JP2017150579A - Connecting structure of driving shaft member and driven shaft member - Google Patents

Connecting structure of driving shaft member and driven shaft member Download PDF

Info

Publication number
JP2017150579A
JP2017150579A JP2016033941A JP2016033941A JP2017150579A JP 2017150579 A JP2017150579 A JP 2017150579A JP 2016033941 A JP2016033941 A JP 2016033941A JP 2016033941 A JP2016033941 A JP 2016033941A JP 2017150579 A JP2017150579 A JP 2017150579A
Authority
JP
Japan
Prior art keywords
shaft member
drive shaft
coupling
connection
fastening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016033941A
Other languages
Japanese (ja)
Other versions
JP6554043B2 (en
Inventor
俊博 村木
Toshihiro Muraki
俊博 村木
渡邊 治
Osamu Watanabe
治 渡邊
誠司 石田
Seiji Ishida
誠司 石田
真 石島
Makoto Ishijima
真 石島
絢太 谷垣
Kenta Tanigaki
絢太 谷垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Hitachi Construction Machinery Co Ltd
Original Assignee
Toyota Industries Corp
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Hitachi Construction Machinery Co Ltd filed Critical Toyota Industries Corp
Priority to JP2016033941A priority Critical patent/JP6554043B2/en
Publication of JP2017150579A publication Critical patent/JP2017150579A/en
Application granted granted Critical
Publication of JP6554043B2 publication Critical patent/JP6554043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a connecting structure of a driving shaft member and a driven shaft member using a coupling member capable of absorbing torque fluctuation of the driving shaft member, and suppressing degradation of durability of the coupling member caused by heat, in the connecting structure of the driven shaft member and the driving shaft member generating heat, through the coupling member.SOLUTION: A coupling face 50m of a coupling member having a driving-side connecting member connected to a driving shaft member, a driven-side connecting member connected to a driven shaft member, and an elastic resin member absorbing torque fluctuation, has a fastening face 51m at a driving shaft member side of the driving-side connecting member, and a resin non-fastening face 53m as a face at a driving shaft member side, of the elastic resin member, the driving shaft connecting face 32m of the driving shaft member has a connecting face 32c overlapped to the fastening face when observed from a rotating shaft direction, and a non-connecting face 32d overlapped to the resin non-fastening face, the connecting face and the fastening face are connected, and the non-connecting face and the resin non-fastening face are not connected but separated from each other.SELECTED DRAWING: Figure 2

Description

本発明は、従動軸部材と発熱する駆動軸部材とを連結する駆動軸部材と従動軸部材との連結構造に関する。   The present invention relates to a connection structure of a drive shaft member and a driven shaft member that connects a driven shaft member and a drive shaft member that generates heat.

近年では、エンジン(内燃機関)及び回転電機を駆動源としてオイルポンプを駆動するフォークリフト等の産業車両がある。例えば、上記の産業車両では、エンジンのクランクシャフトが回転電機のロータに接続され、回転電機のロータがオイルポンプのシャフトに接続されており、回転電機のシャフトがオイルポンプのシャフトとカップリング部材を介して接続されている。上記の産業車両では、回転電機が発電機として作動する場合には、エンジンが回転電機とオイルポンプの駆動源となり、回転電機が電動機として作動する場合には、回転電機がオイルポンプの駆動源となる。そしてオイルポンプは、エンジンあるいは回転電機から駆動され、荷役用の油圧を発生する。なお、オイルポンプのシャフトを従動軸部材とした場合、回転電機のロータが駆動軸部材に相当する。上記のように、カップリング部材を介して駆動軸部材と従動軸部材とを連結する連結構造には、種々の構造が提案されている。   In recent years, there are industrial vehicles such as forklifts that drive an oil pump using an engine (internal combustion engine) and a rotating electric machine as drive sources. For example, in the above industrial vehicle, the crankshaft of the engine is connected to the rotor of the rotating electrical machine, the rotor of the rotating electrical machine is connected to the shaft of the oil pump, and the shaft of the rotating electrical machine connects the shaft of the oil pump and the coupling member. Connected through. In the industrial vehicle described above, when the rotating electrical machine operates as a generator, the engine serves as a driving source for the rotating electrical machine and an oil pump. When the rotating electrical machine operates as an electric motor, the rotating electrical machine serves as a driving source for the oil pump. Become. The oil pump is driven from the engine or the rotating electrical machine and generates hydraulic pressure for cargo handling. When the shaft of the oil pump is a driven shaft member, the rotor of the rotating electrical machine corresponds to the drive shaft member. As described above, various structures have been proposed for the connection structure that connects the drive shaft member and the driven shaft member via the coupling member.

例えば特許文献1には、エンジンの出力シャフトと、ダイナモのシャフトと、をカップリングを介して接続した回転装置が開示されている。この回転装置では、エンジンの出力シャフトは、カップリングにおける第2の部材に接続され、ダイナモのシャフトは、カップリングにおける第1の部材に接続され、第1の部材と第2の部材とが、ボルトで強固に連結されている。また、第1の部材と第2の部材との対向面には、放熱用の溝部が放射状に形成されている。   For example, Patent Document 1 discloses a rotating device in which an engine output shaft and a dynamo shaft are connected via a coupling. In this rotating device, the output shaft of the engine is connected to the second member in the coupling, the shaft of the dynamo is connected to the first member in the coupling, and the first member and the second member are It is firmly connected with bolts. In addition, heat radiating grooves are formed radially on the opposing surfaces of the first member and the second member.

特開2011−223805号公報JP 2011-223805 A

特許文献1に記載の発明では、カップリングにおける第1の部材と第2の部材とがボルトで強固に連結されているので、エンジンのトルク変動が、ダイナモに直接伝達されるので、あまり好ましくない。エンジンのトルク変動を吸収するために、第1の部材と第2の部材との間に、弾性体を設けることが好ましい。しかし、第1の部材と第2の部材との間に、単純に弾性体を挟み込んだ場合、ダイナモやエンジンからの熱が、第1の部材や第2の部材から直接弾性体に伝導されてしまう。一般的に弾性体は熱に弱いので、カップリングの耐久性が低下する可能性があり、第1の部材と第2の部材との間に、単純に弾性体を挟み込む構造は、好ましくない。   In the invention described in Patent Document 1, since the first member and the second member in the coupling are firmly connected by bolts, engine torque fluctuations are directly transmitted to the dynamo, which is not preferable. . In order to absorb engine torque fluctuation, an elastic body is preferably provided between the first member and the second member. However, when an elastic body is simply sandwiched between the first member and the second member, the heat from the dynamo or the engine is directly conducted from the first member or the second member to the elastic body. End up. In general, since the elastic body is vulnerable to heat, the durability of the coupling may be reduced, and a structure in which the elastic body is simply sandwiched between the first member and the second member is not preferable.

本発明は、このような点に鑑みて創案されたものであり、カップリング部材を介した、従動軸部材と発熱する駆動軸部材との連結構造において、駆動軸部材のトルク変動を吸収できるカップリング部材を用いるとともに、熱によるカップリング部材の耐久性の低下を抑制することができる駆動軸部材と従動軸部材との連結構造を提供することを課題とする。   The present invention was devised in view of such a point, and in a coupling structure between a driven shaft member and a heat generating drive shaft member via a coupling member, a cup capable of absorbing torque fluctuation of the drive shaft member. While using a ring member, it aims at providing the connection structure of the drive shaft member and driven shaft member which can suppress the fall of durability of the coupling member by heat.

上記課題を解決するため、本発明に係る駆動軸部材と従動軸部材との連結構造は次の手段をとる。まず、本発明の第1の発明は、従動軸部材と発熱する駆動軸部材とを連結する、駆動軸部材と従動軸部材との連結構造であって、前記従動軸部材は、カップリング部材を介して前記駆動軸部材と連結されており、前記カップリング部材は、前記駆動軸部材に接続される駆動側接続部材と、前記従動軸部材に接続される従動側接続部材と、前記駆動軸部材と前記従動軸部材との間に生じるトルク変動を吸収する弾性樹脂部材と、を有している。そして、前記カップリング部材における前記駆動軸部材の側の面であるカップリング面は、前記駆動側接続部材における前記駆動軸部材の側の面となる締結面と、前記弾性樹脂部材における前記駆動軸部材の側の面となる樹脂非締結面と、を有しており、前記駆動軸部材における前記カップリング部材の側の面である駆動軸接続面は、前記駆動軸部材の回転軸方向から見た場合に前記締結面と重なる領域の面である接続面と、前記回転軸方向から見た場合に前記樹脂非締結面と重なる領域の面である非接続面と、を有している。そして、前記接続面と前記締結面は、直接接続されており、あるいは前記駆動軸部材と前記カップリング部材との間に設けられた他部材を挟んだ状態で接続されており、前記非接続面と前記樹脂非締結面は、接続されることなく、所定の隙間をあけて離間されている、駆動軸部材と従動軸部材との連結構造である。   In order to solve the above problems, the connecting structure of the drive shaft member and the driven shaft member according to the present invention takes the following means. A first aspect of the present invention is a connection structure of a drive shaft member and a driven shaft member that connects the driven shaft member and a drive shaft member that generates heat, wherein the driven shaft member includes a coupling member. The coupling member is connected to the driving shaft member, a driving side connecting member connected to the driving shaft member, a driven side connecting member connected to the driven shaft member, and the driving shaft member And an elastic resin member that absorbs torque fluctuation generated between the driven shaft member and the driven shaft member. The coupling surface, which is the surface on the drive shaft member side of the coupling member, includes a fastening surface that is a surface on the drive shaft member side of the drive side connection member, and the drive shaft of the elastic resin member. A drive non-fastening surface that is a member side surface, and a drive shaft connecting surface that is a surface on the coupling member side of the drive shaft member is viewed from a rotation axis direction of the drive shaft member. A connection surface that is a surface of the region that overlaps with the fastening surface when viewed from the direction of rotation, and a non-connection surface that is a surface of the region that overlaps with the resin non-fastening surface when viewed from the direction of the rotation axis. The connection surface and the fastening surface are directly connected, or are connected in a state of sandwiching another member provided between the drive shaft member and the coupling member, and the non-connection surface And the resin non-fastening surface is a connection structure of the drive shaft member and the driven shaft member that is not connected and is separated by a predetermined gap.

この第1の発明では、駆動軸部材とカップリング部材とは、駆動軸部材の接続面と、カップリング部材の締結面と、が直接接続、あるいは他部材を挟んだ状態で接続されている。そして、駆動軸部材の非接続面と、カップリング部材の樹脂非締結面と、は接続されることなく所定の隙間をあけて離間されているので、発熱する駆動軸部材の熱が弾性樹脂部材へと伝導されることを抑制することができる。従って、弾性樹脂部材にて駆動側軸部材のトルク変動を吸収できるとともに、駆動軸部材からの熱によるカップリング部材の耐久性の低下(熱による弾性樹脂部材の劣化等)を抑制することができる。   In the first aspect of the invention, the drive shaft member and the coupling member are connected in a state where the connection surface of the drive shaft member and the fastening surface of the coupling member are directly connected or sandwiching another member. And since the non-connection surface of the drive shaft member and the resin non-fastening surface of the coupling member are spaced apart from each other without being connected, the heat of the drive shaft member that generates heat is elastic resin member It is possible to suppress conduction to Therefore, the elastic resin member can absorb the torque fluctuation of the drive side shaft member, and can suppress a decrease in the durability of the coupling member due to heat from the drive shaft member (deterioration of the elastic resin member due to heat, etc.). .

次に、本発明の第2の発明は、上記第1の発明に係る駆動軸部材と従動軸部材との連結構造であって、前記他部材は、板状のプレート部材であり、前記接続面と前記締結面は、前記プレート部材を挟んだ状態で接続されている、駆動軸部材と従動軸部材との連結構造である。   Next, 2nd invention of this invention is a connection structure of the drive shaft member and driven shaft member which concern on the said 1st invention, Comprising: The said other member is a plate-shaped plate member, The said connection surface And the fastening surface is a connection structure of a drive shaft member and a driven shaft member, which are connected with the plate member interposed therebetween.

この第2の発明では、駆動軸部材の駆動軸接続面と、カップリング部材のカップリング面との間に、板状のプレート部材を挟んだ状態で接続されているので、駆動軸部材からカップリング部材に伝導される熱を、さらに抑制することができる。   In the second aspect of the invention, since the plate-shaped plate member is sandwiched between the drive shaft connecting surface of the drive shaft member and the coupling surface of the coupling member, the cup is connected to the cup from the drive shaft member. The heat conducted to the ring member can be further suppressed.

次に、本発明の第3の発明は、上記第1の発明または第2の発明に係る駆動軸部材と従動軸部材との連結構造であって、前記非接続面は、前記接続面に対して、前記カップリング面から離れる方向に凹んでおり、前記非接続面には、前記カップリング面から離れる方向に深さを有する溝を含む凹凸形状が設けられている、駆動軸部材と従動軸部材との連結構造である。   Next, a third invention of the present invention is a coupling structure of a drive shaft member and a driven shaft member according to the first invention or the second invention, wherein the non-connection surface is connected to the connection surface. The drive shaft member and the driven shaft are recessed in a direction away from the coupling surface, and the non-connection surface is provided with an uneven shape including a groove having a depth in the direction away from the coupling surface. It is a connection structure with a member.

この第3の発明では、非接続面を、接続面に対して凹ませることで、所定の隙間を適切に形成することができる。また、非接続面に溝を設けることで、非接続面の一部を、弾性樹脂部材から更に遠ざけることができる。従って、駆動軸部材からの熱によるカップリング部材の耐久性の低下(熱による弾性樹脂部材の劣化等)を、更に抑制することができる。   In this 3rd invention, a predetermined | prescribed clearance gap can be formed appropriately by denting a non-connection surface with respect to a connection surface. Further, by providing the groove on the non-connection surface, a part of the non-connection surface can be further away from the elastic resin member. Therefore, it is possible to further suppress a decrease in durability of the coupling member due to heat from the drive shaft member (deterioration of the elastic resin member due to heat, etc.).

第1の実施の形態におけるパワーユニットを説明する断面図である。It is sectional drawing explaining the power unit in 1st Embodiment. 第1の実施の形態における駆動軸部材の駆動軸接続面の構造と、カップリング部材のカップリング面の外観等を説明する斜視図である。It is a perspective view explaining the structure of the drive shaft connection surface of the drive shaft member in 1st Embodiment, the external appearance of the coupling surface of a coupling member, etc. 第1の実施の形態において、駆動軸部材の駆動軸接続面に、プレート部材を挟んだ状態でカップリング部材を接続した状態を説明する側面図である。In 1st Embodiment, it is a side view explaining the state which connected the coupling member in the state which pinched the plate member on the drive shaft connection surface of the drive shaft member. 第1の実施の形態において、回転電機の外観と、回転電機の駆動軸部材の駆動軸接続面へ、プレート部材を挟んで、カップリング部材を取り付ける様子と、カップリング部材の外観等を説明する斜視図である。In the first embodiment, the appearance of the rotating electrical machine, the manner in which the coupling member is attached to the drive shaft connecting surface of the drive shaft member of the rotating electrical machine with the plate member sandwiched, the exterior of the coupling member, and the like will be described. It is a perspective view. 第2の実施の形態における駆動軸部材の駆動軸接続面の構造と、カップリング部材のカップリング面の外観等を説明する斜視図である。It is a perspective view explaining the structure of the drive shaft connection surface of the drive shaft member in 2nd Embodiment, the external appearance of the coupling surface of a coupling member, etc. 第2の実施の形態において、駆動軸部材の駆動軸接続面に、カップリング部材を接続した状態を説明する側面図である。In 2nd Embodiment, it is a side view explaining the state which connected the coupling member to the drive shaft connection surface of the drive shaft member. 従来の駆動軸部材の駆動軸接続面の構造を説明する斜視図である。It is a perspective view explaining the structure of the drive shaft connection surface of the conventional drive shaft member.

以下に本発明を実施するための形態を図面を用いて説明する。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing.

●[パワーユニットの構造(図1)]
本実施の形態では、産業車両としてのフォークリフトのパワーユニットに用いられる駆動軸部材と従動軸部材との連結構造を例として説明する。図1に示すように、パワーユニット10は、エンジン20と、回転電機30と、オイルポンプ40と、にて構成されている。なお、便宜上、エンジン20の側を後側とし、オイルポンプ40の側を前側として説明する。なお、以降の実施の形態の説明において、回転電機30のロータ32が、発熱する駆動軸部材に相当し、オイルポンプ40のポンプシャフト42が、従動軸部材に相当する。また、ロータ32とポンプシャフト42は、カップリング部材50を介して連結されている。またロータ32とカップリング部材50との間には、プレート部材70が挟み込まれている。また図2に示すように、プレート部材70におけるカップリング部材50の側には、締結孔70aの周囲に台座部70dが設けられている。
● [Structure of power unit (Fig. 1)]
In the present embodiment, a connection structure between a drive shaft member and a driven shaft member used in a power unit of a forklift as an industrial vehicle will be described as an example. As shown in FIG. 1, the power unit 10 includes an engine 20, a rotating electrical machine 30, and an oil pump 40. For convenience, the engine 20 side will be described as the rear side, and the oil pump 40 side will be described as the front side. In the following description of the embodiments, the rotor 32 of the rotating electrical machine 30 corresponds to a drive shaft member that generates heat, and the pump shaft 42 of the oil pump 40 corresponds to a driven shaft member. Further, the rotor 32 and the pump shaft 42 are connected via a coupling member 50. A plate member 70 is sandwiched between the rotor 32 and the coupling member 50. As shown in FIG. 2, a pedestal portion 70 d is provided around the fastening hole 70 a on the coupling member 50 side of the plate member 70.

エンジン20は、回転電機30の後側に配置され、エンジン20のクランクシャフト22の一方端部(前端部)は、エンジンハウジング21の前面側から突出されている。そして当該クランクシャフト22の突出端部には、小径の接続軸部22aがクランクシャフト22と同軸状に形成されている。また、接続軸部22aは、回転電機30のロータ32の後端に接続されている。従って、クランクシャフト22の回転動力は、ロータ32に伝達される。また回転電機30が駆動源となった場合、ロータ32の回転動力はクランクシャフト22に伝達される。なお、エンジンハウジング21は、シリンダヘッド、シリンダヘッドカバー、シリンダブロック、クランクケース、オイルパン等を含む。   The engine 20 is disposed on the rear side of the rotating electrical machine 30, and one end (front end) of the crankshaft 22 of the engine 20 protrudes from the front side of the engine housing 21. A connecting shaft portion 22 a having a small diameter is formed coaxially with the crankshaft 22 at the protruding end portion of the crankshaft 22. Further, the connecting shaft portion 22 a is connected to the rear end of the rotor 32 of the rotating electrical machine 30. Accordingly, the rotational power of the crankshaft 22 is transmitted to the rotor 32. When the rotating electrical machine 30 serves as a drive source, the rotational power of the rotor 32 is transmitted to the crankshaft 22. The engine housing 21 includes a cylinder head, a cylinder head cover, a cylinder block, a crankcase, an oil pan, and the like.

オイルポンプ40は、回転電機30の前側に配置され、オイルポンプ40のポンプシャフト42は、ポンプハウジング41の後面側から突出されている。そしてポンプシャフト42の先端部(後端部)には、小径の接続軸部42aがポンプシャフト42と同軸状に形成されている。そして接続軸部42aは、カップリング部材50の従動側接続部材52に接続されている。またポンプハウジング41の後側には、オイルポンプ40を回転電機30に対して支持するポンプ支持部材43が取り付けられている。ポンプ支持部材43は、例えば、回転電機30の側からオイルポンプ40の側に向かって径が徐々に小さくなる円錐筒状の形状を有しており、前面側がオイルポンプ40に締結され、後面側が回転電機30に締結されている。またポンプ支持部材43には、内部空間43kと外部とを連通して廃熱を行うための開口孔43aが複数形成されている。なお、開口孔43aの形成位置、形状、個数、サイズ等は適宜設定される。   The oil pump 40 is disposed on the front side of the rotating electrical machine 30, and the pump shaft 42 of the oil pump 40 protrudes from the rear surface side of the pump housing 41. A small-diameter connecting shaft portion 42 a is formed coaxially with the pump shaft 42 at the front end portion (rear end portion) of the pump shaft 42. The connection shaft portion 42 a is connected to the driven side connection member 52 of the coupling member 50. A pump support member 43 that supports the oil pump 40 with respect to the rotating electrical machine 30 is attached to the rear side of the pump housing 41. The pump support member 43 has, for example, a conical cylindrical shape whose diameter gradually decreases from the rotating electrical machine 30 side toward the oil pump 40 side, the front side being fastened to the oil pump 40, and the rear side being Fastened to the rotating electrical machine 30. The pump support member 43 is formed with a plurality of opening holes 43a for communicating waste with the internal space 43k and the outside. The formation position, shape, number, size, and the like of the opening hole 43a are appropriately set.

回転電機30は、エンジン20の前側、かつオイルポンプ40の後側に配置されている。回転電機30は、モータハウジング31aからなるハウジング本体31と、エンドプレート35と、モータカバー36と、を備えている。ハウジング本体31は、略円筒状に形成されている。またエンドプレート35は、略円板状に形成され、中央部にはクランクシャフト22の先端部を挿通するための貫通孔が形成され、ハウジング本体31に対して後側の開口端面を閉鎖するように取り付けられている。そしてエンドプレート35は、エンジンハウジング21に締結されている。またモータカバー36は、略円板状に形成され、中央部にはカップリング部材50を取り付けるための貫通孔が形成され、ハウジング本体31に対して前側の開口端面を閉鎖するように取り付けられている。そしてモータカバー36はポンプ支持部材43と締結されている。またモータカバー36の中央部の貫通孔の孔縁部には、後側に突出した円筒状の2つの筒部36aが同軸となるように形成されている。そして2つの筒部36aの間には、プレート部材70の外周縁部に前側に突出した円筒状の筒部70hが配置され、ラビリンス構造を形成している。このラビリンス構造により、異物がモータハウジング31a内に入り込むことを防止している。   The rotating electrical machine 30 is disposed on the front side of the engine 20 and on the rear side of the oil pump 40. The rotating electrical machine 30 includes a housing body 31 including a motor housing 31a, an end plate 35, and a motor cover 36. The housing body 31 is formed in a substantially cylindrical shape. Further, the end plate 35 is formed in a substantially disc shape, and a through hole for inserting the tip end portion of the crankshaft 22 is formed in the center portion so as to close the opening end surface on the rear side with respect to the housing body 31. Is attached. The end plate 35 is fastened to the engine housing 21. Further, the motor cover 36 is formed in a substantially disc shape, and a through hole for attaching the coupling member 50 is formed in the center, and the motor cover 36 is attached to the housing body 31 so as to close the front opening end face. Yes. The motor cover 36 is fastened to the pump support member 43. Further, two cylindrical cylindrical portions 36a protruding rearward are formed coaxially at the hole edge portion of the through hole in the central portion of the motor cover 36. And between the two cylinder parts 36a, the cylindrical cylinder part 70h which protruded to the front side at the outer peripheral edge part of the plate member 70 is arrange | positioned, and the labyrinth structure is formed. This labyrinth structure prevents foreign matter from entering the motor housing 31a.

ハウジング本体31の内部には、フランジ部32aを有する略円筒状のロータ32が、回転軸32J回りに回転自在となるように支持されている。またロータ32の円筒面の外壁には、永久磁石等のロータコア33が取り付けられている。そして略円筒状のハウジング本体31の内壁には、ロータコア33との間に所定の微小隙間が空くようにコイル等を備えたステータコア34が取り付けられている。ロータ32は、内部空間32kを有する略円筒形状を有しており、少なくともカップリング部材50の側が開口している。そしてロータ32の前端(オイルポンプ40の側の端部)は、プレート部材70を介してカップリング部材50の駆動側接続部材51に締結(接続)されている。なお、カップリング部材50の外観について、以下に説明する。   Inside the housing body 31, a substantially cylindrical rotor 32 having a flange portion 32a is supported so as to be rotatable around a rotation shaft 32J. A rotor core 33 such as a permanent magnet is attached to the outer wall of the cylindrical surface of the rotor 32. A stator core 34 having a coil or the like is attached to the inner wall of the substantially cylindrical housing body 31 so that a predetermined minute gap is formed between the rotor core 33 and the inner wall. The rotor 32 has a substantially cylindrical shape having an internal space 32k, and at least the coupling member 50 side is open. The front end of the rotor 32 (the end on the oil pump 40 side) is fastened (connected) to the drive side connection member 51 of the coupling member 50 via the plate member 70. The appearance of the coupling member 50 will be described below.

●[カップリング部材50の外観(図2、図4)]
カップリング部材50は、図2、図4に示すように、駆動側接続部材51と、従動側接続部材52と、弾性樹脂部材53と、にて構成されている。また図2、図4に示すカップリング部材50は、駆動側接続部材51と、従動側接続部材52と、弾性樹脂部材53とを組み付けた状態のカップリング部材50の斜視図を示している。なお、図1におけるカップリング部材50の断面図は、図2に示すカップリング部材50のI−I断面図を示している。図2、図4に示すように、回転方向に隣り合う駆動側接続部材51と従動側接続部材52との間には、弾性樹脂部材53が挟み込まれている。駆動側接続部材51は、駆動軸部材に相当する回転電機30のロータ32に接続され、従動側接続部材52は、従動軸部材に相当するオイルポンプ40のポンプシャフト42(図1参照)に接続される。また弾性樹脂部材53は、駆動側接続部材51と従動側接続部材52との間となるように配置され、自身の弾性力にて、駆動側接続部材51からの回転動力を従動側接続部材52に伝達する際のトルク変動を吸収する。このように図2、図4に示す例では、カップリング部材50は円柱状の形状を有しており、回転方向に沿って駆動側接続部材51と従動側接続部材52とが交互に配置され、回転方向において駆動側接続部材51と従動側接続部材52との間には弾性樹脂部材53が配置されている。またカップリング部材50は、ロータ32の側の面となるカップリング面50mを有している。またカップリング面50mは、後述する締結面51mと樹脂非締結面53mとを有している。
● [Appearance of coupling member 50 (FIGS. 2 and 4)]
As shown in FIGS. 2 and 4, the coupling member 50 includes a drive side connection member 51, a driven side connection member 52, and an elastic resin member 53. Further, the coupling member 50 shown in FIGS. 2 and 4 is a perspective view of the coupling member 50 in a state where the driving side connecting member 51, the driven side connecting member 52, and the elastic resin member 53 are assembled. In addition, sectional drawing of the coupling member 50 in FIG. 1 has shown II sectional drawing of the coupling member 50 shown in FIG. As shown in FIGS. 2 and 4, an elastic resin member 53 is sandwiched between the drive side connection member 51 and the driven side connection member 52 adjacent to each other in the rotation direction. The drive side connection member 51 is connected to the rotor 32 of the rotating electrical machine 30 corresponding to the drive shaft member, and the driven side connection member 52 is connected to the pump shaft 42 (see FIG. 1) of the oil pump 40 corresponding to the driven shaft member. Is done. The elastic resin member 53 is disposed between the driving side connecting member 51 and the driven side connecting member 52, and the rotational power from the driving side connecting member 51 is driven by the own elastic force by the driven side connecting member 52. Absorbs torque fluctuations when transmitting to. As described above, in the example shown in FIGS. 2 and 4, the coupling member 50 has a cylindrical shape, and the drive side connection member 51 and the driven side connection member 52 are alternately arranged along the rotation direction. An elastic resin member 53 is disposed between the drive side connection member 51 and the driven side connection member 52 in the rotation direction. Further, the coupling member 50 has a coupling surface 50m that is a surface on the rotor 32 side. The coupling surface 50m has a fastening surface 51m and a resin non-fastening surface 53m, which will be described later.

駆動側接続部材51は、金属または合金等(例えばアルミニウム)にて形成されて、高い剛性と高い耐熱性を有している。また駆動側接続部材51は、ロータ32とボルト等にて締結するための締結孔51aを有している。そしてカップリング面50mは、駆動側接続部材51におけるロータ32の側の面となる締結面51mを有している。図1に示す例では、駆動側接続部材51の締結面51m(図2参照)は、プレート部材70を挟んでロータ32と対向して、ボルトBにてロータ32(駆動軸部材)に締結(連結)されている。   The drive side connection member 51 is formed of a metal or an alloy (for example, aluminum), and has high rigidity and high heat resistance. The drive side connection member 51 has a fastening hole 51a for fastening with the rotor 32 with a bolt or the like. The coupling surface 50m has a fastening surface 51m that is a surface on the rotor 32 side of the drive side connecting member 51. In the example shown in FIG. 1, the fastening surface 51 m (see FIG. 2) of the drive side connection member 51 faces the rotor 32 across the plate member 70 and is fastened to the rotor 32 (drive shaft member) with bolts B ( Connected).

従動側接続部材52は、金属または合金等(例えばアルミニウム)にて形成されて、高い剛性と高い耐熱性を有している。また従動側接続部材52の中央部には開口孔52cが形成されており、図1に示すように、開口孔52c(図2参照)にポンプシャフト42の接続軸部42aがスプライン嵌合され、従動側接続部材52は、ポンプシャフト42(従動軸部材)に締結(連結)されている。そしてカップリング面50mは、図2及び図5に示すように、従動側接続部材52におけるロータ32の側の面となる非締結面が弾性樹脂部材53で覆われた樹脂非締結面53mを有している。なお、従動側接続部材52におけるロータ32の側の面が、弾性樹脂部材53に覆われておらず、プレート部材70の側またはロータ32の側、に露出する構成であってもよい。この場合、弾性樹脂部材53において駆動側接続部材51と従動側接続部材52に周方向に挟まれている個所が、ロータ32の側に露出する。従って、カップリング面50mは、締結面51mと、弾性樹脂部材53における駆動軸部材(ロータ32)の側の面となる樹脂非締結面53mと、を有している。   The driven side connection member 52 is formed of a metal or an alloy (for example, aluminum), and has high rigidity and high heat resistance. In addition, an opening hole 52c is formed in the center portion of the driven side connection member 52, and as shown in FIG. 1, the connection shaft portion 42a of the pump shaft 42 is spline-fitted into the opening hole 52c (see FIG. 2). The driven side connecting member 52 is fastened (coupled) to the pump shaft 42 (driven shaft member). 2 and 5, the coupling surface 50m has a resin non-fastening surface 53m in which a non-fastening surface which is a surface on the rotor 32 side of the driven side connecting member 52 is covered with an elastic resin member 53. doing. In addition, the structure by which the surface by the side of the rotor 32 in the driven side connection member 52 is not covered with the elastic resin member 53, but is exposed to the plate member 70 side or the rotor 32 side may be sufficient. In this case, a portion of the elastic resin member 53 that is sandwiched between the driving side connecting member 51 and the driven side connecting member 52 in the circumferential direction is exposed to the rotor 32 side. Therefore, the coupling surface 50m has a fastening surface 51m and a resin non-fastening surface 53m that is a surface of the elastic resin member 53 on the drive shaft member (rotor 32) side.

弾性樹脂部材53は、弾性力を有する樹脂にて形成されており、その弾性力にて、駆動側接続部材51からの回転動力を従動側接続部材52に伝達する際のトルク変動を吸収する。また弾性樹脂部材53は、上述したように、樹脂非締結面53mを有している。なお、弾性樹脂部材53は、樹脂であるため、金属や合金等と比較すると、耐熱性は低い。   The elastic resin member 53 is formed of a resin having an elastic force, and absorbs torque fluctuation when the rotational power from the driving side connection member 51 is transmitted to the driven side connection member 52 by the elastic force. Further, as described above, the elastic resin member 53 has the resin non-fastening surface 53m. In addition, since the elastic resin member 53 is resin, compared with a metal, an alloy, etc., heat resistance is low.

駆動側接続部材51と弾性樹脂部材53と従動側接続部材52とを組み付けた状態のカップリング部材50は、図2に示すように、締結面51mと樹脂非締結面53mとを有するカップリング面50mを、ロータ32の側に有している。   As shown in FIG. 2, the coupling member 50 in a state where the driving side connecting member 51, the elastic resin member 53, and the driven side connecting member 52 are assembled has a coupling surface having a fastening surface 51m and a resin non-fastening surface 53m. 50 m is provided on the rotor 32 side.

●[第1の実施の形態における駆動軸部材と従動軸部材との連結構造(図2〜図4)]
図2に示すように、ロータ32におけるカップリング部材50の側の面である駆動軸接続面32mは、接続面32cと、非接続面32dと、を有している。接続面32cは、ロータ32の回転軸32Jの方向から見た場合に締結面51mと重なる領域の面であり、プレート部材70を挟んで締結面51mと対向する面である。非接続面32dは、ロータ32の回転軸32Jの方向から見た場合に樹脂非締結面53mと重なる領域の面であり、プレート部材70を挟んで樹脂非締結面53mと対向する面である。接続面32cには、締結面51mの締結孔51aに対応する位置に締結孔32eが形成されている。
[[Connecting structure of drive shaft member and driven shaft member in the first embodiment (FIGS. 2 to 4)]
As shown in FIG. 2, the drive shaft connecting surface 32m, which is the surface on the coupling member 50 side in the rotor 32, has a connecting surface 32c and a non-connecting surface 32d. The connection surface 32c is a surface of a region overlapping the fastening surface 51m when viewed from the direction of the rotation shaft 32J of the rotor 32, and is a surface facing the fastening surface 51m with the plate member 70 interposed therebetween. The non-connection surface 32d is a surface of a region overlapping with the resin non-fastening surface 53m when viewed from the direction of the rotation shaft 32J of the rotor 32, and is a surface facing the resin non-fastening surface 53m with the plate member 70 interposed therebetween. A fastening hole 32e is formed in the connection surface 32c at a position corresponding to the fastening hole 51a of the fastening surface 51m.

そして図1及び図4に示すように、締結孔51aとプレート部材70の締結孔70aと締結孔32eにはボルトBが挿通され、接続面32cには、プレート部材70(ロータ32とカップリング部材50との間に設けられた他部材に相当)を挟んだ状態で駆動側接続部材51の締結面51mが締結(接続)される。また、非接続面32dは、接続面32cに対して、カップリング部材50から離れる方向(この場合、X軸方向)に凹んでおり、図3に示すように、非接続面32dと、弾性樹脂部材53の樹脂非締結面53m(図2参照)との間には、所定の隙間32sが形成されている。従って、非接続面32dと樹脂非締結面53mとは、接続されることなく所定の隙間32sをあけて離間されている。   As shown in FIGS. 1 and 4, the bolt B is inserted into the fastening hole 51a and the fastening hole 70a and the fastening hole 32e of the plate member 70, and the plate member 70 (the rotor 32 and the coupling member is inserted into the connection surface 32c. The fastening surface 51m of the drive side connecting member 51 is fastened (connected) in a state in which it is sandwiched between them (corresponding to the other member provided between the first side and the second side). Further, the non-connection surface 32d is recessed with respect to the connection surface 32c in a direction away from the coupling member 50 (in this case, the X-axis direction), and as shown in FIG. 3, the non-connection surface 32d and the elastic resin A predetermined gap 32 s is formed between the member 53 and the resin non-fastening surface 53 m (see FIG. 2). Therefore, the non-connecting surface 32d and the resin non-fastening surface 53m are separated from each other with a predetermined gap 32s without being connected.

そして、非接続面32dには、カップリング面50m(カップリング部材50)から離れる方向に深さを有する溝32fが形成されている。なお溝32fは、円周方向に延びるように形成されていてもよいし、径方向に延びるように形成されていてもよいし、径方向に対して所定角度だけ傾斜するように形成してもよく、非接続面32dに形成された溝32fの延びる方向は、どのような方向であってもよい。また、溝32fの深さや幅、溝32fの本数等は特に限定しない。   A groove 32f having a depth in a direction away from the coupling surface 50m (coupling member 50) is formed in the non-connection surface 32d. The groove 32f may be formed to extend in the circumferential direction, may be formed to extend in the radial direction, or may be formed to be inclined by a predetermined angle with respect to the radial direction. The direction in which the groove 32f formed in the non-connection surface 32d extends may be any direction. Further, the depth and width of the groove 32f, the number of the grooves 32f, and the like are not particularly limited.

なお、非接続面32dに溝32fを形成することなく、非接続面32dに種々の凹凸形状を形成するようにしてもよい。例えば、非接続面32dに、径方向に延びる複数の凸部(カップリング部材50に近づく方向に突出した凸部)や、径方向に対して所定角度だけ傾斜した複数の凹部(カップリング部材50から離れる方向に凹んだ凹部)を形成するようにしてもよい。非接続面32dに溝32fを形成することは、非接続面32dに凹凸形状を形成することに含まれる。   In addition, you may make it form various uneven | corrugated shapes in the non-connection surface 32d, without forming the groove | channel 32f in the non-connection surface 32d. For example, a plurality of protrusions extending in the radial direction (protrusions protruding in a direction approaching the coupling member 50) or a plurality of recesses (coupling member 50 inclined at a predetermined angle with respect to the radial direction) are provided on the non-connection surface 32d. (A recess recessed in a direction away from the center) may be formed. Forming the groove 32f in the non-connecting surface 32d is included in forming an uneven shape in the non-connecting surface 32d.

これに対して、図7に示す従来のロータ132の駆動軸接続面132mは、接続面と非接続面との区別が無く、凹凸の無い平面状の形状を有している。このため、駆動軸接続面132mは、カップリング部材150のカップリング面150mの締結面151mと樹脂非締結面153mとの双方に接触する。従って、ロータ132からの熱が、樹脂非締結面153mにも直接伝導される。   On the other hand, the drive shaft connection surface 132m of the conventional rotor 132 shown in FIG. 7 has a flat shape without any unevenness without distinction between a connection surface and a non-connection surface. For this reason, the drive shaft connection surface 132m contacts both the fastening surface 151m of the coupling surface 150m of the coupling member 150 and the resin non-fastening surface 153m. Therefore, the heat from the rotor 132 is also directly conducted to the resin non-fastening surface 153m.

第1の実施の形態における駆動軸部材(この場合、ロータ32)と従動軸部材(この場合、ポンプシャフト42)との連結構造では、図2及び図3に示すように、カップリング部材50の樹脂非締結面53mと、ロータ32の非接続面32dとの間に、隙間32s(図3参照)を形成しているので、ロータ32からの熱が、樹脂非締結面53mに直接伝導されることが無い。従って、弾性樹脂部材53への熱の伝導を抑制できるので、カップリング部材50の耐久性の低下(熱による弾性樹脂部材の劣化等)を抑制することができる。また、熱によるカップリング部材50の耐久性の低下を抑制できるので、ロータ32に、薄板状のプレート部材70を挟んだ状態でカップリング部材50を近接させて連結することが可能であり、パワーユニット10の軸長を、より短くすることができる。従って、パワーユニット10を軸長方向において、よりコンパクトにすることができる。   In the connection structure of the drive shaft member (in this case, the rotor 32) and the driven shaft member (in this case, the pump shaft 42) in the first embodiment, as shown in FIGS. Since the gap 32s (see FIG. 3) is formed between the resin non-fastening surface 53m and the non-connection surface 32d of the rotor 32, the heat from the rotor 32 is directly conducted to the resin non-fastening surface 53m. There is nothing. Therefore, since heat conduction to the elastic resin member 53 can be suppressed, it is possible to suppress a decrease in durability of the coupling member 50 (deterioration of the elastic resin member due to heat, etc.). Further, since it is possible to suppress a decrease in durability of the coupling member 50 due to heat, it is possible to connect the coupling member 50 close to the rotor 32 with the thin plate-like plate member 70 being sandwiched between the power unit and the power unit. The axial length of 10 can be made shorter. Accordingly, the power unit 10 can be made more compact in the axial direction.

また、非接続面32dに溝32fを設けることで、溝32fをカップリング部材50からさらに遠ざけるので、ロータ32から樹脂非締結面53mへの熱の伝導を、後述する第2の実施の形態と比較して、さらに低減することができる。またプレート部材70におけるカップリング部材50の側の締結孔70aの周囲には、カップリング部材50の側に凸状となる台座部70dが設けられている。従って、カップリング部材50の締結面51mは台座部70dにてプレート部材70と接触するが、カップリング部材50の樹脂非締結面53mはプレート部材70と接触することなく隙間をあけて離間されている。これにより、ロータ32から樹脂非締結面53mへの熱の伝導を、さらに低減することができる。   Further, since the groove 32f is further away from the coupling member 50 by providing the groove 32f on the non-connection surface 32d, the conduction of heat from the rotor 32 to the resin non-fastening surface 53m is the same as in the second embodiment described later. In comparison, it can be further reduced. In addition, a pedestal portion 70 d that is convex toward the coupling member 50 is provided around the fastening hole 70 a on the coupling member 50 side of the plate member 70. Accordingly, the fastening surface 51m of the coupling member 50 contacts the plate member 70 at the pedestal portion 70d, but the resin non-fastening surface 53m of the coupling member 50 is spaced apart from the plate member 70 without contact. Yes. Thereby, heat conduction from the rotor 32 to the resin non-fastening surface 53m can be further reduced.

●[第2の実施の形態における駆動軸部材と従動軸部材との連結構造(図5、図6)]
次に図5及び図6を用いて、駆動軸部材と従動軸部材との連結構造の第2の実施の形態について説明する。第2の実施の形態では、ロータ32の駆動軸接続面32nの構造が、図2に示す第1の実施の形態の駆動軸接続面32mの構造と異なり、非接続面32dに溝32fが形成されていない点と、プレート部材70が挟まれていない点と、が異なる。以下、この相違点について主に説明する。
[[Connection structure of drive shaft member and driven shaft member in the second embodiment (FIGS. 5 and 6)]
Next, a second embodiment of the connection structure between the drive shaft member and the driven shaft member will be described with reference to FIGS. In the second embodiment, the structure of the drive shaft connection surface 32n of the rotor 32 is different from the structure of the drive shaft connection surface 32m of the first embodiment shown in FIG. 2, and a groove 32f is formed in the non-connection surface 32d. The difference is that the plate member 70 is not sandwiched. Hereinafter, this difference will be mainly described.

図5に示す非接続面32dは、図2に示す非接続面32dと比較して、溝32fが形成されていないが、接続面32cに対して、カップリング面50m(すなわち、カップリング部材50)から離れる方向(この場合、X軸方向)に凹んでいる点は同じである。またプレート部材70が省略されている。従って、駆動軸接続面32nの接続面32cは、カップリング面50mの締結面51mと直接対向し、接続面32cと締結面51mは直接接続されている。また非接続面32dと樹脂非締結面53mは、直接対向しているが、接続されることなく所定の隙間32sをあけて離間されている。   The non-connecting surface 32d shown in FIG. 5 is not formed with a groove 32f as compared with the non-connecting surface 32d shown in FIG. 2, but the coupling surface 50m (that is, the coupling member 50) with respect to the connecting surface 32c. ) Is the same in that it is recessed in the direction away from (in this case, the X-axis direction). Further, the plate member 70 is omitted. Accordingly, the connection surface 32c of the drive shaft connection surface 32n directly faces the fastening surface 51m of the coupling surface 50m, and the connection surface 32c and the fastening surface 51m are directly connected. The non-connection surface 32d and the resin non-fastening surface 53m directly face each other, but are separated from each other with a predetermined gap 32s without being connected.

第2の実施の形態における駆動軸部材(この場合、ロータ32)と従動軸部材(この場合、ポンプシャフト42)との連結構造では、第1の実施の形態と比較して、非接続面32dの溝が無くプレート部材も省略されているので、熱の伝導量はやや増加する。しかし、図5及び図6に示すように、第1の実施の形態と同様、カップリング部材50の樹脂非締結面53mと、ロータ32の非接続面32dとの間に、隙間32sが形成されているので、ロータ32からの熱が、樹脂非締結面53mに直接伝導されることが無い。従って、弾性樹脂部材53への熱の伝導を抑制できるので、カップリング部材50の耐久性の低下(熱による弾性樹脂部材の劣化等)を抑制することができる。また、熱によるカップリング部材50の耐久性の低下を抑制できるので、ロータ32に、カップリング部材50を直接連結することが可能であり(プレート部材70が挟まれていないので)、パワーユニット10の軸長を、第1の実施の形態よりも、より短くすることができる。従って、パワーユニット10を軸長方向において、よりコンパクトにすることができる。   In the connection structure of the drive shaft member (in this case, the rotor 32) and the driven shaft member (in this case, the pump shaft 42) in the second embodiment, the non-connection surface 32d is compared with the first embodiment. Since there is no groove and the plate member is omitted, the amount of heat conduction increases slightly. However, as shown in FIGS. 5 and 6, a gap 32 s is formed between the resin non-fastening surface 53 m of the coupling member 50 and the non-connecting surface 32 d of the rotor 32 as in the first embodiment. Therefore, the heat from the rotor 32 is not directly conducted to the resin non-fastening surface 53m. Therefore, since heat conduction to the elastic resin member 53 can be suppressed, it is possible to suppress a decrease in durability of the coupling member 50 (deterioration of the elastic resin member due to heat, etc.). In addition, since it is possible to suppress a decrease in durability of the coupling member 50 due to heat, the coupling member 50 can be directly connected to the rotor 32 (since the plate member 70 is not sandwiched), and the power unit 10 The axial length can be made shorter than in the first embodiment. Accordingly, the power unit 10 can be made more compact in the axial direction.

以上、第1の実施の形態、及び第2の実施の形態にて説明した、カップリング部材50を介した駆動軸部材(この場合、ロータ32)と従動軸部材(この場合、ポンプシャフト42)との連結構造によれば、カップリング部材50の弾性樹脂部材53にて駆動側軸部材のトルク変動を吸収できる。さらに、接続面32cと締結面51mは、直接接続(第2の実施の形態)、あるいは他部材を挟んだ状態で接続(第1の実施の形態)されており、非接続面32dと樹脂非締結面53mは、接続されることなく、所定の隙間32sをあけて離間されている。このため、駆動軸部材からの熱がカップリング部材50の弾性樹脂部材53に伝導されることを抑制し、カップリング部材50の耐久性の低下(熱による弾性樹脂部材の劣化等)を抑制することができる。   As described above, the drive shaft member (in this case, the rotor 32) and the driven shaft member (in this case, the pump shaft 42) via the coupling member 50 described in the first embodiment and the second embodiment. With the connecting structure, the elastic resin member 53 of the coupling member 50 can absorb the torque fluctuation of the drive side shaft member. Further, the connection surface 32c and the fastening surface 51m are directly connected (second embodiment) or connected in a state of sandwiching another member (first embodiment), and the non-connection surface 32d is not connected to the resin surface. The fastening surface 53m is not connected and is separated by a predetermined gap 32s. For this reason, it is suppressed that the heat from the drive shaft member is conducted to the elastic resin member 53 of the coupling member 50, and the deterioration of the durability of the coupling member 50 (deterioration of the elastic resin member due to heat, etc.) is suppressed. be able to.

本発明の、駆動軸部材と従動軸部材の連結構造は、本実施の形態で説明した構成、構造、形状等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。例えば、カップリング部材50の構造、駆動側接続部材51の形状や、従動側接続部材52の形状や、弾性樹脂部材53の形状等は、本実施の形態にて説明したものに限定されるものではない。   The connection structure of the drive shaft member and the driven shaft member of the present invention is not limited to the configuration, structure, shape, etc. described in the present embodiment, and various modifications, additions, and deletions are possible without changing the gist of the present invention. Is possible. For example, the structure of the coupling member 50, the shape of the drive side connection member 51, the shape of the driven side connection member 52, the shape of the elastic resin member 53, and the like are limited to those described in the present embodiment. is not.

第1の実施の形態の説明では、ロータ32とカップリング部材50との間に設けられる他部材の例としてプレート部材70を用いて説明したが、他部材はプレート部材に限定されるものではなく、種々の部材を他部材とすることができる。   In the description of the first embodiment, the plate member 70 is used as an example of another member provided between the rotor 32 and the coupling member 50. However, the other member is not limited to the plate member. Various members can be used as other members.

また、本実施の形態の説明では、産業車両としてのフォークリフトのパワーユニットに用いられる回転電機のロータを駆動軸部材、当該パワーユニットのオイルポンプのポンプシャフトを従動軸部材、とした例を説明したが、駆動軸部材は前記ロータに限定されるものではなく、従動軸部材は前記ポンプシャフトに限定されるものではない。従って、種々の機器及び種々の用途に用いられている駆動軸部材と従動軸部材との連結構造に適用することが可能である。   In the description of the present embodiment, an example in which a rotor of a rotating electrical machine used in a power unit of a forklift as an industrial vehicle is a drive shaft member, and an oil pump pump shaft of the power unit is a driven shaft member, The drive shaft member is not limited to the rotor, and the driven shaft member is not limited to the pump shaft. Therefore, the present invention can be applied to a connection structure of a drive shaft member and a driven shaft member used for various devices and various applications.

10 パワーユニット
20 エンジン
21 エンジンハウジング
22 クランクシャフト
30 回転電機
31 ハウジング本体
31a モータハウジング
32 ロータ(駆動軸部材)
32c 接続面
32d 非接続面
32e 締結孔
32f 溝
32J 回転軸
32k 内部空間
32m、32n 駆動軸接続面
32s 隙間
33 ロータコア
34 ステータコア
36 モータカバー
36a 筒部
40 オイルポンプ
42 ポンプシャフト(従動軸部材)
43 ポンプ支持部材
50 カップリング部材
50m カップリング面
51 駆動側接続部材
51a 締結孔
51m 締結面
52 従動側接続部材
53 弾性樹脂部材
53m 樹脂非締結面
70 プレート部材(他部材)
70a 締結孔
70d 台座部
70h 筒部

DESCRIPTION OF SYMBOLS 10 Power unit 20 Engine 21 Engine housing 22 Crankshaft 30 Rotating electric machine 31 Housing body 31a Motor housing 32 Rotor (drive shaft member)
32c Connecting surface 32d Non-connecting surface 32e Fastening hole 32f Groove 32J Rotating shaft 32k Internal space 32m, 32n Driving shaft connecting surface 32s Gap 33 Rotor core 34 Stator core 36 Motor cover 36a Tube portion 40 Oil pump 42 Pump shaft (driven shaft member)
43 pump support member 50 coupling member 50m coupling surface 51 drive side connection member 51a fastening hole 51m fastening surface 52 driven side connection member 53 elastic resin member 53m resin non-fastening surface 70 plate member (other member)
70a Fastening hole 70d Pedestal part 70h Tube part

Claims (3)

従動軸部材と発熱する駆動軸部材とを連結する、駆動軸部材と従動軸部材との連結構造であって、
前記従動軸部材は、カップリング部材を介して前記駆動軸部材と連結されており、
前記カップリング部材は、前記駆動軸部材に接続される駆動側接続部材と、前記従動軸部材に接続される従動側接続部材と、前記駆動軸部材と前記従動軸部材との間に生じるトルク変動を吸収する弾性樹脂部材と、を有しており、
前記カップリング部材における前記駆動軸部材の側の面であるカップリング面は、前記駆動側接続部材における前記駆動軸部材の側の面となる締結面と、前記弾性樹脂部材における前記駆動軸部材の側の面となる樹脂非締結面と、を有しており、
前記駆動軸部材における前記カップリング部材の側の面である駆動軸接続面は、前記駆動軸部材の回転軸方向から見た場合に前記締結面と重なる領域の面である接続面と、前記回転軸方向から見た場合に前記樹脂非締結面と重なる領域の面である非接続面と、を有しており、
前記接続面と前記締結面は、直接接続されており、あるいは前記駆動軸部材と前記カップリング部材との間に設けられた他部材を挟んだ状態で接続されており、
前記非接続面と前記樹脂非締結面は、接続されることなく、所定の隙間をあけて離間されている、
駆動軸部材と従動軸部材との連結構造。
A connection structure of a drive shaft member and a driven shaft member that connects the driven shaft member and a drive shaft member that generates heat,
The driven shaft member is connected to the drive shaft member via a coupling member,
The coupling member includes a driving side connecting member connected to the driving shaft member, a driven side connecting member connected to the driven shaft member, and a torque fluctuation generated between the driving shaft member and the driven shaft member. And an elastic resin member that absorbs
A coupling surface that is a surface of the coupling member on the side of the drive shaft member includes a fastening surface that is a surface of the drive side connection member on the side of the drive shaft member, and a coupling surface of the drive shaft member of the elastic resin member. A resin non-fastening surface to be a side surface,
A drive shaft connection surface that is a surface of the drive shaft member on the side of the coupling member is a connection surface that is a surface of a region that overlaps the fastening surface when viewed from the rotation axis direction of the drive shaft member, and the rotation A non-connection surface that is a surface of a region overlapping with the resin non-fastening surface when viewed from the axial direction,
The connection surface and the fastening surface are directly connected, or connected in a state of sandwiching another member provided between the drive shaft member and the coupling member,
The non-connection surface and the resin non-fastening surface are spaced apart with a predetermined gap without being connected,
Connection structure of drive shaft member and driven shaft member.
請求項1に記載の駆動軸部材と従動軸部材との連結構造であって、
前記他部材は、板状のプレート部材であり、
前記接続面と前記締結面は、前記プレート部材を挟んだ状態で接続されている、
駆動軸部材と従動軸部材との連結構造。
A drive shaft member and a driven shaft member according to claim 1,
The other member is a plate-shaped plate member,
The connection surface and the fastening surface are connected in a state of sandwiching the plate member,
Connection structure of drive shaft member and driven shaft member.
請求項1または2に記載の駆動軸部材と従動軸部材との連結構造であって、
前記非接続面は、前記接続面に対して、前記カップリング面から離れる方向に凹んでおり、
前記非接続面には、前記カップリング面から離れる方向に深さを有する溝を含む凹凸形状が設けられている、
駆動軸部材と従動軸部材との連結構造。

A connection structure between the drive shaft member and the driven shaft member according to claim 1 or 2,
The non-connection surface is recessed in a direction away from the coupling surface with respect to the connection surface,
The non-connection surface is provided with an uneven shape including a groove having a depth in a direction away from the coupling surface.
Connection structure of drive shaft member and driven shaft member.

JP2016033941A 2016-02-25 2016-02-25 Connection structure between drive shaft member and driven shaft member Active JP6554043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016033941A JP6554043B2 (en) 2016-02-25 2016-02-25 Connection structure between drive shaft member and driven shaft member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016033941A JP6554043B2 (en) 2016-02-25 2016-02-25 Connection structure between drive shaft member and driven shaft member

Publications (2)

Publication Number Publication Date
JP2017150579A true JP2017150579A (en) 2017-08-31
JP6554043B2 JP6554043B2 (en) 2019-07-31

Family

ID=59741665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033941A Active JP6554043B2 (en) 2016-02-25 2016-02-25 Connection structure between drive shaft member and driven shaft member

Country Status (1)

Country Link
JP (1) JP6554043B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650825U (en) * 1979-09-28 1981-05-06
JP2000065084A (en) * 1998-08-20 2000-03-03 Fuji Kiko Co Ltd Damper for steering column

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650825U (en) * 1979-09-28 1981-05-06
JP2000065084A (en) * 1998-08-20 2000-03-03 Fuji Kiko Co Ltd Damper for steering column

Also Published As

Publication number Publication date
JP6554043B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
US10465780B2 (en) Rotor carrier assembly
US8002060B2 (en) Vehicle wheel driving apparatus and electric motor
JP5186291B2 (en) motor
WO2014199516A1 (en) Rotating electric machine
JP5304284B2 (en) Rotating electric machine
JP5172491B2 (en) motor
JP2017002749A (en) Electric pump
JP6554043B2 (en) Connection structure between drive shaft member and driven shaft member
KR20180058082A (en) Resolver mounting structure for motor
US10538156B2 (en) Power train apparatus
JP6504079B2 (en) Connection structure between drive shaft member and driven shaft member
JP6697803B2 (en) Fluid fan clutch
JP6583047B2 (en) Rotating electric machine
JP6504080B2 (en) Connection structure between drive shaft member and driven shaft member
JP5796376B2 (en) Electric motor rotor
JP2008106632A (en) Starter motor for motorcycle
CN111264017B (en) Rotating electrical machine
JP2014183631A (en) Press-fit fixture structure
JP7418259B2 (en) drive device
US10804766B1 (en) Hybrid/electric vehicle transmission
JP2017163688A (en) Rotor
JP2010178588A (en) Rotating electrical machine
JP2006342968A (en) Torsional vibration damper disk
JP2022141371A (en) Rotary electric machine
JP3190946U (en) Hybrid vehicle motor arrangement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190705

R150 Certificate of patent or registration of utility model

Ref document number: 6554043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250