JP2017146202A5 - - Google Patents

Download PDF

Info

Publication number
JP2017146202A5
JP2017146202A5 JP2016028169A JP2016028169A JP2017146202A5 JP 2017146202 A5 JP2017146202 A5 JP 2017146202A5 JP 2016028169 A JP2016028169 A JP 2016028169A JP 2016028169 A JP2016028169 A JP 2016028169A JP 2017146202 A5 JP2017146202 A5 JP 2017146202A5
Authority
JP
Japan
Prior art keywords
displacement
scanning
pitch
strain
directions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016028169A
Other languages
Japanese (ja)
Other versions
JP6813162B2 (en
JP2017146202A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2016028169A priority Critical patent/JP6813162B2/en
Priority claimed from JP2016028169A external-priority patent/JP6813162B2/en
Publication of JP2017146202A publication Critical patent/JP2017146202A/en
Publication of JP2017146202A5 publication Critical patent/JP2017146202A5/ja
Application granted granted Critical
Publication of JP6813162B2 publication Critical patent/JP6813162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

1.3 高速走査モアレ法による変形計測感度
高速走査モアレ法ではT間隔の基本走査線に相対的なピッチpの試料格子のひずみは式、ε(n)=(p−T)/Tで表される。
この数式と数式(7)とを比較すれば、T(n)<npの場合には式、ε(n)=T/(d−T)で得られ、T(n)>npの場合には式、ε(n)=−T/(d+T)で得られる。
モアレ間隔は通常y方向には基本走査線間隔よりはるかに大きいことから相対ひずみは式、|ε(n)|≒T/d=T(n)/(nd)で簡素化される。
1.3 Deformation measurement sensitivity by the high-speed scanning moire method In the high-speed scanning moire method, the strain of the sample lattice with the pitch p relative to the basic scanning line at the interval T 0 is expressed by the equation: ε (n) = (p−T 0 ) / T It is represented by 0 .
Comparing this equation with equation (7), if T (n) <np, the following equation is obtained: ε (n) = T 0 / (d−T 0 ), and T (n)> np In the case, it is obtained by the equation, ε (n) = − T 0 / (d + T 0 ).
Since the moire interval is usually much larger than the basic scanning line interval in the y direction, the relative distortion is simplified by the equation | ε (n) | ≈T 0 / d = T (n) / (nd).

Claims (12)

縦横の走査点からなり基本走査線間隔Tの整数倍の間隔T(整数は1以上)に走査し得る走査線を有する走査型顕微鏡を備え、
試料台に載置されその表面に一方向にピッチp(pはTに近接する)の規則格子が生成された試料の表面を前記走査型顕微鏡の走査線により走査して前記試料表面のモアレ縞画像を取得し、
取得した前記モアレ縞画像の走査点の輝度情報から前記試料の変位ひずみ量を計算し、
計算した前記試料の変位ひずみ量を表示する、
走査モアレ方法による変位ひずみ分布測定システムであって、
前記走査型顕微鏡の走査点間隔Tを前記ピッチpの2以上の整数倍またはその近傍とし前記規則格子と前記走査点が不一致またはずれが生じるようにしたことを特徴とする変位ひずみ分布測定システム。
A scanning microscope having scanning lines that are composed of vertical and horizontal scanning points and can be scanned at an interval T (an integer is 1 or more ) that is an integral multiple of the basic scanning line interval T 0 ;
The surface of the sample placed on the sample stage and having a regular lattice having a pitch p (p is close to T 0 ) in one direction on the surface is scanned by the scanning line of the scanning microscope, and the surface of the sample is scanned. Get moire fringe images,
Calculate the displacement strain amount of the sample from the luminance information of the scanning point of the acquired moire fringe image,
Displaying the calculated displacement amount of strain the sample,
A displacement strain distribution measuring system using a scanning moire method,
Wherein the two or more integral multiple or the scanning point and the superlattice and its vicinity of the pitch p of the scanning point interval T of the scanning microscope is as mismatch or shift occurs, the displacement strain distribution measurement system.
前記規則格子ピッチpの相対的ひずみ量ε(n)は、前記一方向の変位u(n)(下記の式(8))の一次微分(下記の式(9))から得られ、
Figure 2017146202
Figure 2017146202
ただし、前記一方向をy方向とし、mは前記モアレ縞の次数、u(n)は前記基本走査線に関してy方向におけるモアレ縞の変位とする請求項1に記載の変位ひずみ分布測定システム。
The relative strain amount ε (n) of the pitch p of the regular lattice is obtained from the first derivative (the following equation (9)) of the displacement uni (u) (the following equation (8)) in the one direction ,
Figure 2017146202
Figure 2017146202
However, the one direction and the y direction, m is the order of the moire fringes, u (n) is the displacement of moire fringes in the y direction with respect to the basic scan line, the displacement strain distribution measurement system according to claim 1.
ひずみ量εactualを変形前後の前記規則格子の幾何学的関係(下記の式(10))から得る、
Figure 2017146202
ただしはy方向における変形前の試料の規則格子ピッチとする請求項2に記載の変位ひずみ分布測定システム。
The amount of strain ε actual is obtained from the geometric relationship of the regular lattice before and after deformation (the following equation (10)) .
Figure 2017146202
However, p 0 is the ordered lattice pitch of the sample prior to deformation in the y-direction, displacement of the strain distribution measurement system according to claim 2.
縦横の走査点からなり基本走査線間隔Tの整数倍の間隔T(整数は1以上)に走査し得る走査線を有する走査型顕微鏡を備え、
試料台に載置されその表面に直交する二方向にピッチp(pはTに近接する)の規則交差格子が生成された試料の表面を前記走査型顕微鏡の走査線により走査して前記試料表面の2次元モアレ縞画像を取得し、
取得した前記モアレ縞画像の走査点の輝度情報から前記試料変位ひずみ量を計算し、
計算した前記試料の変位ひずみ量を表示する、
走査モアレ方法による変位ひずみ分布測定システムであって、
前記規則交差格子と前記基本走査線間隔Tの走査点とを近接して配置し前記規則交差格子と前記走査点が不一致またはずれが生じるようにしたことを特徴とする変位ひずみ分布測定システム。
A scanning microscope having scanning lines that are composed of vertical and horizontal scanning points and can be scanned at an interval T (an integer is 1 or more ) that is an integral multiple of the basic scanning line interval T 0 ;
The surface of the sample placed on the sample stage and on which a regular crossing lattice having a pitch p (p is close to T 0 ) is generated in two directions perpendicular to the surface of the sample is scanned by the scanning line of the scanning microscope. Obtain a 2D moire fringe image of the surface,
Calculate the displacement strain amount of the sample from the luminance information of the scanning point of the acquired moire fringe image,
Displaying the calculated displacement amount of strain the sample,
A displacement strain distribution measuring system using a scanning moire method,
Wherein the scanning point and the scanning point and the rule intersecting grid disposed in close proximity to the rules intersecting grid and the basic scanning line interval T 0 is as mismatch or shift occurs, the displacement strain distribution measurement system.
前記規則交差格子の相対的ひずみ量εi(i=x,y)は、前記2次元モアレ縞画像に画像処理を施して直交する二方向の1次元走査モアレ縞に分離した後に前記規則交差格子の二方向における基本走査線に相対的な変位ui(i=x,y)(下記の式(11))の一次微分(下記の式(12))から求め、
Figure 2017146202
Figure 2017146202
ただし、前記二方向はxとy方向とする請求項4に記載の変位ひずみ分布測定システム。
It said regular relative amount of strain of the cross grating ε i (i = x, y ) , the rule crossing after separation on 1-dimensional scanning moiré two directions perpendicular performs image processing on the two-dimensional moiré fringe image The displacement relative to the basic scanning line in the two directions of the lattice u i (i = x, y) (the following equation (11)) is obtained from the first derivative (the following equation (12)) ,
Figure 2017146202
Figure 2017146202
However, the two directions are the x and y directions, the displacement strain distribution measurement system according to claim 4.
前記二方向の規則交差格子のひずみ量εi_actualは、変形前後の前記規則交差格子ピッチの幾何学的関係(下記の式(13))から求め、
Figure 2017146202
ただし変形前のx方向またはy方向の試料格子ピッチをpi_0(i=x,y)とする請求項5に記載の変位ひずみ分布測定システム。
The strain amount ε i_actual of the regular cross lattice in the two directions is obtained from the geometrical relationship of the regular cross lattice pitch before and after deformation (the following equation (13)) .
Figure 2017146202
However, the sample grating pitch of the undeformed x or y direction and p i_0 (i = x, y ), the displacement strain distribution measurement system according to claim 5.
縦横に基本走査線間隔Tの整数倍の間隔T(整数は1以上)に走査し得る走査点からなる走査線を有する走査型顕微鏡を備え、
試料台に載置されその表面に直交する二方向にピッチp(pはTに近接する)の規則交差格子が生成された試料の表面を前記走査型顕微鏡の走査線により走査して前記試料表面の2次元モアレ縞画像を取得し、
取得した前記2次元モアレ縞画像の走査点の輝度情報から前記試料変位ひずみ量を計算し、
計算した前記試料の変位ひずみ量を表示する、
走査モアレ方法による変位ひずみ分布測定システムであって、
前記走査型顕微鏡の直交する二方向の走査線間隔T、Tを前記ピッチpの整数倍(整数は1以上)またはその近傍となるようにし、かつ、
少なくとも前記二方向の走査線間隔の一つは前記ピッチpの2以上の整数倍またはその近傍とし、
前記規則交差格子と前記走査線間隔T、Tの走査点とを近接して配置し前記規則交差格子と前記走査点が不一致またはずれが生じるようにしたことを特徴とする変位ひずみ分布測定システム。
A scanning microscope having a scanning line consisting of scanning points that can be scanned at an interval T (an integer is 1 or more ) that is an integral multiple of the basic scanning line interval T 0 vertically and horizontally;
The surface of the sample placed on the sample stage and on which a regular crossing lattice having a pitch p (p is close to T 0 ) is generated in two directions perpendicular to the surface of the sample is scanned by the scanning line of the scanning microscope. Obtain a 2D moire fringe image of the surface,
The displacement strain amount of the sample is calculated from the luminance information of the scanning point of the acquired two-dimensional moire fringe image,
Display the calculated displacement strain of the sample,
A displacement strain distribution measuring system using a scanning moire method,
A scanning line interval T x , T y in two orthogonal directions of the scanning microscope is an integer multiple of the pitch p (an integer is 1 or more ) or the vicinity thereof; and
At least one of the scanning line intervals in the two directions is an integer multiple of 2 or more of the pitch p or the vicinity thereof,
Characterized in that as said regular cross grating and the scanning line interval T x, the scanning point and the scanning point and the rule intersecting grid disposed in close proximity to the T y is the mismatch or misalignment occurs, the displacement strain Distribution measurement system.
前記規則交差格子の相対的ひずみ量ε(n)(i=x,y)は、前記2次元モアレ縞画像に画像処理を施して直交する二方向の1次元走査モアレ縞に分離した後に前記規則交差格子の二方向における走査点に相対的な変位u(n)(i=x,y)(下記の式(14))の一次微分(下記の式(15))から求め、
Figure 2017146202
Figure 2017146202
ただし、前記二方向はxとy方向とし、mはi方向(i=x,y)における前記モアレ縞の次数、u(n)は前記基本走査線に関してi方向におけるモアレ縞の変位とする請求項7に記載の変位ひずみ分布測定システム。
The relative amount of strain said regular cross grating ε i (n i) (i = x, y) were separated into 1-dimensional scanning moiré two directions perpendicular performs image processing on the two-dimensional moiré fringe image Later, the displacement relative to the scanning point in the two directions of the regular crossing lattice u i (n i ) (i = x, y) (the following equation (14)) is obtained from the first derivative (the following equation (15)). ,
Figure 2017146202
Figure 2017146202
However, the two directions are x and y directions, m i is the i direction (i = x, y) the degree of moire fringes, u i (n i) at the displacement of moire fringes in the i direction with respect to the basic scan line to displacement strain distribution measurement system according to claim 7.
前記二方向の規則交差格子のひずみ量εi_actual(n)(i=x,y)は、変形前後の前記規則交差格子ピッチの幾何学的関係(下記の式(16))から求め、
Figure 2017146202
ただし変形前のx方向またはy方向の試料格子ピッチをpi_0(i=x,y)とする請求項8に記載の変位ひずみ分布測定システム。
The strain amount ε i_actual (n i ) (i = x, y) of the regular cross lattice in the two directions is obtained from the geometrical relationship (the following equation (16)) of the regular cross lattice pitch before and after deformation.
Figure 2017146202
However, the sample grating pitch of the undeformed x or y direction and p i_0 (i = x, y ), the displacement strain distribution measurement system according to claim 8.
少なくとも対物レンズと二方向に整列した撮像素子からなるイメージセンサを備えた撮影装置を用いてその表面に一方向にピッチpの規則格子が生成された測定物の表面を撮影してモアレ縞画像を取得し、
取得した前記モアレ縞画像の撮像素子に記憶された輝度情報から前記測定物の変位ひずみ量を計算し、
計算した前記測定物の変位ひずみ量を表示する、
サンプリングモアレ方法による変位ひずみ分布測定システムであって、
前記一方向の前記ピッチPの前記イメージセンサにおけるピッチpの整数倍(整数は1以上)またはその近傍にある前記一方向の撮像素子列に前記モアレ縞画像を記憶し、
前記記録された輝度情報から前記測定物の変位ひずみ量を計算することを特徴とする変位ひずみ分布測定システム。
At least an objective lens, by using the imaging apparatus comprising a Louis Mejisensa such from the imaging element aligned in two directions, by photographing the surface of the measured object ordered lattice pitch p is generated in one direction on the surface thereof Get moire fringe images,
Calculate the displacement strain amount of the measurement object from the luminance information stored in the image sensor of the acquired moire fringe image,
Display the calculated displacement strain of the measured object,
Displacement strain distribution measurement system by sampling moire method,
Storing the moire fringe image in the image sensor array in the one direction which is an integer multiple of the pitch p in the image sensor of the pitch P in the one direction (an integer is 1 or more ) or in the vicinity thereof;
And calculates the displacement amount of strain said measured object from said recorded luminance information, the displacement strain distribution measurement system.
少なくとも対物レンズと二方向に整列した撮像素子からなるイメージセンサを備えた撮影装置を用いてその表面に前記二方向にピッチPの規則交差格子が生成された測定物の表面を撮影して2次元モアレ縞画像を取得し、
取得した前記2次元モアレ縞画像の撮像素子に記憶された輝度情報から前記測定物の変位ひずみ量を計算し、
計算した前記測定物の変位ひずみ量を表示する、
サンプリングモアレ方法による変位ひずみ分布測定システムであって、
前記二方向の前記ピッチPの前記イメージセンサにおけるピッチpの整数倍(整数は1以上)またはその近傍にある撮像素子列であって、かつ、
少なくとも前記一方向の撮像素子列は前記ピッチpの2以上の整数倍またはその近傍にあ
前記二方向の撮像素子列に前記モアレ縞画像を記録し、
前記記録された輝度情報から前記測定物の変位ひずみ量を計算することを特徴とする変位ひずみ分布測定システム。
At least an objective lens, by using an imaging device that includes a Louis Mejisensa such from the imaging element aligned in two directions, the surface of the measured object rule intersecting lattice pitch P is generated in the two directions on the surface of shooting To obtain a 2D moire fringe image,
Calculating the displacement strain amount of the measurement object from the luminance information stored in the image sensor of the acquired two-dimensional moire fringe image;
Displaying the calculated displacement amount of strain the measurement was,
Displacement strain distribution measurement system by sampling moire method,
An image sensor array in an integer multiple of the pitch p in the image sensor of the pitch P in the two directions (an integer is 1 or more ) or in the vicinity thereof, and
At least one direction of the image pickup element column are two or more integral multiple or near near its said pitch p,
The moire fringe image is recorded in the two-direction image sensor array,
And calculates the displacement amount of strain said measured object from said recorded luminance information, the displacement strain distribution measurement system.
前記二方向は直交していることを特徴とする請求項10又は請求項11に記載の変位ひずみ分布測定システム。 Displacement strain distribution measurement system according to claim 10 or claim 11, wherein the two directions are orthogonal.
JP2016028169A 2016-02-17 2016-02-17 High-speed displacement / strain distribution measurement method and measuring device by moire method Active JP6813162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016028169A JP6813162B2 (en) 2016-02-17 2016-02-17 High-speed displacement / strain distribution measurement method and measuring device by moire method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016028169A JP6813162B2 (en) 2016-02-17 2016-02-17 High-speed displacement / strain distribution measurement method and measuring device by moire method

Publications (3)

Publication Number Publication Date
JP2017146202A JP2017146202A (en) 2017-08-24
JP2017146202A5 true JP2017146202A5 (en) 2019-03-07
JP6813162B2 JP6813162B2 (en) 2021-01-13

Family

ID=59682935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016028169A Active JP6813162B2 (en) 2016-02-17 2016-02-17 High-speed displacement / strain distribution measurement method and measuring device by moire method

Country Status (1)

Country Link
JP (1) JP6813162B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583761B2 (en) 2016-09-27 2019-10-02 国立研究開発法人産業技術総合研究所 Three-dimensional shape / displacement / strain measuring device, method and program using periodic pattern
CN108196091B (en) * 2018-03-30 2024-01-26 南京邮电大学 Photoelectric acceleration sensor based on CMOS
CN108469443A (en) * 2018-04-18 2018-08-31 北京航空航天大学 X-ray grating differential phase contrast imaging method and device based on two dimension dislocation absorption grating
CN110068284B (en) * 2019-05-20 2020-10-30 北京建筑大学 Method for monitoring tower crane by using high-speed photogrammetry technology
CN110398201B (en) * 2019-08-06 2021-08-06 湖南大学 Displacement measuring method combining digital image correlation technique and Moire sampling method
CN111325718B (en) * 2020-01-23 2023-07-25 深圳大学 Strain modal analysis method and related device
CN113720268B (en) * 2021-08-03 2022-10-25 西安交通大学 Digital moire method, system, equipment and storage medium for measuring strain based on light intensity principle

Similar Documents

Publication Publication Date Title
JP2017146202A5 (en)
JP4831703B2 (en) Object displacement measurement method
JP5818218B2 (en) Method, apparatus, and program for analyzing phase distribution of fringe image using high-dimensional luminance information
JP6583761B2 (en) Three-dimensional shape / displacement / strain measuring device, method and program using periodic pattern
JP6534147B2 (en) Method and apparatus for measuring displacement and vibration of object with single camera, and program therefor
JP6813162B2 (en) High-speed displacement / strain distribution measurement method and measuring device by moire method
JP2011191282A (en) Displacement measuring method using moire fringe
JP6590339B2 (en) Measuring method, measuring apparatus, measuring program, and computer-readable recording medium recording the measuring program
WO2017175341A1 (en) Measurement method, measurement device, measurement program, and computer-readable recording medium having measurement program recorded thereon
CN110268221B (en) Cord measuring device and cord measuring method
JP2014169939A5 (en)
JP6035031B2 (en) Three-dimensional shape measuring device using multiple grids
JP5466325B1 (en) Method to measure physical quantity of object from image of grid attached to object
JP2005283440A (en) Vibration measuring device and measuring method thereof
JP2010048553A (en) Inspecting method of compound-eye distance measuring device and chart used for same
JP2018028713A (en) Method of extracting edge of two-dimensional image
JP2013170831A (en) Strain measuring device and strain measuring method
JP2017037053A (en) High-speed measuring method and device by using many cameras
JP6666670B2 (en) 3D shape measurement method using curved surface as reference surface
JP7078928B2 (en) Out-of-plane displacement measurement method using a two-dimensional grid pattern and its device
JP6533914B2 (en) Computer readable recording medium recording measurement method, measurement device, measurement program and measurement program
JP5924309B2 (en) Optical line image correction method for mobile line camera
Detchev et al. Deformation monitoring with off-the-shelf digital cameras for civil engineering fatigue testing
JP3855062B2 (en) Method and apparatus for measuring shape of continuous object by monotonically increasing waveform projection
JP6942341B2 (en) Wide measurement range deformation measurement method and its program