JP2007277281A - Mixed light-emitting body, light-emitting ink, light-emitting printed matter, light-emitting material-applied article and method for distinguishing authenticity - Google Patents

Mixed light-emitting body, light-emitting ink, light-emitting printed matter, light-emitting material-applied article and method for distinguishing authenticity Download PDF

Info

Publication number
JP2007277281A
JP2007277281A JP2006101367A JP2006101367A JP2007277281A JP 2007277281 A JP2007277281 A JP 2007277281A JP 2006101367 A JP2006101367 A JP 2006101367A JP 2006101367 A JP2006101367 A JP 2006101367A JP 2007277281 A JP2007277281 A JP 2007277281A
Authority
JP
Japan
Prior art keywords
light
emitting
color
printed matter
luminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006101367A
Other languages
Japanese (ja)
Inventor
Mikiko Naito
美紀子 内藤
Tadashi Morinaga
匡 森永
Eiji Kawamura
英司 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Printing Bureau
Original Assignee
National Printing Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Printing Bureau filed Critical National Printing Bureau
Priority to JP2006101367A priority Critical patent/JP2007277281A/en
Publication of JP2007277281A publication Critical patent/JP2007277281A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Credit Cards Or The Like (AREA)
  • Luminescent Compositions (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mixture of light-emitting materials, light-emitting ink, light-emitting printed matter and a light-emitting material-coated article improving a security level by a characteristic change in the color of emitted light, and a method for distinguishing authenticity. <P>SOLUTION: This mixture of light-emitting materials is prepared by mixing at least 2 light-emitting materials having different color of the emitted lights and times for reaching the saturation of light intensity, and light-emitting ink is prepared by dispersing the light-emitting mixture with ink vehicle. By using the ink, light-emitting printed matter by applying it on a substrate material or at least a part of the inner surface of the substrate material is produced. The method for distinguishing the authenticity is provided by arranging the light-emitting printed matter at an investigation means, irradiating ultraviolet light to the light-emitting printed matter from an ultraviolet light-irradiation part, photo-electrically converting the color of the emitted light of reflecting light from the light-emitting material of the light-emitting printed matter by the irradiation of the ultraviolet light, by a photo sensor and detecting the waveform of the behavior of the light-emitting material until reaching to the saturated intensity of the emitted light. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、紫外線を照射してから発光強度が飽和に達するまでの励起時間と、発光色の異なる少なくとも二つの紫外線励起可視発光体を混合することで、紫外線照射時間に応じて発光色が連続的に変化する真偽判別性に優れた発光体混合物、前記発光体混合物をインキビヒクル中に混合した発光インキ、発光印刷物、及び発光体塗工物並びに真偽判別方法に関するものである。   In the present invention, by mixing at least two ultraviolet-excited visible light emitters having different emission colors from the excitation time until the emission intensity reaches saturation after irradiation with ultraviolet rays, the emission color is continuous according to the ultraviolet irradiation time. The present invention relates to a luminescent material mixture having excellent authenticity that changes with time, a luminescent ink obtained by mixing the luminescent material mixture in an ink vehicle, a luminescent printed material, a luminescent material coated product, and a method for determining authenticity.

銀行券や有価証券、郵券等の一定のセキュリティが必要とされる印刷物には、第三者による偽造及び改ざんを見分けるために、真正品と偽造品を区別する基準となる要素、いわゆる真偽判別要素の付与が不可欠となっている。   For printed matter that requires a certain level of security such as banknotes, securities, and postal tickets, an element that serves as a standard for distinguishing genuine products from counterfeit products, so-called authenticity discrimination, in order to distinguish counterfeiting and tampering by third parties. The addition of elements is essential.

付与される真偽判別要素の一つの例として、例えば銀行券に施されているすき入れが挙げられる。このすき入れは、ユーザが認証具を必要とすることなく、可視光にかざすだけで簡単に銀行券の真偽を判定することができる。   As an example of the authenticity determination element to be given, for example, a clearance applied to a bank note can be cited. This clearance allows the user to easily determine the authenticity of the banknote simply by holding it over visible light without the need for an authentication tool.

一方、他の例として、可視光では観察できないか、又は可視光で観察できても違和感のない構成で印刷物中の図柄や背景に配されている特殊な真偽判別要素がある。この真偽判別要素は、特殊な認証具を用いた場合にのみに確認できるものであり、偽造者にその存在を特定し難く構成されていることが特徴となる。   On the other hand, as another example, there is a special authenticity determination element that is arranged on a design or background in a printed material with a configuration that is not observable with visible light, or that can be observed with visible light without causing a sense of incongruity. This authenticity determination element can be confirmed only when a special authentication tool is used, and is characterized in that it is difficult for a forger to identify its presence.

この特殊な認証具を必要とする真偽判別要素を構成する一つの物質として、発光体がある。ここでいう発光体とは、蛍光体、燐光体及び蓄光体を含むものとする。発光体の種類は数限りないが、発光体を構成する材料が異なれば、互いに励起波長や発光波長、残光強度等の特性のすべてが完全に一致することはない。このことを利用して、発光体を印刷したセキュリティ印刷物に特定の励起波長を照射し、発光色を官能検査で確認するか、あるいは機械検査によって発光スペクトルや特定波長域における発光強度、又は残光強度等を検出して、発光体自体の真偽判別を行うことで、セキュリティ印刷物の真偽を判別する手法は、従来から一般的に用いられている。   One substance constituting the authenticity determination element that requires this special authentication tool is a light emitter. Here, the light emitter includes a phosphor, a phosphor and a phosphorescent material. There are no limit to the types of light emitters. However, if the materials composing the light emitters are different, all of the characteristics such as excitation wavelength, light emission wavelength, and afterglow intensity do not completely match each other. Utilizing this, the printed matter printed with the illuminant is irradiated with a specific excitation wavelength, and the emission color is confirmed by a sensory test, or the emission spectrum in the specific wavelength range or the afterglow by mechanical inspection. A technique for determining the authenticity of a security printed matter by detecting the intensity or the like and determining the authenticity of the light emitter itself has been generally used.

発光体のなかでも紫外線励起可視発光体は、励起波長として紫外線領域の波長の光を照射することで可視領域の光を発するもので、ブラックライトや殺菌灯等の簡易的な認証具を用いて発光体を励起させることが可能で、かつその発光は人の目で捉えることができる。   Among the illuminants, ultraviolet-excited visible illuminants emit light in the visible region by irradiating light in the ultraviolet region with the excitation wavelength, and use simple authentication tools such as black light and germicidal lamps. The illuminant can be excited and the emitted light can be perceived by the human eye.

本来、紫外線励起可視発光体も、厳密な機械検査によって真偽判別を行うことを前提とした発光体であるが、上記のように目視でその発光を捉えることが可能であることから、チケットや商品券等のセキュリティ印刷物に利用されており、チケット換金所や販売店等では、持ち込まれるこれらのセキュリティ印刷物に対してブラックライトを用いて紫外線を照射し、目視によって発光を確かめることを真偽判別の一つの手段としていることも多い。   Originally, UV-excited visible illuminants are also illuminants on the premise that authenticity is determined by strict mechanical inspection. It is used for security printed matter such as gift certificates, and at ticket cash exchanges and sales outlets, these security printed materials that are brought in are irradiated with ultraviolet rays using a black light and checked for authenticity by visual inspection. It is often used as one of the means.

このように紫外線励起可視発光体は、極めて認証が簡単な発光体として認知され、これまで多くのセキュリティ製品の真偽判別要素として用いられてきたが、これは付与する発光体が真正品製造者にしか入手できないことを前提にすることで成り立っていた。   As described above, the UV-excited visible illuminant is recognized as an extremely simple illuminant, and has been used as an authenticity determination element in many security products so far. It was based on the premise that it can only be obtained.

しかし、近年、従来は一般人が入手することが困難であった特殊な紫外線励起可視発光体が、一般の雑貨販売店において多種類販売されており、真正品に用いられている発光体に近い特徴を持つ発光体を入手することは容易となりつつある。   However, in recent years, many types of special UV-excited visible light emitters, which have been difficult for ordinary people to obtain, have been sold at general merchandise stores and are close to the light emitters used for genuine products. It is becoming easier to obtain light emitters having

このように、真正品に用いられている発光体に近い特徴を持つ発光体を入手して偽造品を作製された場合には、外乱光を遮断した環境下で強度や波長が厳密に管理された紫外線を照射して発光体を励起させ、その発光スペクトルや発光強度を測定して真正品の値と比較する機械検査であればともかく、外乱光が差し込む環境において照射波長や照射強度があいまいなブラックライトや殺菌灯等の簡易的な認証具で紫外線を照射して、その発光色のみを目視で捉えて真偽判別を行う方法では、判別を誤る可能性が高いという問題がある。   Thus, when a counterfeit product is manufactured by obtaining a light emitter with characteristics similar to those used for genuine products, the intensity and wavelength are strictly controlled in an environment where ambient light is blocked. Irradiation with ultraviolet light excites the illuminant and measures its emission spectrum and emission intensity to compare it with the authentic value, so the irradiation wavelength and intensity are ambiguous in the environment where ambient light is inserted. There is a problem that the possibility of erroneous determination is high in a method of performing authenticity determination by irradiating ultraviolet rays with a simple authentication tool such as a black light or a germicidal lamp and visually grasping only the emitted color.

以上のことから、紫外線励起可視発光体をセキュリティ印刷物の真偽判別要素の一つとする方法は、製造者がこれを厳密な機械検査で真偽判別を行うことを意図していたとしても、流通過程において目視検査で真偽判別が行われる可能性があることを考慮すると、多種多様な発光体が一般人に入手可能となった現在、そのセキュリティレベルは総合的に低くなりつつあるという問題があった。   Based on the above, the method of using UV-excited visible light emitters as one of the authenticity determination elements of security prints is distributed even if the manufacturer intends to determine authenticity by strict mechanical inspection. Considering that there is a possibility of authenticity being determined by visual inspection during the process, there is a problem that the security level is becoming lower overall now that a wide variety of light emitters are available to the general public. It was.

この問題に対応するため、特殊な紫外線励起可視発光体が用いられつつある。これらの特殊な紫外線励起可視発光体を混合したインキの代表例としては、二色性蛍光インキやカラーシフトインキがある。二色性蛍光インキ(例えば特許文献1参照)及びカラーシフトインキ(例えば特許文献2参照)は、どちらも多くの場合二種類以上の紫外線励起可視発光体を一つのインキビヒクル中に混合したインキであって、紫外線を照射したときの発光色を変化させるものである。   In order to deal with this problem, special ultraviolet-excited visible light emitters are being used. Typical examples of inks that are mixed with these special UV-excited visible light emitters include dichroic fluorescent inks and color shift inks. The dichroic fluorescent ink (see, for example, Patent Document 1) and the color shift ink (see, for example, Patent Document 2) are both inks in which two or more kinds of UV-excited visible light emitters are mixed in one ink vehicle. Thus, the color of light emitted when irradiated with ultraviolet rays is changed.

二色性蛍光インキは、紫外線励起特性と発光色の異なる発光体を混合するもので、多くの場合、短波紫外線で強く励起する励起特性を有する蛍光顔料と、紫外線長波で強く励起する励起特性を有する蛍光顔料の組み合わせで混合され、短波紫外線(254nmを中心波長とする)と長波紫外線(365nmを中心波長とする)を照射した場合に、一つのインキであるにもかかわらず発光色が変化するものである。   Dichroic fluorescent ink is a mixture of phosphors with different ultraviolet excitation characteristics and emission colors. In many cases, dichroic fluorescent inks have fluorescent pigments that have excitation characteristics that are strongly excited by shortwave ultraviolet light and excitation characteristics that are strongly excited by ultraviolet longwaves. When mixed with a combination of fluorescent pigments and irradiated with short-wave ultraviolet light (having a central wavelength of 254 nm) and long-wave ultraviolet light (having a central wavelength of 365 nm), the emission color changes even though it is a single ink. Is.

具体的には短波紫外線を照射するライト1と長波紫外線を照射するライト2の二つの認証具を用いて、それぞれの波長におけるインキの発光色をそれぞれ真偽判別要素とすることが可能であり、従来の単一の発光色で真偽判別を行うことしかできなかった紫外線励起可視発光体と比較しても、そのセキュリティレベルは高いと考えられる。また、この二色性蛍光発光体は現在のところ一般には販売されていないこと考慮すると、一般的な紫外線励起可視発光体よりも偽造に用いられる可能性は低い。   Specifically, using two authentication tools, a light 1 for irradiating short wave ultraviolet light and a light 2 for irradiating long wave ultraviolet light, the emission color of ink at each wavelength can be used as an authenticity determination element, It is considered that the security level is high even when compared with the conventional ultraviolet-excited visible illuminant, which could only determine authenticity with a single luminescent color. Further, considering that this dichroic fluorescent light emitter is not generally sold at present, it is less likely to be used for counterfeiting than a general ultraviolet ray excited visible light emitter.

また、カラーシフトインキは、単一の波長域の紫外線の照射でも発光色が変化するインキであり、これは発光体の残光時間の違いを利用するものである。例えば、残光時間がほとんどない蛍光体と、残光時間の長い蓄光体を混合した場合には、紫外線を照射している間は、蛍光体の発光色が主体色となり、紫外線の照射を終了した瞬間から蓄光体の発光色(残光色)が主体色となる。蛍光体の発光色と蓄光体の発光色が異なっている場合、紫外線の照射の有無でインキの発光色が変化するものである。   Further, the color shift ink is an ink whose luminescent color changes even when irradiated with ultraviolet rays in a single wavelength region, and this utilizes the difference in the afterglow time of the illuminant. For example, when a phosphor with little afterglow time and a phosphorescent material with a long afterglow time are mixed, the emission color of the phosphor becomes the main color while irradiating ultraviolet rays, and the ultraviolet ray irradiation ends. From this moment, the emission color (afterglow color) of the phosphor is the main color. When the emission color of the phosphor and the emission color of the phosphor are different, the emission color of the ink changes depending on the presence or absence of ultraviolet irradiation.

このカラーシフトインキについても二色性蛍光インキと同様に、従来の単一の発光色で真偽判別を行うことしかできなかった紫外線励起可視発光体と比較してセキュリティレベルは高いと考えられる。このカラーシフトインキについても一般には販売されていないので、一般的な紫外線励起可視発光体よりも偽造に用いられる可能性は低い。   Similar to the dichroic fluorescent ink, this color shift ink is considered to have a higher security level than the conventional ultraviolet-excited visible luminescent material that could only determine authenticity with a single luminescent color. Since this color shift ink is not generally sold, it is less likely to be used for counterfeiting than a general UV-excited visible light emitter.

以上のように、紫外線励起可視発光体は、単純な発光ではそのセキュリティを維持することが困難になりつつあることから、偽造者には再現不可能な特殊な特性を持った発光体が要求されており、かつその特性は色変化のように目視でも容易に捉えることができることが望ましいと考えられている。   As described above, since UV-excited visible light emitters are becoming difficult to maintain their security with simple light emission, a light emitter with special characteristics that cannot be reproduced by counterfeiters is required. In addition, it is considered desirable that the characteristics can be easily grasped visually by color change.

特開平10−251570号公報JP-A-10-251570 特開2005−67043号公報JP 2005-67043 A

このように、紫外線励起可視発光体は、その認証の容易さから主に発光色の特殊化が望まれているが、前述の二色性蛍光インキやカラーシフトインキについてもその真偽判別を行う認証具やその認証環境において問題が生じる可能性がある。   As described above, the UV-excited visible illuminant is mainly required to specialize the emission color because of its ease of authentication, but the authenticity of the above-described dichroic fluorescent ink and color shift ink is also determined. Problems may arise in the authentication tool and its authentication environment.

特許文献1の二色性蛍光インキが持つ顕著な特性である複数の波長域における発光色の違いを確認するためには、少なくとも二つの異なった波長の紫外線を照射することが可能なUVランプが必要となり、これまでのブラックライトや殺菌灯等のいずれか一つの認証具による真偽判別は不可能である。特に多くの場合、二色性蛍光インキの認証波長の一つである短波紫外線は、人体に有害であり、取り扱いには注意が必要となる。   In order to confirm the difference in emission color in a plurality of wavelength ranges, which is a remarkable characteristic of the dichroic fluorescent ink of Patent Document 1, a UV lamp capable of irradiating at least two different wavelengths of ultraviolet rays is used. It is necessary, and authenticity determination with any one authentication tool such as a black light or a germicidal lamp is impossible. In many cases, short-wave ultraviolet rays, which are one of the certified wavelengths of dichroic fluorescent inks, are harmful to the human body and require careful handling.

特許文献2のカラーシフトインキについては、二色性蛍光体と異なり認証具は従来同様一つで十分であり、認証波長もほとんどの場合、従来から使用しているブラックライトが照射する長波紫外線でほぼ問題ない。しかし、カラーシフトインキが発する残光を目視で確認するためには、外乱となる周囲の光を遮断できる環境が必要となる。これは、蛍光発光による発光強度と比較して蓄光による残光強度は極めて微弱であることが原因で生じる問題であり、この問題は不可避である。よって、この色変化を目視で確認することは蛍光灯で照らし出された環境では困難であり、ブラックライトが発する紫外線以外の外乱となる光をほぼ遮断できる環境、あるいはブラックライトを備えた特殊な暗箱が必須となるという問題があった。   Regarding the color shift ink of Patent Document 2, unlike a dichroic phosphor, a single authentication tool is sufficient as in the past, and in most cases, the authentication wavelength is a long wave ultraviolet ray irradiated by a conventionally used black light. Almost no problem. However, in order to visually confirm the afterglow emitted from the color shift ink, an environment that can block ambient light that becomes a disturbance is required. This is a problem caused by the fact that the afterglow intensity due to stored light is extremely weak compared to the emission intensity due to fluorescence, and this problem is unavoidable. Therefore, it is difficult to visually confirm this color change in an environment illuminated with a fluorescent lamp, and an environment that can substantially block light other than ultraviolet light emitted by black light, or a special light equipped with black light. There was a problem that a dark box became essential.

また、暗箱に入れて認証するには、常に暗箱を備えておくか又は保持している必要があるため、瞬時に判別するには向いていない。   Further, in order to authenticate in a dark box, it is necessary to always have or hold the dark box, so it is not suitable for instantaneous determination.

本発明は、上述した従来技術の問題点を解決するためになされたものであり、その特徴的な発光色の変化によってセキュリティレベルを向上させることが可能であり、目視と簡易的な判別装置との両方を用いて判別することができる発光体混合物、発光インキ、発光印刷物及び発光体塗工物並びにこの発光印刷物及び発光体塗工物を目視で又は機械で容易に判別することが可能な真偽判別方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems of the prior art, and it is possible to improve the security level by changing the characteristic emission color. The phosphor mixture, the luminescent ink, the luminescent printed matter, and the luminescent coated product that can be discriminated using both of these are true and the luminescent printed matter and the luminescent coated product can be easily discriminated visually or by a machine. An object is to provide a false discrimination method.

本発明の発光体混合物は、紫外線を照射してから発光強度が飽和に達するまでの時間が異なり、かつ発光色の異なる少なくとも2つの発光体を混合した混合物であって、前記混合物は紫外線の照射開始からの時間経過に従って発光色が変化することを特徴とする。   The luminescent material mixture of the present invention is a mixture in which at least two luminescent materials having different luminescence intensity from irradiation of ultraviolet light to saturation are mixed, and the mixture is irradiated with ultraviolet light. The luminescent color changes as time elapses from the start.

本発明の発光体混合物の少なくとも2つの発光体は、紫外線を照射してから発光強度が飽和に達するまでの時間の短い発光体と発光強度が飽和に達するまでの時間の長い発光体とから成り、発光初期から前記飽和発光時間の短い発光体の発光色は一定の強度で発光し続け、前記飽和発光時間の長い発光体は飽和発光強度に達するまで徐々に発光強度が上昇することで、前記少なくとも2つの発光体が飽和発光強度に達するまで、前記少なくとも2つの発光体の混合された発光色が連続的に遷移するものである。   At least two light emitters of the light emitter mixture of the present invention are composed of a light emitter having a short time until the light emission intensity reaches saturation after irradiation with ultraviolet light and a light emitter having a long time until the light emission intensity reaches saturation. The light emission color of the light emitter with a short saturated light emission time from the beginning of light emission continues to emit light at a constant intensity, and the light emitter with a long saturation light emission time gradually increases in light emission intensity until reaching the saturated light emission intensity, The mixed emission color of the at least two light emitters continuously transitions until at least two light emitters reach the saturation light emission intensity.

本発明の発光インキは、発光体混合物をインキビヒクル中に分散させたものである。   The luminescent ink of the present invention is obtained by dispersing a luminescent material mixture in an ink vehicle.

本発明の発光印刷物は、発光体混合物を、基材上又は基材内面の少なくとも一部に付与することを特徴とする。   The luminescent printed material of the present invention is characterized in that the luminescent material mixture is applied to at least a part of the substrate or the inner surface of the substrate.

本発明の発光体塗工物は、発光体混合物を、基材上又は基材内面の少なくとも一部に塗布することを特徴とする。   The phosphor-coated product of the present invention is characterized in that the phosphor mixture is applied to at least a part of the substrate or the inner surface of the substrate.

本発明の発光印刷物又は発光体塗工物を用いた真偽判別方法は、紫外線の照射時間に応じた発光色の変化を捉えることを特徴とする。   The authenticity determination method using the luminescent printed material or the luminescent material coated material of the present invention is characterized by capturing a change in luminescent color according to the irradiation time of ultraviolet rays.

本発明の発光印刷物又は発光体塗工物を用いた真偽判別方法は、前記発光印刷物を検査手段に配置し、前記発光印刷物に紫外線照射部から紫外線を照射し、前記紫外線の照射に対して前記発光印刷物の発光体からの反射光の発光色を光センサで光電変換し、前記発光体の飽和発光強度に達するまでの発光色の変化の挙動を電気的に検出することで真偽判別することを特徴とする。   The authenticity determination method using the luminescent printed material or the luminescent material coated material of the present invention includes arranging the luminescent printed material in an inspection unit, irradiating the luminescent printed material with ultraviolet rays from an ultraviolet irradiation unit, and The light emission color of reflected light from the light emitting body of the light emitting printed matter is photoelectrically converted by an optical sensor, and authenticity determination is performed by electrically detecting the behavior of the light emission color change until the saturation light emission intensity of the light emitting body is reached. It is characterized by that.

本発明によれば、単一の紫外線照射光源のみで発光色の変化を生じ、かつその発光色変化は紫外線照射開始から紫外線照射中に少なくとも2つの発光体の発光色が混ざり合って徐々に発光色の変化及び発光輝度が増加するという特徴を有する発光体混合物を得ることができ、また、発光インキ、発光印刷物、及び発光体塗工物並びに真偽判別方法が提供される。   According to the present invention, a change in emission color occurs only with a single ultraviolet irradiation light source, and the emission color change is gradually emitted by mixing the emission colors of at least two light emitters from the start of ultraviolet irradiation to the time of ultraviolet irradiation. A phosphor mixture having the characteristics that the color change and the emission luminance are increased can be obtained, and a luminescent ink, a luminescent print, a luminescent coating, and an authenticity determination method are provided.

以下に、本発明の実施の形態による発光体混合物、発光インキ、発光印刷物、及び発光体塗工物並びに真偽判別方法について、図面を用いて説明する。   Below, the luminous body mixture, luminous ink, luminous printed material, luminous body coating material, and authenticity discrimination method by embodiment of this invention are demonstrated using drawing.

ここで発光体混合物とは、本発明によって成された発光体であり、2つの異なる発光体を混合して作製した。また、2つの発光体は、発光色の変化が大きくなる発光体を選定した。本実施の形態では2つの異なる発光体の場合を説明しているが、発光体が三つ以上でも良いのはいうまでもない。   Here, the light emitter mixture is a light emitter made according to the present invention, and was prepared by mixing two different light emitters. In addition, as the two light emitters, light emitters having a large change in emission color were selected. Although the case of two different light emitters is described in this embodiment, it goes without saying that the number of light emitters may be three or more.

発光体には、一定量の紫外線照射光量に対して、それ以上発光強度が上がらない最大値が存在する(以下、この最大値を飽和発光強度と称する。)。多くの発光体の場合、一定強度の紫外線を照射すると、ほぼ一瞬でこの飽和発光強度に達するが、ある特定の発光体は、一定の紫外線を照射してから徐々に発光が強くなり、最終的にこの飽和発光強度に達するまでに紫外線照射開始から時間を要する特性を有するものがある(以下、この紫外線照射開始から飽和発光強度に達するまでの時間を飽和発光時間と称する。)。   The light emitter has a maximum value at which the light emission intensity does not increase any more for a certain amount of ultraviolet irradiation light (hereinafter, this maximum value is referred to as a saturated light emission intensity). In the case of many illuminants, the saturation luminescence intensity is reached almost instantaneously when irradiated with a certain intensity of ultraviolet light. However, a specific illuminant gradually emits light after irradiating with a certain intensity of ultraviolet light. Some have characteristics that require time from the start of ultraviolet irradiation until the saturated emission intensity is reached (hereinafter, the time from the start of ultraviolet irradiation until the saturation emission intensity is reached is referred to as saturated emission time).

この飽和発光時間の短い発光体1はほぼ零秒であり、逆に長い発光体2は1秒に達する。例えば、飽和発光時間がほぼ零秒である発光体1と、飽和発光時間に1秒を要する発光体2とを混合して均一に分散させた場合、紫外線照射開始から照射時間1秒までは飽和発光時間の短い発光体1の発光色が主体色となり、照射時間1秒以上の場合には飽和発光時間の短い発光体1の発光色と飽和発光時間の長い発光体2の発光色の混合色となる。   The light emitter 1 with a short saturated light emission time is approximately zero seconds, and conversely, the long light emitter 2 reaches 1 second. For example, when the light emitter 1 with a saturation light emission time of approximately zero seconds and the light emitter 2 with a saturation light emission time of 1 second are mixed and dispersed uniformly, the saturation is from the start of UV irradiation until the irradiation time of 1 second. The light emission color of the light emitter 1 having a short light emission time is a main color, and when the irradiation time is 1 second or longer, the light emission color of the light emitter 1 having a short saturated light emission time and the light emission color of the light emitter 2 having a long saturation light emission time are mixed colors. It becomes.

この2つの発光体に、異なる発光色(飽和発光時間の短い発光体1の発光色と飽和発光時間の長い発光体2の発光色)を有するものを選択した場合には、飽和発光時間の長い発光体2が飽和発光強度に達するまでは、紫外線照射直後の飽和発光時間の短い発光体1の発光色が主体であるが、飽和発光時間の長い発光体2が徐々に発光するにしたがって、飽和発光時間の短い発光体1の発光色は徐々にその発光色が2つの発光体の混合色に至るまで色相が連続的に遷移するという特殊な発光強度の増加を伴う色の変化を生じせしめることが可能となる。   When these two light emitters having different light emission colors (light emission color of the light emitter 1 having a short saturated light emission time and light emission color of the light emitter 2 having a long saturation light emission time) are selected, the saturation light emission time is long. Until the illuminant 2 reaches the saturated emission intensity, the luminescent color of the illuminant 1 having a short saturated emission time immediately after UV irradiation is mainly used, but as the illuminant 2 having a long saturated emission time gradually emits light, The luminescent color of the illuminant 1 having a short luminescence time causes a color change accompanied by a special increase in luminescence intensity in which the hue continuously transitions until the luminescent color reaches a mixed color of the two illuminants. Is possible.

この飽和発光時間の差は大きければ大きいほど、目視で容易に発光色変化を確認することが可能となり、その真偽判別性は高くなることはいうまでもない。この発光色変化を目視で捉えるためには、飽和発光時間の差は0.1秒以上であることが望ましい。0.1秒より小さい場合、その色変化の認証には個人差が生じるとともに、万人が目視で真偽判別することは困難となる。   It goes without saying that the greater the difference in the saturated light emission time, the easier it is to visually confirm the change in emission color and the higher the authenticity discrimination. In order to visually grasp the change in emission color, the difference in the saturated emission time is desirably 0.1 seconds or more. If the time is less than 0.1 seconds, there are differences among individuals in the authentication of the color change, and it is difficult for all people to make a true / false determination visually.

図1に、目視上の発光色の変化が最大となりうる発光体の選定結果を示す。
R系(赤系)、G系(緑系)及びB系(青系)の発光体の、飽和発光時間の短い発光体と飽和発光時間の長い発光体とをそれぞれ組み合わせ、それらの組み合わせに対して、紫外線照射直後の発光色、両発光体が飽和発光強度に達するまでの中間混合色、両発光体が飽和発光強度に達した時の混合色を目視で観察し、評価した結果である。
FIG. 1 shows a selection result of a light emitter that can maximize the change in the light emission color visually.
Combining R-type (red), G-type (green) and B-type (blue) illuminants with a short saturation emission time and a long saturation emission time, respectively. Thus, the luminescent color immediately after UV irradiation, the intermediate mixed color until both light emitters reach the saturation light emission intensity, and the mixed color when both light emitters reach the saturated light emission intensity are visually observed and evaluated.

その結果、R系(赤系)、G系(緑系)及びB系(青系)発光体の組み合わせにおいて、目視上、発光色の変化が最大と感じ、且つ中間混合発光色と混合色の発色が鮮やかであった組み合わせは、R系とG系の組み合わせであった。ただし、言うまでもなく本発明はこのR系とG系の発光体の組み合わせに限定するものではない。   As a result, in the combination of R system (red system), G system (green system) and B system (blue system) illuminant, the luminescent color change feels maximum visually, and the intermediate mixed luminescent color and mixed color The combination with vivid color was the combination of R and G. However, it goes without saying that the present invention is not limited to this combination of R and G phosphors.

本実施の形態による構成要件である2つの発光体のうちの一つである飽和発光時間が長い発光体2としては、比較的長い残光を有する蓄光体が本実施の形態で述べる特徴を有している場合が多いことから、一般的に蓄光体と呼称される発光体を飽和発光時間が長い発光体2とし、また、他の発光体としては、一般的に蛍光体、あるいは燐光体と呼称される発光体を飽和発光時間の短い発光体1とする。ただし、燐光体の中には比較的飽和発光時間の長いものが含まれる場合がある。この場合には、発光体1と発光体2の飽和発光時間の差が0.1秒以上になる組み合わせであれば、例えば蛍光体と燐光体の組み合わせ、あるいは燐光体と燐光体の組み合わせであっても本発明の発光体混合物を構成することが可能である。   As the light emitter 2 having a long saturated light emission time, which is one of the two light emitters, which is a constituent requirement according to the present embodiment, a phosphorescent material having a relatively long afterglow has the characteristics described in this embodiment. In many cases, the illuminant generally called a phosphorescent body is the illuminant 2 with a long saturated emission time, and other illuminants are generally phosphors or phosphors. The light emitter referred to is a light emitter 1 with a short saturated light emission time. However, some phosphors have a relatively long saturated emission time. In this case, a combination in which the difference in the saturation emission time between the light emitter 1 and the light emitter 2 is 0.1 seconds or more is, for example, a combination of a phosphor and a phosphor, or a combination of a phosphor and a phosphor. However, it is possible to constitute the phosphor mixture of the present invention.

目視上、発光色の変化を効果的に生じさせる各発光体の適当な混合比率は、機械的にあらかじめ算出することが可能である。これは、発光体1と発光体2の飽和発光時間経過後の分光スペクトルに示す発光波形の積分値がほぼ同じ値であることが目安となる。   Appropriate mixing ratios of the respective light emitters that effectively cause a change in emission color can be calculated mechanically in advance. This is a rough indication that the integrated values of the light emission waveforms shown in the spectral spectra after the lapse of the saturated light emission time of the light emitter 1 and the light emitter 2 are approximately the same value.

(実施例)
上記実施の形態における実施例として、二つの発光体の発光色はR系とG系の二つの発光体の組み合わせを選択し、発光体混合物、発光インキ及び発光印刷物を作製する。
(Example)
As an example in the above embodiment, the light emission color of the two light emitters is selected from a combination of R and G light emitters to produce a light emitter mixture, a light emitting ink, and a light emitting printed matter.

二つの発光体のうち、R系発光体は発光ピークが657nmの赤色である可視領域の最高波長の発光体1(販売メーカ:東芝 製品名:SPD-116S)、G系発光体は発光ピークが516nmを中心波長とする発光体2(販売メーカ:根本特殊化学 製品名:DM224)を選定した。   Of the two illuminants, the R-based illuminant has an emission peak of 657 nm in red with the highest wavelength in the visible region 1 (vendor: Toshiba product name: SPD-116S), and the G-based illuminant has an emission peak. The phosphor 2 having a central wavelength of 516 nm (sales manufacturer: Nemoto Special Chemicals product name: DM224) was selected.

図2に、発光体1と発光体2の飽和発光時間と飽和発光強度の関係を示す。
R系発光体1は、長波紫外線の照射を受けて励起し、第1の波長(657nm)で発光し、その飽和発光時間はほぼ零秒である。一方、G系発光体2は長波紫外線の照射を受けて励起し、第2の波長(516nm)で発光し、その飽和発光時間は約1秒である。
FIG. 2 shows the relationship between the saturated light emission time and the saturated light emission intensity of the light emitters 1 and 2.
The R-based light emitter 1 is excited by being irradiated with long-wave ultraviolet light, emits light at a first wavelength (657 nm), and has a saturated light emission time of approximately zero seconds. On the other hand, the G-based illuminant 2 is excited by irradiation with long-wave ultraviolet light, emits light at the second wavelength (516 nm), and has a saturation light emission time of about 1 second.

本実施例において、発光体1及び発光体2には無機系発光顔料を用いているが、有機系発光顔料を用いたとしても何ら問題ない。   In this embodiment, the inorganic luminescent pigment is used for the luminescent material 1 and the luminescent material 2, but there is no problem even if an organic luminescent pigment is used.

上記したように本実施の形態の構成要件を満たす二つの発光体を選定したのち、目視上その発光色の変化を最大に感じられる混合割合を決定するためにそれぞれの混合割合の検討を行った。   After selecting two light emitters that satisfy the configuration requirements of the present embodiment as described above, each mixing ratio was examined in order to determine the mixing ratio at which the change in the emission color can be felt to the maximum visually. .

本実施例で用いる発光体1及び発光体2の二つの発光体を合わせた総重量を一定値とし、その中で発光色のバランスを考慮しながら二つの発光体の混合重量比率を調整した。顔料の混合にあたっては、得られる混合物が均一な発光になるまで、メノウ乳鉢を用いて入念に混合し、顔料が均一に分散した状態で発光体混合物とした。この分散状態が均一でない場合には、発光体混合物の発光色の変化は、紫外線照射開始時からそれぞれの発光体の色となり、鮮明な発光色の変化を生じないことは言うまでもない。   The total weight of the two light emitters 1 and 2 used in this example was set to a constant value, and the mixing weight ratio of the two light emitters was adjusted in consideration of the balance of the emission color. In mixing the pigments, the mixture was carefully mixed using an agate mortar until the resulting mixture had a uniform light emission, and a phosphor mixture was obtained with the pigment uniformly dispersed. When this dispersion state is not uniform, it goes without saying that the change in the emission color of the phosphor mixture becomes the color of each of the phosphors from the start of ultraviolet irradiation, and no sharp change in the emission color occurs.

発光体1と発光体2の配合割合を変えた5水準の発光体混合物を作製し、この発光体混合物に紫外線照射手段を用いて長波紫外線を照射して発光色の変化を目視で観察し、発光色の変化の大きかった水準を基に最適な配合割合を導いた。
紫外線照射手段として、一般的なブラックライトに準じる紫外線を発する紫外線照射ランプ(中心波長366nm販売メーカ:フナコシ製薬株式会社、製品名:UVL-56)を使用した。
A five-level phosphor mixture in which the blending ratio of the phosphor 1 and the phosphor 2 is changed is prepared, and the phosphor mixture is irradiated with long-wave ultraviolet rays using an ultraviolet irradiation means, and a change in emission color is visually observed. The optimum blending ratio was derived on the basis of the level of change in the luminescent color.
As an ultraviolet irradiation means, an ultraviolet irradiation lamp (center wavelength: 366 nm sales manufacturer: Funakoshi Pharmaceutical Co., Ltd., product name: UVL-56) that emits ultraviolet rays in accordance with general black light was used.

図3に、発光体混合物の水準1から水準5における発光体1と発光体2との配合割合と、長波紫外線を照射した場合に目視で観察された発光色の変化に対する視覚評価結果を示す。   FIG. 3 shows the blending ratio of the illuminant 1 and the illuminant 2 in level 1 to level 5 of the illuminant mixture, and the visual evaluation results with respect to the change in emission color visually observed when irradiated with long wave ultraviolet rays.

目視で観察した結果、水準4の配合割合(DM224:SPD116S=1:5)で作製したものが最も良好な発光色の変化を成すことを確認した。また、分光測定機(日立製作所、製品名:F−4500分光蛍光光度計)で機械的に検出した各水準の、両発光体がともに飽和発光強度に達した状態の発光体混合物の発光スペクトルは、図4に示すとおりであった。各水準の発光体2の発光スペクトルは450〜600nmに、発光体1の発光スペクトルは600〜700nmの部分に現われる。水準4における発光体1と発光体2の飽和発光時間経過後の分光スペクトルに示す波形の積分値は、ほぼ同一であった。   As a result of visual observation, it was confirmed that what was produced at a blending ratio of level 4 (DM224: SPD116S = 1: 5) produced the best change in emission color. In addition, the emission spectrum of the phosphor mixture of each level mechanically detected by a spectrophotometer (Hitachi, Ltd., product name: F-4500 spectrofluorometer) in a state where both the phosphors reach the saturated emission intensity is As shown in FIG. The emission spectrum of the light emitter 2 at each level appears at 450 to 600 nm, and the emission spectrum of the light emitter 1 appears at a portion of 600 to 700 nm. The integrated values of the waveforms shown in the spectrum after the saturation light emission time of the light emitter 1 and the light emitter 2 at level 4 were almost the same.

水準4に紫外線を照射したところ照射直後に発光体1の発光色である赤色と、照射直後から照射経過時間1秒以内では発光体1と発光体2の中間混合色である橙色、照射経過時間1秒以上で発光体1と発光体2の混合色である黄色を確認することができた。   When ultraviolet rays were irradiated to level 4, red, which is the emission color of the illuminant 1 immediately after irradiation, orange, which is an intermediate mixed color of the illuminant 1 and the illuminant 2, within 1 second from immediately after irradiation, and the irradiation elapsed time In 1 second or more, yellow, which is a mixed color of the light emitter 1 and the light emitter 2, was confirmed.

また、本実施例の主体的な効果ではないが、本実施例に付随する効果として、紫外線照射終了後の発光体2の単独残光色である緑色残光も確認することができた。以上のことから、目視上、最も色変化の効果が高かった水準4を本実施例が成す発光体混合物とした。   In addition, although not the main effect of the present example, green afterglow, which is the single afterglow color of the light-emitting body 2 after the end of ultraviolet irradiation, could be confirmed as an effect accompanying the present example. From the above, the light emitting material mixture according to the present example was set at level 4 which had the highest color change effect visually.

次に前記発光体混合物をインキ化するためにビヒクルの選定を行ない、発光インキを作製し、得られた発光インキを用いて、一般に公知の印刷方法により印刷し発光印刷物を作製し、得られた発光印刷物に対して、目視又は機械判別を行うことで、真偽判別をするものである。   Next, a vehicle was selected to make the phosphor mixture into an ink, a luminescent ink was prepared, and the luminescent ink obtained was printed by a generally known printing method to produce a luminescent print. Authenticity discrimination is performed by visual or machine discrimination on the luminescent printed matter.

発光体混合物をインキ化するためにインキビヒクルを選定した。   An ink vehicle was selected to ink the phosphor mixture.

グラビア印刷、オフセット印刷、スクリーン印刷といった印刷方式で使用されるインキビヒクルはいずれも有機物で構成されるため、紫外線を吸収する特性をもともと有している。紫外線を特に吸収する性質をもつインキビヒクルは避けることが望ましい。   Ink vehicles used in printing methods such as gravure printing, offset printing, and screen printing are all made of an organic material, and thus have the property of absorbing ultraviolet rays. It is desirable to avoid ink vehicles that have the property of absorbing ultraviolet light in particular.

本実施例においては、市販されているブラックライトを用いて長波紫外線を照射した場合に、発光色の変化を鮮明に見せることが目的であるため、長波紫外線を特に強く吸収する特性を持つインキビヒクルは避けることとした。また、発光色の変化を目視で認証することを前提にしているため発光を強く保てることを前提としている。このことから、インキ膜厚を厚く付与することが可能であるスクリーン印刷を選択し、スクリーン印刷で用いられる紫外線乾燥タイプのメジューム(販売メーカ:永瀬スクリーン印刷研究所 製品名:A−Z)を用いた。   In this embodiment, the purpose of the present invention is to clearly show the change in emission color when irradiated with long wave ultraviolet rays using a commercially available black light. Decided to avoid. Further, since it is assumed that the change in the emission color is visually confirmed, it is assumed that the emission can be kept strong. For this reason, screen printing that can provide a thick ink film is selected, and an ultraviolet drying type medium (sales manufacturer: Nagase Screen Printing Laboratory product name: A-Z) used in screen printing is used. It was.

発光体混合物を下記に示す配合割合でインキ化した。顔料コンテントは30%である。高速分散機(販売メーカ:特殊機化工業株式会社、製品名:ホモディスパー)を使用して回転数3000rpmで5分間攪拌を行うことでインキ化し、このインキに対して長波紫外線を照射したところ、発光体混合物同様の発光色の変化を確認した。これをもって、本実施例の発光インキとした。
発光体混合物 30部
メジューム 70部
消泡剤 1部(外割)
The phosphor mixture was inked at the following blending ratio. The pigment content is 30%. Using a high-speed disperser (sales manufacturer: Tokushu Kika Kogyo Co., Ltd., product name: Homodisper), the ink was made by stirring for 5 minutes at 3000 rpm, and this ink was irradiated with long-wave ultraviolet rays. The change of the luminescent color similar to the luminescent material mixture was confirmed. This was used as the luminescent ink of this example.
Luminescent substance mixture 30 parts Medium 70 parts Antifoaming agent 1 part (extra)

前記発光インキを用いてスクリーン印刷機(販売メーカ:美濃商事株式会社、製品名:卓上型印刷台WHT3号)を使用して無蛍光グラビア印刷用塗工紙を基材としてスクリーン印刷を行い、発光印刷物を得た。   Screen printing is performed using a screen printing machine (sales manufacturer: Mino Corporation, product name: desktop printing stand WHT3) using the light-emitting ink as a base material with non-fluorescent gravure printing coated paper to emit light. A printed material was obtained.

得られた発光印刷物に対して紫外線を照射して効果の確認を行ったところ、発光混合物とほぼ同様な発光色の変化を示すことを確認した。   When the effect was confirmed by irradiating the obtained luminescent printed material with ultraviolet rays, it was confirmed that the luminescent color change was almost the same as that of the luminescent mixture.

次に、実施例で得られた発光体混合物や発光印刷物を用いて、真偽判別する方法について、目視による場合と機械による場合とについて説明する。   Next, a method for determining authenticity using the light emitter mixture and the light-emitting printed matter obtained in the examples will be described with respect to visual observation and mechanical inspection.

まず、紫外線照射時間に応じて発光色が変化する様子を単に目視で確認するだけでなく、紫外線遮断物質を用いることで、その発光色の変化の効果をより容易に観察する真偽判別方法について説明する。
本実施例では、真偽判別方法として、一般的に市販されているブラックライトが発する長波紫外線を発光体に照射して、発光体の発光色の変化を目視で簡易的に判定することを想定している。
First of all, it is not only to visually check how the emission color changes according to the UV irradiation time, but also to use a UV blocking substance to more easily observe the effect of the emission color change. explain.
In this embodiment, as a true / false discrimination method, it is assumed that a long-wave ultraviolet ray emitted from a commercially available black light is irradiated to a light emitter, and a change in light emission color of the light emitter is easily determined visually. is doing.

発光印刷物の印刷画像の一部を人の手や用紙等の紫外線遮断物質で覆ったのち、この紫外線遮断物質の上から印刷画像全体に対して紫外線を照射し、飽和発光時間経過後に印刷画像全体に対して紫外線を照射したままでこの紫外線遮断物質を取り除くと、紫外線遮断物質で覆われていた印刷画像部分は赤色発光しはじめ、一方、紫外線遮断物質で覆われていなかった印刷画像は黄色発光している。これは、紫外線遮断物質によって覆われていた部位と紫外線遮断物質に覆われていない部位によって、飽和発光時間の長い発光体が励起していない部位と励起している部位が生じ、部分的な遮蔽を取り除いて全体に紫外線を照射した場合に発光色の違いとして現れたものである。   After covering a part of the printed image of the luminescent printed material with an ultraviolet blocking substance such as a human hand or paper, irradiate the entire printed image with ultraviolet rays from above the ultraviolet blocking substance, and after the saturated emission time has elapsed, the entire printed image If the UV blocking substance is removed while the UV ray is still irradiated, the printed image part covered with the UV blocking substance begins to emit red light, while the printed image not covered with the UV blocking substance emits yellow light. is doing. This is because the part covered with the UV blocking substance and the part not covered with the UV blocking substance produce a part where the luminescent material having a long saturated emission time is not excited and a part where it is excited, and is partially shielded. This appears as a difference in emission color when the entire surface is irradiated with ultraviolet rays.

このように、簡易的な紫外線遮断物質を用いることで、紫外線の照射時間に応じて発光色が変化する効果を、同一の印刷物において隣接した状態での色変化として、より容易に目視で捉えられる状態となり、極めて容易に真偽判別を行うことが可能となる。   In this way, by using a simple ultraviolet blocking substance, the effect of changing the emission color according to the irradiation time of ultraviolet rays can be easily visually observed as a color change in an adjacent state in the same printed matter. It becomes possible to determine the authenticity very easily.

次に、機械判別によって真偽判別を行う例について、図面を用いて説明する。   Next, an example of performing authenticity determination by machine determination will be described with reference to the drawings.

図5に、簡易的な検査装置の一例を示す。完全な暗箱1の中に励起光源として紫外線照射LED2と、発光体の発光を捉えて光電変換する光センサ5とを備えた検査装置である。   FIG. 5 shows an example of a simple inspection apparatus. It is an inspection apparatus provided with a UV irradiation LED 2 as an excitation light source in a complete dark box 1 and an optical sensor 5 for photoelectrically converting light emitted from a light emitter.

暗箱1の中に測定対象物となる発光体混合物8を載置し、この発光体混合物8に対して紫外線照射LED2にローパスフィルタ3(390nm以下の波長の光のみを透過)を配している。紫外線照射LEDはパルス発振器4によってデューティ50%で紫外線を発光体混合物にパルス照射する。紫外線によって励起した発光体混合物の発光を捉えて光電変換センサ5で電気変換し、アンプ6を介して、発光体混合物の飽和発光強度に達するまでの発光挙動をオシロスコープ7で検出した。   A light emitter mixture 8 to be measured is placed in the dark box 1, and a low pass filter 3 (transmitting only light having a wavelength of 390 nm or less) is disposed on the ultraviolet light emitting LED 2 with respect to the light emitter mixture 8. . The UV-irradiated LED irradiates the phosphor mixture with UV light at a duty of 50% by the pulse oscillator 4. Light emitted from the luminescent material mixture excited by ultraviolet rays was captured and electrically converted by the photoelectric conversion sensor 5, and the luminescence behavior until the saturated luminescence intensity of the luminescent material mixture was reached was detected by the oscilloscope 7 via the amplifier 6.

図6に、検査装置で測定した発光体混合物及び従来の蛍光体や蓄光体の飽和発光強度に達するまでの発光挙動をオシロスコープで検出した検出結果の波形を示す。   FIG. 6 shows waveforms of detection results obtained by detecting with a oscilloscope the light emission behavior until reaching the saturated light emission intensity of the phosphor mixture and conventional phosphors and phosphors measured with the inspection device.

図6より、本実施例で得られた発光体混合物と、従来の蛍光体や蓄光体の発光挙動とはその図形は明らかに異なっているのが分かる。従来の一般的な蛍光体は紫外線で励起すると垂直に発光波形が立ち上がり(a)、一般的な蓄光体は飽和発光強度に対して対数的に立ち上がる(b)のに対して、発光体混合物は、蛍光体が発光するため、その初期の発光波形は垂直に立ち上がり、その後飽和発光強度に達するまで対数的に徐々に発光強度が上昇する(c)。このように、発光体混合物は、機械的にも発光波形を検出することが可能であって容易に真偽判別が可能である。   From FIG. 6, it can be seen that the luminous body mixture obtained in this example and the light emission behavior of the conventional phosphor and phosphorescent substance are clearly different in the figure. When a conventional general phosphor is excited by ultraviolet rays, a light emission waveform rises vertically (a), a general phosphor accumulates logarithmically with respect to a saturated light emission intensity (b), whereas a phosphor mixture is Since the phosphor emits light, the initial light emission waveform rises vertically, and then the light emission intensity gradually increases logarithmically until the saturation light emission intensity is reached (c). As described above, the phosphor mixture can mechanically detect the emission waveform and can easily determine the authenticity.

以上詳述したように、二色性蛍光インキでは不可能であったブラックライトや殺菌灯等の単一の紫外線照射光源のみで発光色の変化を生じ、かつその発光色の変化は従来のカラーシフトインキのように残光によって生じるものではなく、紫外線照射開始から紫外線照射中に複数の発光体の飽和発光強度が変化することによって生じるものであることから、発光色の変化中の発光強度も極めて良好であって、認証環境に外乱光が存在していても、従来のようにその都度暗箱等に入れて検査することなく、目視で発光色の変化を確認することができる。また、その紫外線照射直後から一定時間が経過するまでの発光強度の変化は機械的にも検出することが可能であることから、機械的な真偽判別要素としても従来以上に機能することは言うまでもない。   As detailed above, the emission color changes only with a single ultraviolet irradiation light source such as black light or germicidal lamp, which was impossible with dichroic fluorescent ink, and the change in the emission color is the same as the conventional color. It is not caused by afterglow like shift ink, but it is caused by the change of the saturated emission intensity of multiple light emitters from the start of ultraviolet irradiation to the time of ultraviolet irradiation, so the emission intensity during the change in emission color is also Even if ambient light is present in the authentication environment, it is possible to visually confirm the change in the luminescent color without putting it in a dark box or the like and inspecting it each time. Further, since it is possible to mechanically detect a change in light emission intensity immediately after the ultraviolet irradiation until a predetermined time elapses, it goes without saying that it functions more as a mechanical authenticity determination element. Yes.

本実施例においては、発光印刷物は発光インキを用いて構成したが、一般に公知の蛍光繊維の製造方法を用いて発光体混合物を繊維に固着させた発光繊維を製造して基材中に混抄したり、直接発光体混合物を用紙基材に混合した発光用紙を抄造することで、発光印刷物の基材を構成することは容易であり、本発明の範疇であることは言うまでもない。   In this example, the luminescent printed material was formed using luminescent ink, but generally, a luminescent fiber having a luminescent material mixture fixed to the fiber was manufactured using a known fluorescent fiber manufacturing method and mixed into the substrate. In addition, it is easy to construct a base material of a luminescent printed matter by making a luminescent paper in which a luminescent material mixture is directly mixed with a paper base material, and it goes without saying that it is within the scope of the present invention.

本発明における二つの発光体発光色の組み合わせと発光色の変化及び視覚評価結果を示す図である。It is a figure which shows the combination of the two light-emitting body luminescent color in this invention, the change of luminescent color, and a visual evaluation result. 実施例による二つの発光体の飽和発光時間と飽和発光強度の関係を示す図である。It is a figure which shows the relationship between the saturated light emission time of two light-emitting bodies by an Example, and saturated light emission intensity. 実施例による発光体の配合割合と発光色の変化及び視覚評価結果を示す図である。It is a figure which shows the mixture ratio of the light-emitting body by an Example, the change of luminescent color, and the visual evaluation result. 実施例による発光体の配合割合と発光スペクトルを示す。The mixing | blending ratio and emission spectrum of the light-emitting body by an Example are shown. 実施例による簡易検査装置を示す図である。It is a figure which shows the simple test | inspection apparatus by an Example. 実施例による簡易検査装置で測定した発光挙動をオシロスコープで示した図である。It is the figure which showed the light emission behavior measured with the simple test | inspection apparatus by an Example with an oscilloscope.

符号の説明Explanation of symbols

1 暗箱
2 紫外線照射LED
3 ローパスフィルタ
4 パルス発振器
5 光電変換センサ
6 アンプ
7 表示装置
8 測定対象物
1 Dark box 2 UV irradiation LED
3 Low-pass filter 4 Pulse oscillator 5 Photoelectric conversion sensor 6 Amplifier 7 Display device 8 Object to be measured

Claims (7)

紫外線を照射してから発光強度が飽和に達するまでの時間が異なり、かつ発光色の異なる少なくとも2つの発光体を混合した混合物であって、
前記混合物は紫外線の照射開始からの時間経過に従って発光色が変化することを特徴とする発光体混合物。
A mixture in which at least two light emitters having different light emission colors and different times from the irradiation of ultraviolet light until the light emission intensity reaches saturation are mixed,
The phosphor mixture is characterized in that the emission color changes with the passage of time from the start of ultraviolet irradiation.
前記少なくとも2つの発光体は、紫外線を照射してから発光強度が飽和に達するまでの時間の短い発光体と発光強度が飽和に達するまでの時間の長い発光体とからなり、発光初期から前記飽和発光時間の短い発光体の発光色は一定の強度で発光し続け、前記飽和発光時間の長い発光体は飽和発光強度に達するまで徐々に発光強度が上昇することで、前記少なくとも2つの発光体が飽和発光強度に達するまで、前記少なくとも2つの発光体の混合された発光色が連続的に遷移する請求項1に記載の発光体混合物。 The at least two light emitters are composed of a light emitter having a short time until the light emission intensity reaches saturation after irradiation with ultraviolet light and a light emitter having a long time until the light emission intensity reaches saturation. The light emission color of the light emitter having a short light emission time continues to emit light at a constant intensity, and the light emitter having a long saturation light emission time gradually increases in light emission intensity until reaching the saturation light emission intensity, so that the at least two light emitters The phosphor mixture according to claim 1, wherein the mixed emission color of the at least two phosphors continuously transitions until a saturated emission intensity is reached. 請求項1又は2に記載の発光体混合物を、インキビヒクル中に分散させたことを特徴とする発光インキ。 A luminescent ink, wherein the phosphor mixture according to claim 1 or 2 is dispersed in an ink vehicle. 請求項1又は2に記載の発光体混合物を、基材上又は基材内面の少なくとも一部に付与することを特徴とする発光印刷物。 A light-emitting printed matter, wherein the phosphor mixture according to claim 1 or 2 is applied to at least a part of a substrate or an inner surface of the substrate. 請求項1又は2に記載の発光体混合物を、基材上又は基材内面の少なくとも一部に塗布することを特徴とする発光体塗工物。 A phosphor coating product, wherein the phosphor mixture according to claim 1 or 2 is applied to at least a part of a substrate or an inner surface of the substrate. 請求項4又は5に記載の発光印刷物、又は発光体塗工物を用いた真偽判別方法であって、紫外線の照射時間に応じた発光色の変化を捉えることを特徴とする真偽判別方法。 A true / false discrimination method using the luminescent printed matter or the phosphor coated product according to claim 4, wherein the true / false discrimination method captures a change in emission color according to an irradiation time of ultraviolet rays. . 請求項4又は5に記載の発光印刷物、又は発光体塗工物を用いた真偽判別方法であって、
前記発光印刷物を検査手段に配置し、
前記発光印刷物に紫外線照射部から紫外線を照射し、
前記紫外線の照射に対して前記発光印刷物の発光体からの反射光の発光色を光センサで光電変換し、
前記発光体の飽和発光強度に達するまでの発光色の変化の挙動を電気的に検出することで真偽判別することを特徴とする真偽判別方法。
A authenticity determination method using the luminescent printed matter according to claim 4 or 5, or a luminescent material coated product,
Placing the light-emitting printed matter on the inspection means;
Irradiate the light-emitting printed matter with ultraviolet rays from an ultraviolet irradiation unit,
The light emission color of the reflected light from the illuminant of the luminescent printed matter is photoelectrically converted by an optical sensor with respect to the ultraviolet irradiation,
A true / false determination method, wherein true / false determination is performed by electrically detecting a behavior of a change in emission color until the saturated emission intensity of the light emitter is reached.
JP2006101367A 2006-04-03 2006-04-03 Mixed light-emitting body, light-emitting ink, light-emitting printed matter, light-emitting material-applied article and method for distinguishing authenticity Pending JP2007277281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006101367A JP2007277281A (en) 2006-04-03 2006-04-03 Mixed light-emitting body, light-emitting ink, light-emitting printed matter, light-emitting material-applied article and method for distinguishing authenticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006101367A JP2007277281A (en) 2006-04-03 2006-04-03 Mixed light-emitting body, light-emitting ink, light-emitting printed matter, light-emitting material-applied article and method for distinguishing authenticity

Publications (1)

Publication Number Publication Date
JP2007277281A true JP2007277281A (en) 2007-10-25

Family

ID=38679070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006101367A Pending JP2007277281A (en) 2006-04-03 2006-04-03 Mixed light-emitting body, light-emitting ink, light-emitting printed matter, light-emitting material-applied article and method for distinguishing authenticity

Country Status (1)

Country Link
JP (1) JP2007277281A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144243A (en) * 2010-01-13 2011-07-28 National Printing Bureau Luminous composition with afterglow property, ink composition with afterglow property, and forgery-discriminating printed matter
KR20140109860A (en) * 2011-10-14 2014-09-16 3디티엘, 인코퍼레이티드 Security element or document with a security feature including at least one dynamic-effect feature
WO2019053962A1 (en) * 2017-09-15 2019-03-21 大日本印刷株式会社 Ink composition and printed matter
WO2020110458A1 (en) * 2018-11-30 2020-06-04 大日本印刷株式会社 Printed material, booklet body, assembled body of light source and printed material, and authenticity determining method for printed material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144243A (en) * 2010-01-13 2011-07-28 National Printing Bureau Luminous composition with afterglow property, ink composition with afterglow property, and forgery-discriminating printed matter
KR20140109860A (en) * 2011-10-14 2014-09-16 3디티엘, 인코퍼레이티드 Security element or document with a security feature including at least one dynamic-effect feature
JP2015501233A (en) * 2011-10-14 2015-01-15 3ディーティーエル, インコーポレイテッド3Dtl, Inc. A security element or document having a security feature including at least one dynamic action feature
KR101967205B1 (en) 2011-10-14 2019-04-09 3디티엘, 인코퍼레이티드 Security element or document with a security feature including at least one dynamic-effect feature
WO2019053962A1 (en) * 2017-09-15 2019-03-21 大日本印刷株式会社 Ink composition and printed matter
JPWO2019053962A1 (en) * 2017-09-15 2020-10-15 大日本印刷株式会社 Ink composition and printed matter
JP7081602B2 (en) 2017-09-15 2022-06-07 大日本印刷株式会社 Ink composition and printed matter
WO2020110458A1 (en) * 2018-11-30 2020-06-04 大日本印刷株式会社 Printed material, booklet body, assembled body of light source and printed material, and authenticity determining method for printed material
JPWO2020110458A1 (en) * 2018-11-30 2021-10-14 大日本印刷株式会社 Printed matter, booklet, combination of light source and printed matter, and method for determining authenticity of printed matter
JP7294353B2 (en) 2018-11-30 2023-06-20 大日本印刷株式会社 Printed matter, booklet, combination of light source and printed matter, and method for judging authenticity of printed matter

Similar Documents

Publication Publication Date Title
US10457087B2 (en) Security element formed from at least two materials present in partially or fully overlapping areas, articles carrying the security element, and authentication methods
EP3390065B1 (en) Security element formed from at least two inks applied in overlapping patterns, articles carrying the security element, and authentication methods
JP7000661B2 (en) A method of authenticating a security mark using long afterglow emission and a security mark containing one or more afterglow compounds.
RU2534367C2 (en) Banknote validator
CN103153641B (en) Light-emitting medium
US7860293B2 (en) Method and apparatus for determining the authenticity of bank notes
JP4487090B2 (en) Luminous printed matter with authenticity discrimination
WO2012018084A1 (en) Luminous medium and method for confirming luminous medium
JP5622087B2 (en) Luminescent medium
CN104067297A (en) Multi wavelength excitation/emission authentication and detection scheme
KR20120115313A (en) Controlling the detectability of an article and method for authenticating the article
JP4552052B2 (en) Multicolor luminescent mixture, multicolor luminescent ink composition, and image formed product
JP4418881B2 (en) Anti-counterfeit printed matter
WO2020110458A1 (en) Printed material, booklet body, assembled body of light source and printed material, and authenticity determining method for printed material
HU225882B1 (en) Continuous-tone image produced by printing
JP2007277281A (en) Mixed light-emitting body, light-emitting ink, light-emitting printed matter, light-emitting material-applied article and method for distinguishing authenticity
JP2006275578A (en) Discrimation method and discrimination device
US20140270334A1 (en) Covert marking system based on multiple latent characteristics
JP5610121B2 (en) Afterglow luminescent composition, afterglow ink composition, and authenticity printed matter
JP5799434B2 (en) Afterglow luminescent material and method for producing the same, afterglow luminescent ink composition, and authenticity printed matter
CN106240190B (en) Security element and preparation method thereof, safe articles, article detection method and device
WO2012018085A1 (en) Light-emitting medium and method for confirming light-emitting medium
JP5573469B2 (en) Luminescent medium and method for confirming luminous medium
JP2014030921A (en) Identification medium and identification device
JP2020019144A (en) Special luminescent printed matter