JP2017142346A - 照明装置及び光学測定装置 - Google Patents

照明装置及び光学測定装置 Download PDF

Info

Publication number
JP2017142346A
JP2017142346A JP2016023175A JP2016023175A JP2017142346A JP 2017142346 A JP2017142346 A JP 2017142346A JP 2016023175 A JP2016023175 A JP 2016023175A JP 2016023175 A JP2016023175 A JP 2016023175A JP 2017142346 A JP2017142346 A JP 2017142346A
Authority
JP
Japan
Prior art keywords
light
laser light
integrating sphere
illumination device
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016023175A
Other languages
English (en)
Inventor
昌和 矢田貝
Masakazu Yatagai
昌和 矢田貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEISHIN SHOJI KK
Seishin Trading Co Ltd
Original Assignee
SEISHIN SHOJI KK
Seishin Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEISHIN SHOJI KK, Seishin Trading Co Ltd filed Critical SEISHIN SHOJI KK
Priority to JP2016023175A priority Critical patent/JP2017142346A/ja
Publication of JP2017142346A publication Critical patent/JP2017142346A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】比較的広範囲に一度に均一な光線を照射できる照明装置を提供すること、及び正確に光学測定を効率良く行うことのできる光学測定装置を提供する。
【解決手段】レーザ光を出射するレーザ光源30と、このレーザ光源からのレーザ光を内部で拡散反射させて出射する積分球31とを備える。
【選択図】図1

Description

本発明は、照明装置及び光学測定装置に関する。
太陽電池セル、半導体ウェハ等の測定対象を非破壊で検査するための顕微鏡装置が公知であり、この顕微鏡装置の光源としてレーザ光源を用いることが知られている(例えば、特開2016−001274号公報参照)。
レーザ光源を用いる顕微鏡装置は、レーザ光源からのレーザ光をビームスポットとして測定対象に照射し、その照射部分から得られる反射光を受光することで、測定対象の検査を行うものである。この顕微鏡装置にあっては、測定対象とビームスポットとを相対的に移動させることで測定対象全面に亘った検査が行われる。なお、上記公報に記載の顕微鏡装置は、レーザ光源からのレーザ光をライン状に整列した複数のビームスポットとして測定対象に照射しつつ、複数のビームスポットの列と直交する方向に測定対象を相対移動させることで、測定対象全面に亘った検査が行われる。
しかし、このような方法では、測定対象全面に亘った検査を行うために測定対象をビームスポットに対して相対的に移動させる必要があり、測定対象全面に亘った検査時間が比較的長く、検査効率的に不利である。
特開2016−001274号公報
本発明者は、検査効率向上について検討したところ、レーザ光源からのレーザ光をレンズによって拡径して、その拡径された光束を測定対象に照射することにより、その照射領域における測定対象からの光を一度に検出することに想到した。しかし、レーザ光源のレーザ光をレンズによって拡径して、測定対象に照射し、その照射領域の画像データを取得すると、その画像データにスペックルが生ずる。このため、上述のようにレンズによって拡径された光側を測定対象に照射した場合、正確な検査を行うことができないことが判明した。この原因は、レーザ光源からの出射光はコヒーレンスが高いので、上述のようにレンズによって拡径した光束は、照射領域の各部分において強度等が相違しているためと考えられる。
そこで、本発明は、これらの不都合に鑑みてなされたものであり、比較的広範囲に一度に均一な光線を照射できる照明装置、及び正確に光学測定を効率良く行うことのできる光学測定装置を提供することを目的とする。
上記課題を解決するためになされた本願発明は、
レーザ光を出射するレーザ光源と、
このレーザ光源からのレーザ光を内部で拡散反射させて出射する積分球と
を備える照明装置である。
当該照明装置の出射光は、レーザ光源からのレーザ光を積分球において拡散反射した光線であるので、比較的広い領域を一度に照射できると共にレンズによって拡径された光線に比べてコヒーレンスが低い。このように当該照明装置の出射光は、コヒーレンスが低いので、照射する領域において均一であり、例えば当該照明装置の出射光によって照射された領域を撮像した場合にあっては、スペックルの少ない画像を取得できる。特に、当該照明装置を光学測定装置の光源装置として用いた場合、上述のように積分球から出射された比較的広い領域を照射可能な上記出射光を用いることができるので、従来の顕微鏡装置等のようにスポット照射を用いるものに比べて、広範囲に光線を照射することができ、このため測定対象の測定の効率化を図ることができる。さらに、当該照明装置は、上記照射光線として上述のようにコヒーレンスの低い光束を用いているので、上述のようにレンズによって光束を拡径した光線を用いるものに比べて、照射領域の各部分において均一な照射を行うことができ、このため測定対象の正確な光学測定に寄することができる。
当該照明装置が平行光を出射するものであるとよい。このように当該照明装置が平行光を出射するものであることで、照射領域において均一な照射を行うことができる。
当該照明装置は、出射口の開き角度を調整する調整機構を有することが好ましい。このように調整機構を有することで、測定対象の表面に照射する光線の光束径を調整することが可能となる。そのため、上記調整機構により照射光線の光束径を調整することで、測定対象の表面のより広範囲に一度に光線をより容易に照射するができる。
上記調整機構は、上記積分球からの出射光の光路上に配置され、上記積分球に対して近接離間可能とされた対物レンズを含むとよい。このような調整機構は、安価かつ簡易に構成可能であるため、一度の照射領域の大きさに応じて容易かつ確実に対応できる。
上記レーザ光源から出射されるレーザ光のピーク波長としては、350nm以上790nm以下が好ましい。上記波長範囲にピーク波長を有するレーザ光を用いることで、半導体基板等の測定対象に照射した場合、この測定対象の表層における情報を測定対象からの反射光、透過光や蛍光等の測定対象光から適切に得ることができる。また、上記波長範囲にピーク波長を有するレーザ光は、既存のレーザ光源を用いて出射させることができる。そのため、当該照明装置は、特殊なレーザ光源を用いることなく既存のレーザ光源を用いて測定対象光を得ることができる。その結果、当該照明装置は、簡易な構成により製造コスト的に有利に実現できる。
上記積分球が上記レーザ光源から入射されたレーザ光を拡散反射させる反射層を有し、この反射層が焼結体を含むとよい。このように積分球が焼結体を含む反射層を有することで、積分球内部の光線の一部が内部に若干染み込んで反射(反射面界面よりも反射層内側に若干入射された後に反射)するため、当該照明装置におけるコヒーレンス低減能を高めることができる。
また、本発明は、当該照明装置を備える光学測定装置である。
当該光学測定装置は、当該照明装置を備えるので、測定対象の比較的広い領域に対しコヒーレンスの低い光線を一度にかつ均一に照射することができる。そのため、従来のスポット照射による装置に比べて測定対象の全体に光線を照射するのに必要な時間を短くできると共に、測定対象の正確な光学測定を行うことができる。
当該光学測定装置は、当該照明装置により測定対象に光線を照射したときに上記測定対象から得られる反射光、透過光又は蛍光を検出する検出部を備えるとよい。このような検出部を備える光学測定装置は、顕微鏡装置、蛍光測定装置、又は反射率測定装置として好適に用いることができ、これらの装置において短時間で測定対象の正確な光学測定を行うことができる。
なお、本発明における「蛍光」とは、励起一重項からの失活に伴う発光である狭義の蛍光だけでなく、励起三重項からの失活に伴う発光である燐光も含む。また、本発明における「平行光」とは、光軸と平行な光線の集合体であり、完全な平行光を含み、さらに検査対象への照射光線を構成する光線の最大相対角度(上記照射光線のうち最も角度差のある光線同士の角度)が5°以下である光を含む。
本発明の照明装置は、比較的広範囲に一度に均一な光線を照射でき、当該照明装置を用いることで正確かつ効率の良い光学測定を行うことができる。
本発明の第1の実施形態に係る顕微鏡装置の模式図である。 図1の顕微鏡装置の要部を示すブロック図である。 本発明の第2の実施形態に係る顕微鏡装置の要部を示す模式図である。 図4(A)は図3の顕微鏡装置における照射光選択部材を示す斜視図であり、図4(B)は図4(A)に示す照射光選択部材の断面図であり、図4(C)は照射光選択部材の他の例を示す断面図である。 本発明の第3の実施形態に係る顕微鏡装置の要部を示す模式図である。 図5の顕微鏡装置における照射光選択部材を模式的に示す平面図である。 本発明の第4の実施形態に係る顕微鏡装置の要部を示す模式図である。 比較例1で使用した顕微鏡装置の概略構成を示す図である。 図9(A)は実施例1の顕微鏡装置によるテストパターンの撮像結果を示す図であり、図9(B)は比較例1の顕微鏡装置によるテストパターンの撮像結果を示す図である。
以下、本発明の照明装置及び光学測定装置について、顕微鏡装置を例にとって第1から第4の実施形態として適宜図面を参照しつつ説明する。
[第1の実施形態]
図1に示す顕微鏡装置1は、測定対象2に光線を照射したときの反射光に基づき、測定対象2の測定を非破壊で行うために用いられる。この顕微鏡装置1は、照明装置3、撮像部(CCDカメラ4)及びパーソナルコンピュータ5を備え、測定対象2からの反射光に基づき測定対象2を測定するものである。
<測定対象>
測定対象2は、顕微鏡装置1による測定対象となるものである。なお、この測定対象2は、特に限定されるものではなく、この測定対象2としては、例えば太陽電池セル等の半導体基板が挙げられる。
測定対象としての半導体基板の大きさ等は特に限定されず、例えば直径が50mm以上300mm以下、厚みが0.5mm以上1.0mm以下に形成されたものを用いることができる。このような測定対象2としては、例えばSEMI(Semiconductor Equipment and Materials International)又はJEITA(Japan Electronics and Information Technology Industries Association)に規格化された寸法(直径及び厚み)に形成された化合物半導体基板、シリコン基板、シリコンカーバイト基板、サファイア基板が挙げられる。化合物半導体基板としては、窒化ガリウム基板、リン化ガリウム基板、リン化インジウム基板、ヒ化カリウム基板等が挙げられる。
<照明装置>
照明装置3は、測定対象2に光線を照射するものである。この照明装置3は、レーザ光源30、積分球31及び調整機構32を有している
(レーザ光源)
レーザ光源30は、レーザ光を出射するものである。レーザ光のピーク波長としては、特に限定されないが、350nm以上790nm以下が好ましい。このような波長範囲にピーク波長を有するレーザ光によれば、半導体基板等の測定対象2の表層における情報を測定対象2からの反射光から適切に得ることができる。そのため、照明装置3を備える顕微鏡装置1は、測定対象2の光学測定を適切に行うことができる。また、上記波長範囲にピーク波長を有するレーザ光は、既存のレーザ光源を用いて出射させることができる。そのため、顕微鏡装置1は、特殊なレーザ光源を用いることなく既存のレーザ光源を用いて反射光を得ることができる。その結果、顕微鏡装置1は、簡易な構成により製造コスト的に有利に実現できる。
レーザ光の出力としては、特に限定されるものではないが、この出力は5mW以上が好ましく、10mW以上がより好ましい。一方、この出力は、500mW以下が好ましく、300mW以下がより好ましい。また、レーザ光の強度(単位面積当たりのレーザ光の出力)は、0.1mW/mm以上が好ましく、0.2mW/mm以上がより好ましい。一方、レーザ光の強度は、10mW/mm以下が好ましく、6.5mW/mm以下がより好ましい。なお、レーザ光は、連続波であってもパルス波であってもよいが、時間的なゆらぎが少なく、時間的安定性に優れるため、連続波が好ましい。
レーザ光の出射時間、すなわち測定対象2に出射する光線の照射時間(露光時間)としては、特に限定されるものではないが、この露光時間は0.05秒以上が好ましく、0.1秒以上がより好ましく、0.5秒以上がさらに好ましい。また、この露光時間は、60秒以下が好ましく、10秒以下がより好ましい。
レーザ光の出力又は露光時間が上記下限値よりも小さいと、測定を行うための十分なデータが得られないおそれがある。一方、レーザ光の出力又は露光時間が上記上限値よりも大きいと、装置の高額化や検査時間の長時間化を招くおそれがある。
レーザ光源30は、特に限定されず公知のものを種々用いることができ、測定対象2の種類、測定対象光の種類等に応じて選択すればよい。中でも、レーザ光源30としては、ピーク波長が350nm以上790nm以下のレーザ光を出射できるものが好ましい。このようなレーザ光源30としては、例えばArレーザ発振装置、He−Neレーザ発振装置、エキシマXeF発振装置等の気体レーザ発振装置、YAG THG(第3高調波)レーザ発振装置、YAG SHG(第2高調波)レーザ発振装置、YVO THG(第3高調波)レーザ発振装置、YLF THG(第3高調波)レーザ発振装置、スーパーコンティニュアム光源、半導体レーザ等の固体レーザ発振装置が挙げられる。
(積分球)
積分球31は、レーザ光源30からのレーザ光を内部で拡散反射させ光束として出射するものである。この積分球31は、内部空間33、入射口34及び出射口35を備えている。照明装置3は、積分球31によってレーザ光を拡散反射させることで、レーザ光のコヒーレンスを低減させて出射することができる。
内部空間33は、反射率の高い反射面36により球状に規定されている。この反射面36は、例えば焼結体や塗膜として形成された反射層の表面により構成され、この反射層に入射した光線は乱反射(拡散反射)される。反射層としては、一部の光線が内部に若干染み込んで反射(反射面界面よりも反射層内側に若干入射された後に反射)し、コヒーレンス低減能の高い焼結体が好適に用いられる。焼結体としては、樹脂焼結体及びセラミックス焼結体のいずれであってもよい。焼結体を形成するための粉末の材料としては、PTFE(テトラフルオロエチレン)等の樹脂、酸化マグネシウム、酸化アルミニウム、酸化亜鉛等の無機酸化物が挙げられ、中でもPTFEが好ましい。PTFE粉末の焼結体としては、例えばラブズフェア社製のスペクトラロン(登録商標)を用いることができる。さらに、上記焼結体から構成される反射層の厚みとしては、特に限定されないが、0.1mm以上であることが好ましく、1mm以上であることがより好ましく、10mm以上であることがさらに好ましい。なお、この厚みの上限は、特に限定されず、例えば20mmである。また、反射層としての塗膜は、例えば酸化マグネシウム、酸化アルミニウム、硫酸バリウム、硫酸マグネシウム、酸化亜鉛等の反射剤を含有する塗布剤により形成される。なお、反射層は、金メッキ等の金属メッキを施すことで形成してもよい。
内部空間33の直径は、特に限定されるものではないが、5cm以上であることが好ましく、10cm以上であることがより好ましい。また、内部空間33の直径は、50cm以下が好ましく20cm以下がより好ましい。内部空間33の直径が上記下限値よりも小さいと、測定対象2への照射光線の光束径を十分な大きさに確保することが困難となる。一方、内部空間33の直径が上記上限値を超えると、積分球31の製造コストが大きくなると共に内部空間33での拡散反射光の減衰量が大きくなって出射光量が小さくなるおそれがある。
入射口34は、レーザ光源30から出射されたレーザ光を内部空間33に投入するためのものであり、例えば円形に形成されている。入射口34の大きさは、レーザ光源30からのレーザ光の光束径に応じて適宜設定すればよく、特に限定されない。
出射口35は、積分球31の内部空間33における拡散反射光を内部空間33から外部に出射させるものであり、例えば円形に形成されている。出射口35の大きさは、積分球31から出射させるべき光束の径や光強度等に応じて適宜設定すればよい。
積分球31における開口率は、積分球31(出射口35)から出射される光束ひいては測定対象2に照射される光束の均一性や低コヒーレンスを確保しつつ、積分球31でのスループットを好適に確保するために、例えば1/20以下とされる。この開口率としては、1/40以下が好ましく、1/60以下がより好ましく、1/100以下がさらに好ましい。ここで、開口率は、積分球31の内表面積に対する開口面積の割合として定義される。具体的には、開口率Nは、積分球31の内表面積をS、入射口34の開口面積をs1、出射口35の開口面積s2とした場合、N=(s1+s2)/Sとして表される。
このような積分球31では、入射口34から入射されたレーザ光が反射面36で繰り返し拡散反射し、内部空間33は略均一な明るさとなる。その結果、出射口35からの出射光は、コヒーレンスが低減され、かつ積分球31や出射口35の直径に応じた開き角度を有する光束として出射される。このようにして均一化された光束は、測定対象2に対して均一な光量で光線を照射することが可能となる。このように顕微鏡装置1は、測定対象2にコヒーレンスが低減された光線を均一な光量で照射できるため、スペックルが画像データに発生することを抑制でき、その結果測定対象2からの反射光に基づき、測定対象2の光学測定を正確に行うことができる。
(調整機構)
調整機構32は、積分球31から出射する光束の開き角度を調整し測定対象2の表面への照射面積を調整するものである。この調整機構32は、対物レンズ32a,32b,32c及びアクチュエータ32dを備えている。
対物レンズ32a〜32cは、測定対象2に照射する光線を平行光にするものであり、一対の凸レンズ32a,32cの間に凹レンズ32bを配置した構成を有している。これら凸レンズ32a,32c及び凹レンズ32bは、光透過性を有するものであり、例えば透明樹脂、透明ガラスにより形成されている。凸レンズ32a,32c及び凹レンズ32bの寸法は、積分球31から出射される光束の径、積分球31の出射口35と対物レンズ32a〜32cとの距離、測定対象2の寸法等に応じて適宜設定すればよい。凸レンズ32a、32c及び凹レンズ32bの直径は、特に限定されるものではないが、例えば1cm以上20cm以下とされ、3cm以上10cm以下が好ましい。
このような対物レンズ32a〜32cは、積分球31からの出射光の光路上に配置されている。さらに詳細には、対物レンズ32〜32cは、積分球31からの出射光の光軸Lがレンズの光軸(主軸)と一致又は略一致する位置に配置される。
また、対物レンズ32a〜32cは、測定対象2に照射する光線を平行光とする位置に配置される。このように対物レンズ32a〜32cによって光線を平行光することで、測定対象2の照射領域において均一な照射を行うことができる。
なお、上記照明装置3は、測定対象2に対して光軸が垂直とするよう光線を照射するよう構成されている。このため、反射光を他の光と区別して検出することが容易となり、その結果、顕微鏡装置1によれば、測定対象2の欠陥等の不良を精度よく検出することが可能となる。
アクチュエータ32dは、積分球31からの光束の光軸Lに沿って凹レンズ32bを移動させるものである。すなわち、凹レンズ32bは、アクチュエータ32dにより積分球31に対して近接離間可能とされる。アクチュエータ32dとしては、公知の機構、例えば電気式、磁気式、機械式、これらを組み合わせたものを用いることができる。また、アクチュエータ32dは、パーソナルコンピュータ5により制御される。すなわち、凹レンズ32bの位置は、パーソナルコンピュータ5によりアクチュエータ32dの動作制御を行うことで規制される。なお、機械式のアクチュエータ32dを採用する場合には、手動で凹レンズ32bの位置を調整する構成としてもよい。
この調整機構32では凹レンズ32bを積分球31に近接又は離間させることで、対物レンズ32a〜32cを透過する光束の開き角度を大きく又は小さくすることができる。このように調整機構32では、対物レンズ32a〜32cの位置を規制することで、対物レンズ32a〜32cを透過する光束の開き角度を調整できるため、測定対象2の表面を照射する光線の光束径を調整することが可能となる。そのため、調整機構32により上記照射光線の光束径を調整することで、測定対象2の表面全体に一括して均一な光量で光線を照射することが容易となる。加えて、調整機構32により照射光線の光束径を調整するだけで、サイズの異なる測定対象2に対しても表面全体に一括して光線を照射することが可能となる。そのため、顕微鏡装置1は、サイズの異なる測定対象2の光学測定に対応できると共に、比較的に大型サイズの測定対象2の光学測定を行う場合であっても簡便な構成により短時間かつコスト的に有利に正確な光学測定を行うことができる。
また、調整機構32は、必ずしも対物レンズ32a〜32c(凹レンズ32b)を移動可能に構成する必要はなく、例えば単一サイズの測定対象2の光学測定に利用される顕微鏡装置1では対物レンズ32a〜32cを構成するレンズの全ての位置を固定してもよい。この場合、対物レンズ32a〜32cを構成する各レンズは、測定対象2に対して平行光を照射できる位置関係に固定することが好ましい。
また、調整機構32のレンズとしては、凸レンズや凹レンズに代えてコリメートレンズを用いてもよい。また、凸レンズ、凹レンズ、コリメートレンズ等の種類の異なる複数のレンズを組み合わせ、あるいは同種の複数のレンズを組み合わせて調整機構32のレンズ系として採用してもよい。このような調整機構32においても、レンズ系の位置を固定してもよい。この場合、寸法の異なる測定対象2の検査を可能とするために、レンズ系を構成するレンズの少なくとも1つのレンズを積分球31に対して近接離間可能としてレンズ系から出射される光束の開き角度を調整するように構成することが好ましい。また、調整機構32は、1つのレンズを備えるものであってもよい。この1つのレンズは、位置固定してもよいし、移動可能としてもよい。さらに、調整機構32は、収差補正レンズを備えていることが好ましい。調整機構32が収差補正レンズを備えることで、撮像画像の周縁部におけるぼやけの発生を抑制し、ぼやけの少ない綺麗な画像を撮影することが可能となる。
調整機構32はさらに、積分球31と対物レンズ32a〜32cとの間にビームスプリッタ37を備えている。このビームスプリッタ37は、積分球31から出射されて測定対象物2に向けて進行する光を透過する一方、測定対象物2から進行してくる光を反射し、その光路を略90°変更してアルミミラー38に向けて進行させるものである。なお、アルミミラー38は、ビームスプリッタ37からの光の進行を略90°変更して撮像部に向けて進行させるものである。もちろん、アルミミラー38に代えて他のミラーを用いてもよく、アルミミラー38を省略することもできる。
<撮像部>
上記撮像部は、上記照射装置3によって光線が照射された測定対象2を撮像するものである。この撮像部としては、特に限定されないが、例えば冷却CCDカメラ等のCCDカメラ4が用いられる。また、本実施形態において、撮像部は、測定対象2に光線を照射したときの反射光に基づき測定対象2の光学測定に必要な情報を得るものであるが、撮像部が受光する光線は反射光に限定されるものではなく透過光、蛍光等であってもよい。上記CCDカメラ4は、レンズユニット4A、図2に示す検出部40、データ処理部41及び出力部42を備えている。
レンズユニット4Aは、アルミミラー38から進行してくる光を検出部40に結像させるものであり、複数のレンズ4Aa、4Abを備えている。また、レンズユニット4Aは、収差補正レンズ(CCTVレンズ)を備えたものであってもよい。このような収差補正レンズを備えたCCDカメラ4では、照明装置3の調整機構32に収差補正レンズを含める場合と同様に、撮像画像の周縁部におけるぼやけの発生を抑制し、ぼやけの少ない綺麗な画像を撮影することが可能となる。
検出部40は、測定対象2に光線を照射したときの測定対象2からの光線を検出するものであり、2次元CCDイメージセンサにより構成されている。また、検出部40と測定対象2との間、例えばアルミミラー38とレンズユニット4Aとの間に干渉フィルタ等のフィルタを配置してもよい。このフィルタにより、検出部40で検出されるノイズ成分の量を小さくすることができるため、検出感度を高めることができる。このようなフィルタは、CCDカメラ4に一体化してもよい。
データ処理部41は、検出部40での検出結果に基づきデータ処理を行うものであり、例えばCPU、ROM及びRAMで構成されている。
出力部42は、データ処理部41での処理結果をパーソナルコンピュータ5に出力するものである。この出力部42は、外部接続コネクタ(図示略)を有しており、パーソナルコンピュータ5に対するデータの出力が可能とされている。外部接続コネクタとしては、例えば9ピンシリアルポート、25ピンパラレルポート、4/6ピン高速シリアルポート、USB(Universal Serial Bus)、PS/2コネクタ、VGA端子、DVIポートが挙げられる。
このようにCCDカメラ4は、検出部40及びデータ処理部41を備えるものである。すなわち、検出部40及びデータ処理部41はCCDカメラにより構成されていることから、顕微鏡装置1は既存のCCDカメラ4を用いて測定対象2からの光線を適切に検出することができる。そのため、顕微鏡装置1は、光線を測定するのに十分な感度を簡易な構成により得ることができ、測定装置の製造コストの低減を図ることが可能となる。
<パーソナルコンピュータ>
パーソナルコンピュータ5は、CCDカメラ4からのデータに基づき測定対象2の画像を表示し、またレーザ光源30や照明装置3を制御するものである。このパーソナルコンピュータ5は、ディスクトップ型であり、本体50、ディスプレイ51及びキーボード52を備えている。なお、パーソナルコンピュータ5としては、市販の汎用品を使用することができ、またラップトップ型のパーソナルコンピュータを用いることもできる。
本体50は、データ処理部41での処理結果に基づき測定対象2の欠陥等の不良の有無を判定する判定部53としての機能を備える。この本体50は、CPU,ROM及びRAMを備えており、これらにより判定部53としての機能が与えられている。
ディスプレイ51は、測定対象2の画像を表示するものであり、例えば液晶表示装置により構成されている。このディスプレイ51は、測定対象2の画像の他に、測定条件、レーザ光源30や照明装置3の設定画像等を表示することができる。
キーボード52は、パーソナルコンピュータ5の動作に必要な情報を入力するためのものである。
当該顕微鏡装置1は、判定部53を備えることで、測定対象2を撮像するだけなく測定対象2の欠陥等の不良の有無を検出することが可能となる。また、判定部53は、反射光に基づき測定対象2の欠陥等の不良の有無を判定するものであるため半導体基板等の測定対象2の不良、特に内部欠陥の検出を好適に行うことができる。
以上のように、当該顕微鏡装置1は、測定対象2に照射する光線として、従来のスポット照射ではなく積分球31から出射された光束を用いるので、この光束によって測定対象2の比較的広い領域(例えば測定対象2の全面)を一度に照射することができる。そのため、従来のスポット照射による装置に比べて測定対象2の全体に光線を照射するのに必要な時間を短くでき、検査時間の短縮を図ることができる。
さらに、当該顕微鏡装置1は、上記照射光線として、積分球31においてレーザ光源からのレーザ光を拡散反射させたコヒーレンスの低い光束を用いているので、一度の照射領域の各部分において均一な照射を行うことができるためスペックルが画像データに発生することを抑制でき、その結果測定対象2の正確な光学測定を行うことができる。つまり、仮に積分球を用いずにレーザ光源からのレーザ光をレンズによって拡径した場合には、既述のように照射領域の画像データにスペックルが生ずるのに対して、上述のように積分球31によってレーザ光を拡散反射させ拡径することで、コヒーレンスの低い光束を出射することができ、上述のような均一な照射を行うことができる。さらに言及すると、上述のようにレーザ光源からのレーザ光をレンズによって拡径した場合、レーザ光源からのレーザ光にあっては光軸付近の光強度よりも周囲(光軸よりも外側)の光強度が強く、この光強度の弱い周囲の光線がより広げられるため、レンズによって拡径された光束は光軸付近と周囲との光強度の差が大きくなるため、照射領域の各部分における均一な照射は困難である。これに対して、上記積分球31から出射される光線は、内部で拡散反射されて拡径されているので、光軸付近と周囲との光強度の差が小さく、均一な照射を容易かつ確実に行うことができる。
[第2の実施形態]
図3及び図4に示す顕微鏡装置6は、図1に示す顕微鏡装置1と基本的に同様な構成を有しているが、照明装置60の調整機構61の構成が顕微鏡装置1とは異なっている。なお、図3においては、図1に示す顕微鏡装置1と同様な要素については同一の符号を付してあり、以下における重複説明を省略する。
調整機構61は、アクチュエータ32dにより積分球31に対して近接離間可能とされた光束調整部材62を備えている。この光束調整部材62は、照明装置60から出射される光束の径及び開き角度を調整するものであり、図3及び図4に示すように光透過領域63及び光不透過領域64を有している。
光透過領域63は、積分球31を出射した光束を透過させる領域であり、例えば透明樹脂等の透明材料により円形に形成されている。一方、光不透過領域64は、積分球31を出射した光束の透過を制限する領域であり、例えば黒色樹脂等の不透明材料により光透過領域63の周辺部を囲むように形成されている。
このような照明装置60では、積分球31から出射された光束は、調整機構61において、光不透過領域64に対応する外周部分の光の透過が制限され、光透過領域63に対応する領域の光が選択的に透過する。その結果、積分球31から出射された光束は、光束調整部材62を透過する際に光束径が小さくなると共に、光束調整部材62に到達する光束に比べて開き角度が小さくされる。また、照明装置60では、アクチュエータ32dによって光束調整部材62の位置を調整することにより、照明装置60から出射される光束の径及び開き角度を調整することができる。従って、照明装置60を備える顕微鏡装置6は、図1及び図2に示す顕微鏡装置1と同様な効果を奏することができる。
なお、光透過領域63は、積分球31からの出射光束の透過させることができる限りは必ずしも透明材料により形成する必要はない。例えば、光透過領域63は、積分球31からの出射光の波長(レーザ光源30から出射されるレーザ光の波長)の光のみを選択的に透過させる材料により形成してもよく、貫通孔として形成してもよい。一方、光不透過領域64は、積分球31からの出射光束の制限させることができる限りは必ずしも黒色材料により形成する必要はない。すなわち、光透過領域63及び光不透過領域64は、積分球31からの出射光の波長により適宜選択すればよい。
また、光束調整部材62に代えて、図4(C)に示す光束調整部材65を採用してもよい。この光束調整部材65は透光性部材66の片面に遮光部67を形成したものである。この遮光部67は、円形の貫通孔68を有している。透光性部材66は例えば透明樹脂等の透明材料により形成され、遮光部67は例えば黒色樹脂等の黒色材料により形成されている。なお、光束調整部材65の透光性部材66及び遮光部67に関し、図4(B)に示す光束調整部材62の光透過領域63及び光不透過領域64と同様な設計変更が可能である。
このような光束調整部材65では、貫通孔68を通過した光束が透光性部材66を透過する一方で、遮光部67において光束の透過が制限される。すなわち、積分球31から出射されて調整機構61から出射する光束は、光束調整部材65を透過する際に光束径が小さくなると共に、光束調整部材62に到達する光束に比べて開き角度が小さくされる。
[第3の実施形態]
図5及び図6に示す顕微鏡装置7は、図1に示す顕微鏡装置1と基本的に同様な構成を有しているが、照明装置70の調整機構71の構成が顕微鏡装置1とは異なっている。なお、図5においては、図1に示す顕微鏡装置1と同様な要素については同一の符号を付してあり、以下における重複説明を省略する。
調整機構71は積分球31の出射口35に固定された光束調整要素72を備えている。この光束調整要素72は、照明装置70から出射される光束の径及び開き角度を調整するものであり、例えば複数の表示素子を備える液晶表示要素、有機EL表示要素等の透過型の表示要素により構成されている。すなわち、光束調整要素72は、各表示素子の光透過状態を制御することで、図6(A)及び図6(B)に示すように光透過領域73と光不透過領域74とを設けることができると共に、光透過領域73の大きさを調整することができる。なお、光不透過領域74は、例えば黒色表示とすることで実現することができる。
このような照明装置70においても、積分球31から出射された光束は、光不透過領域74に対応する外周部分の光の透過が制限され、光透過領域73に対応する領域の光が選択的に透過する。その結果、調整機構71から出射する光束は、調整機構71に入射する際に比べて光束径が小さくなると共に開き角度が小さくなる。
なお、光束調整部材72は、必ずしも積分球31の出射口35に固定する必要はなく、積分球31から離れた位置において、積分球31からの光束の光路上に配置してもよく、積分球31に対して近接離間可能としてもよい。
[第4の実施形態]
図7に示す顕微鏡装置8は、図1に示す顕微鏡装置1と基本的に同様な構成を有しているが、照明装置80の積分球81の内部構造が顕微鏡装置1とは異なっている。なお、図7においては、図1に示す顕微鏡装置1と同様な要素については同一の符号を付してあり、以下における重複説明を省略する。
図7に示す積分球81は、入射口34から入射されたレーザ光の反射面36で反射された反射光のうち、反射回数が所定回数以下の反射光が出射口35から出射することを抑制する遮光部材82を有している。上記所定回数は二回であることが好ましい。具体的には、上記遮光部材82は、例えば板状部材から構成され、積分球81内に入射されたレーザ光が入射する入射口34の対向面83(以下、第一対向面83ということがある)と出射口35の対向面84(以下、第二対向面84ということがある)との間に設けられている。これにより、入射口34から入射され、第一対向面83で反射したレーザ光のうち第二対向面84に向かって進む光線が上記遮光部材82によって遮光される。このように遮光部材82を設けることで、出射口35から出射されるレーザ光は、積分球81内で三回以上反射された光とすることができるので、より確実にレーザ光のコヒーレンスを低減させて出射することができる。
なお、遮光部材82の表面は、反射面36と同様に反射率の高いものとして形成することが好ましい。これにより、入射口35からの入射光が積分球81の内部で拡散反射するうちに減衰することを抑制し、入射口35からの入射光の利用効率の低下を抑制することができる。このような遮光部材82は、少なくとも表層をこの表層に入射した光線を乱反射(拡散反射)する反射層として形成することで得ることができる。この反射層は、上述の積分球31の反射層と同様な手法により焼結体や塗膜として得ることができる。
[変形例]
本発明は、上述の実施形態に限定されず、本発明の技術思想から逸脱しない範囲で種々に設計変更が可能である。例えば、顕微鏡装置における調整機構は必須の構成ではなく省略してもよい。
当該照明装置は、顕微鏡装置に限らず、透過光、蛍光(フォトルミネッセンス発光)等の他の測定対象光の測定する装置に適用することができ、また本発明は、反射光を測定する顕微鏡装置の他に、透過光を測定する顕微鏡装置、蛍光測定装置、分光反射率測定装置等として構成することもできる。
また、上記実施形態においては照射対象として基板を例にとり説明したが、本発明はこれに限定されるものではなく、薄片化された試験片や、既に設置された構造物等に対して検査等を目的として照射することも可能である。
撮像部として冷却CCDカメラに代えて、常温CCDカメラの他、フォトルミネッセンス発光や反射光等の測定対象光の検出部としてのCMOSセンサを組み込んだカメラ等、種々のものを用いることができる。また、測定対象光の検出部やデータ処理部は、必ずしもCCDカメラ等の撮像装置に組み込まれたものを使用する必要はない。
また、上記実施形態の説明において、レーザ光源のレーザ光のピーク波長として350nm以上790nm以下が好ましい旨、記載したが、本発明はこれに限定されるものではない。つまり、例えばピーク波長が790nm以上のレーザ光源(例えばピーク波長1067nmのYAGレーザ等)を用い、赤外カメラ(例えばインジウム・ガリウム・ヒ素センサを使用した近赤外線カメラ等)で照射対象からの光線を受光することも可能である。
判定部は、必ずしもパーソナルコンピュータにより構成する必要はなく、検出部やデータ処置部と共にパーソナルコンピュータ以外の情報処理装置により構成してもよい。
顕微鏡装置は、照明装置やCCDカメラをパーソナルコンピュータと分離された別の装置として構成する必要はなく、照明装置やCCDカメラの機能とパーソナルコンピュータの機能とを一体の装置として実現してもよい。
また、上記実施形態において、当該顕微鏡装置が、半導体基板等の測定対象を走査しないものについて説明したが、本願発明は必ずしもこれに限定されるものではない。つまり、当該顕微鏡装置が、測定対象を照射光線に対して相対的に移動させる走査機構を有するものであっても本願発明の意図する範囲内である。しかし、本発明に係る顕微鏡装置は、上記実施形態のように走査機構を有さないものであることが好ましく、これによって装置の簡素化が図られると共にコスト低減が図られる。
以下、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
実施例1では、図1に示す構成の顕微鏡装置を用いて、テストパターンを撮像した。実施例1の顕微鏡装置は、レーザ光源からのレーザ光を積分球で拡散反射させて光路変更した後、対物レンズを介してテストパターンに照射する照明装置を備えるものである。この顕微鏡装置は、テストパターンから反射光をカメラユニットで撮像するように構成されている。
実施例1における撮像条件は下記表1に示す通りとし、実施例1の顕微鏡装置によるテストパターンの撮像結果は図9(A)に示した。
[比較例1]
比較例1では、図8に示す構成の顕微鏡装置を用いて、テストパターンを撮像した。比較例1の顕微鏡装置は、実施例1の顕微鏡装置の積分球に代えて、アルミミラーを採用し、このアルミミラーとレーザ光源との間に凹レンズを配置したものである。比較例1における撮像条件は下記表1に示す通りとし、比較例1の顕微鏡装置によるテストパターンの撮像結果は図9(B)に示した。
Figure 2017142346
図9(A)及び図9(B)から分かるように、実施例1では、比較例1に比べて顕著にクリアなテストパターンの画像が得られた。この結果から、積分球を用いた実施例1の顕微鏡装置によれば、テストパターンの全体に対して均一に光線が照射され、画像データにスペックルが発生することを抑制できることが確認できる。従って、当該照明装置及びそれを備える顕微鏡装置等の光学測定装置によれば、光線による照射領域を走査させずとも、半導体基板等の測定対象の広い範囲に対して、又は測定対象に一括して光線を照射して測定時間の短縮化を図ることができ、画像データでのスペックルの発生を抑制することで光学測定を正確に行える。なお、上記実施例においては、収差補正レンズを使用していないため、画像の外側に行くにつれ像が若干不鮮明となっているが、収差補正レンズを使用することで、画像の周縁部がより鮮明になると考えられる。
本発明の照明装置は、一度に広範囲を均一に照射することができるので、顕微鏡装置の照明装置や、半導体基板等の光学検査装置の照明装置等において幅広く用いられ、製造分野、学術分野、医療分野等の幅広い分野で用いることができる。
1 顕微鏡装置
2 測定対象
3 照明装置
30 レーザ光源
31 積分球
32 調整機構
32a〜32c 対物レンズ
32d アクチュエータ
33 内部空間
34 入射口
35 出射口
36 反射面
37 ビームスプリッタ
38 アルミミラー
4 CCDカメラ
4A レンズユニット
40 検出部
41 データ処理部
42 出力部
5 パーソナルコンピュータ
50 本体
51 ディスプレイ
52 キーボード
53 判定部
6 顕微鏡装置
60 照明装置
61 調整機構
62 光束調整部材
63 光透過領域
64 光不透過領域
65 光束調整部材
66 透光性部材
67 遮光部
7 顕微鏡装置
70 照明装置
71 調整機構
72 光束調整要素
73 光透過領域
74 光不透過領域
8 顕微鏡装置
80 照明装置
81 積分球
82 遮光板
L 光軸

Claims (9)

  1. レーザ光を出射するレーザ光源と、
    このレーザ光源からのレーザ光を内部で拡散反射させて出射する積分球と
    を備える照明装置。
  2. 平行光を出射する請求項1に記載の照明装置。
  3. 出射光の開き角度を調整する調整機構をさらに備える請求項1又は請求項2に記載の照明装置。
  4. 上記調整機構が上記積分球からの出射光の光路上に配置され、上記積分球に対して近接離間可能とされた対物レンズを含む請求項3に記載の照明装置。
  5. 上記レーザ光源から出射されるレーザ光のピーク波長が350nm以上790nm以下である請求項1から請求項4のいずれか1項に記載の照明装置。
  6. 上記積分球が上記レーザ光源から入射されたレーザ光を拡散反射させる反射層を有し、
    この反射層が焼結体を含む請求項1から請求項5のいずれか1項に記載の照明装置。
  7. 請求項1から請求項6のいずれか1項に記載の照明装置を備える光学測定装置。
  8. 上記照明装置により測定対象に光線を照射した時に上記測定対象から得られる反射光、透過光又は蛍光を検出する検出部を備える請求項7に記載の光学測定装置。
  9. 顕微鏡装置、蛍光測定装置又は反射率測定装置である請求項8に記載の光学測定装置。

JP2016023175A 2016-02-09 2016-02-09 照明装置及び光学測定装置 Pending JP2017142346A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016023175A JP2017142346A (ja) 2016-02-09 2016-02-09 照明装置及び光学測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016023175A JP2017142346A (ja) 2016-02-09 2016-02-09 照明装置及び光学測定装置

Publications (1)

Publication Number Publication Date
JP2017142346A true JP2017142346A (ja) 2017-08-17

Family

ID=59627345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016023175A Pending JP2017142346A (ja) 2016-02-09 2016-02-09 照明装置及び光学測定装置

Country Status (1)

Country Link
JP (1) JP2017142346A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019022563A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022570A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022569A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022566A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022567A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022562A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022564A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022561A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022565A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019184522A (ja) * 2018-04-16 2019-10-24 横河電機株式会社 ガス分析装置
JP2019184523A (ja) * 2018-04-16 2019-10-24 横河電機株式会社 ガス分析装置
JP2020022900A (ja) * 2019-11-22 2020-02-13 株式会社三洋物産 遊技機
WO2023106113A1 (ja) * 2021-12-08 2023-06-15 シーシーエス株式会社 検査システム及び検査用スポット照明装置
JP7477109B2 (ja) 2020-08-26 2024-05-01 東芝テック株式会社 検出装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019022565A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022567A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022563A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022566A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022561A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022562A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022564A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022570A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019022569A (ja) * 2017-07-23 2019-02-14 株式会社三洋物産 遊技機
JP2019184523A (ja) * 2018-04-16 2019-10-24 横河電機株式会社 ガス分析装置
JP2019184522A (ja) * 2018-04-16 2019-10-24 横河電機株式会社 ガス分析装置
CN110389109A (zh) * 2018-04-16 2019-10-29 横河电机株式会社 气体分析装置
US10871398B2 (en) 2018-04-16 2020-12-22 Yokogawa Electric Corporation Gas analyzer
US10908082B2 (en) 2018-04-16 2021-02-02 Yokogawa Electric Corporation Gas analyzer
JP2020022900A (ja) * 2019-11-22 2020-02-13 株式会社三洋物産 遊技機
JP7477109B2 (ja) 2020-08-26 2024-05-01 東芝テック株式会社 検出装置
WO2023106113A1 (ja) * 2021-12-08 2023-06-15 シーシーエス株式会社 検査システム及び検査用スポット照明装置

Similar Documents

Publication Publication Date Title
JP2017142346A (ja) 照明装置及び光学測定装置
TWI663394B (zh) 在工作件中用於缺陷偵測的裝置,方法及電腦程式產品
US10598603B2 (en) Lighting device for inspection and inspection system
US10883944B2 (en) Inspection system and method of inspection
KR101810078B1 (ko) 광루미네선스와 산란광을 동시에 검출하는 결함조사 장치
JP5866573B1 (ja) 検査用照明装置及び検査システム
CN109841533B (zh) 宽频晶圆缺陷侦测系统及宽频晶圆缺陷侦测方法
JP2011002439A (ja) 検査装置
JP5830229B2 (ja) ウエハ欠陥検査装置
JP2017142143A (ja) 蛍光測定装置及び蛍光測定方法
US8110804B2 (en) Through substrate optical imaging device and method
EP3299861A1 (en) Confocal raman microscope
JP6829828B2 (ja) レンズ外観検査装置
KR101575895B1 (ko) 웨이퍼 검사장치 및 웨이퍼 검사방법
CN105675617B (zh) 用于测量平板玻璃表面颗粒度的方法及设备
KR101447857B1 (ko) 렌즈 모듈 이물 검사 시스템
KR102274622B1 (ko) 기판 검사 장치 및 기판 검사 방법
JP5255763B2 (ja) 光学検査方法および装置
JP2015102364A (ja) 外観検査装置
KR20220034822A (ko) 반도체 디바이스들의 내부 크랙들의 조합된 투과광 및 반사광 이미징
KR101846949B1 (ko) 다중 광학계를 이용한 복합 검사장치
TWM506283U (zh) 快速三維共軛焦光譜成像裝置
JPH1183465A (ja) 表面検査方法及び装置
KR102350544B1 (ko) 반도체 패키징 검사공정용 광학모듈
JP6455029B2 (ja) 検査方法及び検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200714