JP2017146170A - 形状計測システム及び形状計測方法 - Google Patents

形状計測システム及び形状計測方法 Download PDF

Info

Publication number
JP2017146170A
JP2017146170A JP2016027317A JP2016027317A JP2017146170A JP 2017146170 A JP2017146170 A JP 2017146170A JP 2016027317 A JP2016027317 A JP 2016027317A JP 2016027317 A JP2016027317 A JP 2016027317A JP 2017146170 A JP2017146170 A JP 2017146170A
Authority
JP
Japan
Prior art keywords
measurement
shape
shapes
posture
calculation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016027317A
Other languages
English (en)
Other versions
JP6486845B2 (ja
Inventor
敬介 藤本
Keisuke Fujimoto
敬介 藤本
健次郎 高谷
Kenjiro Takatani
健次郎 高谷
貴紀 齋藤
Takanori Saito
貴紀 齋藤
力也 小澤
Rikiya Ozawa
力也 小澤
和幸 長谷川
Kazuyuki Hasegawa
和幸 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016027317A priority Critical patent/JP6486845B2/ja
Publication of JP2017146170A publication Critical patent/JP2017146170A/ja
Application granted granted Critical
Publication of JP6486845B2 publication Critical patent/JP6486845B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

【課題】複数地点で計測した形状を、計算量を抑えつつロバストに統合する。
【解決手段】形状計測システムであって、計測部が周囲の存在物の形状を計測した計測地点を図面上に記録して図面位置情報を生成する位置設定部と、計測形状を受信し、前記計測形状間の相対姿勢を算出して、当該計測形状を統合する形状事前統合部と、前記計測地点の位置を算出する計測位置算出部と、前記計測位置算出部が算出した位置を用いて限定した範囲を探索して、前記計測形状間で共通する部位の形状の一致度に基づいて、前記計測形状の姿勢を算出する計測姿勢算出部と、を備える。
【選択図】図1

Description

本発明は、形状計測センサが複数地点で計測した形状データを統合するためのシステム及び方法に関する。
空間の形状を記録するための一つの手段として、周囲の存在物までの距離を測ることによって存在物の三次元的な形状を計測できる形状計測センサがある。形状計測センサを用いると、手計りに比べ迅速かつ高精度に空間全体の形状を取得でき、また人の手が届かない高所や危険な場所を離れた地点から非破壊で形状を計測できる。
本技術の背景技術として、特開2005−43248号公報(特許文献1)、特開2003−83739号公報(特許文献2)、特開2014−137244号公報(特許文献3)、特開2012−57960号公報(特許文献4)がある。
特許文献1には、計測対象物体にレーザ光を照射して対象の三次元的な形状を測定する形状測定器が開示されている。この方法では、反射光が戻ってくるまでの時間を測ることで、センサからレーザ光の照射点までの距離を算出できるため、照射方向及び算出された距離から、レーザ光の照射点の三次元座標を求めることができる。この処理を全方向に繰り返し行うことによって、周囲の形状を計測点の集合(以下、点群)として測定できる。
特許文献1に記載されたレーザ光を照射する方法では、空間内に遮蔽物が存在すると遮蔽物の裏にある対象物にレーザ光が当たらず、一地点からの計測では空間全体を計測できない。このため、複数地点からレーザ光を照射して形状を計測し、計測した形状を統合することによって、空間全体を計測できる。各計測形状は計測地点を原点とした座標系で表されており、統合のためには共通座標系に変換する必要があり、変換量は各計測地点の姿勢(位置及び向き)を求める必要がある。
また、特許文献2には、マーカを空間内に設置し、地点間で共通して計測できたマーカ同士を対応付け、マーカの位置が合うように計測データ間の相対姿勢を求めることによって、計測データを統合する方法が開示されている。また、特許文献3には、方向センサとGPSを用いて計測地点の位置姿勢を予め求める方法が開示されている。さらに、特許文献4には、計測データ内に存在する特徴的な形状(特徴点)を用いて、形状同士を統合する方法が開示されている。
特開2005−43248号公報 特開2003−83739号公報 特開2014−137244号公報 特開2012−57960号公報
前述した特許文献2に開示された方法では、計測時に予めマーカを計測空間内に設置する必要がある。特許文献3に開示された方法では、形状計測センサの他に姿勢を計測するセンサが必要である。さらに、屋内ではGPSは使えないことが多い。
特許文献4に開示された方法では、特別なセンサを用いなくてもよいが、3か所以上の地点で計測した形状情報のみを用いて統合する場合、組み合わせの数が増加し、計算時間が増加し、統合ミスが発生する確率が増加する。さらに、共通して計測された領域が狭い場合、十分な特徴点が得られずに統合できない場合もある。
本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、形状計測システムであって、計測部が周囲の存在物の形状を計測した計測地点を図面上に記録して図面位置情報を生成する位置設定部と、計測形状を受信し、前記計測形状間の相対姿勢を算出して、当該計測形状を統合する形状事前統合部と、前記計測地点の位置を算出する計測位置算出部と、前記計測位置算出部が算出した位置を用いて限定した範囲を探索して、前記計測形状間で共通する部位の形状の一致度に基づいて、前記計測形状の姿勢を算出する計測姿勢算出部と、を備える。
本発明の一態様によれば、複数地点で計測した形状を、計算量を抑えつつロバストに統合できる。前述した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。
本発明の実施例の形状計測システムの全体構成図である。 本発明の実施例の計測部による周囲の存在物の計測を示す図である。 本発明の実施例の位置設定部が位置を設定するための入力画面の例を示す図である。 本発明の実施例の形状事前統合部による処理の例を示す図である。 本発明の実施例のスケール算出部による処理の例を示す図である。 本発明の実施例の計測位置算出部による処理の例を示す図である。 本発明の実施例の計測向き候補算出部による処理の例を示す図である。 本発明の実施例の計測姿勢算出部の構成例を示す図である。 本発明の実施例の計測姿勢算出部Aによる処理の例を示す図である。 本発明の実施例の計測姿勢算出部Bによる処理の例を示す図である。 本発明の実施例の計測姿勢算出部Cによる処理の例を示す図である。 本発明の実施例の高さ調整部による処理を示す図である。 本発明の実施例の形状計測システムの物理的な構成を示す図である。
以下、図面を用いて本発明の一実施例について説明する。
図1は、本実施例の形状計測システムの全体構成図である。
まず、計測部100が、複数の地点から周囲の3次元形状を計測し、多数の計測形状101として記録する。更に、位置設定部102が、予め与えられた図面103上における計測地点を図面位置情報104として記録する。図面103はスケールが未知のものでもよく、例えば、手書きの図面をスキャンしたデータを画面に表示し、タブレット端末等を用いて図面上における各計測地点の位置を指示することによって、図面位置情報104を得る。
続いて、形状事前統合部105は、所定の複数地点の計測形状101同士を、計測した複数の形状に含まれる共通部位の計測結果を対応させることによって統合する。統合に用いる計測地点は、図面位置情報104から得られる一定距離内の計測形状の2地点以上の組を選ぶ。又は、オペレータが所定の計測形状101を指示してもよい。計測した形状情報からの統合が可能であれば、本処理において、どの計測形状を統合対象としてもよい。
統合処理では、統合する形状から抽出された特徴点の特徴量の類似度を用いて両形状の同じ位置を示す特徴点同士を対応付け、特徴点間の距離を最小にする姿勢を算出してもよい。また、特徴点を使わずに、仮に定めた相対的な姿勢より形状間の各部位同士を再近傍探索によって対応付け、対応間距離を最小化するICPアルゴリズムを用いてもよい。さらに、事前に環境内にマーカを配置して、マーカ同士を対応付けることによって統合してもよい。なお、マーカを用いる方法ではマーカを配置する必要があるが、形状事前統合部105で統合する形状についてマーカを計測すればよく、全ての計測地点においてマーカを計測する必要はないため、マーカを配置する手間は少ない。形状事前統合部105においては、二つ以上の形状を統合できる方法であれば、前述した以外の方法を採用してもよい。
スケール算出部106は、形状事前統合部105が統合した形状が計測された地点間の相対距離と、スケールが未知の図面103上に設定された当該計測地点間の図面上の相対距離の比率から、図面のスケール107を算出する。計測位置算出部108は、スケール算出部106が算出したスケール107を用いて、図面位置情報104を正しいスケールに補正して、位置情報109を算出する。計測向き候補算出部112は、計測形状に含まれる面の方向の傾向の解析によって、計測形状の向きの候補を出力する。
計測姿勢算出部110は、計測位置算出部108が算出したスケールの正しい位置情報109を用いて、計測形状101の姿勢(向き及び位置)を算出する。なお、計測姿勢算出部110が位置を再度算出するのは、計測位置算出部108が算出する位置には通常は誤差が含まれているので、精度良く計測されている計測形状を用いて正確な位置を算出するためである。計測された部位のうち計測形状間で共通する部位が一致するような形状間の相対回転量及び相対並進量を探索することによって、向きと詳細な位置が求まる。この際に、位置情報109や形状事前統合部105で算出した姿勢情報を用いて探索範囲を限定することによって、共通して計測されている領域が小さい場合にも高速かつロバストに正しい解を求めることができる。これによって求まった各計測形状の姿勢を用いて、各計測形状に対して回転及び並進処理を実施することで、統合後形状111とする。
なお、本実施例の形状計測システムは、計測部100を有さず、別に周囲の存在物を計測した計測形状が入力されてもよい。また、既知のスケールの図面を用いる場合、スケール算出部106を設けなくてもよい。
図13は、本実施例の形状計測システムの物理的な構成を示す図である。
本実施例の形状計測作成システムは、プロセッサ(CPU)1、メモリ2、補助記憶装置3及び通信インターフェース4を有する計算機によって構成される。
プロセッサ1は、メモリ2に格納されたプログラムを実行する。メモリ2は、不揮発性の記憶装置であるROM及び揮発性の記憶装置であるRAMを含む。ROMは、不変のプログラム(例えば、BIOS)などを格納する。RAMは、DRAM(Dynamic Random Access Memory)のような高速かつ揮発性の記憶装置であり、プロセッサ1が実行するプログラム及びプログラムの実行時に使用されるデータを一時的に格納する。
補助記憶装置3は、例えば、磁気記憶装置(HDD)、フラッシュメモリ(SSD)等の大容量かつ不揮発性の記憶装置であり、プロセッサ1が実行するプログラム及びプログラムの実行時に使用されるデータ(例えば、地図データ)を格納する。すなわち、プログラムは、補助記憶装置3から読み出されて、メモリ2にロードされて、プロセッサ1によって実行される。
形状計測システムは、入力インターフェース5及び出力インターフェース8を有してもよい。入力インターフェース5は、キーボード6やマウス7などが接続され、オペレータからの入力を受けるインターフェースである。出力インターフェース8は、ディスプレイ装置9やプリンタなどが接続され、プログラムの実行結果をオペレータが視認可能な形式で出力するインターフェースである。
通信インターフェース4は、所定のプロトコルに従って、他の装置との通信を制御するネットワークインターフェース装置である。形状計測システムは、通信インターフェース4を介して端末(図示省略)と接続されてもよく、該端末から入力された指示に従って動作し、該端末に演算結果を出力してもよい。
プロセッサ1が実行するプログラムは、リムーバブルメディア(CD−ROM、フラッシュメモリなど)又はネットワークを介して図面作成システムに提供され、非一時的記憶媒体である不揮発性記憶装置3に格納される。このため、形状計測システムは、リムーバブルメディアからデータを読み込むインターフェースを有するとよい。
形状計測システムは、物理的に一つの計算機上で、又は、論理的又は物理的に構成された複数の計算機上で構成される計算機システムであり、同一の計算機上で別個のスレッドで動作してもよく、複数の物理的計算機資源上に構築された仮想計算機上で動作してもよい。
図2は、計測部100による周囲の存在物200の計測を示す図である。
計測部100は、様々な方向にレーザ光を照射し、レーザ光の反射光が戻るまでの時間を計測することによって、レーザ光を照射した方向に存在する物までの距離を計測する。計測部100は、周囲全方向にレーザ光を照射し、反射光を受光するまでの時間を繰り返し計測することによって、周囲に存在する全ての物の形状を計測することができる。計測結果として、1回のレーザ光の照射につき、周囲の物体の表面上の1点が計測でき、繰り返しレーザ光を照射することによって、周囲の形状を点群202として計測できる。
なお、計測部100は、周囲の形状が計測できるものであれば、RGB−Dセンサなどの拡散光を用いた距離計測装置や、音波を用いたソナーセンサでもよい。また、計測部100が出力する計測形状101は、点群データでなく、メッシュデータやステレオカメラ画像でもよい。
図3は、位置設定部102が位置を設定するための入力画面300の例を示す図である。
位置設定部102は、空間の図面103を予め読み込んで、画面300上に表示する。図面103は、環境の全体の形状を示す図面であれば、手書き図面や環境の見取り図などでよい。計測部100が形状を計測した位置を、オペレータが図面上でポインタ301によって指定することによって、指示位置302を記録する。図3において、計測位置303は記録済みの計測地点の位置である。なお、屋内GPS情報などの外部センサによって計測位置が得られている場合は、得られた位置を自動的に記録してもよい。
図4は、形状事前統合部105による処理の例を示す図である。
形状事前統合部105は、所定の複数の形状同士を統合する処理を実行する。位置設定部102が、図面400上で設定した設定位置401間の距離が所定値以下の形状の組402を複数選び、各組に対してそれぞれ統合処理を行う。統合処理を行うことによって計測形状の姿勢の相対関係が算出できる。
統合処理は、計測形状403、計測形状404間で共通して計測された部位406が一致するような並進の3パラメータ及び回転の3パラメータの6次元の変換量405を算出する。変換量405は計測地点間の相対的な姿勢であり、地点間の位置関係(距離)や向きを表す。変換量405は、ICPアルゴリズムや4PCSなどの方法で算出できる。予めマーカ等の統合の目印となる情報が得られている場合、マーカを基準にして統合してもよい。
なお、共通して得られている領域が少ない又は無い組を選択した場合、前述した方法では統合できないため、それらの組を破棄する。統合できたかは、統合結果のうち所定の閾値以上の割合が一致しているかなどによって判定できる。
図5は、スケール算出部106による処理の例を示す図である。
スケール算出部106は、図面のスケール107を算出する。手書きの図面をスキャンして読み込んだビットマップ形式のデータが予め与えられており、当該図面では図面上の2点間の実空間における距離が分からない。スケール算出部106は、図面上の任意の2点間の長さ500と、形状事前統合部105が求めた実空間での当該2点に対応する計測形状501と計測形状502を計測した地点間の長さ503との比率を算出することによって、図面のスケールを決定する。形状事前統合部105によって統合されている形状に2地点以上が含まれている場合、地点間の距離が分かっている形状の組を用い、式(1)を用いて最小二乗法によって最適なスケールを算出できる。なお、式(1)における変数pは形状事前統合部105が算出した地点間の実際の距離、変数mは地点間の図面上の距離、sはスケールである。
Figure 2017146170
図6は、計測位置算出部108による処理を示す図である。
計測位置算出部108は、各計測地点の正しいスケールの位置情報を算出する。まず、前記位置設定部102が、スケールが未知の図面103における計測位置の図面位置情報104を設定している。さらに、スケール算出部106が図面のスケール107を求めている。そして、これらの値を式(2)に入力することよって、実際の空間の位置情報109を算出する。なお、式(2)において、変数pは図面上の位置を、変数cは実空間における原点の図面上の座標を、変数sはスケールを示す。
Figure 2017146170
図7は、計測向き候補算出部112による処理の例を示す図である。
計測向き候補算出部112による処理は、計測姿勢算出部110によって計測姿勢を算出する前に実行され、算出した向きの候補を用いて、計測姿勢算出部110が姿勢を算出する際の向きの探索範囲を限定する。計測向きの候補は、計測形状101の計測向きを探索する際の探索領域の候補であり、本候補に限定して計測向きを探索することによって、よりロバストに向きを決定できる。計測向き候補算出部112は、各計測形状101における壁、天井面及び床面の少なくとも一つの向きを合わせることによって、向きの候補を絞り込む。但し、ある計測形状に含まれる壁に対応する他の計測形状の壁は分からないので、この時点では向きは一意に定まらない。そのため、計測向き候補算出部112は向きの候補を出力する。
まず、計測向き候補算出部112は、計測形状A700と計測形状B701において、それぞれ計測された計測点群の法線方向を算出し、法線方向毎に計測データが得られている点数のヒストグラム702を作成する。一般的な屋内形状であれば、壁同士の角度は直角であり、90度毎にヒストグラムのピークが現れる。計測形状の向きを変更すると、角度軸方向に向きを変更した分、ヒストグラムを水平移動する。ここでは、計測形状A700に一致するように、計測形状B701の向きを変更する場合を説明する。
計測形状B701から算出したヒストグラムを所定の向きの探索ステップ毎に左右に動かし、計測形状A701のヒストグラムと整合する角度703を探索する。ヒストグラムの一致度はバタチャリア距離など公知の方法で算出できる。一致度が所定の閾値より高い角度を向きの候補として出力する。なお、一般的な屋内形状では、前述したように、90度毎にヒストグラムのピークが現れ、角度の探索の結果、四つのヒストグラムが一致する状態704が得られ、向き修正後の状態705となる。
本処理は、壁の向きに着目するため、計測地点の位置に含まれる誤差は結果に影響しない。なお、ここでは鉛直軸に関する1次元の回転について述べたが、法線の3次元的な方向から3次元のヒストグラムを作成し、該ヒストグラムのマッチングを行えば、傾きに関する回転量も算出できる。
図8は、計測姿勢算出部110の構成例を示す図である。
計測姿勢算出部110は、計測姿勢算出部A801、計測姿勢算出部B802及び計測姿勢算出部C803を有し、複数の計測形状101、該計測形状の位置情報109及び形状事前統合部105が算出した姿勢を入力として、計測形状間の相対姿勢を算出する。なお、計測姿勢算出部110は、処理するデータの特性や用途に応じて、計測姿勢算出部A801、計測姿勢算出部B802及び計測姿勢算出部C803の少なくとも一つを有せばよい。
計測姿勢算出部A801は、姿勢情報が未算出である二つ以上の計測形状の間の相対姿勢800を算出する。計測姿勢算出部B802は、相対姿勢が算出済みの計測形状の組と、計測姿勢が未算出の二つ以上の計測形状との相対姿勢800を算出する。計測姿勢算出部C803は、相対姿勢が算出済みの計測形状の組によって構成される集合の2つ以上の間の相対姿勢を算出する。
前述した相対姿勢が算出済みの計測形状の組は、形状事前統合部105、計測姿勢算出部A801、計測姿勢算出部B802及び計測姿勢算出部C803のいずれかが相対姿勢を算出した計測形状の組である。図8において矢印でデータの流れを示すように、計測姿勢算出部B802には、形状事前統合部105、計測姿勢算出部A801及び計測姿勢算出部C803のいずれかから出力された姿勢算出結果が入力される。また、計測姿勢算出部C803は、形状事前統合部105、計測姿勢算出部A801及び計測姿勢算出部B802のいずれかから出力された姿勢算出結果が入力される。
次に、計測姿勢算出部A802、計測姿勢算出部B803、計測姿勢算出部C804が実行する処理の詳細を説明する。
図9は、計測姿勢算出部A802による処理の例を示す図である。
計測姿勢算出部は、計測位置算出部108が算出した位置情報109を姿勢(向き及び位置)の探索範囲の絞り込みに用い、計測形状間で共通して計測された部位が最も一致する姿勢を算出する。計測形状A900は計測地点A901で計測され、計測形状B902は計測地点B903で計測された場合、計測形状A900の正しい姿勢は、計測地点A901を中心とした所定の並進範囲904内かつ360度の回転範囲905内である。同様に、計測形状B902も、計測地点B903を中心とした所定の並進範囲906内かつ360度の回転範囲907内に正しい姿勢がある。この所定の並進範囲904、906は、位置設定部102による位置設定精度に応じて決定すればよい。さらに、計測向き候補算出部112が計測向き候補を算出している場合、探索時の拘束条件として算出された計測向き候補を追加するとよい。
探索は所定の長さ及び角度の探索ステップで行い、一致度の評価は形状間で共通して計測した共通計測部位908の一致の程度を指標とする。具体的には、ICPアルゴリズムのように、各計測点について相手の点群に含まれる近傍点までの距離の和を使用してもよい。前述したように、計測姿勢に関する探索範囲を所定領域内に限定することによって、計算量を抑制すると共に、共通して計測できている部位が少ない場合でもロバストに統合を実行できる。
本処理は、探索範囲内において解が一意に定まる計測形状に対して選択的に実行する。すなわち、計測姿勢算出部A802は、解が二つになる計測形状は相対姿勢800を算出できない。具体的には、全データに対して相対姿勢を算出して、一致度合いが一定以上であるデータを選択しても、相対姿勢の算出前にオペレータが対象とする計測形状を選択してもよい。なお、形状事前統合部105が既に測定形状を統合している場合は、計測姿勢算出部A802が姿勢を算出する必要はない。
図10は、計測姿勢算出部B803による処理の例を示す図である。
この処理は、他の計測形状との相対姿勢を計算していない計測形状について、相対姿勢を計算済みの計測形状の組からの相対姿勢を算出する。相対姿勢を計算済みの計測形状の組は、形状事前統合部105、計測姿勢算出部A802、計測姿勢算出部C804のいずれから得られたものでもよい。
この処理は、姿勢が算出されていない一つの計測形状の位置及び向きのみを算出すればよいため、計測姿勢算出部A802より更に探索範囲が小さくなる。このため、より少ない計算量で、かつロバストに計測形状の位置及び向きを算出できる。探索範囲は、計測形状C1000について、計測位置算出部108が算出した計測位置を中心とした所定の並進範囲1001内及び360度の回転範囲1002である。統合の相手となる計測形状900、計測形状902は既に姿勢を算出済みであるため、探索を行う必要はなく、計測形状Cについてのみ探索を行えばよい。なお、計測向き候補算出部112が計測形状の向き候補を算出している場合、その候補によって探索範囲を更に限定できる。探索処理は、計測姿勢算出部A802と同様に所定の探索ステップで探索範囲内を走査し、計測形状間で共通して計測されている共通部位1003の一致度が最も高い姿勢を解とする。
図11は、計測姿勢算出部C804による処理の例を示す図である。
この処理は、形状事前統合部105及び計測姿勢算出部A802、計測姿勢算出部B803が相対的な姿勢を算出済みの計測形状に適用される。この処理では、相対姿勢が算出済みの計測形状の組で構成される集合間の相対姿勢を算出する。各集合内の計測形状間の相対姿勢は高精度に算出されているが、位置設定部102が図面上に設定した位置には誤差があるため、その位置を基準に統一の座標系に変換すると、変換後の位置は誤差を含む。そこで、計測姿勢算出部C804が、その誤差を補正する。
この処理は、位置設定部102が大まかな位置を設定し、形状事前統合部105が向きを算出するため、設定された位置及び算出された向きを中心とした所定範囲内に探索範囲を限定して、正しい姿勢を算出する。位置の所定範囲は、位置設定部102の設定誤差に応じて決定すればよい。向きの所定範囲は、オペレータが設定すればよく、算出されている精度が高いため5度程度の探索範囲でよい。
計測向き候補算出部112が計測形状の向き候補を算出している場合、その候補によって探索範囲を更に限定できる。図11に示す例では、形状事前統合部105が、計測形状1100と計測形状1101と相対姿勢を算出しており、さらに計測形状1102と計測形状1103との相対姿勢を算出している。ここで、計測位置算出部108が算出した計測形状1102の位置を中心に所定の並進探索範囲1104内及び向き探索範囲1105内を探索して、計測形状1101と計測形状1102との共通計測部位1106を一致させることによって、形状を統合する。
この処理は、向きの探索範囲が限定されているため、計測姿勢算出部A802及び計測姿勢算出部B803より、さらに少ない計算量で、かつロバストに計測形状の位置及び向きを算出できる。探索処理は、計測姿勢算出部A802及び計測姿勢算出部B803と同様に、所定の探索ステップで探索範囲内を走査し、計測形状間で共通して計測されている共通計測部位1106の一致度が最も高い姿勢を解とする。
計測姿勢算出部110が各計測形状間の相対姿勢を計算し、計算された相対姿勢と矛盾しないように一つの座標系に姿勢を変換することによって、形状を統合できる。相対姿勢と矛盾しないような各計測形状の姿勢を算出するためには、GraphSLAMなどの公知の計算方法を用いればよい。
図12は、計測形状間の高さを調整する高さ調整部1209による処理を示す図である。
この処理は、計測姿勢算出部110が姿勢を算出した後に実行され、各姿勢の値を調整する。ここでは計測形状A1200の高さと計測形状B1201の高さとを合わせる処理を述べる。
まず、水平面認識部1203が、各計測形状1200、1201から天井面、床面などの水平面を抽出し。水平面情報A1204及び水平面情報B1205を得る。例えば、計測点で構成される面の法線を求め、法線方向が鉛直(又は、鉛直から所定の角度以下)でる場合、その点で構成される面を水平面と推定することによって、水平面を抽出できる。
さらに、計測姿勢算出部110が算出した計測姿勢A1206及び計測姿勢B1207を用いて。該水平面を実空間の座標系に変換する。ここでは、高さ以外の形状が統合されているため、形状が最も一致する高さ方向の調整量を探索すればよい。
共通面抽出部1208は、形状の一致度を算出するために、同じ床や天井を計測している領域を抽出する。抽出処理は、計測姿勢算出部110によって高さ以外の統合は完了しているため、計算された相対姿勢で変換後の形状の水平面情報を重ね合わせ、両方の計測形状で同じ位置に重なり合う部位を共通領域とし、該共通領域に含まれる面を共通面として抽出する。
共通面の抽出後、高さ調整部1209が、共通面を高さ方向に調整し、最も形状が重なり合う高さを求める。そして、求めた高さを用いて計測形状の姿勢を補正し、補正済み計測姿勢A1210及び補正済み計測姿勢B1211とする。
なお、3以上計測形状の高さを調整する場合、この処理によって各計測形状間の相対的な高さを求めた上で、高さが求められている計測形状中の地点の高さを基準として、GraphSLAMを用いて、相対的な高さの関係から統一の座標系における高さを計算すればよい。
以上に説明したように、本発明の実施例の形状計測システムは、
計測部100が周囲の存在物の形状を計測した計測地点を図面上に記録して図面位置情報104を生成する位置設定部102と、計測形状101を受信し、計測形状間の相対姿勢を算出して、当該計測形状を統合する形状事前統合部105と、前記地点の位置109を算出する計測位置算出部108と、計測位置算出部108が算出した位置を用いて限定した範囲を探索して、計測形状間で共通する部位の形状の一致度に基づいて、計測形状の姿勢を算出する計測姿勢算出部110とを備えるので、複数地点で計測した形状を、計算量を抑えつつロバストに統合できる。
また、相対姿勢から得られる計測地点間の実距離と、位置設定部102が図面上に記録した計測地点間の距離との比率から、図面のスケール107を決定するスケール算出部106を備え、計測位置算出部108は、図面位置情報104及び図面のスケール107から、正しいスケールの計測地点の位置109を算出するので、スケールが未知の図面上でも形状を統合できる。
また、計測姿勢算出部110は、計測位置算出部108が算出した計測地点の位置109によって限定した範囲を探索して、計測形状間で共通する部位の形状の一致度に基づいて、当該計測形状間の相対姿勢を算出する計測姿勢算出部A802を有するので、探索範囲を限定して、よりロバストに形状を統合できる。
また、計測姿勢算出部110は、計測姿勢算出部A802が算出した計測形状間の相対姿勢によって限定した範囲を探索して、当該相対姿勢が算出済みの計測形状の組と他の計測形状との間で共通する部位の形状の一致度に基づいて、当該計測形状間の相対姿勢を算出する計測姿勢算出部B803を有するので、探索範囲を限定して、よりロバストに形状を統合できる。
また、計測姿勢算出部110は、計測位置算出部108が算出した計測地点の位置及び形状事前統合部105が算出した相対姿勢によって限定した範囲を探索して、相対姿勢が算出済みの計測形状の組について、当該計測形状間で共通する部位の形状の一致度に基づいて、当該計測形状の組の間の相対姿勢を算出する計測姿勢算出部C804を有するので、探索範囲を限定して、よりロバストに形状を統合できる。
また、計測形状間で共通して計測されている水平面を用いて、当該計測形状間の相対的な高さを調整する高さ調整部1209を備えるので、測定形状を垂直方向にも統合できる。
また、計測形状に含まれる平面の向きのヒストグラムを求め、前記ヒストグラムのマッチングによって、当該計測形状間の相対的な向きの候補を算出する計測向き候補算出部112を備え、計測姿勢算出部110は、計測向き候補算出部112が算出した向きの候補によって限定した範囲を探索して、前記計測形状の姿勢を算出するので、探索範囲を限定して、よりロバストに形状を統合できる。
なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。
また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。
各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。
100・・・計測部、101・・・計測形状、102・・・位置設定部、103・・・図面、104・・・図面位置情報、105・・・形状事前統合部、106・・・スケール算出部、107・・・スケール、108・・・計測位置算出部、109・・・位置情報、110・・・計測姿勢算出部、111・・・統合後形状、112・・・計測向き候補算出部、200・・・存在物、201・・・各照射方向、202・・・点群、300・・・画面、301・・・ポインタ、302・・・指示位置、303・・・計測位置、400・・・図面、401・・・設定位置、402・・・形状の組、403・・・計測形状、404・・・計測形状、405・・・変換量、500・・・図面上の2点間の長さ、501・・・計測形状、502・・・計測形状、503・・・地点間の距離、700・・・計測形状A、701・・・計測形状B、702・・・ヒストグラム、703・・・ヒストグラムのマッチする角度、704・・・ヒストグラムの一致する状態、705・・・向き修正後の状態、800・・・相対姿勢情報、801・・・相対姿勢情報、802・・・計測姿勢算出部A、803・・・計測姿勢算出部B、804・・・計測姿勢算出部C、900・・・計測形状A、901・・・計測位置A、902・・・計測形状B、903・・・計測位置B、904・・・範囲、905・・・回転範囲、906・・・並進範囲、907・・・回転範囲、908・・・共通計測部位、1000・・・計測形状C、1001・・・並進範囲、1002・・・回転範囲、1003・・・共通部位、1100・・・計測形状、1101・・・計測形状、1102・・・計測形状、1103・・・計測形状、1104・・・並進探索範囲、1105・・・向き探索範囲、1106・・・通計測部位、1200・・・計測形状A、1201・・・計測形状B、1203・・・水平面認識部、1204・・・水平面情報A、1205・・・水平面情報B、1206・・・計測姿勢A、1207・・・計測姿勢B、1208・・・共通面抽出部、1209・・・高さ調整部、1210・・・補正済み計測姿勢A、1211・・・補正済み計測姿勢B

Claims (12)

  1. 計測部が周囲の存在物の形状を計測した計測地点を図面上に記録して図面位置情報を生成する位置設定部と、
    計測形状を受信し、前記計測形状間の相対姿勢を算出して、当該計測形状を統合する形状事前統合部と、
    前記計測地点の位置を算出する計測位置算出部と、
    前記計測位置算出部が算出した位置を用いて限定した範囲を探索して、前記計測形状間で共通する部位の形状の一致度に基づいて、前記計測形状の姿勢を算出する計測姿勢算出部と、を備える形状計測システム。
  2. 請求項1に記載の形状計測システムであって、
    前記相対姿勢から得られる計測地点間の実距離と、前記位置設定部が図面上に記録した計測地点間の距離との比率から、前記図面のスケールを決定するスケール算出部を備え、
    前記計測位置算出部は、前記図面位置情報及び前記図面のスケールから、正しいスケールの計測地点の位置を算出する形状計測システム。
  3. 請求項1に記載の形状計測システムであって、
    前記計測姿勢算出部は、
    前記計測位置算出部が算出した計測地点の位置によって限定した範囲を探索して、前記計測形状間で共通する部位の形状の一致度に基づいて、当該計測形状間の相対姿勢を算出する第1計測姿勢算出部と、
    前記第1計測姿勢算出部が算出した計測形状間の相対姿勢によって限定した範囲を探索して、当該相対姿勢が算出済みの計測形状の組と他の計測形状との間で共通する部位の形状の一致度に基づいて、当該計測形状間の相対姿勢を算出する第2計測姿勢算出部と、を有する形状計測システム。
  4. 請求項1から3のいずれか一つに記載の形状計測システムであって、
    前記計測姿勢算出部は、前記計測位置算出部が算出した計測地点の位置及び前記形状事前統合部が算出した相対姿勢によって限定した範囲を探索して、相対姿勢が算出済みの計測形状の組について、当該計測形状間で共通する部位の形状の一致度に基づいて、当該計測形状の組の間の相対姿勢を算出する第3計測姿勢算出部を有する形状計測システム。
  5. 請求項1から3のいずれか一つに記載の形状計測システムであって、
    前記計測形状間で共通して計測されている水平面を用いて、当該計測形状間の相対的な高さを調整する高さ調整部を備える形状計測システム。
  6. 請求項1から3のいずれか一つに記載の形状計測システムであって、
    計測形状に含まれる平面の向きのヒストグラムを求め、前記ヒストグラムのマッチングによって、当該計測形状間の相対的な向きの候補を算出する計測向き候補算出部を備え、
    前記計測姿勢算出部は、前記計測向き候補算出部が算出した向きの候補によって限定した範囲を探索して、前記計測形状の姿勢を算出する形状計測システム。
  7. 計測部が周囲の存在物を計測した計測形状を計算機を用いて処理する形状計測方法であって、
    前記計算機は、プログラムを実行するプロセッサと、前記プログラムを格納する記憶装置とを有し、
    前記形状計測方法は、
    前記プロセッサが、前記計測部が周囲の存在物の形状を計測した計測地点を図面上に記録して図面位置情報を生成する位置設定手順と、
    前記プロセッサが、計測形状を受信し、前記計測形状間の相対姿勢を算出して、当該計測形状を統合する形状事前統合手順と、
    前記プロセッサが、前記計測地点の位置を算出する計測位置算出手順と、
    前記プロセッサが、前記計測位置算出手順で算出された位置を用いて限定した範囲を探索して、前記計測形状間で共通する部位の形状の一致度に基づいて、前記計測形状の姿勢を算出する計測姿勢算出手順と、を含む形状計測方法。
  8. 請求項7に記載の形状計測方法であって、
    前記相対姿勢から得られる計測地点間の実距離と、前記位置設定手順で図面上に記録された計測地点の間の距離との比率から、前記図面のスケールを決定するスケール算出手順を含み、
    前記計測位置算出手順では、前記図面位置情報及び前記図面のスケールから、正しいスケールの計測地点の位置を算出する形状計測方法。
  9. 請求項7に記載の形状計測方法であって、
    前記計測姿勢算出手順では、
    前記プロセッサが、前記計測位置算出手順で算出された計測地点の位置によって限定した範囲を探索して、前記計測形状間で共通する部位の形状の一致度に基づいて、当該計測形状間の相対姿勢を算出する第1計測姿勢算出手順と、
    前記プロセッサが、前記第1計測姿勢算出手順で算出された計測形状間の相対姿勢によって限定した範囲を探索して、当該相対姿勢が算出済みの計測形状の組と他の計測形状との間で共通する部位の形状の一致度に基づいて、当該計測形状間の相対姿勢を算出する第2計測姿勢算出手順と、を含む形状計測方法。
  10. 請求項7から9のいずれか一つに記載の形状計測方法であって、
    前記計測姿勢算出手順は、前記プロセッサが、前記計測位置算出手順で算出した計測地点の位置によって限定した範囲を探索して、相対姿勢が算出済みの計測形状の組について、当該計測形状間で共通する部位の形状の一致度に基づいて、当該計測形状の組の間の相対姿勢を算出する第3計測姿勢算出手順を含む形状計測方法。
  11. 請求項7から9のいずれか一つに記載の形状計測方法であって、
    前記プロセッサが、前記計測形状間で共通して計測されている水平面を用いて、当該計測形状間の相対的な高さを調整する高さ調整手順を含む形状計測方法。
  12. 請求項7から9のいずれか一つに記載の形状計測方法であって、
    前記プロセッサが、計測形状に含まれる平面の向きのヒストグラムを求め、前記ヒストグラムのマッチングによって、当該計測形状間の相対的な向きの候補を算出する計測向き候補算出手順を含み、
    前記計測姿勢算出手順では、前記プロセッサが、前記計測向き候補算出手順で算出した向きの候補によって限定した範囲を探索して、前記計測形状の姿勢を算出する形状計測方法。
JP2016027317A 2016-02-16 2016-02-16 形状計測システム及び形状計測方法 Expired - Fee Related JP6486845B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016027317A JP6486845B2 (ja) 2016-02-16 2016-02-16 形状計測システム及び形状計測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016027317A JP6486845B2 (ja) 2016-02-16 2016-02-16 形状計測システム及び形状計測方法

Publications (2)

Publication Number Publication Date
JP2017146170A true JP2017146170A (ja) 2017-08-24
JP6486845B2 JP6486845B2 (ja) 2019-03-20

Family

ID=59681382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016027317A Expired - Fee Related JP6486845B2 (ja) 2016-02-16 2016-02-16 形状計測システム及び形状計測方法

Country Status (1)

Country Link
JP (1) JP6486845B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074453A (ja) * 1999-09-06 2001-03-23 Asahi Optical Co Ltd 写真測量用画像処理装置、写真測量用画像処理方法および写真測量用画像処理プログラムを格納した記憶媒体
WO2014033823A1 (ja) * 2012-08-28 2014-03-06 株式会社日立製作所 計測システム、計測方法
JPWO2012141235A1 (ja) * 2011-04-13 2014-07-28 株式会社トプコン 三次元点群位置データ処理装置、三次元点群位置データ処理システム、三次元点群位置データ処理方法およびプログラム
US20140225988A1 (en) * 2011-09-07 2014-08-14 Commonwealth Scientific And Industrial Research Organisation System and method for three-dimensional surface imaging
JP2015206654A (ja) * 2014-04-18 2015-11-19 キヤノン株式会社 情報処理装置、情報処理方法、プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074453A (ja) * 1999-09-06 2001-03-23 Asahi Optical Co Ltd 写真測量用画像処理装置、写真測量用画像処理方法および写真測量用画像処理プログラムを格納した記憶媒体
JPWO2012141235A1 (ja) * 2011-04-13 2014-07-28 株式会社トプコン 三次元点群位置データ処理装置、三次元点群位置データ処理システム、三次元点群位置データ処理方法およびプログラム
US20140225988A1 (en) * 2011-09-07 2014-08-14 Commonwealth Scientific And Industrial Research Organisation System and method for three-dimensional surface imaging
WO2014033823A1 (ja) * 2012-08-28 2014-03-06 株式会社日立製作所 計測システム、計測方法
JP2015206654A (ja) * 2014-04-18 2015-11-19 キヤノン株式会社 情報処理装置、情報処理方法、プログラム

Also Published As

Publication number Publication date
JP6486845B2 (ja) 2019-03-20

Similar Documents

Publication Publication Date Title
JP6830139B2 (ja) 3次元データの生成方法、3次元データの生成装置、コンピュータ機器及びコンピュータ読み取り可能な記憶媒体
US11049267B2 (en) Apparatus, method, and system for alignment of 3D datasets
US11195296B2 (en) Information processing apparatus, method of processing distance information, and recording medium recording distance information processing program
US7098909B2 (en) Automatic generating device for 3-d structure shape, automatic generating method, program therefor, and recording medium recording the program
US9633281B2 (en) Point cloud matching method
JP6030549B2 (ja) 三次元点群位置データ処理装置、三次元点群位置データ処理システム、三次元点群位置データ処理方法およびプログラム
JP5593177B2 (ja) 点群位置データ処理装置、点群位置データ処理方法、点群位置データ処理システム、および点群位置データ処理プログラム
US20160117795A1 (en) Point cloud data processing system and method thereof and computer readable storage medium
JP5830004B2 (ja) 3次元モデル生成装置、3次元モデル生成方法及び3次元モデル生成プログラム
JP2010511212A5 (ja)
JP2016091457A (ja) 入力装置、指先位置検出方法及び指先位置検出用コンピュータプログラム
KR101918168B1 (ko) 3차원 계측 방법 및 그 장치
US20230260216A1 (en) Point cloud annotation device, method, and program
US11288834B2 (en) Determining the relative position between a point cloud generating camera and another camera
JP2017009378A (ja) 点群データ処理装置、点群データ処理方法、プログラム、および記録媒体
CN111325723A (zh) 一种孔位检测方法、装置及设备
JP2017166933A (ja) 情報処理装置及び情報合成プログラム
JP2018055199A (ja) 画像処理プログラム、画像処理装置、及び画像処理方法
US10146331B2 (en) Information processing system for transforming coordinates of a position designated by a pointer in a virtual image to world coordinates, information processing apparatus, and method of transforming coordinates
KR101714701B1 (ko) 점군 정합 장치
JP6486845B2 (ja) 形状計測システム及び形状計測方法
JP7024405B2 (ja) 情報処理装置、プログラム及び情報処理方法
EP3042609A1 (en) Three-dimensional shape measuring device, three-dimensional shape measuring method, and program
JP7020418B2 (ja) 情報処理装置、情報処理方法、およびプログラム
US11906294B2 (en) Alignment apparatus, alignment system, alignment method, and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190220

R150 Certificate of patent or registration of utility model

Ref document number: 6486845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees