JP2017148170A - Bubble generation device - Google Patents

Bubble generation device Download PDF

Info

Publication number
JP2017148170A
JP2017148170A JP2016031995A JP2016031995A JP2017148170A JP 2017148170 A JP2017148170 A JP 2017148170A JP 2016031995 A JP2016031995 A JP 2016031995A JP 2016031995 A JP2016031995 A JP 2016031995A JP 2017148170 A JP2017148170 A JP 2017148170A
Authority
JP
Japan
Prior art keywords
bubble generating
bubble
oxygen
oxygen gas
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016031995A
Other languages
Japanese (ja)
Other versions
JP6653185B2 (en
Inventor
桑名 克之
Katsuyuki Kuwana
克之 桑名
将 井上
Susumu Inoue
将 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senko Medical Instrument Manufacturing Co Ltd
Original Assignee
Senko Medical Instrument Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senko Medical Instrument Manufacturing Co Ltd filed Critical Senko Medical Instrument Manufacturing Co Ltd
Priority to JP2016031995A priority Critical patent/JP6653185B2/en
Publication of JP2017148170A publication Critical patent/JP2017148170A/en
Application granted granted Critical
Publication of JP6653185B2 publication Critical patent/JP6653185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bubble generation device capable of adding oxygen in the vein of a patient without an extracorporeal circulation as a device taking place of an intravenous indwelling type artificial lung.SOLUTION: A bubble generation device 1 can generate microbubbles of oxygen gas G mainly composed of oxygen in the vein of a patient. The bubble generation device 1 includes a bubble generation chip 2 having a surface 2a where a large number of micropores Mp from which the oxygen gas G can flow out are opened, which can guide the supplied oxygen gas G to the large number of micropores Mp, and has a size that allows the insertion into the vein, and an oxygen supply tube 3 composed of a flexible material which can supply the oxygen gas G to the bubble generation chip 2 and has a size that allows the insertion into the vein.SELECTED DRAWING: Figure 1

Description

本発明は、患者の静脈内で酸素ガスの気泡を発生させることが可能な気泡発生装置に関する。   The present invention relates to a bubble generation device capable of generating bubbles of oxygen gas in a patient's vein.

患者の低酸素状態を解消又は回避する治療方法として高圧酸素療法や人工呼吸器を使用する方法があるが、これらの治療方法は患者の生体肺に負担がかかる。患者の生体肺に負担をかけない呼吸補助例として、PCPS(percutaneous cardiopulmonary support)やECMO(extracorporeal membrane oxygenation)が知られている。PCPSやECMOはいずれもガス交換対象の血液と接触する人工肺や血液ポンプ等が組み込まれた体外循環を伴うため血液適合性の問題がある。また、体外循環の実施には抗血栓療法が不可欠でありそれによって患者に副作用が生じることがある。こうした事情から、体外循環は患者への侵襲性が大きいと考える医療従事者がPCPSやECMOの実施に消極的であることが少なくなかった。   As treatment methods for eliminating or avoiding a hypoxic state of a patient, there are methods using hyperbaric oxygen therapy and a ventilator, but these treatment methods put a burden on the living lung of the patient. PCPS (percutaneous cardiopulmonary support) and ECMO (extracorporeal membrane oxygenation) are known as examples of respiratory assistance that does not impose a burden on a living lung of a patient. Both PCPS and ECMO have a problem of blood compatibility because they involve extracorporeal circulation in which an artificial lung, a blood pump, or the like that comes into contact with blood to be gas exchanged is incorporated. In addition, antithrombotic therapy is indispensable for carrying out extracorporeal circulation, which may cause side effects in the patient. Under these circumstances, medical workers who think that extracorporeal circulation is highly invasive to patients are often reluctant to perform PCPS and ECMO.

体外循環を伴わずに患者の静脈内でガス交換を行う治療方法として、静脈内留置型人工肺(商品名:IVOX)を大静脈内に挿入する方法があった。これは、人工肺と同様の原理及び機能を持つガス交換用中空糸束を有する植え込み型人工肺の一種であり、1987年に発表されて臨床試験が実施された(非特許文献1参照)。   As a treatment method for exchanging gas in a patient's vein without extracorporeal circulation, there is a method of inserting an indwelling artificial lung (trade name: IVOX) into the vena cava. This is a kind of implantable oxygenator having a gas exchange hollow fiber bundle having the same principle and function as an oxygenator, and was published in 1987 and clinical trials were conducted (see Non-Patent Document 1).

今井寛、外2名、「静脈内留置型人工肺の臨床治験」、呼吸と循環、医学書院、1992年5月、第40巻、第5号、p.461Hiroshi Imai, 2 others, “Clinical trial of intravenous indwelling oxygenator”, Respiration and Circulation, Medical School, May 1992, Vol. 40, No. 5, p. 461

しかし、非特許文献1の静脈内留置型人工肺は、ガス交換能力不足、血栓性の問題、手技の困難性、血行動態への影響などの問題があり、1994年に開発が中止された。   However, the intravenous indwelling oxygenator of Non-Patent Document 1 has been discontinued in 1994 due to problems such as insufficient gas exchange capacity, thrombotic problems, difficulty in procedure, and influence on hemodynamics.

そこで、本発明は、静脈内留置型人工肺に代わる装置として、体外循環を伴わずに患者の静脈内で酸素付加が可能な気泡発生装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a bubble generating apparatus capable of adding oxygen in a patient's vein without extracorporeal circulation as an apparatus replacing an indwelling artificial lung.

本発明の気泡発生装置は、酸素を主体とする酸素ガス(G)の気泡を患者の静脈内で発生させることが可能な気泡発生装置(1)であって、前記酸素ガスが流出可能な複数の孔(Mp…)が所定範囲内の大きさでそれぞれ開口している表面(2a、21a、22a、23a)を有し、供給された前記酸素ガスを前記複数の孔に導くことができ、かつ前記静脈内に挿入可能な大きさを有する気泡発生部(2、21、22、23)と、柔軟な素材で構成され、前記気泡発生部に前記酸素ガスを供給でき、かつ前記静脈内に挿入可能な大きさを有する酸素供給チューブ(3)と、を備えるものである。   The bubble generation device of the present invention is a bubble generation device (1) capable of generating bubbles of oxygen gas (G) mainly composed of oxygen in a patient's vein, and a plurality of the oxygen gas can flow out. Each having a surface (2a, 21a, 22a, 23a) each having a size within a predetermined range and capable of guiding the supplied oxygen gas to the plurality of holes, And a bubble generating part (2, 21, 22, 23) having a size that can be inserted into the vein, and a flexible material, and can supply the oxygen gas to the bubble generating part, and into the vein And an oxygen supply tube (3) having a size that can be inserted.

この気泡発生装置によれば、患者の静脈内に気泡発生部及び酸素供給チューブを挿入した状態で気泡発生部に酸素供給チューブを介して酸素ガスを供給することにより、気泡発生部に供給された酸素ガスは複数の孔に導かれる。複数の孔は気泡発生部の表面に開口しているので酸素ガスは複数の孔の開口から流出し、それによって患者の静脈内で酸素ガスの気泡が発生する。これにより、患者の静脈内で酸素付加を行うことができる。気泡の分圧と血中の分圧との分圧差によって、気泡を構成する酸素ガスに含まれる酸素が静脈内の血液に溶け込みつつ血中の二酸化炭素が気泡に移動するガス交換が実現する。   According to this bubble generation device, oxygen gas is supplied to the bubble generation unit via the oxygen supply tube in a state where the bubble generation unit and the oxygen supply tube are inserted into the patient's vein, thereby being supplied to the bubble generation unit. Oxygen gas is introduced into the plurality of holes. Since the plurality of holes are opened on the surface of the bubble generating portion, oxygen gas flows out from the openings of the plurality of holes, thereby generating oxygen gas bubbles in the vein of the patient. Thereby, oxygen addition can be performed in a patient's vein. Due to the partial pressure difference between the partial pressure of the bubbles and the partial pressure in the blood, gas exchange is realized in which the oxygen contained in the oxygen gas constituting the bubbles dissolves in the blood in the vein and the carbon dioxide in the blood moves to the bubbles.

静脈内で発生する気泡の大きさは複数の孔が開口する大きさによって変わる。本発明の気泡発生装置は、複数の孔が所定範囲内の大きさで開口しているので、複数の孔が開口する大きさが所定範囲内で均一化されている。したがって、その所定範囲を適宜設定することにより気泡の大きさ及び個数を適正化できる。小さな開口の孔は大きな開口の孔よりも酸素ガスが流出する際の抵抗が大きくて孔を通過しにくい。そのため、複数の孔の中に所定範囲から外れた大きな開口の孔が存在すると、所定範囲に収まる孔が他に存在していてもその大きな孔に酸素ガスが集中する。その結果、所定範囲内で均一化される場合と比べて、発生する気泡の個数が少なくなり、かつ気泡の大きさが大きくなる。これにより、発生した気泡と血液との単位時間あたりの接触面積が減少してガス交換効率が低下する。したがって、本発明の気泡発生装置によれば、複数の孔が開口する大きさが所定範囲内で均一化されることにより想定外の大きさの気泡の発生数を抑制できるのでガス交換効率の低下を抑制できる。もっとも、想定外の大きさの気泡が発生しても、そうした気泡は患者の生体肺で吸収されるので患者の動脈に送られる危険性はない。   The size of bubbles generated in the vein varies depending on the size of the plurality of holes. In the bubble generating device of the present invention, since the plurality of holes are opened within the predetermined range, the size of the plurality of holes is made uniform within the predetermined range. Therefore, the size and number of bubbles can be optimized by appropriately setting the predetermined range. A small opening hole has a higher resistance when oxygen gas flows out than a large opening hole, and is difficult to pass through the hole. Therefore, if there are holes with large openings out of the predetermined range in the plurality of holes, oxygen gas concentrates on the large holes even if there are other holes that fall within the predetermined range. As a result, the number of generated bubbles is reduced and the size of the bubbles is increased as compared with a case where the bubbles are uniformized within a predetermined range. As a result, the contact area per unit time between the generated bubbles and blood is reduced, and the gas exchange efficiency is lowered. Therefore, according to the bubble generating device of the present invention, since the size of the openings of the plurality of holes is made uniform within a predetermined range, the number of bubbles having an unexpected size can be suppressed, so that the gas exchange efficiency is lowered. Can be suppressed. However, even if bubbles of an unexpected size are generated, such bubbles are absorbed by the patient's living lung, so there is no risk of being sent to the patient's artery.

本発明の気泡発生装置の一態様において、前記酸素供給チューブが前記気泡発生部に供給する前記酸素ガスの流量及び圧力を制御可能な制御部(5)を更に備えてもよい。静脈内で発生する気泡の大きさや個数は孔が開口する大きさだけでなく、気泡発生部に供給される酸素ガスの流量及び圧力によっても変化するし、患者の静脈血圧や血流等にも影響を受ける。この態様によれば、制御部によって気泡発生部に供給される酸素ガスの流量及び圧力を制御できるので患者の血圧や血流等の状態に合わせた酸素付加を実施できる。   In one aspect of the bubble generation device of the present invention, the oxygen supply tube may further include a control unit (5) capable of controlling a flow rate and pressure of the oxygen gas supplied to the bubble generation unit. The size and number of air bubbles generated in the vein change not only with the size of the opening of the hole, but also with the flow rate and pressure of oxygen gas supplied to the bubble generating unit, and also with the patient's venous blood pressure and blood flow, etc. to be influenced. According to this aspect, since the flow rate and pressure of the oxygen gas supplied to the bubble generation unit can be controlled by the control unit, it is possible to perform oxygen addition in accordance with the patient's blood pressure, blood flow, and the like.

本発明の気泡発生装置の一態様として、前記気泡発生部の前記表面には、前記複数の孔が形成された曲面が含まれてもよい。気泡発生部は患者の静脈に挿入可能なものであるので大きさに限度があり、しかも血行動態を損なわない程度の余裕が必要である。したがって、血行動態に影響を与える気泡発生部の最大幅が同じであるならば、その表面積が大きい方が同じ密度でより多くの孔を形成できるので、発生する気泡の個数が多くなってガス交換の効率が高まる。この態様によれば、気泡発生部の表面に複数の孔が形成された曲面が含まれるので、同じ最大幅を持つ気泡発生部の表面が平面だけで構成される場合よりも表面積が大きくなる。これにより、血行動態を損なわない限度で効率的な酸素付加を実現できる。   As one aspect of the bubble generation device of the present invention, the surface of the bubble generation unit may include a curved surface in which the plurality of holes are formed. Since the bubble generating part can be inserted into a patient's vein, there is a limit to the size of the bubble generating part, and a margin that does not impair hemodynamics is required. Therefore, if the maximum width of the bubble generating part that affects hemodynamics is the same, a larger surface area can form more holes with the same density. Increases efficiency. According to this aspect, since the curved surface in which a plurality of holes are formed is included on the surface of the bubble generating portion, the surface area is larger than when the surface of the bubble generating portion having the same maximum width is configured by only a plane. Thereby, efficient oxygenation is realizable as long as hemodynamics are not impaired.

上述したように複数の孔が開口する大きさを規定する所定範囲は適宜に設定してよい。例えば、前記複数の孔が円形状に形成されており、前記複数の孔が前記表面に開口する開口部の内径を、前記複数の孔が前記表面に開口する大きさとして定義した場合において、前記所定範囲として、1μm〜300μmの範囲が設定されてもよい。1μmよりも小さい内径の孔を形成することは技術的な困難性を伴うため加工コストが厳しくなる。一方、内径が300μmよりも大きくなると、想定外の大きさの気泡の発生率が増加してしまいガス交換効率が低下する。したがって、複数の孔の内径は1μ〜300μmの範囲であることが好ましい。   As described above, the predetermined range that defines the size of the opening of the plurality of holes may be set as appropriate. For example, in the case where the plurality of holes are formed in a circular shape, and an inner diameter of an opening portion at which the plurality of holes opens on the surface is defined as a size at which the plurality of holes open on the surface, As the predetermined range, a range of 1 μm to 300 μm may be set. Forming a hole having an inner diameter smaller than 1 μm involves technical difficulties, and thus the processing cost becomes severe. On the other hand, if the inner diameter is larger than 300 μm, the generation rate of bubbles having an unexpected size increases, and the gas exchange efficiency decreases. Accordingly, the inner diameter of the plurality of holes is preferably in the range of 1 μm to 300 μm.

本発明の気泡発生装置の一態様において、前記気泡発生部の前記表面が血液成分の付着を抑制可能な被覆層で覆われてもよい。この態様によれば、気泡発生部の表面が被覆層で覆われることにより、血液成分が表面に付着することが抑制されるので、血液成分が表面に付着して孔が塞がれること等によって気泡発生部の気泡の発生能力が劣化することを防止できる。   In one aspect of the bubble generation device of the present invention, the surface of the bubble generation unit may be covered with a coating layer capable of suppressing adhesion of blood components. According to this aspect, since the surface of the bubble generating part is covered with the coating layer, the blood component is suppressed from adhering to the surface, so that the blood component adheres to the surface and the hole is blocked. It can prevent that the bubble generation capability of a bubble generation part deteriorates.

なお、以上の説明では本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記したが、それにより本発明が図示の形態に限定されるものではない。   In addition, in the above description, in order to make an understanding of this invention easy, the reference sign of the accompanying drawing was attached in parenthesis, but this invention is not limited to the form of illustration by it.

以上説明したように、本発明の気泡発生装置によれば、患者の静脈内に気泡発生部及び酸素供給チューブを挿入した状態で気泡発生部に酸素供給チューブを介して酸素ガスを供給することにより、酸素ガスが複数の孔の開口から流出して患者の静脈内で酸素ガスの気泡を発生させることができる。   As described above, according to the bubble generation device of the present invention, by supplying oxygen gas to the bubble generation unit via the oxygen supply tube in a state where the bubble generation unit and the oxygen supply tube are inserted into the vein of the patient. The oxygen gas can flow out from the openings of the plurality of holes to generate oxygen gas bubbles in the patient's vein.

本発明の一形態に係る気泡発生装置の全体構成を模式的に示した図。The figure which showed typically the whole structure of the bubble generator which concerns on one form of this invention. 図1の部位IIの部分拡大図。The elements on larger scale of the site | part II of FIG. 図1のIII-III線に関する断面図。Sectional drawing regarding the III-III line of FIG. 気泡発生部の第1の他の形態を示した図。The figure which showed the 1st other form of the bubble generation part. 気泡発生部の第2の他の形態を示した図。The figure which showed the 2nd other form of the bubble generation part. 気泡発生部の第3の他の形態を示した図。The figure which showed the 3rd other form of the bubble generation part.

図1〜図3に示すように、気泡発生装置1は気泡発生部としての気泡発生チップ2と気泡発生チップ2に連通する酸素供給チューブ3とを備えている。気泡発生チップ2は中空状の連結部4に固定されており、その連結部4は気密状態で酸素供給チューブ3に接続されている。酸素供給チューブ2のもう一方にはガス供給源GSが接続される。ガス供給源GSには不図示のガスブレンダが設けられており、ガス供給源GSは必要に応じてガスブレンダを使用して酸素を主体とする酸素ガスGを調製し、調製後の酸素ガスGを所定の圧力に減圧して気泡発生装置1に供給する。気泡発生装置1には酸素供給チューブ3を流れる酸素ガスGの流量及び圧力を制御する制御部としてのマスフローコントローラ(MFC)5が設けられている。MFC5にて流量及び圧力が調整された酸素ガスGは酸素供給チューブ3によって気泡発生チップ2に供給される。   As shown in FIGS. 1 to 3, the bubble generation device 1 includes a bubble generation chip 2 as a bubble generation unit and an oxygen supply tube 3 communicating with the bubble generation chip 2. The bubble generating chip 2 is fixed to a hollow connecting portion 4, and the connecting portion 4 is connected to the oxygen supply tube 3 in an airtight state. A gas supply source GS is connected to the other side of the oxygen supply tube 2. The gas supply source GS is provided with a gas blender (not shown). The gas supply source GS uses the gas blender to prepare an oxygen gas G mainly composed of oxygen as necessary, and the oxygen gas G after preparation. Is reduced to a predetermined pressure and supplied to the bubble generating device 1. The bubble generator 1 is provided with a mass flow controller (MFC) 5 as a control unit for controlling the flow rate and pressure of the oxygen gas G flowing through the oxygen supply tube 3. The oxygen gas G whose flow rate and pressure are adjusted by the MFC 5 is supplied to the bubble generating chip 2 through the oxygen supply tube 3.

気泡発生チップ2は先端部が閉鎖された円筒状の金属部品である。後述するように気泡発生チップ2は患者の静脈内に挿入されるため、その素材として低侵襲性の素材(例えば、ステンレスやチタン等の金属)が選択される。なお、気泡発生チップ2の素材として、セラミック、カーボン、樹脂等の非金属かつ低侵襲性の材料を選択することもできる。気泡発生チップ2に固定される連結部4は、酸素供給チューブ3と気泡発生部2との異種素材間でリーク及び抜け防止可能な素材、例えば光硬化接着剤、シリコーン系接着剤等のシーラントが選択される。気泡発生チップ2と連結部4とは、これらの素材に応じた適当な接合手段によって互いに接合される。酸素供給チューブ3は気泡発生チップ2とほぼ同一の外径を有しており、例えば軟質PVCやエラストマー等の柔軟な素材で構成されている。気泡発生チップ2、連結部4及び酸素供給チューブ3の一部は患者の静脈内にそれぞれ挿入されるので、これらの外径は挿入時の操作性及び挿入後の血行動態を損なわない程度の余裕を確保できるように設定されている。   The bubble generating chip 2 is a cylindrical metal part whose tip is closed. As will be described later, since the bubble generating chip 2 is inserted into a patient's vein, a less invasive material (for example, a metal such as stainless steel or titanium) is selected as the material. As the material for the bubble generating chip 2, a non-metallic and minimally invasive material such as ceramic, carbon, or resin can be selected. The connecting portion 4 fixed to the bubble generating chip 2 is made of a material capable of preventing leakage and removal between different materials of the oxygen supply tube 3 and the bubble generating portion 2, for example, a sealant such as a photo-curing adhesive or a silicone-based adhesive. Selected. The bubble generating chip 2 and the connecting portion 4 are joined to each other by an appropriate joining means corresponding to these materials. The oxygen supply tube 3 has substantially the same outer diameter as the bubble generating chip 2, and is made of a flexible material such as soft PVC or elastomer. Since a part of the bubble generating chip 2, the connecting portion 4 and the oxygen supply tube 3 are inserted into the veins of the patient, their outer diameters are enough to prevent operability during insertion and hemodynamics after insertion. It is set so that it can be secured.

気泡発生チップ2の外径及び長さは患者の体格や切開される大腿静脈の内径などに依存するが、気泡発生チップ2の外径は3mm〜8mm程度に、気泡発生チップ2の長さは5mm〜40mm程度にそれぞれ設定されている。連結部4及び酸素供給チューブ3の各外径も同様である。また、気泡発生チップ2、連結部4及び酸素供給チューブ3の一部が患者の静脈内に挿入されることを考慮してこれらの表面に適当なコーティングが施されてもよい。特に、気泡発生チップ2の表面2aは、血液成分が付着することによって後述の微小孔Mpが塞がれて気泡発生能力が劣化しないように、血液成分の付着を抑制可能な被覆層C(図3参照)で覆われている。   The outer diameter and length of the bubble generating chip 2 depend on the physique of the patient and the inner diameter of the femoral vein to be incised, but the outer diameter of the bubble generating chip 2 is about 3 mm to 8 mm, and the length of the bubble generating chip 2 is It is set to about 5 mm to 40 mm. The same applies to the outer diameters of the connecting portion 4 and the oxygen supply tube 3. Further, in consideration of insertion of the bubble generating chip 2, the connecting portion 4, and a part of the oxygen supply tube 3 into the vein of the patient, an appropriate coating may be applied to these surfaces. In particular, the surface 2a of the bubble generation chip 2 has a coating layer C (see FIG. 2) that can suppress the adhesion of blood components so that the micropores Mp described later are not blocked by the adhesion of blood components and the bubble generation capability does not deteriorate. 3).

気泡発生チップ2の表面2aには複数の微小孔Mpが形成されている。複数の微小孔Mpは本発明に係る複数の孔に相当する。図2及び図3に示すように、各微小孔Mpは気泡発生チップ2の円筒部をほぼ同一の内径で貫いていて気泡発生チップ2の表面2a及び内面2bのそれぞれで開口している。微小孔Mpが表面2aで開口する大きさ、つまり微小孔Mpの開口部の内径dは1μm〜300μmの範囲内で均一化されている。このような範囲内で微小孔Mpの開口部の内径をコントロールするため、微小孔Mpは加工コストが比較的低く、かつ形成精度が高い方法、例えば精密電気鋳造法により加工されている。その他にも、上記範囲内の内径dの開口部を持つ微小孔Mpを形成できる限度で、例えば切削加工、レーザ加工、放電加工等の各種の加工方法を採用することもできる。微小孔Mpの個数は単位時間あたりの患者への酸素量供給量が考慮された多数個に調整されている。   A plurality of micropores Mp are formed on the surface 2 a of the bubble generating chip 2. The plurality of minute holes Mp correspond to the plurality of holes according to the present invention. As shown in FIGS. 2 and 3, each micro hole Mp penetrates the cylindrical portion of the bubble generating chip 2 with substantially the same inner diameter, and is opened on each of the surface 2 a and the inner surface 2 b of the bubble generating chip 2. The size at which the microhole Mp opens at the surface 2a, that is, the inner diameter d of the opening of the microhole Mp is made uniform within a range of 1 μm to 300 μm. In order to control the inner diameter of the opening of the minute hole Mp within such a range, the minute hole Mp is processed by a method having a relatively low processing cost and high formation accuracy, for example, a precision electroforming method. In addition, various processing methods such as cutting, laser processing, and electrical discharge processing may be employed as long as the minute hole Mp having an opening with an inner diameter d within the above range can be formed. The number of micropores Mp is adjusted to a large number in consideration of the amount of oxygen supplied to the patient per unit time.

気泡発生装置1を患者の治療に使用する場合、大腿静脈カテーテルの挿入と同じ要領で処置される。患者の穿刺部位を介して気泡発生チップ2を大腿静脈内に挿入し、必要に応じて予め静脈内に挿入したガイドワイヤに沿って気泡発生チップ2を上行大静脈まで挿入する。これにより、気泡発生装置1は、気泡発生チップ2が上行大静脈内に留置されるとともに、これに連なる酸素供給チューブ3の一部が静脈内に留置され、酸素供給チューブ3の残りが患者の体外に露出した状態になる。いうまでもないが、酸素供給チューブ3は体外に配置されるMFC5に連結可能となる程度に十分な長さを有している。   When the bubble generating device 1 is used for treatment of a patient, it is treated in the same manner as insertion of a femoral vein catheter. The bubble generating chip 2 is inserted into the femoral vein through the puncture site of the patient, and the bubble generating chip 2 is inserted into the ascending vena cava along the guide wire previously inserted into the vein as necessary. As a result, in the bubble generating device 1, the bubble generating chip 2 is placed in the ascending vena cava, a part of the oxygen supply tube 3 connected to the bubble generating tip 2 is placed in the vein, and the rest of the oxygen supply tube 3 is left in the patient. It is exposed outside the body. Needless to say, the oxygen supply tube 3 has a length sufficient to be connectable to the MFC 5 disposed outside the body.

このように患者に処置された状態で、気泡発生装置1に対してガス供給源GSから酸素ガスGが供給されると、酸素供給チューブ3を介して気泡発生チップ2に供給された酸素ガスGは、気泡発生チップ2の表面2aに開口する微小孔Mpに導かれ、各微小孔Mpから流出する。これにより、患者の上行大静脈内で酸素ガスGのマイクロバブルが発生する。マイクロバブル(以下MBと称する。)は本発明に係る気泡に相当する。MBは微小孔Mpの開口部の内径dが1μm〜300μmの範囲内で均一化されているので、発生するMBの想定されるサイズは1μm〜1000μm程度である。MBの均一化の範囲を1μm〜300μmという数値範囲に設定した理由は1μmよりも小さい内径の孔を形成することは技術的な困難性を伴うため加工コストが厳しくなる一方、内径が300μmよりも大きくなると、想定外の大きさのMBの発生率が増加してしまいガス交換効率が低下するためである。   When oxygen gas G is supplied from the gas supply source GS to the bubble generating device 1 in a state where the patient is treated in this manner, the oxygen gas G supplied to the bubble generating chip 2 via the oxygen supply tube 3. Is guided to the micropores Mp that open to the surface 2a of the bubble generating chip 2, and flows out from each micropore Mp. Thereby, microbubbles of oxygen gas G are generated in the ascending vena cava of the patient. Microbubbles (hereinafter referred to as MB) correspond to bubbles according to the present invention. Since the inner diameter d of the opening of the micropore Mp is uniform within the range of 1 μm to 300 μm, the expected size of the generated MB is about 1 μm to 1000 μm. The reason why the uniform range of MB is set to a numerical value range of 1 μm to 300 μm is that forming a hole with an inner diameter smaller than 1 μm is accompanied by technical difficulties, and the processing cost becomes severe, whereas the inner diameter is smaller than 300 μm. This is because if it increases, the occurrence rate of MBs with unexpected sizes increases and the gas exchange efficiency decreases.

静脈内でMBが発生すると、MB内の分圧と血中の分圧との分圧差によって、MB内の酸素ガスGに含まれる酸素が血液に溶け込みつつ血中の二酸化炭素がMBに移動するガス交換が実現する。このガス交換は、上行大静脈で発生したMBが血流に乗って大静脈を通過し心臓の右心房を経由して生体肺へと流れる過程で行われる。何らかの原因で、想定外のサイズのMBが発生しても、そのようなMBが生体肺に達すれば生体肺で吸収されるので患者の動脈に送られる危険性はない。また、生体肺で吸収されずに通過したMBは、肺胞血管を通過する大きさを有するから、閉塞によって問題となる太い血管を通過するので重篤な症状を引き起こす血管閉塞の問題などは生じない。   When MB occurs in a vein, the carbon dioxide in the blood moves to the MB while the oxygen contained in the oxygen gas G in the MB dissolves in the blood due to the partial pressure difference between the partial pressure in the MB and the partial pressure in the blood. Gas exchange is realized. This gas exchange is performed in the process in which MB generated in the ascending vena cava passes through the vena cava through the bloodstream and flows to the living lung through the right atrium of the heart. Even if an MB of an unexpected size occurs for some reason, if such MB reaches the living lung, it is absorbed by the living lung, so there is no risk of being sent to the patient's artery. In addition, since MB that has passed without being absorbed by the living lung has a size that passes through alveolar blood vessels, it passes through a large blood vessel that becomes a problem due to occlusion, so that problems such as vascular occlusion that cause serious symptoms occur. Absent.

本形態の気泡発生装置1によれば、微小孔Mpの開口部の内径dが上記範囲内で均一化されることにより想定外の大きさのMBの発生数を抑制できるのでガス交換効率の低下を抑制できる。微小孔Mpの開口部の内径dが本形態のように均一化されていなければ、内径dが大きい微小孔Mpに酸素ガスGが集中し、発生するMBの個数が少なくなりかつMBの大きさが大きくなるので、発生したMBと血液との単位時間あたりの接触面積が減少してガス交換効率が低下するからである。   According to the bubble generating device 1 of the present embodiment, since the inner diameter d of the opening of the minute hole Mp is made uniform within the above range, the number of MBs having an unexpected size can be suppressed, so that the gas exchange efficiency is lowered. Can be suppressed. If the inner diameter d of the opening of the microhole Mp is not uniform as in the present embodiment, the oxygen gas G concentrates in the microhole Mp having a large inner diameter d, and the number of generated MBs decreases and the size of the MB. This is because the contact area per unit time between the generated MB and blood is reduced and the gas exchange efficiency is lowered.

また、気泡発生装置1は、MFC5によって酸素供給チューブ3を流れる酸素ガスGの流量及び圧力を制御可能であるので患者の血圧や血流等の状態に合わせた血液酸素加を実施できる。患者の静脈内で発生するMBの大きさや個数は微小孔Mpの開口部の内径dだけでなく、気泡発生チップ2に供給される酸素ガスGの流量及び圧力によっても変化するし、患者の静脈血圧や血流等にも影響するからである。もっとも、酸素ガスGの流量や圧力をMFC5にて制御することによって酸素の付加能力や二酸化炭素の除去能力をある程度制御できるが、これらのガス交換が平衡状態になるまでが酸素ガスGの流量の上限となる。そのため、気泡発生装置1だけの治療では二酸化炭素の除去能力が不足することもあり得る。このようなケースでは透析を併用し、透析によって血中の二酸化炭素をバイカーボネートや重炭素イオン等として排出する対応策が有効である。透析も体外循環の一種ではあるが、透析はPCPSやECMOと比較して格段に簡易な手技であり、かつ低侵襲で安全性が高いことを医療従事者は経験で理解している。そのため、気泡発生装置1と透析との併用が有効である。   Moreover, since the bubble generator 1 can control the flow rate and pressure of the oxygen gas G flowing through the oxygen supply tube 3 by the MFC 5, it can perform blood oxygenation in accordance with the patient's blood pressure, blood flow, and the like. The size and number of MBs generated in the patient's veins vary depending not only on the inner diameter d of the opening of the micropore Mp but also on the flow rate and pressure of the oxygen gas G supplied to the bubble generating chip 2, and the patient's veins. This is because blood pressure and blood flow are also affected. However, by controlling the flow rate and pressure of the oxygen gas G with the MFC 5, it is possible to control the oxygen addition capability and the carbon dioxide removal capability to some extent. It becomes the upper limit. For this reason, the treatment with only the bubble generating device 1 may lack the ability to remove carbon dioxide. In such a case, dialysis is used together, and a countermeasure for discharging carbon dioxide in the blood as bicarbonate or heavy carbon ions by dialysis is effective. Although dialysis is a kind of extracorporeal circulation, medical staff understand from experience that dialysis is a much simpler procedure than PCPS and ECMO, and is less invasive and highly safe. Therefore, the combined use of the bubble generator 1 and dialysis is effective.

救急救命時に気泡発生装置1を使用することも患者へのアクセスが穿刺部の一箇所であるから緊急要請に適している。また、体外循環を伴わずに低侵襲であるので、気泡発生装置1を救急救命時に用いること関して医療従事者の抵抗感や迷いは少ないと思われる。一般的に救急救命で緊急性が高い対応は患者の低酸素状態の改善である。その後の二酸化炭素の除去については、より優先度の高い低酸素対策後にpH値とPCO2値等を考慮して透析を行えばよい。   The use of the bubble generating device 1 during emergency lifesaving is also suitable for an emergency request because access to the patient is at one place of the puncture unit. Further, since it is minimally invasive without extracorporeal circulation, it seems that there is little resistance or hesitation of medical staff regarding the use of the bubble generator 1 for emergency lifesaving. In general, the most urgent response in emergency lifesaving is the improvement of hypoxia in patients. For the subsequent removal of carbon dioxide, dialysis may be performed in consideration of the pH value, the PCO2 value, and the like after measures of low oxygen with higher priority.

本発明は上記形態に限定されず本発明の要旨の範囲内において種々の形態にて実施できる。上記形態では、複数の孔である微小孔Mpの開口部の内径dが1μm〜300μmの範囲内で均一化されているが、内径dの範囲はこれに限定されるものではなく、他の数値範囲内に制限されてもよい。その範囲が狭ければ狭いほど微小孔Mpの均一度が増してMBの均一度が増すのでガス交換効率が高まる。したがって、使用目的や対象に合わせて上記範囲を設定して本発明を実施できる。また、微小孔Mpは円形状の孔であるが、必ずしも孔の形状は円形状でなくてもよい。非円形状の楕円形状や矩形状の孔が形成された形態で本発明を実施することもできる。そのような形態の場合、気泡発生部の表面で開口する孔の大きさを所定範囲内に均一化する際には、非円形状の孔の内周の最大幅を調整パラメータとし、その最大幅が所定範囲内に収まるように調整すればよい。   This invention is not limited to the said form, It can implement with a various form within the range of the summary of this invention. In the above embodiment, the inner diameter d of the openings of the micro holes Mp that are a plurality of holes is uniformized within a range of 1 μm to 300 μm, but the range of the inner diameter d is not limited to this, and other numerical values It may be limited within the range. The narrower the range, the higher the uniformity of the micropores Mp and the higher the MB uniformity, so that the gas exchange efficiency is increased. Therefore, the present invention can be implemented by setting the above range according to the purpose of use and the object. Further, although the minute hole Mp is a circular hole, the shape of the hole is not necessarily circular. The present invention can also be implemented in a form in which a non-circular elliptical shape or a rectangular hole is formed. In such a case, when the size of the hole opened on the surface of the bubble generating part is made uniform within a predetermined range, the maximum width of the inner circumference of the non-circular hole is used as an adjustment parameter, and the maximum width May be adjusted so as to fall within a predetermined range.

上記形態の気泡発生チップ2は先端が閉鎖した円筒状に形成されているが気泡発生部の形状に制限はない。例えば、四角柱形状の気泡発生部を備えた形態で本発明を実施することもできる。もっとも、気泡発生チップ2の表面2aは円筒面であり曲面であるから、複数の孔が形成される表面が全て平面で構成されていて最大幅が同じものと比べて表面積が大きくなる。これにより、血行動態を損なわない限度で効率的な酸素付加を達成できる。また、上記形態の気泡発生チップ2を、図4A〜図4Cに示した表面に曲面が含まれる他の形態の気泡発生チップ21、22、23のいずれかに置換して本発明を実施することもできる。各気泡発生チップ21、22、23は本発明に係る気泡発生部に相当する。   The bubble generating chip 2 having the above-described form is formed in a cylindrical shape with a closed tip, but the shape of the bubble generating part is not limited. For example, the present invention can be implemented in a form provided with a quadrangular prism-shaped bubble generating section. However, since the surface 2a of the bubble generating chip 2 is a cylindrical surface and a curved surface, the surface on which the plurality of holes are formed is all flat and has a larger surface area than that having the same maximum width. Thereby, efficient oxygenation can be achieved as long as hemodynamics is not impaired. Also, the present invention is carried out by replacing the bubble generating chip 2 of the above form with any of the other forms of bubble generating chips 21, 22, 23 having curved surfaces on the surfaces shown in FIGS. 4A to 4C. You can also. Each bubble generating chip 21, 22, 23 corresponds to a bubble generating portion according to the present invention.

図4Aの気泡発生チップ21はドーム形状の表面21aを有している。表面21aには、複数の微小孔Mpが気泡発生チップ2と同様に開口し、かつドーム形状を構成する球面その他の曲面が含まれる。図4Bの気泡発生チップ22は円錐形状の表面22aを有している。表面22aには、複数の微小孔Mpが気泡発生チップ2と同様に開口し、かつ円錐形状を構成する曲面である円錐面が含まれる。図4Cの気泡発生チップ23は円錐台形状の表面23aを有している。表面23aには、複数の微小孔Mpが気泡発生チップ2と同様に開口し、かつ円錐台形状を構成する曲面である円錐面が含まれる。図4A〜図4Cに示された形態は、いずれも微小孔Mpが形成された表面に曲面が含まれるものであるから気泡発生チップ2と同様に血行動態を損なわない限度で表面積を稼ぐことができる。   The bubble generating chip 21 in FIG. 4A has a dome-shaped surface 21a. The surface 21a includes a spherical surface and other curved surfaces in which a plurality of minute holes Mp are opened in the same manner as the bubble generating chip 2 and forms a dome shape. The bubble generating chip 22 of FIG. 4B has a conical surface 22a. The surface 22a includes a conical surface that is a curved surface in which a plurality of micropores Mp are opened in the same manner as the bubble generating chip 2 and constitutes a conical shape. The bubble generating chip 23 shown in FIG. 4C has a frustoconical surface 23a. The surface 23a includes a conical surface that is a curved surface that has a plurality of minute holes Mp that are open in the same manner as the bubble generating chip 2 and that forms a truncated cone shape. 4A to 4C all have a curved surface on the surface on which the micropores Mp are formed, so that the surface area can be increased as long as the hemodynamics are not impaired as with the bubble generating chip 2. it can.

上述の説明は、気泡発生部等を患者の静脈内に挿入してから静脈内で気泡を発生させるものであるが、本発明の気泡発生装置を利用して患者の体外に取り出した血液又は所定の液体内で気泡を発生させ、それによって気泡が混入した血液又は液体を患者の静脈に注入する方法を実現するために本発明の気泡発生装置を使用することもできる。   In the above description, the bubble generating part or the like is inserted into the patient's vein and then the bubble is generated in the vein. However, blood taken out of the patient's body using the bubble generating device of the present invention or predetermined The bubble generating device of the present invention can also be used to realize a method of generating bubbles in a liquid and thereby injecting blood or liquid mixed with bubbles into a patient's vein.

1 気泡発生装置
2、21、22、23 気泡発生チップ(気泡発生部)
2a、21a、22a、22c 表面
3 酸素供給チューブ
5 MFC(制御部)
G 酸素ガス
Mp 微小孔
C 被覆層
1 Bubble generator 2, 21, 22, 23 Bubble generation chip (bubble generation unit)
2a, 21a, 22a, 22c Surface 3 Oxygen supply tube 5 MFC (control unit)
G Oxygen gas Mp Micropore C Coating layer

Claims (5)

酸素を主体とする酸素ガスの気泡を患者の静脈内で発生させることが可能な気泡発生装置であって、
前記酸素ガスが流出可能な複数の孔が所定範囲内の大きさでそれぞれ開口している表面を有し、供給された前記酸素ガスを前記複数の孔に導くことができ、かつ前記静脈内に挿入可能な大きさを有する気泡発生部と、
柔軟な素材で構成され、前記気泡発生部に前記酸素ガスを供給でき、かつ前記静脈内に挿入可能な大きさを有する酸素供給チューブと、
を備える気泡発生装置。
A bubble generator capable of generating oxygen gas bubbles mainly composed of oxygen in a patient's veins,
The plurality of holes through which the oxygen gas can flow out have a surface that opens in a predetermined size, respectively, and the supplied oxygen gas can be guided to the plurality of holes, and into the vein A bubble generator having a size that can be inserted;
An oxygen supply tube made of a flexible material, capable of supplying the oxygen gas to the bubble generating unit, and having a size that can be inserted into the vein;
A bubble generator comprising:
前記酸素供給チューブが前記気泡発生部に供給する前記酸素ガスの流量及び圧力を制御可能な制御部を更に備える請求項1に記載の気泡発生装置。   The bubble generating apparatus according to claim 1, further comprising a control unit capable of controlling a flow rate and pressure of the oxygen gas supplied to the bubble generating unit by the oxygen supply tube. 前記気泡発生部の前記表面には、前記複数の孔が形成された曲面が含まれている請求項1又は2に記載の気泡発生装置。   The bubble generating device according to claim 1, wherein the surface of the bubble generating unit includes a curved surface in which the plurality of holes are formed. 前記複数の孔が円形状に形成されており、前記複数の孔が前記表面に開口する開口部の内径を、前記複数の孔が前記表面に開口する大きさとして定義した場合において、前記所定範囲として、1μm〜300μmの範囲が設定されている請求項1〜3のいずれか一項に記載の気泡発生装置。   The predetermined range when the plurality of holes are formed in a circular shape, and an inner diameter of an opening portion at which the plurality of holes opens on the surface is defined as a size at which the plurality of holes open on the surface. The bubble generating device according to claim 1, wherein a range of 1 μm to 300 μm is set. 前記気泡発生部の前記表面が血液成分の付着を抑制可能な被覆層で覆われている請求項1〜4のいずれか一項に記載の気泡発生装置。   The bubble generating device according to any one of claims 1 to 4, wherein the surface of the bubble generating unit is covered with a coating layer capable of suppressing adhesion of blood components.
JP2016031995A 2016-02-23 2016-02-23 Bubble generator Active JP6653185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016031995A JP6653185B2 (en) 2016-02-23 2016-02-23 Bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031995A JP6653185B2 (en) 2016-02-23 2016-02-23 Bubble generator

Publications (2)

Publication Number Publication Date
JP2017148170A true JP2017148170A (en) 2017-08-31
JP6653185B2 JP6653185B2 (en) 2020-02-26

Family

ID=59741319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031995A Active JP6653185B2 (en) 2016-02-23 2016-02-23 Bubble generator

Country Status (1)

Country Link
JP (1) JP6653185B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506266A (en) * 1992-01-06 1995-07-13 ザ ペン ステイト リサーチ ファウンデーション endometrial pulmonary device
JP2000014764A (en) * 1998-07-03 2000-01-18 Kiyohito Ishida Catheter
US7303156B1 (en) * 2004-04-08 2007-12-04 Louisiana Tech University Research Foundation As A Division Of The Louisiana Tech University Foundation Generation and usage of microbubbles as a blood oxygenator
US20090093751A1 (en) * 2007-10-07 2009-04-09 Chi-Wei Tao Intravascular nano-bubbling oxygenator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506266A (en) * 1992-01-06 1995-07-13 ザ ペン ステイト リサーチ ファウンデーション endometrial pulmonary device
JP2000014764A (en) * 1998-07-03 2000-01-18 Kiyohito Ishida Catheter
US7303156B1 (en) * 2004-04-08 2007-12-04 Louisiana Tech University Research Foundation As A Division Of The Louisiana Tech University Foundation Generation and usage of microbubbles as a blood oxygenator
US20090093751A1 (en) * 2007-10-07 2009-04-09 Chi-Wei Tao Intravascular nano-bubbling oxygenator

Also Published As

Publication number Publication date
JP6653185B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP6553730B2 (en) VA ECMO for pulmonary artery ventilation
JP6813571B2 (en) Manufacturing method of percutaneous catheter and tube for percutaneous catheter
JP7365452B2 (en) Priming system
JP2010046506A (en) Apparatus and method for blood oxygenation
US20200016310A1 (en) Catheter for infusion of cardiovascular fluid
CN111760107A (en) Efficient gas-liquid exchange membrane oxygenator
US8748166B2 (en) System for forming and maintaining biological tissue
JP2016538975A (en) An apparatus having a fluid pump, at least two access points to the abdominal wall, and a tube connected to the fluid pump and the abdominal wall
Stammers Historical aspects of cardiopulmonary by pass: From antiquity to acceptance
JP6653185B2 (en) Bubble generator
WO2018001177A1 (en) Medical catheter
Rochow et al. Integrated microfluidic oxygenator bundles for blood gas exchange in premature infants
CN106267398B (en) A kind of auxiliary circulation two-way arterial duct, control system and its control method
CN212282367U (en) Efficient gas-liquid exchange membrane oxygenator
Wiese Membranes for Artificial Lung and Gas Exchange Applications
US20090035386A1 (en) Conditioning of a patient's blood by gases
JP2008068129A (en) Intracorporeal indwelling type purifying device
JP2017515583A (en) Catheter system for intravenous injection
Borrelli et al. Materials: cannulas, pumps, oxygenators
WO2021177165A1 (en) Percutaneous catheter, and method for using percutaneous catheter
Conrad Vascular access for ECLS
JP2023032536A (en) Sheath and medical assembly
Seen et al. Types of Extracorporeal Life Support and Evolution of Extracorporeal Oxygenators
JP2022180644A (en) Stylet and catheter assembly
JP2858783B2 (en) Method for removing bubbles in liquid and apparatus for implementing the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R150 Certificate of patent or registration of utility model

Ref document number: 6653185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250