JP2017145314A - Afterglow luminophor and authenticity discriminating method of printed matter using afterglow luminophor - Google Patents

Afterglow luminophor and authenticity discriminating method of printed matter using afterglow luminophor Download PDF

Info

Publication number
JP2017145314A
JP2017145314A JP2016027588A JP2016027588A JP2017145314A JP 2017145314 A JP2017145314 A JP 2017145314A JP 2016027588 A JP2016027588 A JP 2016027588A JP 2016027588 A JP2016027588 A JP 2016027588A JP 2017145314 A JP2017145314 A JP 2017145314A
Authority
JP
Japan
Prior art keywords
phosphorescence
wavelength
detection
afterglow
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016027588A
Other languages
Japanese (ja)
Other versions
JP6562401B2 (en
Inventor
直子 藤澤
Naoko Fujisawa
直子 藤澤
英司 河村
Eiji Kawamura
英司 河村
臣一 藤村
Shinichi Fujimura
臣一 藤村
忠憲 鈴木
Tadanori Suzuki
忠憲 鈴木
工藤 豊
Yutaka Kudo
豊 工藤
智寿 小川
Tomohisa Ogawa
智寿 小川
史朗 大澤
Shiro Osawa
史朗 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Printing Bureau
Original Assignee
National Printing Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Printing Bureau filed Critical National Printing Bureau
Priority to JP2016027588A priority Critical patent/JP6562401B2/en
Publication of JP2017145314A publication Critical patent/JP2017145314A/en
Application granted granted Critical
Publication of JP6562401B2 publication Critical patent/JP6562401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an afterglow luminophor inhibiting imitation of light-emission characteristics due to mixture of phosphor and fluophor (without phosphorescence) as a plurality of phosphorescence peaks exits in wavelength region different from fluophor peaks.SOLUTION: There is provided an afterglow luminophor represented by the following chemical formula, where M is absence or Ca and α, β and γ are in following ranges, having a plurality of phosphorescence peaks in a wavelength region different from fluophor peaks. (Ba M)MgSiO;EuTbMn, 0.025≤α≤0.05, 0.05≤β≤0.2, 0.005≤γ≤0.05.SELECTED DRAWING: Figure 1

Description

本発明は、真偽判別に適した残光性発光体、これを使用した印刷物及びこの特性を利用した真偽判別方法に関するものである。   The present invention relates to an afterglow illuminant suitable for authenticity determination, a printed matter using the same, and a method for determining authenticity using this characteristic.

有価証券類のようにセキュリティが必要とされる印刷物には、偽造や改ざんを防止したり真偽判別や改ざん痕を見分けたりするために、偽造防止及び真偽判別要素の付与が不可欠となっている。   For printed matter that requires security, such as securities, forgery prevention and tampering and the identification of tampering and tampering identification are indispensable and it is essential to add anti-counterfeiting elements. Yes.

有価証券類の偽造防止や真偽判別要素の一つとして、蛍光、りん光等の特定の発光体を一部又は全面に付与することが有効な手段の一つとして提案されている。   As one of effective means for preventing the counterfeiting of securities and for determining the authenticity, it is proposed that a specific light emitter such as fluorescent light or phosphorescent light is applied to a part or the entire surface.

また、有価証券類の中には、切手等の例のようにそれ自身の有無や貼付位置、種類の判別、識別等の目的で発光検知を利用しているものがある。   Some securities, such as stamps, use light emission detection for the purpose of identification, identification, identification, etc.

これらの発光インキ組成物が付与されたセキュリティ印刷物の真偽判別方法としては、印刷物に対し発光材料を励起できるエネルギーを含む光等の電磁波、放射線の照射、電界印加あるいは化学反応による発光素子の発光現象及び/又はりん光体においては、励起エネルギーの印加停止後減衰しながら放出していく残光現象を、センサで検知する方法が一般に用いられている。   The authenticity determination method for security printed matter to which these luminescent ink compositions are applied includes the light emission of the light emitting element by irradiation of electromagnetic waves such as light containing energy capable of exciting the luminescent material, radiation, electric field application or chemical reaction. In a phenomenon and / or a phosphor, a method is generally used in which a sensor detects an afterglow phenomenon that is emitted while decaying after the application of excitation energy is stopped.

発光体の中でも可視発光体は、ブラックライト等の簡易的な道具を励起源として使用して人の目で発光を認証する方法及び発光体の励起と発光の検知を機械的に行い、発光強度や残光時間を判別要素とする認証方法をとることができる。   Among the illuminants, the visible illuminant uses a simple tool such as black light as an excitation source to authenticate the luminescence with the human eye and mechanically performs the excitation and detection of the illuminant. And an authentication method using the afterglow time as a discrimination factor.

近年、蛍光体、蛍光インキ等が比較的容易に入手できる状況にあることから、セキュリティ印刷物のようにより高度な検知及び判別が必要とされる用途には、容易に入手できる発光体とは異なる特徴の発光特性を持つ発光体の使用が必要となってきている。このように特徴的な発光特性を持つ発光体としては、電磁波等、照射する励起波長に応じて発光色が変化する発光体、観測波長により発光強度が極端に異なる分布を持つ発光体等が一例として挙げられる。また、蛍光発光のみならずりん光を有し、かつ、りん光においても特徴的な特性を有する発光体がより有効である。   In recent years, since phosphors, fluorescent inks, etc. are relatively easily available, features that differ from readily available phosphors for applications that require more advanced detection and discrimination, such as security prints. Therefore, it is necessary to use a luminescent material having the above luminescent characteristics. Examples of such illuminants having characteristic luminescence characteristics include illuminants whose emission color changes according to the excitation wavelength to be irradiated, such as electromagnetic waves, and illuminants having a distribution whose emission intensity varies greatly depending on the observation wavelength. As mentioned. In addition, a phosphor having phosphorescence as well as fluorescence and having characteristic characteristics in phosphorescence is more effective.

上記特性を持つ発光体の例として、本出願人は、化学式(MBaa−xEu)(a+k)O・(Mgb−yMn)bO・c(SiO)で示され、式中、Mはアルカリ土類金属のCa(カルシウム),Sr(ストロンチウム),Ba(バリウム)であり、励起光照射時における蛍光の発光色と、励起光停止後におけるりん光の発光色が異なり、励起光停止後における残光時間が、2msから5sであることを特徴とする残光性発光体とその製造方法及び発光印刷物を提示している(特許文献1及び特許文献2参照)。 Examples of emitters having the above characteristics, the present applicant has the chemical formula (M k Ba a-x Eu x) (a + k) O · (Mg b-y Mn y) bO · c (SiO 2) shows Where M is the alkaline earth metal Ca (calcium), Sr (strontium), Ba (barium), and the fluorescence emission color upon excitation light irradiation and the phosphorescence emission color after excitation light stop. , And an afterglow illuminant characterized in that the afterglow time after the excitation light is stopped is 2 ms to 5 s, a method for producing the afterglow illuminant, and a luminescent printed material (see Patent Document 1 and Patent Document 2). .

また、本出願人は、化学式:Mx−yMg1-zSi5+x+y;CeMn(式中のMはCa、Sr及びBaから成る群から選ばれる1種以上、xは1≦x≦3の範囲であり、yは0.01≦y≦1.0の範囲であり、zは、0.01≦z≦1.0の範囲である。)で表される残光性発光体であって、残光性発光体は、230nmから380nmまでの励起光照射時における発光スペクトルが、400nmから430nmまでの波長域に第一のピーク波長と、620nmから695nmまでの波長域に第二のピーク波長を有し、かつ、第一のピーク波長と第二のピーク波長間に発光がない所定の波長域が存在し、励起光停止後におけるりん光のスペクトルは、620nmから700nmまでの波長域に第二のピーク波長と異なる発光波長を有し、残光の励起光停止後における残光時間が、2msから1sまでであることを特徴とする残光性発光体とその製造方法及び発光印刷物を提示している(特許文献3参照)。 The present applicant has the formula: M x-y Mg 1- z Si 2 O 5 + x + y; Ce y Mn z ( where M in the formula one or more selected from the group consisting of Ca, Sr and Ba, x is 1 ≦ x ≦ 3, y is in the range of 0.01 ≦ y ≦ 1.0, and z is in the range of 0.01 ≦ z ≦ 1.0.) The afterglow illuminant has an emission spectrum at the time of excitation light irradiation from 230 nm to 380 nm, a first peak wavelength in a wavelength range from 400 nm to 430 nm, and a wavelength range from 620 nm to 695 nm. There is a predetermined wavelength region having the second peak wavelength and no light emission between the first peak wavelength and the second peak wavelength, and the phosphorescence spectrum after stopping the excitation light is from 620 nm to 700 nm. Different from the second peak wavelength in the wavelength range An afterglow illuminant having an optical wavelength and having an afterglow time of 2 ms to 1 s after the afterglow of excitation light is stopped, its manufacturing method, and luminescent printed matter are presented (Patent Document) 3).

また、本出願人は、化学式:p(SrO)・q(BaO)・r(MgO)・m(Al):Eu,Mnで表される複合機能発光体及び化学式:p(BaO)・q(MgO)・r(Al):Eu,Mn及び/又はNdで表される残光性発光体とこれらを含有したインキを基材に固着して成ることを特徴とする発光印刷物を提示している(特許文献4及び特許文献5参照)。 The present applicant has the formula: p (SrO) · q ( BaO) · r (MgO) · m (Al 2 O 3): Eu x, multifunction emitters and chemical formula represented by Mn y: p ( BaO) · q (MgO) · r (Al 2 O 3): Eu x, be made by fixing the ink containing these and afterglow luminescent material represented by Mn y and / or Nd z to the substrate (See Patent Document 4 and Patent Document 5).

特許5610122号Japanese Patent No. 5610122 特許5799434号Patent 5799434 特開2013−185022号公報JP 2013-185022 A 特許5186687号Japanese Patent No. 5186687 特許5186686号Japanese Patent No. 5186686

特許文献1から特許文献5までの発光体は、蛍光の発光色と、励起光停止後におけるりん光の発光色が異なり、機械読み取り性と目視認証性が良好な発光特性を有しているが、蛍光スペクトルのピークのうちの一つがりん光のピークと同一であるため、りん光体と蛍光体(りん光なし)を混合して、同様の発光特性を模倣されるおそれがあった。   The light emitters of Patent Document 1 to Patent Document 5 are different in fluorescence emission color and phosphorescence emission color after the excitation light is stopped, and have light emission characteristics with good machine readability and visual authentication. Since one of the peaks of the fluorescence spectrum is the same as the phosphorescence peak, there is a possibility that the same emission characteristics may be imitated by mixing the phosphor and the phosphor (no phosphorescence).

本発明は、上記課題の解決を目的とするものであり、蛍光ピークと異なる波長領域に複数のりん光ピークが存在することによって、りん光体と蛍光体(りん光なし)の混合による発光特性の模倣を防止する残光性発光体を提供する。   The present invention has been made to solve the above-described problems, and has a plurality of phosphorescence peaks in a wavelength region different from the fluorescence peak, thereby providing emission characteristics by mixing phosphor and phosphor (no phosphorescence). An afterglow illuminator that prevents imitation of the light is provided.

本発明は、以下の化学式で表わされる蛍光体であって、化学式中のMは、存在しないか又はCaであり、α、β、γが以下の範囲にあり、蛍光ピークと異なる波長領域に複数のりん光ピークを有することを特徴とする残光性発光体である。
(Ba・M)3−α−βMg1−γSi;EuαTbβMnγ
0.025≦α≦0.05
0.05≦β≦0.2
0.005≦γ≦0.05
The present invention is a phosphor represented by the following chemical formula, wherein M in the chemical formula does not exist or is Ca, and α, β, and γ are in the following ranges, and there are a plurality in a wavelength region different from the fluorescence peak. It is an afterglow luminescent material characterized by having a phosphorescent peak.
(Ba · M) 3-α-β Mg 1-γ Si 2 O 8 ; Eu α Tb β Mn γ
0.025 ≦ α ≦ 0.05
0.05 ≦ β ≦ 0.2
0.005 ≦ γ ≦ 0.05

本発明は、MがCaである場合において、α=0.05、0.05≦β≦0.1、0.009≦γ<0.02であることを特徴とする残光性発光体である。   The present invention relates to an afterglow luminescent material, wherein M is Ca, α = 0.05, 0.05 ≦ β ≦ 0.1, 0.009 ≦ γ <0.02. is there.

本発明は、波長領域254nm又は波長領域365nmを中心とした波長の光を照射したときに、波長領域455(nm)に蛍光ピークを有し、波長領域500(nm)、波長領域553(nm)及び波長領域624(nm)にりん光ピークを有することを特徴とする残光性発光体である。   The present invention has a fluorescence peak in the wavelength region 455 (nm) when irradiated with light having a wavelength centered on the wavelength region 254 nm or the wavelength region 365 nm, and the wavelength region 500 (nm) and the wavelength region 553 (nm). And an afterglow luminescent material characterized by having a phosphorescence peak in the wavelength region 624 (nm).

本発明は、残光性発光体を含んで成る発光インキである。   The present invention is a luminescent ink comprising an afterglow luminescent material.

本発明は、基材上の少なくとも一部に、発光インキにより形成された印刷画像を有する真偽判別印刷物である。   The present invention is a true / false discrimination printed matter having a printed image formed of luminescent ink on at least a part of a substrate.

本発明は、真偽判別印刷物の真偽判別方法であって、真偽判別印刷物に対して第一の波長域と、第二の波長域の励起光を照射する工程と、第一の波長域の励起光を停止した後の第一のりん光特性と、第二の波長域の励起光を停止した後の第二のりん光特性の各々の第一の検出時間における第一の検出波長域から第四の検出波長域の各検出波長域における発光強度の値である第一のりん光強度から第四のりん光強度の各りん光強度を検出するりん光検出工程と、双方のりん光特性における第一の検出時間の各検出波長域の前記各りん光強度の相対比を計算する数値処理を行う演算工程と、演算工程により計算した相対比と、あらかじめ定めた基準値とを照合し、所定の基準値の範囲内である場合に真正と判断する判別工程から成ることを特徴とする真偽判別方法である。     The present invention is a true / false discrimination printed matter authenticity determination method, the step of irradiating the true / false discrimination printed matter with a first wavelength range, excitation light of a second wavelength range, and a first wavelength range The first detection wavelength range at the first detection time of each of the first phosphorescence characteristics after stopping the excitation light of the first and the second phosphorescence characteristics after stopping the excitation light of the second wavelength range A phosphorescence detection step for detecting each phosphorescence intensity from the first phosphorescence intensity to the fourth phosphorescence intensity, which is the value of the emission intensity in each detection wavelength area from the first to the fourth detection wavelength area, and both phosphorescences The calculation process for performing a numerical process for calculating the relative ratio of each phosphorescence intensity in each detection wavelength region in the first detection time in the characteristics, the relative ratio calculated in the calculation process, and a predetermined reference value are collated. Characterized in that it comprises a determination step of determining authenticity when it is within a predetermined reference value range. Is that authenticity discrimination method.

本発明は、さらに、りん光検出工程において、第一の波長域の励起光を停止した後の第一のりん光特性と、第二の波長域の励起光を停止した後の第二のりん光特性の各々の第二の検出時間における各検出波長域の各りん光強度を検出し、演算工程において、双方の前記りん光特性における第一の検出時間及び第二の検出時間の各検出波長域の各りん光強度の相対比を計算する数値処理を行うことを特徴とする真偽判別方法である。   In the phosphorescence detection step, the present invention further includes a first phosphorescence characteristic after stopping the excitation light in the first wavelength region and a second phosphorescence property after stopping the excitation light in the second wavelength region. Each phosphorescence intensity in each detection wavelength region at each second detection time of the light characteristics is detected, and in the calculation step, each detection wavelength of the first detection time and the second detection time in both the phosphorescence characteristics is detected. This is a true / false discrimination method characterized by performing numerical processing for calculating the relative ratio of each phosphorescence intensity in the region.

本発明は、真偽判別印刷物の真偽判別方法であって、真偽判別印刷物に対して第一の波長域と第二の波長域の少なくとも一方の励起光を照射する工程と、第一の波長域の励起光を停止した後の第一のりん光特性又は第二の波長域の励起光を停止した後の第二のりん光特性の、少なくとも一方のりん光特性の第一の検出時間及び第二の検出時間における第一の検出波長域から第四の検出波長域の各検出波長域における発光強度の値である第一のりん光強度から第四のりん光強度の各りん光強度を検出するりん光検出工程と、少なくとも一方のりん光特性における第一の検出時間と第二の検出時間の各りん光強度の値の相対比を計算する数値処理を行う演算工程と、演算工程により計算した相対比と、あらかじめ定めた基準値とを照合し、所定の基準値の範囲内である場合に真正と判断する判別工程から成ることを特徴とする真偽判別方法である。   The present invention is an authenticity determination method for authenticity determination printed matter, wherein the authenticity determination printed matter is irradiated with at least one excitation light in a first wavelength range and a second wavelength range, First detection time of at least one phosphorescence characteristic of the first phosphorescence characteristic after stopping the excitation light in the wavelength range or the second phosphorescence characteristic after stopping the excitation light in the second wavelength range The first phosphorescence intensity from the first phosphorescence intensity to the fourth phosphorescence intensity, which is the value of the emission intensity in each detection wavelength band from the first detection wavelength band to the fourth detection wavelength band in the second detection time. A phosphorescence detection step for detecting the light, an arithmetic step for performing a numerical process for calculating a relative ratio of the values of the respective phosphorescence intensities of the first detection time and the second detection time in at least one of the phosphorescence characteristics, and an arithmetic step The relative ratio calculated by the above and the reference value set in advance are collated. A authenticity discrimination method characterized by comprising a determination step of determining the authenticity if it is within the range of standard value.

本発明は、蛍光スペクトルからは予測できない波長域にりん光ピークが複数発現するため、公知の材料を混合しても、本発明と同様の特性のりん光ピークの模倣は困難である。   In the present invention, since a plurality of phosphorescent peaks appear in a wavelength region that cannot be predicted from the fluorescence spectrum, it is difficult to imitate a phosphorescent peak having the same characteristics as those of the present invention even when known materials are mixed.

また、本発明は、機械読み取りにおいて、励起波長を変えて残光特性を検出する、残光特性の検出時間(タイミング)を複数(T、T)とする等、残光特性に応じた柔軟なりん光検出を行うことが可能となり、より真偽判別精度が向上する。 Further, according to the present invention, in machine reading, the afterglow characteristic is detected by changing the excitation wavelength, and the afterglow characteristic detection time (timing) is set to plural (T 1 , T 2 ). It becomes possible to perform flexible fluorescent light detection, and the accuracy of authenticity determination is further improved.

本発明の一実施例における、残光性発光体の励起波長365nmのときの蛍光スペクトル及びりん光スペクトル。The fluorescence spectrum and phosphorescence spectrum at the time of the excitation wavelength of 365 nm of one afterglow light-emitting body in one Example of this invention. 本発明の一実施例における、残光性発光体の励起スペクトル。The excitation spectrum of the afterglow light-emitting body in one Example of this invention. 本発明の一実施例における残光性発光体の、特定の発光波長における発光強度の時間変化を示す図。The figure which shows the time change of the emitted light intensity in specific light emission wavelength of the afterglow light-emitting body in one Example of this invention. 本発明の一実施例における残光性発光体の、励起光消灯2ms後及び10ms後のりん光スペクトルを示す図。The figure which shows the phosphorescence spectrum of the afterglow light-emitting body in one Example of this invention 2 ms after excitation light extinction, and 10 ms after. 真偽判別方法の一例を示す工程図。Process drawing which shows an example of the authenticity discrimination method. 真偽判別方法の一例を示す工程図。Process drawing which shows an example of the authenticity discrimination method. 本発明の実施例1における残光性発光体の蛍光及びりん光スペクトル。The fluorescence and phosphorescence spectrum of the afterglow light-emitting body in Example 1 of this invention. 本発明の実施例1における残光性発光体のX線回折パターン。The X-ray-diffraction pattern of the afterglow light-emitting body in Example 1 of this invention. 本発明の実施例2における残光性発光体の蛍光及びりん光スペクトル。The fluorescence and phosphorescence spectrum of the afterglow light-emitting body in Example 2 of this invention. 本発明の実施例2における残光性発光体のX線回折パターン。The X-ray-diffraction pattern of the afterglow light-emitting body in Example 2 of this invention. 真偽判別印刷物の蛍光及びりん光スペクトル。Fluorescence and phosphorescence spectra of authenticity printed materials. 本発明の実施例1における真偽判別印刷物の発光スペクトルの時間変化を示す図。The figure which shows the time change of the emission spectrum of the authenticity discrimination | determination printed matter in Example 1 of this invention. 比較例1における比較印刷物の発光スペクトル。The emission spectrum of the comparative printed matter in Comparative Example 1. 比較例1における比較印刷物の、励起波長の違いによる発光スペクトルの違いを示す図。The figure which shows the difference in the emission spectrum by the difference in the excitation wavelength of the comparative printed matter in the comparative example 1. FIG. 比較例2における比較印刷物の発光スペクトル。The emission spectrum of the comparative printed material in Comparative Example 2.

本発明を実施するための形態について説明するが、本発明はこれに限定されるものではなく、特許請求の範囲記載における技術的思考の範囲であれば、その他の実施の形態も含まれる。   Although the form for implementing this invention is demonstrated, this invention is not limited to this, Other embodiments are also included if it is the range of the technical idea in description of a claim.

本発明の残光性発光体の組成及び製造する工程を説明する。   The composition of the afterglow light-emitting body of the present invention and the process for producing it will be described.

(残光性発光体の組成)
本発明は、化学式:(Ba・M)3−α−βMg1−γSi;EuαTbβMnγ(式中のMは無し又はCaであり、αは0.025≦α≦0.05の範囲であり、βは0.05≦β≦0.2の範囲であり、γは、0.005≦γ≦0.05の範囲である。) で表される残光性発光体である。
(Composition of afterglow phosphor)
The present invention has a chemical formula: (Ba · M) 3-α-β Mg 1-γ Si 2 O 8 ; Eu α Tb β Mn γ (wherein M is none or Ca, and α is 0.025 ≦ α ≦ 0.05, β is in the range of 0.05 ≦ β ≦ 0.2, and γ is in the range of 0.005 ≦ γ ≦ 0.05.) It is a luminous body.

付活剤であるEu(ユーロピウム)、Tb(テルビウム)とMn(マンガン)は、上記化学式において、α<0.025の場合は、付活剤量が少な過ぎるため発光が弱くなり、α>0.05の場合は、濃度消光のため発光が弱くなる。また、β<0.05の場合は、付活剤量が少な過ぎるため発光が弱くなり、β>0.2の場合は、濃度消光のため発光が弱くなる。γ>0.05の場合は、620nm範囲の発光強度が高くなりピークが現れ始める。γ<0.005の場合は、りん光強度が小さくなり視認しにくくなる。   In the above chemical formula, Eu (europium), Tb (terbium), and Mn (manganese), which are activators, when α <0.025, the amount of activator is so small that the light emission becomes weak, and α> 0 In the case of .05, light emission is weak due to concentration quenching. Further, when β <0.05, the amount of activator is too small, and thus the light emission is weak. When β> 0.2, the light emission is weak due to concentration quenching. When γ> 0.05, the emission intensity in the 620 nm range increases and a peak begins to appear. In the case of γ <0.005, the phosphorescence intensity becomes small and the visual recognition becomes difficult.

(残光性発光体の原料)
Mで表されるCa(カルシウム)、Ba(バリウム)の原料の一例としては、炭酸カルシウム(CaCO)、炭酸バリウム(BaCO)、酸化バリウム(BaO)等を使用することができる。
(Raw-emitting phosphor material)
As an example of a raw material for Ca (calcium) and Ba (barium) represented by M, calcium carbonate (CaCO 3 ), barium carbonate (BaCO 3 ), barium oxide (BaO), and the like can be used.

Mg(マグネシウム)の原料の一例としては、炭酸マグネシウム(MgCO)、酸化マグネシウム(MgO)等、nSiOについては、SiOをそのまま使用することができる。 As an example of the raw material of Mg (magnesium), SiO 2 can be used as it is for nSiO 2 such as magnesium carbonate (MgCO 3 ) and magnesium oxide (MgO).

付活剤であるEu(ユーロピウム)、Tb(テルビウム)とMn(マンガン)は、原料としては、酸化ユーロピウム(Eu)、酸化テルビウム(Tb)、二酸化マンガン(MnO)、炭酸マンガン(MnCO)等を使用することができる。 Eu (Europium), Tb (Terbium) and Mn (Manganese) which are activators include, as raw materials, Europium oxide (Eu 2 O 3 ), Terbium oxide (Tb 2 O 3 ), Manganese dioxide (MnO 2 ), Manganese carbonate (MnCO 3 ) or the like can be used.

次に、本発明の残光性発光体の製造工程について説明する。本発明の残光性発光体の製造工程は、原料を配合する配合工程と、配合された原料を混合する混合工程と、混合工程終了後に乾燥させた混合物を還元雰囲気下において焼成する焼成工程と、焼成工程後の混合物を洗浄した後に粉砕し、分級する後処理工程から成る。   Next, the manufacturing process of the afterglow light-emitting body of the present invention will be described. The afterglow luminous body manufacturing process of the present invention includes a blending process for blending raw materials, a mixing process for mixing blended raw materials, and a firing process for firing a mixture dried after the mixing process in a reducing atmosphere. And a post-treatment step in which the mixture after the firing step is washed and then pulverized and classified.

(配合工程)
配合工程は、残光性発光体の各原料を目的の化学組成が得られるよう正確に秤量し、全体が均一になるよう十分に混合する。この場合、溶媒等を使用して湿式混合を行うことができる。具体的には、化学式Ba、Ca、Mg及びSiOを含む母体材料と、Eu、Tb及びMnである付活剤の各原料を配合する。なお、本発明の残光性発光体の製造に際して、発光中心となる金属及び母体材料となる化合物の原料は、高温焼成を行った後に酸化物と成り得る材料であればよく、炭酸塩、水酸化物、酸化物等を使用することができる。
(Mixing process)
In the blending step, each raw material of the afterglow phosphor is accurately weighed so as to obtain a target chemical composition, and sufficiently mixed so that the whole becomes uniform. In this case, wet mixing can be performed using a solvent or the like. Specifically, a base material containing chemical formulas Ba, Ca, Mg and SiO 2 and raw materials for activators which are Eu, Tb and Mn are blended. In the production of the afterglow luminescent material of the present invention, the raw material of the metal serving as the luminescent center and the compound serving as the host material may be any material that can be converted into an oxide after high-temperature firing. Oxides, oxides, and the like can be used.

(混合工程)
混合工程は、配合工程終了後の原材料を比較的沸点が低いエタノ−ル、メタノ−ル等のアルコ−ルを加えて攪拌混合する。なお、比較的沸点が低いエタノ−ル、メタノ−ル等のアルコール類を使用するのは、混合後は速やかに溶剤を揮発させるためである。
(Mixing process)
In the mixing step, the raw materials after the blending step are stirred and mixed with an alcohol such as ethanol or methanol having a relatively low boiling point. The reason why alcohols such as ethanol and methanol having a relatively low boiling point are used is to volatilize the solvent quickly after mixing.

(焼成工程)
焼成工程は、混合工程終了後に乾燥させた混合物を還元雰囲気下において焼成温度1200℃〜1450℃で、0.5時間〜5時間焼成する。具体的には、原料混合物をアルミナ坩堝等の耐熱容器に入れ、水素ガスを含む窒素ガス、アルゴンガス等の還元雰囲気中、1250℃〜1450℃の高温で0.5時間以上、好ましくは1時間以上の焼成で作製することができる。特に、原材料の溶融温度未満の高温で焼成したときに蛍光及びりん光両者の発光強度が高い残光性発光体が得られる。また、上記残光性発光体を焼成する際、粒子成長をコントロールする目的でフッ素やホウ素を含む化合物を加えてもよく、本発明の発光輝度の向上等に関する効果又は発光印刷物の作製の妨げにならない範囲内で使用することができる。この場合、焼成温度を粒子成長剤の特性に応じて調整することができる。
(Baking process)
In the firing step, the mixture dried after the mixing step is fired in a reducing atmosphere at a firing temperature of 1200 ° C. to 1450 ° C. for 0.5 to 5 hours. Specifically, the raw material mixture is put in a heat-resistant container such as an alumina crucible, and is reduced in a reducing atmosphere such as nitrogen gas containing hydrogen gas or argon gas at a high temperature of 1250 ° C. to 1450 ° C. for 0.5 hour or more, preferably 1 hour. It can produce by the above baking. In particular, an afterglow luminescent material having high emission intensity of both fluorescence and phosphorescence is obtained when baked at a high temperature lower than the melting temperature of the raw material. In addition, when firing the afterglow phosphor, a compound containing fluorine or boron may be added for the purpose of controlling particle growth, which may be effective for improving the luminance of the present invention or preventing the production of a luminescent printed material. It can be used within the range not to be. In this case, the firing temperature can be adjusted according to the characteristics of the particle growth agent.

なお、還元雰囲気中で焼成する前に、自然酸化雰囲気中600℃〜1200℃で0.5時間以上焼成する工程を含んでもよいが、この工程を行わなくても本発明の残光性発光体を作製することができる。   In addition, before baking in a reducing atmosphere, a step of baking at 600 ° C. to 1200 ° C. for 0.5 hours or more in a natural oxidation atmosphere may be included. Can be produced.

(後処理工程)
後処理工程は、作製した残光性発光体を、用途に応じて公知の方法で洗浄、粉砕、分級を行う。印刷インキとして印刷によって基材に付与する場合、残光性発光体は平均粒子径20μm以下とすることが望ましい。ただし、無機発光体の粉砕は発光強度を低下させるので、印刷方式によって粒子径を調整し細かくなり過ぎないよう注意する必要がある。
(Post-processing process)
In the post-treatment step, the produced afterglow phosphor is washed, pulverized, and classified by a known method according to the use. When applying to a base material by printing as printing ink, it is desirable that the afterglow illuminant has an average particle diameter of 20 μm or less. However, since the pulverization of the inorganic luminescent material decreases the luminescence intensity, it is necessary to adjust the particle size according to the printing method so that it does not become too fine.

図1は、本発明の一実施例における残光性発光体の、励起波長365nmのときの蛍光スペクトル、励起波長365nm及び254nmにおける、励起光消灯2ms後のりん光スペクトルを示す図である。図1に示すように、本発明の残光性発光体は、蛍光スペクトルにおいて、458nmにピークを持つ単一ピークのブロードなスペクトル形状を示している。励起波長365nmでのりん光スペクトルにおいては、500nm、552nm及び622nmにピークを持つ三つのピークを有するスペクトル形状を示しており、励起波長254nmでのりん光スペクトルにおいては、501nm、553nm及び624nmにピークを持つ三つのピークを有するスペクトル形状を示している。りん光スペクトルにおいては、励起波長により、各ピーク波長の強度の比率が異なっており、励起波長365nmにおいては、相対的に622nmのピーク強度が高く、励起波長254nmにおいては、相対的に624nmのピーク強度が低くなっている。   FIG. 1 is a diagram showing a fluorescence spectrum at an excitation wavelength of 365 nm and a phosphorescence spectrum after 2 ms of extinction of excitation light at excitation wavelengths of 365 nm and 254 nm of an afterglow luminescent material in one example of the present invention. As shown in FIG. 1, the afterglow luminescent material of the present invention shows a broad spectrum shape of a single peak having a peak at 458 nm in the fluorescence spectrum. The phosphorescence spectrum at an excitation wavelength of 365 nm shows a spectrum shape having three peaks having peaks at 500 nm, 552 nm, and 622 nm, and the phosphorescence spectrum at an excitation wavelength of 254 nm has peaks at 501 nm, 553 nm, and 624 nm. A spectral shape having three peaks with In the phosphorescence spectrum, the ratio of the intensity of each peak wavelength differs depending on the excitation wavelength, the peak intensity at 622 nm is relatively high at the excitation wavelength 365 nm, and the peak at 624 nm is relatively high at the excitation wavelength 254 nm. The strength is low.

なお、本発明における蛍光ピークとは、蛍光スペクトルにおける発光強度の最大値及びその発光波長域のことであり、りん光ピークとは、りん光スペクトルにおいて、低波長領域からみて発光強度が上昇から低下へ変化する変曲点のことである。   The fluorescence peak in the present invention means the maximum value of emission intensity in the fluorescence spectrum and its emission wavelength range, and the phosphorescence peak means that the emission intensity decreases from an increase in the phosphorescence spectrum as seen from the low wavelength region. It is an inflection point that changes to.

図2は、本発明の一実施例における残光性発光体の、励起スペクトルを示す図である。図2に示すように、蛍光は、発光波長458nmにおいて、紫外光域における強度分布が台形に近い形状を示している。りん光においては、発光波長499nm及び552nmの場合、約250nmにピークを示し、約280nm以上の波長域では強度が低くフラットなスペクトル形状を示していた。発光波長624nmの場合、蛍光の励起スペクトルと同様な傾向を示していた。図1において、励起波長365nmと254nmで、各ピーク波長の強度の比率が異なっていたのは、図2の励起スペクトルから説明できる。   FIG. 2 is a diagram showing an excitation spectrum of an afterglow luminescent material in one example of the present invention. As shown in FIG. 2, the fluorescence has a shape in which the intensity distribution in the ultraviolet light region is close to a trapezoid at an emission wavelength of 458 nm. Phosphorescence showed a peak at about 250 nm at emission wavelengths of 499 nm and 552 nm, and showed a flat spectrum shape with low intensity in a wavelength region of about 280 nm or more. When the emission wavelength was 624 nm, the same tendency as the fluorescence excitation spectrum was observed. In FIG. 1, it can be explained from the excitation spectrum of FIG. 2 that the intensity ratio of each peak wavelength is different between excitation wavelengths 365 nm and 254 nm.

本発明の一実施例における残光性発光体の、特定の発光波長における発光強度の時間変化を図3に示した。図3のグラフにおけるx軸の時間は、励起光点灯時を0msとしたときの時間経過を示している。光源点灯後400msで消灯しているが、消灯後、発光波長541nmは残光の減衰が速く、625nmは減衰が遅い。図示しないが、発光波長488nmにおいても541nmと同様な傾向を示した。なお、図1とは発光ピーク波長が異なっているが、測定器や測定条件が異なるとピーク波長も異なってくることは公知の事実である。   FIG. 3 shows the time variation of the emission intensity of the afterglow luminescent material in one example of the present invention at a specific emission wavelength. The time on the x-axis in the graph of FIG. 3 shows the passage of time when the excitation light lighting time is 0 ms. The light is turned off at 400 ms after the light source is turned on, but after the light is turned off, the afterglow of light emission wavelength 541 nm is fast and the decay is slow at 625 nm. Although not shown, the light emission wavelength of 488 nm showed the same tendency as that of 541 nm. Although the emission peak wavelength is different from that in FIG. 1, it is a known fact that the peak wavelength is different when the measuring instrument and measurement conditions are different.

発光波長によって、残光の減衰時間が異なることから、測定時間(タイミング)によってりん光スペクトル形状が異なり、励起光消灯2ms及び10ms後のりん光スペクトルを図4に示した。励起波長254nm及び365nmにおいて、励起光消灯2ms後は三つのピークを有するスペクトル形状を示したのに対し、10ms後は最も長波長のピーク625nmのみの単一ピークのスペクトル形状を示した。   Since the decay time of afterglow varies depending on the emission wavelength, the phosphorescence spectrum shape varies depending on the measurement time (timing), and the phosphorescence spectra after 2 ms and 10 ms of excitation light extinction are shown in FIG. At excitation wavelengths of 254 nm and 365 nm, a spectrum shape having three peaks was shown after 2 ms of extinguishing of the excitation light, whereas a spectrum shape of a single peak having only the longest wavelength peak of 625 nm was shown after 10 ms.

本発明の一実施例における残光性発光体は、625nmにおける残光の減衰が遅く、この特性は残光の目視認証に寄与している。残光を目視認証する要件は、残光時間が一定以上の長さがあることであるが、残光時間が秒単位以下の場合、蛍光色と残光色に色相差があることも要件の一つとなり、色相差が大きい方が認証性が高い。目視認証できる残光時間の条件は10ms以上(残光時間の定義は特許文献5610121号を参照)であるが、625nmは10ms以上であるため目視認証でき、500nm及び541nmは10ms未満であるため目視認証できない。よって、目視では残光色は赤色に観察される。   The afterglow phosphor in one embodiment of the present invention has a slow decay of afterglow at 625 nm, and this characteristic contributes to visual authentication of afterglow. The requirement for visual authentication of afterglow is that the afterglow time is longer than a certain length, but if the afterglow time is less than a second, there is also a requirement that there is a hue difference between the fluorescent color and the afterglow color. The higher the hue difference, the higher the authenticity. The condition of the afterglow time for visual authentication is 10 ms or more (see Patent Document 5610121 for the definition of the afterglow time). However, since 625 nm is 10 ms or more, visual authentication is possible, and 500 nm and 541 nm are less than 10 ms. I can't authenticate. Therefore, the afterglow color is observed red by visual observation.

(発光インキ組成物)
発光インキ組成物の作製について説明する。作製した残光性発光体を付与する方法に応じて、バインダー、助剤等と十分に混合し付与に適した特性を持つよう粘度等を調整し、インキ化又はペースト化する。付与方式によって異なるが、残光性発光体の配合割合は、1〜60重量%程度とすればよい。発光強度と経済性の観点から見ると、10〜40重量%にすることがより望ましい。
(Luminescent ink composition)
The production of the luminescent ink composition will be described. Depending on the method for applying the produced afterglow luminescent material, the viscosity and the like are adjusted by mixing well with a binder, an auxiliary agent, and the like so as to have characteristics suitable for application, and are converted into an ink or a paste. Although it depends on the application method, the blending ratio of the afterglow phosphor may be about 1 to 60% by weight. From the viewpoint of light emission intensity and economy, it is more desirable that the content be 10 to 40% by weight.

発光インキ組成物に使用するバインダーとしては、特に限定されるものではない。例えば、アマニ油、オリーブ油、ヒマシ油、ヒマワリ油等の油脂類、鯨ロウ、ミツロウ、ラノリン、カルナウバワックス、キャンデリアワックス、モンタンワックス等の天然ワックス類、パラフィンワックス、マイクロクリスタリンワックス、酸化ワックス、エステルワックス、低分子量ポリエチレン等の合成ワックス類、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、フロメン酸、ヘベニン酸等の高級脂肪酸類、ステアリルアルコール、ヘベニルアルコール等の高級アルコール類、グルコース、エチレングルコース、アミロース等の炭化水素類、脂肪酸エステル等のエステル類、ステアリンアミド、オレインアミド等のアミド類、ポリアミド系樹脂、ポリエステル系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、アクリル系樹脂、塩化ビニル系樹脂、セルロース系樹脂、ポリビニル系樹脂、石油系樹脂、エチレン・酢酸ビニル共重合体樹脂、フェノール系樹脂、スチレン系樹脂、ロジン変性樹脂、テルビン樹脂等の樹脂類、天然ゴム、スチレンブタジエンゴム、イソプレンゴム、クロロプレンゴム等のエラストマー類、アクリレート、メタクリレートのオリゴマー及びモノマーからなる紫外線硬化樹脂、水添石油樹脂、シリコーン、流動パラフィン、フッ素樹脂等のタッキファイヤー類等を単独又は含有された物から成るバインダーを使用できる。   The binder used in the luminescent ink composition is not particularly limited. For example, oils and fats such as linseed oil, olive oil, castor oil, sunflower oil, natural waxes such as whale wax, beeswax, lanolin, carnauba wax, canderia wax, montan wax, paraffin wax, microcrystalline wax, oxidized wax, Synthetic waxes such as ester wax and low molecular weight polyethylene, higher fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, furomenic acid and hebenic acid, higher alcohols such as stearyl alcohol and hebenyl alcohol, glucose and ethylene Hydrocarbons such as glucose and amylose, esters such as fatty acid esters, amides such as stearamide and oleinamide, polyamide resins, polyester resins, epoxy resins, polyurethane resins, acrylic resins , Vinyl chloride resin, cellulose resin, polyvinyl resin, petroleum resin, ethylene / vinyl acetate copolymer resin, phenol resin, styrene resin, rosin modified resin, terbin resin, natural rubber, styrene Elastomers such as butadiene rubber, isoprene rubber, and chloroprene rubber, UV curable resins composed of oligomers and monomers of acrylate, methacrylate, tackifiers such as hydrogenated petroleum resins, silicone, liquid paraffin, and fluororesin are contained alone or contained. A binder made of a product can be used.

発光インキ組成物は、発光を妨げない範囲で他の色材又は機能性材料を混合してインキ化又はペースト化してもよく、あらかじめ基材上に付与された下地上に重ねて付与してもよい。   The luminescent ink composition may be made into an ink or paste by mixing other color materials or functional materials within a range that does not interfere with light emission, or may be applied in a layered manner on a base previously provided on a substrate. Good.

発光インキ組成物を基材に印刷、コーティング等により付与する方式としては、一般に公知の凹版、凸版、オフセット、スクリーン、グラビア、フレキソによる印刷若しくはインキジェット印刷、コーティング等の方式を用いることができ、また、これらの印刷方式の組合せにより付与してもよい。このように作製した発光インキ組成物又は塗工組成物を基材に印刷又は塗工したものを真偽判別印刷物とする。   As a method of applying the luminescent ink composition to the substrate by printing, coating, etc., generally known methods such as intaglio, letterpress, offset, screen, gravure, flexographic printing or ink jet printing, coating, etc. can be used. Moreover, you may provide by the combination of these printing systems. A product obtained by printing or coating the luminescent ink composition or the coating composition thus prepared on a substrate is referred to as a true / false discrimination printed material.

例えば、本発明の発光インキ組成物は、特定の紫外線を照射することにより可視発光するため、当該インキ組成物を使用して第1の画線と第2の画線をそれぞれ異なる角度で配置して背景部と潜像部を形成し、当該印刷物を傾けることにより潜像画像が視認できる印刷物(例えば、特許第4374446号公報)等に使用し、潜像による偽造防止効果と、特定の紫外線を照射することにより可視発光と残光の有無の目視による判別、又は機械読み取りによる判別が良好となるため、真偽判別性の優れた印刷物を作製することができる。   For example, since the luminescent ink composition of the present invention emits visible light when irradiated with specific ultraviolet rays, the first image line and the second image line are arranged at different angles using the ink composition. This is used for printed matter (for example, Japanese Patent No. 4374446) that forms a background portion and a latent image portion, and the latent image can be visually recognized by tilting the printed matter. Irradiation makes it possible to visually determine the presence or absence of visible light emission and afterglow, or to make good discrimination by machine reading, so that a printed matter with excellent authenticity discrimination can be produced.

また、本発明の発光インキ組成物に光輝性顔料を配合した場合は、当該インキを使用して第1の画線と第2の画線をそれぞれ異なる角度で配置して背景部と潜像部を形成し、当該印刷物を傾けることにより任意の階調の潜像画像が視認できる印刷物(例えば、WO2003/013871号公報)等に使用し、潜像による偽造防止効果と、特定の紫外線を照射することにより可視発光とりん光の有無の目視による判別、又は機械読み取りによる判別が良好となるため、真偽判別性に優れた印刷物を作製することができる。   Further, when a bright pigment is blended in the luminescent ink composition of the present invention, the first image line and the second image line are arranged at different angles using the ink, and the background portion and the latent image portion. Is used for printed matter (for example, WO2003 / 013871) where a latent image of an arbitrary gradation can be visually recognized by tilting the printed matter, and the forgery prevention effect by the latent image and specific ultraviolet rays are irradiated. As a result, the visual discrimination of the presence or absence of visible light emission and phosphorescence or the discrimination by machine reading becomes good, so that a printed matter excellent in authenticity discrimination can be produced.

(真偽判別方法)
本発明の真偽判別印刷物の目視判別方法について説明する。ブラックライト等のハンディ型の紫外線ランプを真偽判別印刷物に照射し、まず蛍光発光を目視によって観察する。本発明の一実施例において、蛍光色は青味の白色に観察される。次に、紫外線ランプを瞬時的に消灯するかあるいは点灯状態で真偽判別印刷物上を素早く走査する。紫外線ランプを瞬時的に消灯した場合、残像のように蛍光色と異なる色のりん光が瞬間的に観察される。紫外線ランプを点灯した状態で真偽判別印刷物上を素早く走査した場合、ランプが通過した後、蛍光色と異なる色のりん光が瞬間的に観察される。本発明の一実施例において、りん光色は赤色である。
(Authentication method)
The visual discrimination method for authenticity determination printed matter of the present invention will be described. A hand-held ultraviolet lamp such as a black light is irradiated on the authenticity printed matter, and the fluorescence emission is first observed visually. In one embodiment of the present invention, the fluorescent color is observed as bluish white. Next, the ultraviolet lamp is turned off instantaneously or the printed matter for authenticity determination is quickly scanned in the lighting state. When the ultraviolet lamp is turned off instantaneously, phosphorescence having a color different from the fluorescent color, such as an afterimage, is observed instantaneously. When the authenticity determination printed material is scanned quickly with the ultraviolet lamp turned on, phosphorescence of a color different from the fluorescent color is instantaneously observed after the lamp has passed. In one embodiment of the present invention, the phosphorescent color is red.

本発明の真偽判別印刷物の機械判別方法について説明する。機械を用いる一般的な真偽判別方法としては、真偽判別印刷物に紫外光を照射し照射中の発光及び照射停止後の残光の有無検知がある。真偽判別印刷物の発光強度に応じて、あらかじめ定めておいた閾値範囲の出力を検知することで判別精度が向上する。残光の検知には、残光検出装置等を使用することができる。残光の有無検知の例として、特開平8−3785号公報に示されたような切手検出装置で判別を行うこともできる。   The machine discrimination method for authenticity determination printed matter of the present invention will be described. As a general authenticity determination method using a machine, there is light emission during irradiation and detection of presence / absence of afterglow after irradiation by irradiating the authenticity determination printed matter with ultraviolet light. The accuracy of discrimination is improved by detecting an output within a predetermined threshold range according to the emission intensity of the authenticity discrimination printed matter. For detecting afterglow, an afterglow detection device or the like can be used. As an example of the presence / absence detection of afterglow, it is possible to make a determination using a stamp detection device as disclosed in Japanese Patent Application Laid-Open No. 8-3785.

本発明の残光性発光体の使用方法として、例えば郵便切手の自動処理システムにおける蛍光マークとして使用する方法が考えられる。残光を読み取ることで蛍光増白剤と区別できることはもちろんであるが、色相が赤色系であるため増白剤の発光色である青色とは色相が大きく異なるために切り分けが容易である。さらに、本発明の残光性発光体は、通常機械検知に使用されている残光性発光体の残光寿命より長いため、通常検知が行われている検知タイミング(5〜30ms)よりも遅いタイミングでの検出が可能であり、検出タイミングを遅くするだけでも既存の発光マークと差別化が図られ真偽判別として利用できる。   As a method of using the afterglow illuminant of the present invention, for example, a method of using it as a fluorescent mark in an automatic processing system for a postage stamp is conceivable. Of course, it can be distinguished from the fluorescent brightening agent by reading the afterglow, but since the hue is red, the hue is greatly different from that of blue, which is the emission color of the brightening agent, so that the separation is easy. Furthermore, since the afterglow illuminant of the present invention is longer than the afterglow lifetime of the afterglow illuminator normally used for machine detection, it is later than the detection timing (5 to 30 ms) at which normal detection is performed. It is possible to detect at the timing, and even by delaying the detection timing, it can be differentiated from the existing light emitting mark and used for authenticity determination.

より精度の高い機械判別方法であるが、安価な装置で短時間に精度の高い機械判別ができる方法として、例えば、特開2006−266810号公報で提案されている装置及び方法で判別することができる。この装置による判別方法は、一つの波長域の励起光を照射し、異なる波長域(λ、λ、λ及びλ)を四つの受光部で、それぞれ励起光照射中(T)及び励起光照射停止後数十ms後(T)に受光し、Tλ、Tλ、Tλ、Tλ、Tλ、Tλ、Tλ及びTλの発光強度をあらかじめ指定しておいた発光強度値と比較することで判別する方法を用いることができる。 Although it is a more accurate machine discrimination method, for example, an apparatus and method proposed in Japanese Patent Application Laid-Open No. 2006-266810 may be used as a method capable of performing machine discrimination with high accuracy in a short time with an inexpensive device. it can. The discrimination method by this apparatus irradiates excitation light of one wavelength region, and irradiates excitation light with different wavelength regions (λ 1 , λ 2 , λ 3, and λ 4 ) by four light receiving units (T 0 ). Then, the light is received several tens of ms after stopping the irradiation of the excitation light (T 1 ), and T 0 λ 1 , T 0 λ 2 , T 0 λ 3 , T 0 λ 4 , T 1 λ 1 , T 1 λ 2 , T 1 A method can be used in which the light emission intensity of λ 3 and T 1 λ 4 is compared with a light emission intensity value designated in advance.

より精度の高い機械判別方法の他の例として、例えば、特開2006−275578号公報で提案されている装置及び方法で判別することができる。この装置による判別方法は、一つの波長域の励起光を照射し、励起光照射中(T)及び励起光照射停止後数ms後(T)に受光し、TのスペクトルSとTのスペクトルSのスペクトル形状を確認し判別するものである。また、励起光照射停止後の経過時間(T01、T02、T03、・・・)に従ってスペクトルを測定し、ピーク波長λ、λ、λ及びλの出力強度変化を追ってもよい。なお、得られたスペクトルの分光分布を更にコンピュータで演算し、表色値(x,y,Y又はL,a,b)として比較し、判別することもできる。 As another example of a more accurate machine discrimination method, it can be discriminated by, for example, an apparatus and method proposed in Japanese Patent Laid-Open No. 2006-275578. The discrimination method by this apparatus irradiates excitation light in one wavelength region, receives light during excitation light irradiation (T 0 ) and after several ms (T 1 ) after stopping the excitation light irradiation, and obtains a spectrum S 0 of T 0. in which to determine confirmed the spectral shape of the spectrum S 1 of T 1. In addition, the spectrum is measured according to the elapsed time (T 01 , T 02 , T 03 ,...) After stopping the excitation light irradiation, and the output intensity changes at the peak wavelengths λ 1 , λ 2 , λ 3 and λ 4 are followed. Good. Note that the spectral distribution of the obtained spectrum can be further calculated by a computer and compared as color values (x, y, Y or L * , a * , b * ) for discrimination.

本発明の発光体の特性を有効活用した真偽判別方法について説明する。真偽判別方法の説明のために、記号の定義を図3及び図4を用いて説明する。励起光消灯後の経過時間を、第一の検出時間T及び第二の検出時間Tとする。励起光の波長EXにおけるりん光特性を第一のりん光特性Pとし、励起光の波長EXにおけるりん光特性を第二のりん光特性Pとする。検出波長域を短波長側からλ、λ、λ、λとする。λは蛍光スペクトルにおける発光ピーク波長域であり、蛍光と同じ波長域にりん光ピークがないことが真偽判別要素になるため検出を行う。λ、λ、λはりん光ピーク波長域である。 An authenticity determination method that effectively utilizes the characteristics of the light emitter of the present invention will be described. In order to explain the authenticity determination method, the definition of symbols will be described with reference to FIGS. The elapsed time after the excitation light turns off, and T 2 a first detection time T 1 and the second detection time. The phosphorescent properties at the wavelength EX 1 of the excitation light and the first phosphorescent properties P 1, the phosphorescent properties at the wavelength EX 2 of the excitation light and the second phosphorescent properties P 2. Let the detection wavelength range be λ 1 , λ 2 , λ 3 , and λ 4 from the short wavelength side. lambda 1 is the emission peak wavelength range of the fluorescence spectrum, the detection order that there is no phosphorescence peak in the same wavelength range as the fluorescent becomes authenticity discrimination element. λ 2 , λ 3 , and λ 4 are phosphorescence peak wavelength regions.

第一のりん光特性P及び第一の検出時間Tのときのλの発光強度をI11、λの発光強度をI12、λの発光強度をI13、λの発光強度をI14とする。第一のりん光特性P及び第二の検出時間Tのときのλの発光強度をI’11、λの発光強度をI’12、λの発光強度をI’13、λの発光強度をI’14とする。第二のりん光特性P及び第一の検出時間Tのときのλの発光強度をI21、λの発光強度をI22、λの発光強度をI23、λの発光強度をI24とする。第二のりん光特性P及び第二の検出時間Tのときのλの発光強度をI’21、λの発光強度をI’22、λの発光強度をI’23、λの発光強度をI’24とする。 The emission intensity of λ 1 at the first phosphorescence characteristic P 1 and the first detection time T 1 is I 11 , the emission intensity of λ 2 is I 12 , the emission intensity of λ 3 is I 13 , and the emission intensity is λ 4 . strength and I 14. The light emission intensity of λ 1 at the first phosphorescence characteristic P 1 and the second detection time T 2 is I ′ 11 , the light emission intensity of λ 2 is I ′ 12 , the light emission intensity of λ 3 is I ′ 13 , λ the emission intensity of 4 and I '14. The emission intensity of λ 1 at the second phosphorescence characteristic P 2 and the first detection time T 1 is I 21 , the emission intensity of λ 2 is I 22 , the emission intensity of λ 3 is I 23 , and the emission intensity is λ 4 . strength and I 24. The emission intensity of λ 1 at the second phosphorescence characteristic P 2 and the second detection time T 2 is I ′ 21 , the emission intensity of λ 2 is I ′ 22 , the emission intensity of λ 3 is I ′ 23 , λ the emission intensity of 4 and I '24.

図5及び図6は、本発明の真偽判別印刷物の真偽判別方法を示す一例図である。真偽判別印刷物の印刷画像に励起光を照射する照射工程(S1)と、検出波長域λ、λ、λ、λにおける励起光停止後のりん光を検出するりん光検出工程(S2)と、りん光検出工程(S2)により検出された検出値を、演算する演算工程(S3)とし、演算工程結果から真偽判別を行う判別工程(S4)から成る。 5 and 6 are examples of the authenticity determination method for authenticity determination printed matter according to the present invention. An irradiation step (S1) for irradiating the printed image of the authenticity discrimination printed matter with excitation light, and a phosphorescence detection step for detecting phosphorescence after stopping the excitation light in the detection wavelength ranges λ 1 , λ 2 , λ 3 , λ 4 ( S2) and the detection value detected in the phosphorescence detection step (S2) are used as a calculation step (S3) for calculation, and a determination step (S4) for determining authenticity from the calculation step result.

図5は、第一の検出時間Tにおける、第一のりん光特性Pと第二のりん光特性Pの各検出波長域の発光強度比による判別例を示している。照射工程(S1)において、励起波長EXの励起光を照射し、りん光検出工程(S2)において、第一の検出時間Tにおける第一のりん光特性Pの、波長域λ、λ、λ、λにおけるりん光を検出する。次に、照射工程(S1’)において、励起波長EXの励起光を照射し、りん光検出工程(S2’)において、第一の検出時間Tにおける第二のりん光特性Pの、波長域λ、λ、λ、λにおけるりん光を検出する。なお、りん光検出工程(S2及びS2’)により検出された検出値を、演算工程(S3)において相対比計算により演算する。判別工程(S4)において、演算工程(S3)における演算結果により、真偽判別印刷物の真偽判別を行う。 Figure 5 shows in a first detection time T 1, a determination example by the emission intensity ratio of the detection wavelength ranges of the first phosphorescent characteristics P 1 and the second phosphorescent properties P 2. In the irradiation step (S1), and irradiated with an excitation light of the excitation wavelength EX 1, in phosphorescence detection step (S2), the first phosphorescent properties P 1 in the first detection time T 1, the wavelength region lambda 1, The phosphorescence at λ 2 , λ 3 , and λ 4 is detected. Next, in the irradiation step (S1 ′), the excitation light of the excitation wavelength EX 2 is irradiated, and in the phosphorescence detection step (S2 ′), the second phosphorescence characteristic P 2 at the first detection time T 1 is Phosphorescence in the wavelength bands λ 1 , λ 2 , λ 3 , λ 4 is detected. In addition, the detection value detected by the phosphorescence detection process (S2 and S2 ') is calculated by relative ratio calculation in the calculation process (S3). In the determination step (S4), the authenticity determination of the authenticity determination printed matter is performed based on the calculation result in the calculation step (S3).

図6は、第一のりん光特性Pにおける、第一の検出時間T及び第二の検出時間Tの各検出波長域の発光強度比による判別例を示している。照射工程(S1)において、励起波長EX及び/又は励起波長EXの励起光を照射し、りん光検出工程(S2)において、第一の検出時間Tにおける第一のりん光特性P及び/又は第二のりん光特性Pの、波長域λ、λ、λ、λにおけるりん光を検出し、りん光検出工程(S2’)において、第二の検出時間Tにおける第一のりん光特性P及び又は第二のりん光特性Pの、波長域λ、λ、λ、λにおけるりん光を検出する。りん光検出工程(S2及びS2’)により検出された検出値を、演算工程(S3)において演算する。演算工程(S3)における演算結果により、判別工程(S4)において真偽判別印刷物の真偽判別を行う。なお、本実施形態においては、片方の励起波長のみ使用しているが、さらに、精度よく検査するために、双方の励起波長を使用してもよい。 FIG. 6 shows a discrimination example based on the emission intensity ratio in each detection wavelength region of the first detection time T 1 and the second detection time T 2 in the first phosphorescence characteristic P 1 . In the irradiation step (S1), excitation wavelength EX 1 and / or excitation wavelength EX 2 of irradiated with excitation light, phosphorescence detection step in (S2), the first phosphorescent properties P 1 in the first detection time T 1 And / or phosphorescence in the wavelength regions λ 1 , λ 2 , λ 3 , λ 4 of the second phosphorescence characteristic P 2 is detected, and the second detection time T 2 is detected in the phosphorescence detection step (S2 ′). The phosphorescence in the wavelength range λ 1 , λ 2 , λ 3 , λ 4 of the first phosphorescence characteristic P 1 and / or the second phosphorescence characteristic P 2 is detected. The detection value detected in the phosphorescence detection step (S2 and S2 ′) is calculated in the calculation step (S3). Based on the calculation result in the calculation step (S3), the authenticity determination of the authenticity determination printed matter is performed in the determination step (S4). In the present embodiment, only one excitation wavelength is used. However, both excitation wavelengths may be used for more accurate inspection.

照射工程(S1及びS1’)における励起光源の例として、LED光源、低圧光源ランプ、キセノンランプ、重水素光源等がある、LED光源は、照射したい波長域のものを選択し、連続光源の場合は、バンドパスフィルタ、ハイパスフィルタ、ローパスフィルタ等で照射波長を限定する。励起波長EX及びEXとしては、230nm〜420nmの任意の波長域を選択できるが、EX又はEXのいずれか一方は230nm〜255nmの波長域から、他方は255nm〜420nmの波長域から特定波長を選択する。一例として、EXは254nmとし、EXを365nmとする。 Examples of excitation light sources in the irradiation process (S1 and S1 ′) include LED light sources, low-pressure light source lamps, xenon lamps, deuterium light sources, etc. Limits the irradiation wavelength with a band-pass filter, a high-pass filter, a low-pass filter, or the like. As the excitation wavelengths EX 1 and EX 2 , any wavelength range of 230 nm to 420 nm can be selected, but either EX 1 or EX 2 is from the wavelength range of 230 nm to 255 nm, and the other is from the wavelength range of 255 nm to 420 nm. Select a specific wavelength. As an example, EX 1 is 254 nm and EX 2 is 365 nm.

りん光検出工程(S2及びS2’)における検出器としては、シリコンフォトダイオード検出器、フォトマルチプライヤーがある。検出波長域λ、λ、λ及びλの波長域における励起光照射停止後の発光(りん光)を、シャープカットフィルタ又はバンドパスフィルタを取り付けそれぞれ一つの検出器で検出してもよいし、検出器を複数配置したリニアセンサやイメージセンサを使用してもよい。感度を向上させるために増幅器を併用してもよい。また、分光器を併用して分光特性を取得してもよい。 Examples of the detector in the phosphorescence detection step (S2 and S2 ′) include a silicon photodiode detector and a photomultiplier. Even if a sharp-cut filter or a band-pass filter is attached to detect the emission (phosphorescence) after stopping the excitation light irradiation in the detection wavelength ranges λ 1 , λ 2 , λ 3 and λ 4 , each detector can detect it. Alternatively, a linear sensor or an image sensor having a plurality of detectors may be used. An amplifier may be used in combination to improve sensitivity. Moreover, you may acquire spectral characteristics using a spectroscope together.

りん光検出工程(S2及びS2’)において、励起光停止後の発光特性(りん光)を、時間ファクタを制御して取得する。りん光取得タイミングの制御方法としては、励起光を断続的に照射しながら、消灯時のりん光を検知する方法や、励起光は連続照射し、取得したい時間的タイミングに応じて、真偽判別印刷物を励起光源位置から移動させて検知する方法がある。   In the phosphorescence detection step (S2 and S2 '), the emission characteristic (phosphorescence) after the excitation light is stopped is acquired by controlling the time factor. The phosphorescence acquisition timing is controlled by intermittently irradiating the excitation light while detecting the phosphorescence when the light is extinguished, or by irradiating the excitation light continuously and determining the authenticity according to the time timing you want to acquire. There is a method of detecting by moving the printed material from the position of the excitation light source.

演算工程(S3)は、りん光検出工程(S2及びS2’)において取得された検出値から、判定に必要なデータを選択し、判別基準に基づいた演算を行う。例えば、検出波長域λ、λ、λ及びλにおける、EX及びEX又はT及びTの発光ピーク値をピックアップし、それぞれの相対比計算をする。取得した分光特性から演算する場合は、波長域λ、λ、λ及びλを選択し、これらの波長域におけるEX及びEX又はT及びTの発光ピーク値をピックアップし、相対比計算をする。 In the calculation step (S3), data necessary for determination is selected from the detection values acquired in the phosphorescence detection step (S2 and S2 ′), and calculation based on the determination criterion is performed. For example, the emission peak values of EX 1 and EX 2 or T 1 and T 2 in the detection wavelength ranges λ 1 , λ 2 , λ 3, and λ 4 are picked up, and the relative ratios are calculated. When calculating from the acquired spectral characteristics, the wavelength ranges λ 1 , λ 2 , λ 3 and λ 4 are selected, and the emission peak values of EX 1 and EX 2 or T 1 and T 2 in these wavelength ranges are picked up. Calculate the relative ratio.

相対比計算について、図5に示した、第一の検出時間Tにおける、第一のりん光特性Pと第二のりん光特性Pの各検出波長域の発光強度比による判別例においては、λ、λ、λ、λの波長域ごとにP及びPの発光強度の比(I11/I21、I12/I22、I13/I23、I14/I24)を計算する。 As for the relative ratio calculation, in the discrimination example based on the emission intensity ratio of each detection wavelength region of the first phosphorescence characteristic P 1 and the second phosphorescence characteristic P 2 at the first detection time T 1 shown in FIG. Is the ratio of the emission intensity of P 1 and P 2 for each wavelength range of λ 1 , λ 2 , λ 3 , λ 4 (I 11 / I 21 , I 12 / I 22 , I 13 / I 23 , I 14 / I 24 ) is calculated.

相対比計算について、図6に示した、第一のりん光特性Pにおける、第一の検出時間T及び第二の検出時間Tの各検出波長域の発光強度比による判別例においては、λ、λ、λ、λの波長域ごとにT及びTにおける発光強度の比(I11/I’11、I12/I’12、I13/I’13、I14/I’14)を計算する。又は、第二のりん光特性Pにおける、第一の検出時間T及び第二の検出時間Tの各検出波長域の発光強度比による判別例においては、λ、λ、λ、λの波長域ごとにT及びTにおける発光強度の比(I21/I’21、I22/I’22、I23/I’23、I24/I’24)を計算する。 Regarding the relative ratio calculation, in the discrimination example based on the emission intensity ratio in each detection wavelength region of the first detection time T 1 and the second detection time T 2 in the first phosphorescence characteristic P 1 shown in FIG. , Λ 1 , λ 2 , λ 3 , λ 4 for each wavelength region, the ratio of the emission intensity at T 1 and T 2 (I 11 / I ′ 11 , I 12 / I ′ 12 , I 13 / I ′ 13 , I 14 / I ′ 14 ). Alternatively, in the discrimination example based on the emission intensity ratio in each detection wavelength region of the first detection time T 1 and the second detection time T 2 in the second phosphorescence characteristic P 2 , λ 1 , λ 2 , λ 3 , The ratio of the emission intensity at T 1 and T 2 (I 21 / I ′ 21 , I 22 / I ′ 22 , I 23 / I ′ 23 , I 24 / I ′ 24 ) is calculated for each wavelength region of λ 4. .

判定に使用する検出値は、判別方法によっては、ノイズによる出力又はごく微弱な出力を判定に用いないよう、一定値未満の検出値は0と見なすか、判定基準外とする処理を行ってもよい。また、選択波長域における出力波形が不安定な場合は、定められた波長範囲内における平均値を算出する処理を行ってもよい。   Depending on the determination method, the detection value used for the determination may be regarded as 0 for a detection value less than a certain value, or may be processed outside the determination criterion so that an output due to noise or a very weak output is not used for the determination. Good. Further, when the output waveform in the selected wavelength range is unstable, a process of calculating an average value within a predetermined wavelength range may be performed.

判別工程(S4)は、演算工程により計算された相対比と、あらかじめ定めた相対比の基準値とを照合し、所定の基準値の範囲内である場合に真正と判断する。   In the determination step (S4), the relative ratio calculated in the calculation step is compared with a reference value of a predetermined relative ratio, and is determined to be authentic when it is within a predetermined reference value range.

次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例に限定されるものではない。まず、残光性発光体の製造方法について説明する。   EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to these examples. First, a method for manufacturing an afterglow light emitter will be described.

表1に示す配合の原料を正確に秤量し、エタノール溶媒中で十分に混合し乾燥させた。十分に混合した粉体をアルミナ製容器に入れ、還元雰囲気(N+H(4%) )中において、1400℃で2時間焼成した。この反応により得られた焼成物を残光性発光体1-(1)とする。残光性発光体1-(1)は、モル比で2.65Ba・0.2Ca・0.983Mg・Si:0.05Eu・0.1Tb・0.017Mnで表される。 The raw materials having the composition shown in Table 1 were accurately weighed, thoroughly mixed in an ethanol solvent, and dried. The sufficiently mixed powder was put in an alumina container and fired at 1400 ° C. for 2 hours in a reducing atmosphere (N 2 + H 2 (4%)). The fired product obtained by this reaction is referred to as afterglow phosphor 1- (1). The afterglow phosphor 1- (1) is represented by a molar ratio of 2.65Ba · 0.2Ca · 0.983Mg · Si 2 O 8 : 0.05Eu · 0.1Tb · 0.017Mn.

Figure 2017145314
Figure 2017145314

残光性発光体1−(1)をメノウ乳鉢で粗粉砕し、分光蛍光光度計((株)日立ハイテクノロジーズ製F−4500)で発光特性を測定した。図7に紫外光励起時の蛍光及びりん光スペクトルを示した。蛍光は、456nmに単一の発光ピークを示した。りん光は、500nm、552nm及び622nmに発光ピークを示した。目視では、蛍光色は濃い青色に、りん光色は赤色に観察された。   The afterglow phosphor 1- (1) was coarsely pulverized in an agate mortar, and the emission characteristics were measured with a spectrofluorimeter (F-4500, manufactured by Hitachi High-Technologies Corporation). FIG. 7 shows fluorescence and phosphorescence spectra when excited with ultraviolet light. Fluorescence showed a single emission peak at 456 nm. Phosphorescence showed emission peaks at 500 nm, 552 nm, and 622 nm. Visually, the fluorescent color was observed in dark blue and the phosphorescent color was observed in red.

蛍光色の色相は、UV352nm光源、ミノルタ製色彩色差計CS−100で測定の結果x=0.225、y=0.365であった。   The hue of the fluorescent color was x = 0.225 and y = 0.365 as a result of measurement with a UV352 nm light source and Minolta color difference meter CS-100.

残光性発光体1−(1)の残光測定を行った。励起光源を中心波長365nmのLED光源とし、照射時間を400msとして残光測定を行った結果、残光時間(寿命)は81.4msであった。   Afterglow measurement of the afterglow luminous body 1- (1) was performed. The afterglow time (lifetime) was 81.4 ms as a result of performing afterglow measurement using an excitation light source as an LED light source having a central wavelength of 365 nm and an irradiation time of 400 ms.

残光性発光体1−(1)のX線回折パターンを図8に示した。測定結果から、BaMgSiを主成分とした結晶構造を取っていることがわかった。 The X-ray diffraction pattern of the afterglow phosphor 1- (1) is shown in FIG. From the measurement results, it was found that the crystal structure was mainly composed of Ba 3 MgSi 2 O 8 .

同様にして、化学式:(Ba・M)3−α−βMg1−γSi;EuαTbβMnγにおける各値を表2のように変化させた他は残光性発光体1−(1)と同一の条件で、残光性発光体1-(2)〜1-(10)を作製した。 Similarly, the chemical formula: (Ba · M) 3- α-β Mg 1-γ Si 2 O 8; Eu α Tb β Mn except that the values were changed as shown in Table 2 in gamma is afterglow luminescent material Afterglow light emitters 1- (2) to 1- (10) were produced under the same conditions as 1- (1).

Figure 2017145314
Figure 2017145314

表3に示す配合の原料を正確に秤量し、エタノール溶媒中で十分に混合し乾燥させた。十分に混合した粉体をアルミナ製容器に入れ、還元雰囲気(N+H(4%) )中において、1350℃で3時間焼成した。この反応により得られた焼成物を残光性発光体2−(1)とする。残光性発光体2−(1)は、モル比で2.9Ba0.995Mg・Si:0.05Eu・0.05Tb・0.005Mnで表される。 The raw materials having the composition shown in Table 3 were accurately weighed, thoroughly mixed in an ethanol solvent, and dried. The sufficiently mixed powder was put in an alumina container and fired at 1350 ° C. for 3 hours in a reducing atmosphere (N 2 + H 2 (4%)). The fired product obtained by this reaction is referred to as an afterglow phosphor 2- (1). The afterglow phosphor 2- (1) is represented by a molar ratio of 2.9Ba0.995Mg · Si 2 O 8 : 0.05Eu · 0.05Tb · 0.005Mn.

Figure 2017145314
Figure 2017145314

残光性発光体2−(1)をメノウ乳鉢で粗粉砕し、分光蛍光光度計((株)日立ハイテクノロジーズ製F−4500)で発光特性を測定した。図9に蛍光及びりん光スペクトルを示した。蛍光は、446nmに単一の発光ピークを示した。励起波長254nmでのりん光スペクトルにおいては、500nm、552nm及び622nmに発光ピークを示した。目視では、蛍光色は濃い青色に、りん光色は赤色に観察された。励起波長365nmでのりん光スペクトルにおいては、502nm、552nm及び625nmに発光ピークを示した。目視では、蛍光色は濃い青色に、りん光色は赤色に観察された。   Afterglow luminous body 2- (1) was coarsely pulverized in an agate mortar, and the luminescence characteristics were measured with a spectrofluorimeter (F-4500, manufactured by Hitachi High-Technologies Corporation). FIG. 9 shows fluorescence and phosphorescence spectra. Fluorescence showed a single emission peak at 446 nm. In the phosphorescence spectrum at an excitation wavelength of 254 nm, emission peaks were shown at 500 nm, 552 nm, and 622 nm. Visually, the fluorescent color was observed in dark blue and the phosphorescent color was observed in red. In the phosphorescence spectrum at an excitation wavelength of 365 nm, emission peaks were shown at 502 nm, 552 nm, and 625 nm. Visually, the fluorescent color was observed in dark blue and the phosphorescent color was observed in red.

蛍光色の色相は、UV352nm光源、ミノルタ製色彩色差計CS−100で測定の結果x=0.183、y=0.181であった。   The hue of the fluorescent color was x = 0.183 and y = 0.181 as a result of measurement with a UV352 nm light source and Minolta color difference meter CS-100.

残光性発光体2−(1)の残光測定を行った。励起光源を中心波長365nmのLED光源とし、照射時間を400msとして残光測定を行った結果、残光時間(寿命)は90.0msであった。   Afterglow measurement of the afterglow luminous body 2- (1) was performed. The afterglow time (lifetime) was 90.0 ms as a result of performing afterglow measurement using an excitation light source as an LED light source having a central wavelength of 365 nm and an irradiation time of 400 ms.

残光性発光体2−(1)のX線回折パターンを図10に示した。測定結果から、BaMgSiを含む複数結晶相の混合相から成っていることがわかった。 The X-ray diffraction pattern of the afterglow luminescent material 2- (1) is shown in FIG. From the measurement results, it was found that it was composed of a mixed phase of a plurality of crystal phases containing Ba 3 MgSi 2 O 8 .

同様にして、化学式:(Ba・M)3−α−βMg1−γSi;EuαTbβMnγにおける各値を表4のように変化させた他は、残光性発光体2−(1)と同一の条件で、残光性発光体2-(2)〜2-(3)を作製した。 Similarly, afterglow emission except that each value in the chemical formula: (Ba · M) 3-α-β Mg 1-γ Si 2 O 8 ; Eu α Tb β Mn γ was changed as shown in Table 4. Afterglow light emitters 2- (2) to 2- (3) were produced under the same conditions as for the body 2- (1).

Figure 2017145314
Figure 2017145314

次に、本発明の残光性発光体を使用した発光インキ組成物の調整方法及び真偽判別印刷物作製方法について説明する。   Next, the adjustment method of the luminescent ink composition using the afterglow luminescent material of the present invention and the authenticity printed matter preparation method will be described.

(発光インキ組成物1)
実施例1の残光性発光体1−(1)を使用し、表5に示す配合で発光スクリーンインキ組成物1を遊星型ボールミル(フリッチュ社製)で作製した。
(Luminescent ink composition 1)
Using the afterglow luminescent material 1- (1) of Example 1, a luminescent screen ink composition 1 was prepared by a planetary ball mill (manufactured by Fritsch) with the composition shown in Table 5.

Figure 2017145314
Figure 2017145314

(発光インキ組成物2)
実施例1の残光性発光体1−(1)を使用し、表6に示す配合で発光フレキソインキ組成物2を遊星型ボールミル(フリッチュ社製)で作製した。
(Luminescent ink composition 2)
Using the afterglow luminescent material 1- (1) of Example 1, a luminescent flexo ink composition 2 was prepared with a planetary ball mill (manufactured by Fritsch) with the formulation shown in Table 6.

Figure 2017145314
Figure 2017145314

(真偽判別印刷物1の作製)
スクリーン印刷方式にて、200メッシュの版面を使用し、ベタ及び鳳凰の図柄で蛍光増白されていない上質紙に発光スクリーン組成物1を付与したのち、インキを乾燥させ真偽判別印刷物1を作製した。分光蛍光光度計により発光スクリーン組成物1付与部分を測定した発光スペクトルを図11に示した。蛍光は、456nmに単一の発光ピークを持つスペクトル形状を示し、励起波長365nmでのりん光スペクトルは、500nm、552nm及び622nmに三つのピークを持つスペクトル形状を示した。UVワニスを使用しているため、254nm励起時の発光強度は極端に低くなっているが、スペクトル形状は粉体の場合と同様であった。
(Production of authenticity discrimination printed matter 1)
Using screen printing method, using 200-mesh printing plate, applying luminous screen composition 1 to high-quality paper that is not whitened with solid and wrinkle patterns, and then drying the ink to produce authenticity printed matter 1 did. FIG. 11 shows an emission spectrum obtained by measuring the portion to which the luminescent screen composition 1 is applied with a spectrofluorometer. The fluorescence showed a spectral shape with a single emission peak at 456 nm, and the phosphorescence spectrum at an excitation wavelength of 365 nm showed a spectral shape with three peaks at 500 nm, 552 nm, and 622 nm. Since a UV varnish is used, the emission intensity at 254 nm excitation is extremely low, but the spectral shape is the same as in the case of powder.

(真偽判別印刷物2の作製)
フレキソ印刷方式にて、アニロックスローラ140線/inchで、ベタ及び鳳凰の図柄で蛍光増白されていない上質紙に発光フレキソ組成物2を付与したのち、インキを乾燥させ真偽判別印刷物2を作製した。分光蛍光光度計により発光フレキソ組成物2付与部分を測定した発光スペクトルは図11と同様であった。蛍光は、456nmに単一の発光ピークを持つスペクトル形状を示し、励起波長365nmでのりん光スペクトルは、500nm、552nm及び622nmに三つのピークを持つスペクトル形状を示した。UVワニスを使用しているため、254nm励起時の発光強度は極端に低くなっているが、スペクトル形状は粉体の場合と同様であった。
(Preparation of authenticity printed matter 2)
After applying the flexographic composition 2 to high-quality paper that has not been fluorescently whitened with solid and wrinkle patterns at anilox roller 140 lines / inch using the flexographic printing method, the ink is dried to produce a true / false discrimination printed matter 2 did. The emission spectrum obtained by measuring the portion to which the light-emitting flexo composition 2 was applied with a spectrofluorometer was the same as that shown in FIG. The fluorescence showed a spectral shape with a single emission peak at 456 nm, and the phosphorescence spectrum at an excitation wavelength of 365 nm showed a spectral shape with three peaks at 500 nm, 552 nm, and 622 nm. Since a UV varnish is used, the emission intensity at 254 nm excitation is extremely low, but the spectral shape is the same as in the case of powder.

次に、本発明の残光性発光体を使用した真偽判別印刷物の真偽判別方法について説明する。   Next, the authenticity determination method of the authenticity determination printed matter using the afterglow illuminant of the present invention will be described.

(真偽判別印刷物の目視判別)
真偽判別印刷物1及び真偽判別印刷物2に、ハンディタイプの紫外線ランプで365nmの紫外光を照射し、青白色の蛍光を観察した。365nmの紫外光を照射している紫外線ランプを印刷物上に走査するように動かし、発光インキ組成物付与部が瞬時に赤色に変化するのを目視で確認した。
(Visual discrimination of authenticity printed matter)
The true / false discrimination printed matter 1 and the authenticity discrimination printed matter 2 were irradiated with 365 nm ultraviolet light with a handy type ultraviolet lamp, and bluish white fluorescence was observed. An ultraviolet lamp irradiating with 365 nm ultraviolet light was moved so as to scan on the printed matter, and it was visually confirmed that the luminescent ink composition application portion changed to red instantaneously.

(真偽判別印刷物の機械判別)
(照射工程・りん光検出工程)
真偽判別印刷物1に波長254nm(励起波長EX)の励起光を照射し、励起光停止後2ms後(第一の検出時間T)の、検出波長域λ=456nm(中心波長)、λ=500nm(中心波長)、λ=552nm(中心波長)、λ=622nm(中心波長)のりん光をシリコンフォトダイオード検出器により検出した。次に、波長365nm(励起波長EX)の励起光を照射し、励起光停止後2ms後(第一の検出時間T)の、検出波長域λ=456nm(中心波長)、λ=500nm(中心波長)、λ=552nm(中心波長)、λ=622nm(中心波長)のりん光をシリコンフォトダイオード検出器で検出した。
(Machine identification of printed matter for authenticity discrimination)
(Irradiation process / phosphorescence detection process)
Irradiation of the authenticity printed matter 1 with excitation light having a wavelength of 254 nm (excitation wavelength EX 1 ), and detection wavelength range λ 1 = 456 nm (center wavelength) 2 ms after the excitation light stops (first detection time T 1 ), Phosphorescence of λ 2 = 500 nm (center wavelength), λ 3 = 552 nm (center wavelength), and λ 4 = 622 nm (center wavelength) was detected by a silicon photodiode detector. Next, irradiation with excitation light having a wavelength of 365 nm (excitation wavelength EX 2 ) is performed, and after 2 ms (first detection time T 1 ) after the excitation light is stopped, a detection wavelength region λ 1 = 456 nm (center wavelength), λ 2 = Phosphorescence of 500 nm (center wavelength), λ 3 = 552 nm (center wavelength), and λ 4 = 622 nm (center wavelength) was detected with a silicon photodiode detector.

(演算工程)
励起波長EX、254nmにおいて、λのりん光強度をI11、λのりん光強度をI12、λのりん光強度をI13、λのりん光強度をI14とすると、I11=0mV(推定値)、I12=19.2mV、I13=57.9mV、I14=157.5mVであった。励起波長EX、365nmにおいて、I21=0mV、I22=112mV、I23=340mV、I24=5100mVであった。判定基準値を表7のように定め、判定で許容する誤差を±10%とすると、真偽判別結果は表7に示したように「真」となった。
(Calculation process)
At excitation wavelength EX 1 and 254 nm, the phosphorescence intensity at λ 1 is I 11 , the phosphorescence intensity at λ 2 is I 12 , the phosphorescence intensity at λ 3 is I 13 , and the phosphorescence intensity at λ 4 is I 14 . I 11 = 0 mV (estimated value), I 12 = 19.2 mV, I 13 = 57.9 mV, I 14 = 157.5 mV. At an excitation wavelength EX 2 of 365 nm, I 21 = 0 mV, I 22 = 112 mV, I 23 = 340 mV, and I 24 = 5100 mV. When the determination reference value is set as shown in Table 7 and the error allowed in the determination is ± 10%, the true / false determination result is “true” as shown in Table 7.

Figure 2017145314
Figure 2017145314

(測定タイミング違いの実施例)
(照射工程・りん光検出工程)
真偽判別印刷物1を、分光測光装置PMA−11マルチチャンネル検出器を使用して真偽判別を行った。励起光源は375nmのLED光源であり、パルス周波数1Hz、励起光照射時間を400msとし1msステップで分光測定を行った。励起光の照射開始を0msとしたときの1ms、76ms時の蛍光スペクトル、401ms及び405msのりん光スペクトルを図12に示した。
(Example of measurement timing differences)
(Irradiation process / phosphorescence detection process)
The authenticity printed matter 1 was subjected to authenticity determination using a spectrophotometric device PMA-11 multichannel detector. The excitation light source was a 375 nm LED light source, and the spectroscopic measurement was performed in 1 ms steps with a pulse frequency of 1 Hz and an excitation light irradiation time of 400 ms. FIG. 12 shows fluorescence spectra at 1 ms and 76 ms, and phosphorescence spectra at 401 ms and 405 ms when the excitation light irradiation start time is 0 ms.

(演算工程)
りん光ピーク波長域λ=446nm(中心波長)、λ=496nm(中心波長)、λ=551nm(中心波長)、λ=623nm(中心波長)とし、第一の検出時間T=401msのときのλのりん光強度I21、λのりん光強度I22、λのりん光強度I23、λのりん光強度I24を測定値から読み取ると、I21=0counts、I22=449counts、I23=969counts、I24=3584countsである。第二の検出時間T=405msのときのλのりん光強度I’21、λのりん光強度I’22、λのりん光強度I’23、λのりん光強度I’24を測定値から読み取ると、I’21=0counts、I’22=104counts、I’23=290counts、I’24=3208countsであった。
(Calculation process)
The phosphorescence peak wavelength region λ 1 = 446 nm (center wavelength), λ 2 = 496 nm (center wavelength), λ 3 = 551 nm (center wavelength), λ 4 = 623 nm (center wavelength), and the first detection time T 1 = lambda 1 phosphorescent intensity I 21 at the time of 401ms, λ 2 of the phosphorescence intensity I 22, lambda 3 of phosphorescence intensity I 23, reads the phosphorescence intensity I 24 of the lambda 4 from measurements, I 21 = 0counts , I 22 = 449 counts, I 23 = 969 counts, I 24 = 3584 counts. Second detection time T 2 = λ 1 phosphorescent intensity I '21, lambda 2 of phosphorescence intensity I' of the time of 405ms 22, λ 3 of phosphorescence intensity I '23, lambda 4 phosphorescence intensity I' When 24 was read from the measured values, I ′ 21 = 0 counts, I ′ 22 = 104 counts, I ′ 23 = 290 counts, and I ′ 24 = 3208 counts.

(判別工程)
第一の検出時間Tと第二の検出時間Tにおける各ピーク波長のりん光強度比による判別は、I21/I’21=0、I22/I’22=4.3、I23/I’23=3.3、I24/I’24=1.1であった。判定基準値を表8のように定めると、真偽判別結果は表8に示したように「真」となった。
(Determination process)
Discrimination based on the phosphorescence intensity ratio of each peak wavelength in the first detection time T 1 and the second detection time T 2 is I 21 / I ′ 21 = 0, I 22 / I ′ 22 = 4.3, and I 23. / I ′ 23 = 3.3 and I 24 / I ′ 24 = 1.1. When the determination reference value was determined as shown in Table 8, the true / false discrimination result was “true” as shown in Table 8.

Figure 2017145314
Figure 2017145314

(比較例1)
次に、本発明の残光性発光体の実施例との比較を行うため、比較例の発光体について説明する。表9に示す配合の原料を正確に秤量し、エタノール溶媒中で十分に混合し乾燥させた。十分に混合した粉体をアルミナ製容器に入れ、還元雰囲気(N+H(4%) )中において、1400℃で2時間焼成して比較例1の発光体を作製した。比較例1の発光体は、モル比2.65Ba・0.3Ca・0.985Mg・Si:0.05Eu・0.015Mnで表される化合物を主として含む。
(Comparative Example 1)
Next, in order to compare with the example of the afterglow light-emitting body of the present invention, the light-emitting body of the comparative example will be described. The raw materials having the composition shown in Table 9 were accurately weighed, thoroughly mixed in an ethanol solvent, and dried. The sufficiently mixed powder was put in an alumina container and baked at 1400 ° C. for 2 hours in a reducing atmosphere (N 2 + H 2 (4%)) to produce the phosphor of Comparative Example 1. The luminous body of Comparative Example 1 mainly contains a compound represented by a molar ratio of 2.65Ba · 0.3Ca · 0.985Mg · Si 2 O 8 : 0.05Eu · 0.015Mn.

Figure 2017145314
Figure 2017145314

焼成した比較例1の発光体をメノウ乳鉢で粗粉砕し、分光蛍光光度計((株)日立ハイテクノロジーズ製F−4500)で発光特性を測定した。図13に365nmの紫外光励起時の蛍光及びりん光スペクトルを示した。蛍光は、458nmに単一の発光ピークを示した。りん光は、622nmに発光ピークを示した。目視では、蛍光色は濃い青色に、りん光色は赤色に観察された。   The fired phosphor of Comparative Example 1 was coarsely pulverized in an agate mortar, and the emission characteristics were measured with a spectrofluorometer (F-4500, manufactured by Hitachi High-Technologies Corporation). FIG. 13 shows fluorescence and phosphorescence spectra upon excitation with ultraviolet light at 365 nm. The fluorescence showed a single emission peak at 458 nm. Phosphorescence showed an emission peak at 622 nm. Visually, the fluorescent color was observed in dark blue and the phosphorescent color was observed in red.

比較例1の発光体の残光測定を行った。励起光源を中心波長365nmのLED光源とし、照射時間を400msとして残光測定を行った結果、残光時間(寿命)は75.5msであった。   The afterglow measurement of the light emitter of Comparative Example 1 was performed. The afterglow time (lifetime) was 75.5 ms as a result of performing afterglow measurement using an excitation light source as an LED light source having a central wavelength of 365 nm and an irradiation time of 400 ms.

比較例1の発光体をエタノール溶媒中、ジルコニアビーズとともに240分間振とう撹拌することにより粉砕した。粉砕後、複数回水洗浄し乾燥後の粉体の粒子径をCILAS粒度分布計1064Lで測定した結果、中央値2.77μmであった。   The phosphor of Comparative Example 1 was pulverized by shaking and stirring with zirconia beads for 240 minutes in an ethanol solvent. After pulverization, the particle size of the powder after being washed with water a plurality of times and dried was measured with a CILAS particle size distribution meter 1064L, and the median value was 2.77 μm.

(比較印刷物の作製と評価)
比較例1の発光体を使用し、表10に示す配合で比較スクリーンインキ組成物1を遊星型ボールミル(フリッチュ社製)で作製した。
(Production and evaluation of comparative printed matter)
Using the phosphor of Comparative Example 1, a comparative screen ink composition 1 was prepared with a planetary ball mill (manufactured by Fritsch) with the formulation shown in Table 10.

Figure 2017145314
Figure 2017145314

スクリーン印刷方式にて、200メッシュの版面を使用し、ベタ画線で蛍光増白されていない上質紙に比較例1の比較スクリーンインキ組成物1を付与したのち、インキを乾燥させ比較例1の比較印刷物1を作製した。   In the screen printing method, a 200-mesh printing plate was used, and after applying the comparative screen ink composition 1 of Comparative Example 1 to fine paper that was not fluorescently whitened with a solid image line, the ink was dried and Comparative Example 1 was dried. Comparative print 1 was produced.

比較例1の比較印刷物1に365nmの紫外光を照射し、青色の蛍光発光を観察した。また、比較印刷物1上を紫外光源を移動させると、光源が離れた部分が赤色のりん光として観察された。しかし、りん光の視認性は実施例1及び実施例2の印刷物より低かった。   The comparative printed matter 1 of Comparative Example 1 was irradiated with 365 nm ultraviolet light, and blue fluorescence was observed. Further, when the ultraviolet light source was moved on the comparative printed matter 1, a portion where the light source was separated was observed as red phosphorescence. However, the visibility of phosphorescence was lower than the printed matter of Example 1 and Example 2.

比較例1の比較印刷物1の、励起波長254nm及び365nmのときのりん光スペクトルを図14に示した。励起波長が異なると、発光強度が異なるものの、スペクトル形状は相似形であり単一の発光ピークを示していた。励起波長254nm及び365nmで発光スペクトル形状が変わらないため、実施例1に示したような判別方法をとることができない。   The phosphorescence spectrum of the comparative printed material 1 of Comparative Example 1 at excitation wavelengths of 254 nm and 365 nm is shown in FIG. Although the emission intensity was different when the excitation wavelength was different, the spectrum shape was similar and showed a single emission peak. Since the emission spectrum shape does not change at the excitation wavelengths of 254 nm and 365 nm, the discrimination method as shown in Example 1 cannot be taken.

真偽判別印刷物1と比較例1の印刷物の真偽判別結果を表11に示した。基準値を、表11のように定め、判定で許容する誤差を±10%とすると、各波長域での強度比は、I11/I21、I14/I24のみ基準値内に入るものの、I12/I22及びI13/I23は基準値から外れるため、比較例の印刷物は「偽」と判定された。 Table 11 shows the authenticity determination results of the authenticity printed matter 1 and the printed matter of Comparative Example 1. If the reference value is determined as shown in Table 11 and the allowable error in determination is ± 10%, the intensity ratio in each wavelength region is within the reference value only for I 11 / I 21 and I 14 / I 24. , I 12 / I 22 and I 13 / I 23 deviate from the standard values, and therefore the printed matter of the comparative example was determined to be “false”.

Figure 2017145314
Figure 2017145314

これらのことから、公知技術である特許文献1の組成を調整し、蛍光特性を本発明の発光材料に近づけても、りん光スペクトルにおいて単一ピークにしかならず、本発明と同様な発光特性を持つ発光材料を作製することはできないことがわかった。   Therefore, even if the composition of Patent Document 1 which is a publicly known technique is adjusted and the fluorescence characteristics are brought close to the light emitting material of the present invention, it becomes only a single peak in the phosphorescence spectrum and has the same light emitting characteristics as the present invention. It turned out that a luminescent material cannot be produced.

(比較例2)
次に、本発明の残光性発光体の実施例との比較を行うため、市販で入手可能な発光材料を表12に示した割合で混合した比較スクリーンインキ組成物2を作製した。
(Comparative Example 2)
Next, a comparative screen ink composition 2 was prepared by mixing commercially available light-emitting materials in the proportions shown in Table 12 in order to compare with the examples of afterglow phosphors of the present invention.

Figure 2017145314
Figure 2017145314

スクリーン印刷方式にて、200メッシュの版面を使用し、ベタ画線で蛍光増白されていない上質紙に比較例2の比較スクリーンインキ組成物2を付与したのち、インキを乾燥させ比較例2の比較印刷物2を作製した。   In the screen printing method, a 200-mesh printing plate was used, and after applying the comparative screen ink composition 2 of Comparative Example 2 to fine paper that was not fluorescently whitened with a solid image line, the ink was dried and Comparative Example 2 was dried. Comparative print 2 was produced.

比較例2の比較印刷物2に365nmの紫外光を照射し、青色の蛍光発光を観察した。次に、比較印刷物2上を紫外光源を移動させたが、赤色のりん光を視認できなかった。   The comparative printed matter 2 of Comparative Example 2 was irradiated with 365 nm ultraviolet light, and blue fluorescence was observed. Next, an ultraviolet light source was moved on the comparative printed material 2, but red phosphorescence could not be visually recognized.

比較例2の比較印刷物2の、励起波長365nmのときの蛍光スペクトル及び励起波長254nm及び365nmのときのりん光スペクトルを図15に示した。蛍光スペクトルにおいて三つのピークが現れ、これらのうち一つのピーク波長域がりん光ピーク波長域と同一であることから、本発明の残光性発光体を含んで成る発光インキにより形成された印刷画像の発光特性とは異なる発光特性を持っている。   FIG. 15 shows the fluorescence spectrum of the comparative printed material 2 of Comparative Example 2 when the excitation wavelength is 365 nm and the phosphorescence spectrum when the excitation wavelengths are 254 nm and 365 nm. Since three peaks appear in the fluorescence spectrum, and one of these peak wavelength regions is the same as the phosphorescent peak wavelength region, the printed image formed by the luminescent ink comprising the afterglow phosphor of the present invention It has a light emission characteristic different from that of.

比較例2の比較印刷物2のりん光スペクトルにおいて、励起波長が異なると、発光強度が異なるもののスペクトル形状は相似形であり単一の発光ピークを示していた。ピーク波長域は、本発明の残光性発光体を含んで成る発光インキにより形成された印刷画像とは異なり、521nmの緑色領域にピークを示していた。   In the phosphorescence spectrum of the comparative printed material 2 of Comparative Example 2, when the excitation wavelength was different, the spectrum shape was similar, although the emission intensity was different, and showed a single emission peak. The peak wavelength region showed a peak in the green region of 521 nm, unlike the printed image formed by the luminescent ink comprising the afterglow luminescent material of the present invention.

励起波長254nm及び365nmでりん光スペクトル形状が変わらないため、実施例1に示したような判別方法をとることができないが、仮に、真偽判別印刷物1と同様な判別方法を取る場合の判別例を示す。真偽判別印刷物1と比較例2の比較印刷物2の真偽判別結果を表13に示した。真偽判別印刷物1の発光スクリーンインキ組成物1と比較例2の比較スクリーンインキ組成物2の発光スペクトル形状が異なることから、真偽判別印刷物1の判別において定めた検出波長域に、比較例2の比較スクリーンインキ組成物2の発光ピーク波長域が入ってこないため、真偽判別印刷物1の判別において定めた検出波長域においては基準値の範囲に入らない。基準値を、表13のように定め、判定で許容する誤差を±10%とすると、比較例2の各波長域での強度比は、基準値外となり、比較例2の比較印刷物2は「偽」と判定された。   Since the phosphorescence spectrum shape does not change at the excitation wavelengths of 254 nm and 365 nm, the discrimination method as shown in the first embodiment cannot be taken. However, a discrimination example in the case where the discrimination method similar to the authenticity discrimination printed matter 1 is taken. Indicates. Table 13 shows the authenticity determination results of the authenticity determination printed matter 1 and the comparative printed matter 2 of Comparative Example 2. Since the emission spectrum shape of the light-emitting screen ink composition 1 of the authenticity discrimination printed matter 1 and the comparison screen ink composition 2 of the comparative example 2 are different from each other, the detection wavelength region defined in the discrimination of the authenticity discrimination printed matter 1 is compared with the comparative example 2. Since the emission peak wavelength region of the comparative screen ink composition 2 does not enter, the detection wavelength region determined in the discrimination of the authenticity discrimination printed matter 1 does not fall within the reference value range. When the reference value is set as shown in Table 13 and the error allowed in the determination is ± 10%, the intensity ratio in each wavelength region of Comparative Example 2 is outside the reference value, and Comparative Print 2 of Comparative Example 2 is “ It was determined to be “false”.

Figure 2017145314
Figure 2017145314

これらのことから、入手可能な発光材料を混合して調色しても本発明と同様の発光特性を実現することはできず、模倣を防止することができることがわかった。   From these facts, it has been found that even if a light emitting material that is available is mixed and color-adjusted, the same light emission characteristics as in the present invention cannot be realized and imitation can be prevented.

Claims (8)

以下の化学式で表わされる蛍光体であって、化学式中のMは、存在しないか又はCaであり、α、β、γが以下の範囲にあり、蛍光ピークと異なる波長領域に複数のりん光ピークを有することを特徴とする残光性発光体。
(Ba・M)3−α−βMg1−γSi;EuαTbβMnγ
0.025≦α≦0.05
0.05≦β≦0.2
0.005≦γ≦0.05
A phosphor represented by the following chemical formula, wherein M is not present or is Ca, and α, β, and γ are in the following ranges, and a plurality of phosphorescent peaks in a wavelength region different from the fluorescent peak An afterglow light-emitting body characterized by comprising:
(Ba · M) 3-α-β Mg 1-γ Si 2 O 8 ; Eu α Tb β Mn γ
0.025 ≦ α ≦ 0.05
0.05 ≦ β ≦ 0.2
0.005 ≦ γ ≦ 0.05
MがCaである場合には、α=0.05、0.05≦β≦0.1、0.009≦γ<0.02であることを特徴とする請求項1記載の残光性発光体。   2. The afterglow emission according to claim 1, wherein when M is Ca, α = 0.05, 0.05 ≦ β ≦ 0.1, 0.009 ≦ γ <0.02. body. 波長領域254(nm)又は波長領域365(nm)を中心とした波長の光を照射したときに、波長領域446から458(nm)までに前記蛍光ピークを有し、波長領域488から502(nm)まで、波長領域541から553(nm)まで及び波長領域621から626(nm)までに前記りん光ピークを有することを特徴とする請求項1又は請求項2記載の残光性発光体。   When light having a wavelength centered on the wavelength region 254 (nm) or the wavelength region 365 (nm) is irradiated, the fluorescence peak is present in the wavelength regions 446 to 458 (nm), and the wavelength regions 488 to 502 (nm) 3) The afterglow luminescent material according to claim 1 or 2, wherein the phosphorescent peak is present in a wavelength region 541 to 553 (nm) and in a wavelength region 621 to 626 (nm). 請求項1乃至請求項3に記載の残光性発光体を含んで成る発光インキ。   A luminescent ink comprising the afterglow luminescent material according to claim 1. 基材上の少なくとも一部に、請求項4に記載の発光インキにより形成された印刷画像を有する真偽判別印刷物。   An authenticity printed matter having a printed image formed by the luminescent ink according to claim 4 on at least a part of the substrate. 請求項5に記載の真偽判別印刷物の真偽判別方法であって、
前記真偽判別印刷物に対して第一の波長域と、第二の波長域の励起光を照射する工程と、
前記第一の波長域の励起光を停止した後の第一のりん光特性と、前記第二の波長域の励起光を停止した後の第二のりん光特性の各々の第一の検出時間における第一の検出波長域から第四の検出波長域の各検出波長域における発光強度の値である第一のりん光強度から第四のりん光強度の各りん光強度を検出するりん光検出工程と、
前記第一のりん光特性と前記第二のりん光特性の双方のりん光特性における前記第一の検出時間の前記各検出波長域の前記各りん光強度の相対比を計算する数値処理を行う演算工程と、
前記演算工程により計算した相対比と、あらかじめ定めた基準値とを照合し、所定の基準値の範囲内である場合に真正と判断する判別工程から成ることを特徴とする真偽判別方法。
The authenticity determination method for authenticity determination printed matter according to claim 5,
Irradiating excitation light of a first wavelength range and a second wavelength range to the authenticity discrimination printed matter;
First detection time of each of the first phosphorescence characteristics after stopping the excitation light in the first wavelength range and the second phosphorescence characteristics after stopping the excitation light in the second wavelength range Phosphorescence detection for detecting each phosphorescence intensity from the first phosphorescence intensity to the fourth phosphorescence intensity, which is the value of the emission intensity in each detection wavelength band from the first detection wavelength band to the fourth detection wavelength band in Process,
Numerical processing is performed for calculating a relative ratio of the phosphorescence intensities in the detection wavelength ranges of the first detection time in the phosphorescence characteristics of both the first phosphorescence characteristic and the second phosphorescence characteristic. A calculation process;
A true / false discrimination method comprising a discrimination step of collating a relative ratio calculated in the calculation step with a predetermined reference value and determining that the value is within a predetermined reference value range.
前記りん光検出工程において、前記第一の波長域の励起光を停止した後の第一のりん光特性と、前記第二の波長域の励起光を停止した後の第二のりん光特性の各々の第二の検出時間における前記各検出波長域の前記各りん光強度を検出し、前記演算工程において、前記第一のりん光特性と前記第二のりん光特性の双方のりん光特性における前記第一の検出時間及び前記第二の検出時間の前記各検出波長域の前記各りん光強度の相対比を計算する数値処理を行うことを特徴とする請求項6記載の真偽判別方法。   In the phosphorescence detection step, the first phosphorescence characteristic after stopping the excitation light in the first wavelength region and the second phosphorescence characteristic after stopping the excitation light in the second wavelength region. Detecting each phosphorescence intensity in each detection wavelength region at each second detection time, and in the calculation step, in the phosphorescence characteristics of both the first phosphorescence characteristics and the second phosphorescence characteristics; The authenticity determination method according to claim 6, wherein numerical processing is performed for calculating a relative ratio of the phosphorescence intensities in the detection wavelength ranges of the first detection time and the second detection time. 請求項5に記載の真偽判別印刷物の真偽判別方法であって、
前記真偽判別印刷物に対して第一の波長域と第二の波長域の少なくとも一方の励起光を照射する工程と、
前記第一の波長域の励起光を停止した後の第一のりん光特性又は前記第二の波長域の励起光を停止した後の第二のりん光特性の、少なくとも一方の前記りん光特性の第一の検出時間及び第二の検出時間における第一の検出波長域から第四の検出波長域の前記各検出波長域における発光強度の値である第一のりん光強度から第四のりん光強度の各りん光強度を検出するりん光検出工程と、
少なくとも一方の前記りん光特性における前記第一の検出時間と前記第二の検出時間の前記各りん光強度の値の相対比を計算する数値処理を行う演算工程と、
前記演算工程により計算した相対比と、あらかじめ定めた基準値とを照合し、所定の基準値の範囲内である場合に真正と判断する判別工程から成ることを特徴とする真偽判別方法。
The authenticity determination method for authenticity determination printed matter according to claim 5,
Irradiating at least one excitation light of a first wavelength range and a second wavelength range to the authenticity discrimination printed matter;
The phosphorescence characteristic of at least one of the first phosphorescence characteristic after stopping the excitation light in the first wavelength range or the second phosphorescence characteristic after stopping the excitation light in the second wavelength range From the first phosphorescence intensity to the fourth phosphorescence, which is the value of the emission intensity in each of the detection wavelength bands from the first detection wavelength band to the fourth detection wavelength band at the first detection time and the second detection time. A phosphorescence detection step for detecting each phosphorescence intensity of the light intensity;
An operation step of performing numerical processing for calculating a relative ratio of the values of the respective phosphorescence intensities of the first detection time and the second detection time in at least one of the phosphorescence characteristics;
A true / false discrimination method comprising a discrimination step of collating a relative ratio calculated in the calculation step with a predetermined reference value and determining that the value is within a predetermined reference value range.
JP2016027588A 2016-02-17 2016-02-17 Afterglow illuminant and method for determining authenticity of printed matter using afterglow illuminant Active JP6562401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016027588A JP6562401B2 (en) 2016-02-17 2016-02-17 Afterglow illuminant and method for determining authenticity of printed matter using afterglow illuminant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016027588A JP6562401B2 (en) 2016-02-17 2016-02-17 Afterglow illuminant and method for determining authenticity of printed matter using afterglow illuminant

Publications (2)

Publication Number Publication Date
JP2017145314A true JP2017145314A (en) 2017-08-24
JP6562401B2 JP6562401B2 (en) 2019-08-21

Family

ID=59682658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016027588A Active JP6562401B2 (en) 2016-02-17 2016-02-17 Afterglow illuminant and method for determining authenticity of printed matter using afterglow illuminant

Country Status (1)

Country Link
JP (1) JP6562401B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241631A (en) * 1996-03-12 1997-09-16 Kasei Optonix Co Ltd Luminous phosphor
JP2001518972A (en) * 1997-03-26 2001-10-16 ザイアオ,ジグオ Silicate long afterglow luminescent material and method for producing the same
JP2002509978A (en) * 1998-03-31 2002-04-02 サーノフ コーポレイション Long afterglow red phosphor
WO2006016058A2 (en) * 2004-07-16 2006-02-16 Rhodia Chimie Method for marking a material and resulting marked material
JP2006266810A (en) * 2005-03-23 2006-10-05 National Printing Bureau Genuineness/falseness discriminating device and genuineness/falseness discriminating method
JP2006275578A (en) * 2005-03-28 2006-10-12 National Printing Bureau Discrimation method and discrimination device
JP2011144244A (en) * 2010-01-13 2011-07-28 National Printing Bureau Illuminant with afterglow property and method for producing the same, luminous ink composition with afterglow property, and forgery-discriminating printed matter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241631A (en) * 1996-03-12 1997-09-16 Kasei Optonix Co Ltd Luminous phosphor
JP2001518972A (en) * 1997-03-26 2001-10-16 ザイアオ,ジグオ Silicate long afterglow luminescent material and method for producing the same
JP2002509978A (en) * 1998-03-31 2002-04-02 サーノフ コーポレイション Long afterglow red phosphor
WO2006016058A2 (en) * 2004-07-16 2006-02-16 Rhodia Chimie Method for marking a material and resulting marked material
JP2006266810A (en) * 2005-03-23 2006-10-05 National Printing Bureau Genuineness/falseness discriminating device and genuineness/falseness discriminating method
JP2006275578A (en) * 2005-03-28 2006-10-12 National Printing Bureau Discrimation method and discrimination device
JP2011144244A (en) * 2010-01-13 2011-07-28 National Printing Bureau Illuminant with afterglow property and method for producing the same, luminous ink composition with afterglow property, and forgery-discriminating printed matter

Also Published As

Publication number Publication date
JP6562401B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
US4451530A (en) Security paper with authenticity features in the form of luminescing substances
US10457087B2 (en) Security element formed from at least two materials present in partially or fully overlapping areas, articles carrying the security element, and authentication methods
Reddy et al. Fluorescence spectra of Eu3+: Ln2O2S (Ln= Y, La, Gd) powder phosphors
GB2258659A (en) An anti-stokes luminescent material
JP5610122B2 (en) Afterglow luminescent material and method for producing the same, afterglow luminescent ink composition, and authenticity printed matter
US9670406B2 (en) Zinc sulphide phosphor having photo- and electroluminescent properties, process for producing same, and security document, security feature and method for detecting same
JP2005325273A (en) Phosphor, its production method and light source and led using the phosphor
KR102355891B1 (en) A checking method of forgery and alteration of security printed matter with security ink
CN112203863A (en) Security feature based on luminescent material and facility for authentication that can be authenticated by a smartphone
JP2017088719A (en) Red phosphor
JP5799434B2 (en) Afterglow luminescent material and method for producing the same, afterglow luminescent ink composition, and authenticity printed matter
JP5610121B2 (en) Afterglow luminescent composition, afterglow ink composition, and authenticity printed matter
Chae et al. Persistent luminescence of RE3+ co-doped Sr3B2O6: Eu2+ yellow phosphors (RE= Nd, Gd, Dy)
JP5881010B2 (en) Afterglow illuminant
JP2011144244A5 (en)
JP6562401B2 (en) Afterglow illuminant and method for determining authenticity of printed matter using afterglow illuminant
JP5186687B2 (en) Afterglow luminescent material, method for producing the same and luminescent printed material
CN102909988B (en) Valuable document and identification method thereof
CN109354927B (en) Oily luminous ink and preparation method thereof
US20100219376A1 (en) Red phosphor material and manufacturing method thereof
JP5610154B2 (en) Luminous body
JP5186686B2 (en) Multifunctional illuminant, method for producing the same and luminescent printed material
JP6967194B2 (en) Afterglow acid sulfide phosphor and luminescent composition for authenticity determination
JP2007277281A (en) Mixed light-emitting body, light-emitting ink, light-emitting printed matter, light-emitting material-applied article and method for distinguishing authenticity
JP2000345152A (en) Yellow light emitting afterglow photoluminescent phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190716

R150 Certificate of patent or registration of utility model

Ref document number: 6562401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250