32は、ステップS64で予測値DB40に格納した修正の内容を削除し、ユーザが新たに選択した修正の内容を予測値DB40に格納する。
その後は、ステップS66に戻り、ユーザが図16(b)の画面を閉じる操作を行うまで、ステップS66〜S68の処理・判断を繰り返し実行する。
なお、上述した例では、修正値に信頼度を積算した値を推奨修正値とする場合について説明したが、これに限られるものではない。例えば、信頼度に基づいて選定されたキーワード又はグループに対応する修正値そのものを推奨修正値として扱うこととしてもよい。また、上述した例では、過去の修正実績を格納する予測値DB40から、新たに予測する時間軸と予測対象が同一のデータを抽出し、利用する場合について説明したが、これに限られるものではない。例えば、予測対象が異なるが、時間軸が同一のデータを抽出し、利用することとしてもよい。
以上、詳細に説明したように、本第1の実施形態によると、予測値算出部20は、過去の需要量の実績値を基に、将来の需要量の予測値を算出し(S10)、修正情報受付部22は、需要量の予測値を修正する修正値の入力を受け付け(S12)、キーワード抽出部24は、修正値に対応付けて、修正根拠の情報をキーワードとして設定し(S14)、信頼度算出部30は、修正値に基づいて修正した予測値と需要量の実績値とに基づいて、キーワードに対応する修正値の信頼度を算出する(S46)。そして、修正反映部32は、過去に入力された修正値を利用した予測値の修正に関連して、過去に入力された修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する(S64、図16(b))。これにより、本第1の実施形態によれば、修正値やキーワードがユーザの知識として蓄積され、ユーザの知識の信頼度が数的に都度算出され、修正の際に出力される。したがって、ユーザは、予測値を修正する際に、過去に入力された修正値に対応するキーワードと信頼度とを参照することで、どのような修正を行うのが適切であるかを判断することができる。
ここで、予測精度を高めるためにユーザが定義したルールを適用するという方法を採用した場合、ユーザが既に有効な要素を見つけていることが前提となっており、かつ、決め込んだルールをシンプルに予測計算に適用することになる。また、時間が経つにつれてトレンドは変化するため、定義したルールが適切なルールであるとは限らない。これに対し、本第1の実施形態では、ユーザの知識(修正値や修正根拠)を都度評価するので、トレンドに対応した修正が可能となる。また、ユーザが定義したルールを用いる場合に必要なデータマイニングが不要となり、かつ、ユーザの知識の信頼度を都度評価することでより信頼性の高いルールを見出し、トレンドに合わせた予測計算として活用することができる。
この場合、本第1の実施形態では、修正根拠が文章形式で入力されても、キーワード抽出部24は、文章解析からキーワードを取得するため、修正値と修正根拠との紐付けが容易である。
また、本第1の実施形態では、過去に入力された修正値を利用して需要量の予測値を修正するので、ユーザによって適切に選択された予測値を利用して、需要量の予測値の修正を適切に行うことが可能となる。
また、本第1の実施形態では、過去に入力された修正値に信頼度を積算した値(信頼度で重み付けした値)で需要量の予測値を修正するので、信頼度に応じて補正した修正値を用いて、予測値を適切に修正することが可能となる。
また、本第1の実施形態では、指定期間の需要量の予測値を、指定期間と対応する過去の期間(例えば、1年のうちの第n週など)において入力された修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する。これにより、過去において時期を考慮した修正値を、将来の予測値の修正に用いることが可能となる。
なお、上記実施形態では、修正根拠をキーワードとする場合について説明したが、これに限られるものではない。例えば、修正値の入力に付随して蓄積した情報(例えば、修正時期、曜日など)をキーワードとしてもよい。以下に説明する第2の実施形態では、修正時期をキーワードとして扱う場合について説明する。
《第2の実施形態》
図17には、第2の実施形態において利用者端末70の表示部193上に表示される、予測値の修正値を入力するための画面(第1の実施形態の図8(a)に相当)が示されている。この図17においては、ユーザが「月末に需要が高くなる」ことを見込んで、毎月末に修正を繰り返している例が示されている。なお、ユーザは、図17の画面において時間軸を特定した後、修正値を入力するが、修正根拠については、入力しないものとする。
図18(a)には、第2の実施形態で用いられる予測値DB40のデータ構造が示されている。図18(a)の予測値DB40は、第1の実施形態の予測値DB40(図4)の「キーワード」のフィールドに代えて、「外部情報」のフィールドが設けられている。「外部情報」のフィールドには、「月末」などのキーワードが格納される。ここで、キーワード抽出部24は、月末に繰り返し修正をしていることを検出すると、当該修正のキーワードとして、「月末」を外部情報のフィールドに格納する。なお、図18(a)では、予測値名称「月末:修正後予測値」の時間軸「先月1週」の列においても、外部情報として「月末」が入力されている。しかしながら、1週目において月末に対応する修正は行われないので、修正値は0となっている。
図18(b)には、第2の実施形態で用いられる実績値DB42が示されている。実績値DB42については、第1の実施形態(図10(b))と同様となっている。また、図19(b)には、第2の実施形態で用いられる信頼度DB46のデータ構造が示されている。図19(b)の信頼度DB46は、第1の実施形態の信頼度DB46(図14(c))の「キーワード」のフィールドに代えて、「外部情報」のフィールドが設けられている。
本第2の実施形態は、図6、図7の処理において、キーワードとして外部情報(例えば、時期を示す単語)を用いること以外は、第1の実施形態と同様となっている。したがって、信頼度算出部30は、実績値と予測値と修正後予測値との関係から、外部情報ごとの信頼度を算出し(S46)、信頼度に基づいて、図19(a)に示すような画面を作成する(S64)。図19(a)の画面では、信頼度の高い外部情報に対応する修正値で修正した予測値を推奨予測値として表示している。
以上、説明したように、本第2の実施形態によると、予測値算出部20は、過去の需要量の実績値を基に、将来の需要量の予測値を算出し(S10)、修正情報受付部22は、需要量の予測値を修正する修正値の入力を受け付け(S12)、キーワード抽出部24は、修正値に対応付けて、修正根拠の情報をキーワードとして設定し(S14)、信頼度算出部30は、修正値に基づいて修正した予測値と需要量の実績値とに基づいて、キーワードに対応する修正値の信頼度を算出する(S46)。そして、修正反映部32は、過去に入力された修正値を利用した予測値の修正に関連して、過去に入力された修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する(S64、図16(b))。これにより、本第2の実施形態によれば、ユーザは、予測値を修正する際に、過去に入力された修正値に対応する外部情報と信頼度とを参照することで、どのような修正を行うのが適切であるかを判断することができる。
また、本第2の実施形態では、そもそもユーザによる修正時に外部情報として与えられた「月末」という情報は、キーワード抽出部24により各月の第4週目という「時間軸情報」に基づいて付与されている。このため、信頼度を紐付けた「月末」という外部情報(キーワード)を未来の修正に適用するタイミングは過去のユーザの修正実績のタイミングから容易に判断することができる。したがって、ユーザに対し、毎月末に修正の推奨を提示することが可能である。
なお、外部情報には、ユーザ情報が含まれていてもよい。以下の第3の実施形態では、外部情報(ユーザ情報)と、修正根拠をキーワードとして扱う場合について説明する。
《第3の実施形態》
本第3の実施形態では、予測値算出部20が、一例として、実績値の減少傾向に基づいて、需要量が今後線形的に減少すると予測したとする。そして、2人のユーザA,Bは、n週以降に「雨」が多くなるという情報を受けて、図20(a)に示すように予測値を修正したとする。この場合、指定期間予測値DB41は、図20(b)に示すようなデータ構造となる。なお、図20(b)の指定期間予測値DB41は、図9の指定期間予測値DB41に「外部情報」のフィールドを加えたデータ構造を有している。
ここで図20(b)のデータを、外部情報(ユーザの情報)と、修正根拠のそれぞれについてまとめると、図21(a)のA−1(ユーザAに対応する修正)、図21(b)のA−2(ユーザAによるキーワード「雨」に対応する修正)、図21(c)のB−1(ユーザBに対応する修正)、図21(d)のB−2(ユーザAによるキーワード「雨」に対応する修正)となる。
一方、実績値は、図22(a)に示すような傾向であったとする。この場合、上記第1の実施形態と同様、ステップS34の処理を行うことで、図22(b)に示すようにf1、f2座標にA-1、A-2、B-1、B-2の4点がプロットされる。また、上記第1の実施形態と同様、ステップS38の処理を行うことで、図22(c)に示すようにA-1とA-2がグループ化され、B-1とB-2がグループ化される。図22(c)の例では、図22(a)の実績値の傾向(一旦下がって上昇する)と最も近かったものが、B-1とB-2を含むグループである。したがって、B-1とB-2を含むグループの信頼度は高く設定される。
ここで、上述したグループ化の処理によって、「雨」という同一キーワードが入力されたとしても全く別の修正要素として成り立たせることが実現できる。すなわち、自動的に推奨修正値で予測値を修正する際には「ユーザB」と「雨」を含むグループの信頼度と、ユーザBの修正実績を用いればよいということが判断できるようになる。
なお、本第3の実施形態では、「雨」というキーワード単体の信頼度を、ユーザA、Bの修正履歴から算出することもできる。例えば、図22(d)に示すように、A−2とB−2の中点Cを取り、Cと実績との距離に基づいて信頼度を算出することができる。例えば、「雨」の信頼度が最も高かった場合には、修正反映部32は、自動修正(図15の処理)を行う際は、「雨」というキーワードで修正されたユーザA,B両方の修正値を組み合わせて推奨修正値を決定すればよい。この場合、「雨」にかかる信頼度の種類は、「雨」単体の信頼度、「ユーザA」と「雨」を含むグループ、「ユーザB」と「雨」を含むグループの3種類になる。このように、「外部情報」を「キーワード」と組み合わせて利用することで、より適切に、予測値の自動修正を行うことが可能となる。これにより、日々、需要量予測システムに向かって作業するユーザの知識をリアルタイムで取り込み、分析し、活用できる。また、一般的に考えられる多様なデータと、ユーザの知識を表現するデータを用いることで予測精度が更に高まる。
なお、上記第3の実施形態では、説明の便宜上、雨による修正をユーザA,Bごとに分けることで、4つのデータに分ける場合について説明した(図21(a)〜図21(d)参照)が、これに限るものではない。例えば図23に示すように、予測値名称を定義する時点で「ユーザA+雨」と「ユーザB+雨」の2種を作成しておくこととしてもよい。これにより、キーワードが「雨」で共通していても、予測値名称に基づいて別々の外部情報に紐づく別々の修正であることを識別することができる。このため、どのユーザの「雨」に基づく修正が最も信頼できるかを識別することが可能となる。
なお、上記第2、第3の実施形態では、外部情報が時期やユーザである場合について説明したが、これに限られるものではない。例えば、外部情報は、製品、コスト、効果などの属性情報であってもよい。
なお、上記の処理機能は、コンピュータによって実現することができる。その場合、処理装置が有すべき機能の処理内容を記述したプログラムが提供される。そのプログラムをコンピュータで実行することにより、上記処理機能がコンピュータ上で実現される。処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体(ただし、搬送波は除く)に記録しておくことができる。
プログラムを流通させる場合には、例えば、そのプログラムが記録されたDVD(Digital Versatile Disc)、CD−ROM(Compact Disc Read Only Memory)などの可搬型記録媒体の形態で販売される。また、プログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することもできる。
プログラムを実行するコンピュータは、例えば、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、自己の記憶装置に格納する。そして、コンピュータは、自己の記憶装置からプログラムを読み取り、プログラムに従った処理を実行する。なお、コンピュータは、可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することもできる。また、コンピュータは、サーバコンピュータからプログラムが転送されるごとに、逐次、受け取ったプログラムに従った処理を実行することもできる。
上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
なお、以上の第1〜第3の実施形態の説明に関して、更に以下の付記を開示する。
(付記1) 過去の需要量の実績値を基に、将来の需要量を予測し、
予測した前記将来の需要量を修正する修正値の入力を受け付け、
前記修正値に対応付けて、修正根拠の情報及び/又は前記修正値の入力に付随して蓄積した情報をキーワードとして設定し、
前記修正値に基づいて修正した前記将来の需要量と前記需要量の実績値とに基づいて、前記キーワードに対応する前記修正値の信頼度を算出し、
過去に入力された前記修正値を利用した将来の需要量の予測値の修正に関連して、過去に入力された前記修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する、
処理をコンピュータに実行させる需要量予測プログラム。
(付記2) 前記出力する処理において出力した前記キーワードの選択を受け付け、
選択された前記キーワードに対応する前記修正値を利用して前記将来の需要量の予測値を修正する、処理を前記コンピュータに更に実行させる付記1に記載の需要量予測プログラム。
(付記3) 前記修正する処理において、過去に入力された前記修正値を該修正値の信頼度で補正した値で、前記将来の需要量の予測値を修正する、ことを特徴とする付記2に記載の需要量予測プログラム。
(付記4) 前記出力する処理では、所定期間の需要量の予測値の修正に関連して、前記所定期間と対応する過去の期間において入力された前記修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する、ことを特徴とする付記1〜3のいずれかに記載の需要量予測プログラム。
(付記5) 過去の需要量の実績値を基に、将来の需要量を予測し、
予測した前記将来の需要量を修正する修正値の入力を受け付け、
前記修正値に対応付けて、修正根拠の情報及び/又は前記修正値の入力に付随して蓄積した情報をキーワードとして設定し、
前記修正値に基づいて修正した前記将来の需要量と前記需要量の実績値とに基づいて、前記キーワードに対応する前記修正値の信頼度を算出し、
過去に入力された前記修正値を利用した将来の需要量の予測値の修正に関連して、過去に入力された前記修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する、
処理をコンピュータが実行する需要量予測方法。
(付記6) 前記出力する処理において出力した前記キーワードの選択を受け付け、
選択された前記キーワードに対応する前記修正値を利用して前記将来の需要量の予測値を修正する、処理を前記コンピュータが更に実行する付記5に記載の需要量予測方法。
(付記7) 前記修正する処理において、過去に入力された前記修正値を該修正値の信頼度で補正した値で、前記将来の需要量の予測値を修正する、ことを特徴とする付記6に記載の需要量予測方法。
(付記8) 前記出力する処理では、所定期間の需要量の予測値の修正に関連して、前記所定期間と対応する過去の期間において入力された前記修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する、ことを特徴とする付記5〜7のいずれかに記載の需要量予測方法。
(付記9) 過去の需要量の実績値を基に、将来の需要量を予測する予測部と、
予測した前記将来の需要量を修正する修正値の入力を受け付ける修正情報受付部と、
前記修正値に対応付けて、修正根拠の情報及び/又は前記修正値の入力に付随して蓄積した情報をキーワードとして設定するキーワード抽出部と、
前記修正値に基づいて修正した前記将来の需要量と前記需要量の実績値とに基づいて、前記キーワードに対応する前記修正値の信頼度を算出する信頼度算出部と、
過去に入力された前記修正値を利用した将来の需要量の予測値の修正に関連して、過去に入力された前記修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する出力部と、
を備える情報処理装置。
(付記10) 前記出力部は、出力した前記キーワードの選択を受け付け、
選択された前記キーワードに対応する前記修正値を利用して前記将来の需要量の予測値を修正する修正部を更に備える付記9に記載の情報処理装置。
(付記11) 前記修正部は、過去に入力された前記修正値を該修正値の信頼度で補正した値で、前記将来の需要量の予測値を修正する、ことを特徴とする付記10に記載の情報処理装置。
(付記12) 前記出力部は、所定期間の需要量の予測値の修正に関連して、前記所定期間と対応する過去の期間において入力された前記修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する、ことを特徴とする付記9〜11のいずれかに記載の情報処理装置。
10 サーバ(情報処理装置)
20 予測値算出部(予測部)
22 修正情報受付部
24 キーワード抽出部
30 信頼度算出部
32 修正反映部(出力部、修正部)
90 CPU(コンピュータ)

Claims (6)

  1. 過去の需要量の実績値を基に、将来の需要量を予測し、
    予測した前記将来の需要量を修正する修正値の入力を受け付け、
    前記修正値に対応付けて、修正根拠の情報及び/又は前記修正値の入力に付随して蓄積した情報をキーワードとして設定し、
    前記修正値に基づいて修正した前記将来の需要量と前記需要量の実績値とに基づいて、前記キーワードに対応する前記修正値の信頼度を算出し、
    過去に入力された前記修正値を利用した将来の需要量の予測値の修正に関連して、過去に入力された前記修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する、
    処理をコンピュータに実行させる需要量予測プログラム。
  2. 前記出力する処理において出力した前記キーワードの選択を受け付け、
    選択された前記キーワードに対応する前記修正値を利用して前記将来の需要量の予測値を修正する、処理を前記コンピュータに更に実行させる請求項1に記載の需要量予測プログラム。
  3. 前記修正する処理において、過去に入力された前記修正値を該修正値の信頼度で補正した値で、前記将来の需要量の予測値を修正する、ことを特徴とする請求項2に記載の需要量予測プログラム。
  4. 前記出力する処理では、所定期間の需要量の予測値の修正に関連して、前記所定期間と対応する過去の期間において入力された前記修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する、ことを特徴とする請求項1〜3のいずれか一項に記載の需要量予測プログラム。
  5. 過去の需要量の実績値を基に、将来の需要量を予測し、
    予測した前記将来の需要量を修正する修正値の入力を受け付け、
    前記修正値に対応付けて、修正根拠の情報及び/又は前記修正値の入力に付随して蓄積した情報をキーワードとして設定し、
    前記修正値に基づいて修正した前記将来の需要量と前記需要量の実績値とに基づいて、前記キーワードに対応する前記修正値の信頼度を算出し、
    過去に入力された前記修正値を利用した将来の需要量の予測値の修正に関連して、過去に入力された前記修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する、
    処理をコンピュータが実行する需要量予測方法。
  6. 過去の需要量の実績値を基に、将来の需要量を予測する予測部と、
    予測した前記将来の需要量を修正する修正値の入力を受け付ける修正情報受付部と、
    前記修正値に対応付けて、修正根拠の情報及び/又は前記修正値の入力に付随して蓄積した情報をキーワードとして設定するキーワード抽出部と、
    前記修正値に基づいて修正した前記将来の需要量と前記需要量の実績値とに基づいて、前記キーワードに対応する前記修正値の信頼度を算出する信頼度算出部と、
    過去に入力された前記修正値を利用した将来の需要量の予測値の修正に関連して、過去に入力された前記修正値に対応するキーワードと、該修正値の信頼度とを対応付けて出力する出力部と、
    を備える情報処理装置。
JP2016033591A 2016-02-24 2016-02-24 需要量予測プログラム、需要量予測方法、及び情報処理装置 Expired - Fee Related JP6617605B6 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016033591A JP6617605B6 (ja) 2016-02-24 2016-02-24 需要量予測プログラム、需要量予測方法、及び情報処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016033591A JP6617605B6 (ja) 2016-02-24 2016-02-24 需要量予測プログラム、需要量予測方法、及び情報処理装置

Publications (3)

Publication Number Publication Date
JP2017151731A true JP2017151731A (ja) 2017-08-31
JP6617605B2 JP6617605B2 (ja) 2019-12-11
JP6617605B6 JP6617605B6 (ja) 2020-01-22

Family

ID=59739821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033591A Expired - Fee Related JP6617605B6 (ja) 2016-02-24 2016-02-24 需要量予測プログラム、需要量予測方法、及び情報処理装置

Country Status (1)

Country Link
JP (1) JP6617605B6 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021026402A (ja) * 2019-08-01 2021-02-22 富士通株式会社 情報処理装置、及び、情報処理プログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102566421B1 (ko) * 2021-04-02 2023-08-14 주식회사 바이럴픽 오픈 마켓 상품의 시계열 수요 예측 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004295226A (ja) * 2003-03-25 2004-10-21 Matsushita Electric Works Ltd 需要量予測支援システム及びそのプログラム並びにそのプログラムを記録したコンピュータで読み取り可能な記録媒体
JP2006350883A (ja) * 2005-06-20 2006-12-28 Yaskawa Electric Corp 知識データベースを利用した需要予測値自動判定システムおよびそれに用いられる需要予測値自動判定プログラム並びにそのプログラムが記録された記録媒体
JP2016184229A (ja) * 2015-03-25 2016-10-20 東芝テック株式会社 需要予測装置及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004295226A (ja) * 2003-03-25 2004-10-21 Matsushita Electric Works Ltd 需要量予測支援システム及びそのプログラム並びにそのプログラムを記録したコンピュータで読み取り可能な記録媒体
JP2006350883A (ja) * 2005-06-20 2006-12-28 Yaskawa Electric Corp 知識データベースを利用した需要予測値自動判定システムおよびそれに用いられる需要予測値自動判定プログラム並びにそのプログラムが記録された記録媒体
JP2016184229A (ja) * 2015-03-25 2016-10-20 東芝テック株式会社 需要予測装置及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021026402A (ja) * 2019-08-01 2021-02-22 富士通株式会社 情報処理装置、及び、情報処理プログラム

Also Published As

Publication number Publication date
JP6617605B6 (ja) 2020-01-22
JP6617605B2 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
US11195050B2 (en) Machine learning to generate and evaluate visualizations
US11941645B1 (en) Methods and systems to extract signals from large and imperfect datasets
US11275748B2 (en) Influence score of a social media domain
JP5373870B2 (ja) 予測装置、予測方法、及び、プログラム
CN107016571A (zh) 数据预测方法及其系统
US10896388B2 (en) Systems and methods for business analytics management and modeling
US20240346531A1 (en) Systems and methods for business analytics model scoring and selection
US10740772B2 (en) Systems and methods for forecasting based upon time series data
JP6012860B2 (ja) 作業時間推定装置
WO2017106559A1 (en) Systems and methods for forecasting based upon time series data
JP2007323315A (ja) 協調フィルタリング方法、協調フィルタリング装置、および協調フィルタリングプログラムならびにそのプログラムを記録した記録媒体
JP6617605B2 (ja) 需要量予測プログラム、需要量予測方法、及び情報処理装置
JP2005032079A (ja) プロジェクト事前評価方法
US20190065987A1 (en) Capturing knowledge coverage of machine learning models
JP5560220B2 (ja) 工数見積装置、工数見積方法、工数見積プログラム
KR102594165B1 (ko) 기온 변화에 대한 판매량 예측 모델을 활용한 미래 수요 예측 시스템
WO2017103996A1 (ja) 生産計画立案装置、及び生産計画立案方法
JP6966289B2 (ja) 情報分析装置、プログラム及び方法
CN114416513B (zh) 搜索数据的处理方法、装置、电子设备和存储介质
JP4419814B2 (ja) サービス品質評価支援装置
Chen et al. Optimum process mean setting based on variable sampling plans with specified consumer’s risk
US20150046439A1 (en) Determining Recommendations In Data Analysis
JP7200577B2 (ja) 情報処理装置、情報処理システム、情報処理方法、及びプログラム。
JP5685995B2 (ja) シミュレーション用データ生成システム、方法およびプログラム
JP2023104145A (ja) 計算機システム及び予測モデルの学習方法

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R150 Certificate of patent or registration of utility model

Ref document number: 6617605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees