JP2017141544A - Variable diameter excavator - Google Patents

Variable diameter excavator Download PDF

Info

Publication number
JP2017141544A
JP2017141544A JP2016021488A JP2016021488A JP2017141544A JP 2017141544 A JP2017141544 A JP 2017141544A JP 2016021488 A JP2016021488 A JP 2016021488A JP 2016021488 A JP2016021488 A JP 2016021488A JP 2017141544 A JP2017141544 A JP 2017141544A
Authority
JP
Japan
Prior art keywords
outer shell
members
excavator
shielding
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016021488A
Other languages
Japanese (ja)
Other versions
JP6692172B2 (en
Inventor
孝義 大塚
Takayoshi Otsuka
孝義 大塚
近藤 紀夫
Norio Kondo
紀夫 近藤
辰夫 後藤
Tatsuo Goto
辰夫 後藤
豐 加島
Yutaka Kashima
豐 加島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Civic Consulting Engineers Co Ltd
Original Assignee
Nippon Civic Consulting Engineers Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Civic Consulting Engineers Co Ltd filed Critical Nippon Civic Consulting Engineers Co Ltd
Priority to JP2016021488A priority Critical patent/JP6692172B2/en
Publication of JP2017141544A publication Critical patent/JP2017141544A/en
Application granted granted Critical
Publication of JP6692172B2 publication Critical patent/JP6692172B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a lining body from becoming unstable or collapsing owing to ground pressure by avoiding a failure in excavation due to restraint by expansive ground etc., with respect to various excavators.SOLUTION: A variable-diameter excavator M1 has, at least at a front part of an excavator body 10, an outer shell 13 composed of a plurality of outer shell members 131 divided in a circumferential direction, and a plurality of closure members 133 installed between the plurality of outer shell members 131 and serving for closure between the respective outer shell members 131, and an outer shell member driving device 132 which moves all or some of the outer shell members 131 in a radial direction of the outer shell 13 is installed between an inner shell 12 and all or some of the plurality of outer shell members 131, so that the variable-diameter excavator can increase in diameter.SELECTED DRAWING: Figure 1

Description

本発明は、地盤の掘削に使用する可変径掘進機に関し、特に、膨張性地盤や拘束性の地盤に遭遇し、この地盤から過剰な地盤圧を受けるような場合でも、機体の順調な掘進を確保し、覆工体の確実な施工を図る可変径掘進機に関する。   The present invention relates to a variable diameter excavator used for excavation of the ground, and in particular, when an inflatable ground or a constrained ground is encountered and excessive ground pressure is received from the ground, the aircraft is smoothly advanced. The present invention relates to a variable diameter excavator that secures and reliably constructs a lining body.

例えばトンネルの掘削工事に用いられる掘進機として、平地などで砂、粘土、岩盤などさまざまな地盤の掘削に使用されるシールドマシンや山地などで硬い岩盤の掘削に使用されるトンネルボーリングマシン(以下、単にTBMという。)がよく知られている。
シールドマシンは、カッタヘッド、筒形構造の内殻、及び内殻の周囲を包囲する筒形構造の外殻からなる掘進機本体、掘進機本体を推進するための推進装置などを備えて構成され、カッタヘッドを回転させることで前方地山を掘削するとともに掘削された土砂をカッタヘッドから掘進機本体内部に取り込んで後方へ排土する一方、掘進機本体内部でエレクタを用いてセグメントを組み立てることにより地山を順次覆工するとともに、推進装置(推進ジャッキ)により覆工体(セグメント)に反力を取って掘進するようになっている。この種のシールドマシンが特許文献1などに開示されている。
TBMも、シールドマシンと同様に、カッタヘッド、筒形構造の内殻、及び内殻の周囲を包囲する筒形構造の外殻からなる掘進機本体、掘進機本体を推進するための推進装置などを備えて構成され、カッタヘッドで切削されたずりを掘進機本体内部を通して後方に排土するとともに、掘進機本体内部でエレクタを用いてセグメントを組み立てることにより地山を順次覆工し、あるいは掘進機の後方で坑壁にコンクリートを吹付けて覆工する。そして推進装置(推進ジャッキ)によりセグメントに反力を取ってあるいはグリッパを介して掘削地山に反力を取って掘進するようになっている。この種のTBMが特許文献2などに開示されている。
For example, as an excavator used for tunnel excavation work, a tunnel boring machine (hereinafter referred to as a shield machine used for excavation of various ground such as sand, clay and bedrock on flat ground, etc. Is simply known as TBM).
The shield machine includes an excavator body composed of a cutter head, an inner shell having a cylindrical structure, and an outer shell having a cylindrical structure surrounding the inner shell, and a propulsion device for propelling the main body. Rotate the cutter head to excavate the front ground and take the excavated earth and sand from the cutter head into the excavator body and evacuate it back, while assembling the segments using the erector inside the excavator body In addition to lining the natural ground in order, the propulsion device (propulsion jack) takes a reaction force on the lining body (segment) to dig. This type of shield machine is disclosed in Patent Document 1 and the like.
The TBM, like the shield machine, is an excavator body composed of a cutter head, an inner shell having a cylindrical structure, and an outer shell having a cylindrical structure surrounding the inner shell, a propulsion device for propelling the main body of the excavator, etc. The machine cuts the shear cut by the cutter head to the rear through the inside of the excavator body, and lays the ground in order by assembling the segments using the erector inside the excavator body. The concrete is sprayed on the pit wall behind the machine. Then, a reaction force is applied to the segment by a propulsion device (propulsion jack) or a reaction force is applied to the excavated ground via a gripper. This type of TBM is disclosed in Patent Document 2 and the like.

特開2012−225127JP2012-225127A 特開2015−145597JP2015-145597

ところで、この種の掘進機を用いて地盤を掘削していると、掘削断面を縮小するように孕み出してくる所謂膨張性地盤や拘束性の地盤に遭遇することがあり、この地盤から過剰な地盤圧が機体に作用すると、機体が地盤に拘束されて、掘進機が掘進不能な状態になるおそれがあり、また、この過剰な地盤圧が覆工体(セグメント)に作用すると、覆工体の構造が不安定になったり圧潰したりするおそれがある、という問題がある。   By the way, when excavating the ground using this type of excavator, you may encounter so-called inflatable ground or constrained ground that squeeze out to reduce the excavation cross section. If the ground pressure acts on the airframe, the airframe may be restrained by the ground and the excavator may not be able to dig, and if this excessive ground pressure acts on the lining body (segment), the lining body There exists a problem that there exists a possibility that the structure of may become unstable or it may be crushed.

本発明は、このような従来の問題を解決するもので、各種の掘進機において、膨張性地盤や拘束性の地盤に遭遇してこの地盤から過剰な地盤圧が機体に作用するような場合でも、機体が地盤に拘束されて掘進不能になるのを回避し、また、この過剰な地盤圧が覆工体に作用して、覆工体の構造が不安定になったり圧潰したりするのを防止すること、を目的とする。   The present invention solves such a conventional problem, and in various excavating machines, even when an inflatable ground or a constraining ground is encountered and excessive ground pressure acts on the body from this ground. , Avoiding the aircraft being restrained by the ground and becoming unable to dig, and the excessive ground pressure acting on the lining body, causing the structure of the lining body to become unstable or crushed. The purpose is to prevent.

上記目的を達成するために、本発明は、
カッタヘッドと、
筒形構造の内殻、及び前記内殻の周囲を包囲する筒形構造の外殻からなる掘進機本体と、
前記掘進機本体を推進するための推進装置と、
を備え、
前記掘進機本体の少なくとも前部は、前記外殻が、周方向に分割されて複数の外殻部材と、前記複数の外殻部材間に設置され、前記各外殻部材間を閉塞するための複数の閉合部材とからなり、前記内殻と前記複数の外殻部材の全部又は一部との間に前記全部又は一部の外殻部材を前記外殻の径方向に移動するための外殻部材駆動装置が設置されて、拡径可能に構成される、
ことを要旨とする。
In order to achieve the above object, the present invention provides:
With a cutter head,
An excavator body comprising an inner shell having a cylindrical structure and an outer shell having a cylindrical structure surrounding the inner shell;
A propulsion device for propelling the machine body;
With
At least a front portion of the excavator main body is configured such that the outer shell is divided in the circumferential direction and installed between the plurality of outer shell members and the plurality of outer shell members, and closes between the outer shell members. An outer shell for moving the whole or part of the outer shell member in the radial direction of the outer shell between the inner shell and the whole or part of the outer shell member. A member driving device is installed and configured to be able to expand the diameter.
This is the gist.

また、この可変径掘進機は各部が次のように具体化されることが好ましい。
(1)外殻部材の全部又は一部は、内殻上に進退駆動式の外殻部材駆動装置により支持され、外殻部材全体が外殻の軸心と略平行な状態で、前記外殻の径方向に移動可能に構成され、推進装置は掘進機本体の後部側に装着される。
(2)掘進機本体の前部及び中間部がそれぞれ、外殻が、周方向に分割されて複数の外殻部材と、前記複数の外殻部材間に設置され、前記各外殻部材間を閉塞するための複数の閉合部材とからなり、前記外殻の前部及び中間部の前記外殻部材の全部又は一部は、内殻上に後端が軸を介して連結され、進退駆動式の外殻部材駆動装置により支持されて、前記外殻部材の後端を傾動中心として、前端側の傾動により前記外殻の径方向に移動可能に構成され、前記掘進機本体の前部及び中間部は伸縮部材を介して連接され、推進装置は前記掘進機本体の前部と中間部との間に中押し伸縮式の推進装置として装着される。
(3)複数の外殻部材はそれぞれ、断面略弧状の部材からなる。
(4)上記(3)に代えて、複数の外殻部材はそれぞれ、断面略弧状の部材からなり、かつ外殻部材の全部又は一部は外側面が前端から後端に向けて漸次縮径されるテーパ状に形成されるようにしてもよい。
(5)複数の外殻部材及び閉合部材の前後に内殻に固定されて前記各外殻部材の前記外殻の径方向への移動により前記各外殻部材及び前記各閉合部材の前後端が摺動可能に配置され、前記外殻の拡径に際して、前記各外殻部材及び前記各閉合部材の前後において掘進機本体の内部と外部とを遮断するための前後の遮断部材を備え、前記各外殻部材及び前記閉合部材の前後端と前記前後の遮断部材との間にシール材が介設される。
(6)閉合部材は、外殻の径方向に移動する相隣る各外殻部材間を当該各外殻部材の内側面側で遮蔽可能な大きさを有する遮蔽部材と、前記遮蔽部材と前記外殻部材との間に介設されるシール材と、前記遮蔽部材を前記各外殻部材に当接させ前記外殻部材の前記外殻の径方向への移動に追従して駆動する遮蔽部材駆動装置とからなる。
(7)閉合部材は、外殻の径方向に移動する相隣る各外殻部材間を当該各外殻部材の内側面側で遮蔽可能な大きさを有する遮蔽部材と、前記遮蔽部材を前記各外殻部材の内側面に当接させて保持する保持部材と、前記各外殻部材の外殻の径方向の移動とともに前記遮蔽部材を径方向に移動案内可能な径方向ガイド及び前記遮蔽部材上で前記相隣る各外殻部材を周方向に移動案内可能な周方向ガイドと、前記遮蔽部材と前記外殻部材との間に介設されるシール材とからなる。
(8)閉合部材は、外殻の径方向に移動する相隣る各外殻部材の各側面を摺動案内するガイド面を有する遮蔽部材と、前記遮蔽部材と前記外殻部材との間に介設されるシール材とからなる。
(9)閉合部材に内側面と外側面との間を貫通してジェット水噴射孔を形成され、前記ジェット水噴射孔に配管又はホースを介してジェット水噴射装置が接続されることが望ましい。
Moreover, it is preferable that each part of this variable diameter excavator is embodied as follows.
(1) All or part of the outer shell member is supported on the inner shell by an advancing / retracting outer shell member driving device, and the outer shell member is substantially parallel to the axis of the outer shell. The propulsion device is mounted on the rear side of the excavator body.
(2) The front part and the intermediate part of the main body of the excavator are respectively divided into a plurality of outer shell members by dividing the outer shell in the circumferential direction, and between the outer shell members. A plurality of closing members for closing, all or part of the outer shell member at the front part and the intermediate part of the outer shell are connected to the inner shell via a shaft, and is driven forward and backward The outer shell member drive device is configured to be movable in the radial direction of the outer shell by tilting the front end side with the rear end of the outer shell member as the center of tilting, The parts are connected via an expansion / contraction member, and the propulsion device is mounted as an intermediate push / extension type propulsion device between the front part and the intermediate part of the excavator main body.
(3) Each of the plurality of outer shell members is a member having a substantially arc-shaped cross section.
(4) Instead of (3) above, each of the plurality of outer shell members is made of a member having a substantially arc-shaped cross section, and all or a part of the outer shell members are gradually reduced in diameter from the front end toward the rear end. It may be formed in a tapered shape.
(5) The front and rear ends of each outer shell member and each closing member are fixed to the inner shell before and after the plurality of outer shell members and the closing member, and each outer shell member moves in the radial direction of the outer shell. Slidably disposed, and when the diameter of the outer shell expands, the front and rear blocking members for blocking the inside and the outside of the main body of the excavator before and after each outer shell member and each closing member, A sealing material is interposed between the front and rear ends of the outer shell member and the closing member and the front and rear blocking members.
(6) The closing member includes a shielding member having a size capable of shielding between adjacent outer shell members moving in the radial direction of the outer shell on the inner surface side of each outer shell member, the shielding member, A sealing member interposed between the outer shell member and a shielding member that drives the outer shell member to follow the movement of the outer shell in the radial direction by bringing the shielding member into contact with each outer shell member. It consists of a drive device.
(7) The closing member includes a shielding member having a size capable of shielding adjacent outer shell members moving in the radial direction of the outer shell on the inner surface side of each outer shell member, and the shielding member A holding member that is held in contact with an inner surface of each outer shell member; a radial guide capable of moving and guiding the shielding member in the radial direction together with the radial movement of the outer shell of each outer shell member; and the shielding member It consists of the circumferential guide which can move and guide each said outer shell member to the circumferential direction above, and the sealing material interposed between the said shielding member and the said outer shell member.
(8) The closing member includes a shielding member having a guide surface that slides and guides each side surface of each adjacent outer shell member that moves in the radial direction of the outer shell, and between the shielding member and the outer shell member. It consists of a sealing material interposed.
(9) It is desirable that a jet water injection hole is formed in the closing member so as to penetrate between the inner surface and the outer surface, and a jet water injection device is connected to the jet water injection hole via a pipe or a hose.

本発明の可変径掘進機によれば、上記の構成により、掘進機本体の少なくとも前部の外殻が拡径可能に構成されるので、さまざまな地盤の掘削に際し、膨張性地盤や拘束性の地盤に遭遇しこの地盤から過剰な地盤圧が機体に作用するような場合でも、拡径カッタビットで掘進機前部の全周をオーバーカットしながら掘削し、掘進機前部の外殻を拡径して掘進していくことで、機体が地盤に拘束されたときに、掘進機前部の外殻を縮径することにより、機体に対する地盤の拘束力を減少解除して、機体が地盤に拘束されて掘進不能になるのを回避し、また、このように拡径カッタビットで掘進機前部の全周をオーバーカットしながら、掘進機前部の外殻を拡径して掘進し、掘進機本体の周囲を大きく掘削していくことで、地盤の膨張が発生したときに、地盤の膨張を吸収し、地盤の過剰な地盤圧を減少させて、この過剰な地盤圧が覆工体に作用して、覆工体の構造が不安定になったり覆工体が圧潰したりするのを防止することができる、という本発明独自の格別な効果を奏する。   According to the variable diameter excavator of the present invention, the outer shell of at least the front portion of the excavator main body is configured to be capable of expanding the diameter by the above configuration. Even when the ground is encountered and excessive ground pressure acts on the aircraft from this ground, excavation is performed while overcutting the entire circumference of the front of the excavator with an enlarged cutter bit to expand the outer shell of the front of the excavator. By digging in diameter, when the aircraft is restrained by the ground, by reducing the outer shell of the front of the excavator, the restraining force of the ground against the aircraft is released and the aircraft is brought to the ground. While avoiding being restrained and becoming impossible to dig, and overcutting the entire circumference of the front part of the excavator with an enlarged diameter cutter bit in this way, the outer shell of the front part of the excavator is expanded and excavated, Soil expansion occurred due to large excavation around the machine body At the same time, it absorbs the expansion of the ground, reduces the excessive ground pressure of the ground, this excessive ground pressure acts on the lining body, the structure of the lining body becomes unstable or the lining body There is a special effect unique to the present invention that it can be prevented from being crushed.

本発明の第1の実施の形態による可変径掘進機の構成を示す図((a)は正面断面図((a−1)は拡径していない状態を示す。(a−2)は拡径した状態を示す。)、(b)は側面断面図)The figure which shows the structure of the variable diameter excavator by the 1st Embodiment of this invention ((a) is front sectional drawing ((a-1) shows the state which is not diameter-expanded. (A-2) is expanded). The diameter is shown.), (B) is a side sectional view) 同可変径掘進機による膨張性地盤の掘進手順を示す図The figure which shows the excavation procedure of the expansive ground with the variable diameter excavator 本発明の第2の実施の形態による可変径掘進機の構成を示す図(側面断面図)The figure (side sectional view) showing the composition of the variable diameter excavator by the 2nd embodiment of the present invention 本発明の第3の実施の形態による可変径掘進機の構成を示す図((a)は正面断面図((a−1)は外径が縮径時の状態を示す。(a−2)は外径が拡径した状態を示す。)、(b)は側面断面図)The figure which shows the structure of the variable diameter excavator by the 3rd Embodiment of this invention ((a) is front sectional drawing ((a-1) shows the state at the time of an outer diameter reducing diameter. (A-2). Shows a state in which the outer diameter is expanded.), (B) is a side sectional view) 本発明の第4の実施の形態による可変径掘進機の要部の構成を示す図((a)は正面部分断面図、(b)は底面部分断面図)The figure which shows the structure of the principal part of the variable diameter excavator by the 4th Embodiment of this invention ((a) is front fragmentary sectional view, (b) is bottom part sectional drawing) 本発明の第5の実施の形態による可変径掘進機の構成を示す図(正面断面図(a−1)は外径が縮径時の状態を示す。(a−2)は外径が拡径時の状態を示す。))The figure which shows the structure of the variable diameter excavator by the 5th Embodiment of this invention (front sectional drawing (a-1) shows the state at the time of an outer diameter reducing. (A-2) is an outer diameter expanded. Shows the condition at diameter.)) 本発明の第6の実施の形態による可変径掘進機の構成を示す図((a)は側面断面図、(b)は(a)のQ部拡大図)The figure which shows the structure of the variable diameter excavator by the 6th Embodiment of this invention ((a) is side surface sectional drawing, (b) is the Q section enlarged view of (a)).

次に、この発明の実施の形態について図を用いて説明する。
図1に第1の実施の形態を示している。
図1に示すように、可変径掘進機M1は、カッタヘッド11と、筒形構造の内殻12、及びこの内殻12の周囲を包囲する筒形構造の外殻13からなる掘進機本体10と、掘進機本体10を推進するための推進装置16とを備えて構成される。
そして、この可変径掘進機M1では、掘進機本体10の少なくとも前部は、外殻13が、周方向に分割されて複数の外殻部材131、131dと、複数の外殻部材131間に設置され、各外殻部材131間を閉塞するための複数の閉合部材133、133dとからなり、内殻12と複数の外殻部材131の全部又は一部との間に全部又は一部の外殻部材131を外殻13の径方向に移動するための外殻部材駆動装置132が設置されて、拡径可能に構成される。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment.
As shown in FIG. 1, the variable diameter excavator M <b> 1 includes an excavator main body 10 including a cutter head 11, a cylindrical inner shell 12, and a cylindrical outer shell 13 surrounding the inner shell 12. And a propulsion device 16 for propelling the excavator main body 10.
In this variable diameter excavator M1, at least the front portion of the excavator main body 10 is installed between the outer shell members 131 and 131d and the outer shell members 131 by dividing the outer shell 13 in the circumferential direction. And a plurality of closing members 133 and 133d for closing between the outer shell members 131, and all or part of the outer shells between the inner shell 12 and all or a part of the plurality of outer shell members 131. An outer shell member driving device 132 for moving the member 131 in the radial direction of the outer shell 13 is installed and configured to be able to expand the diameter.

この可変掘進機M1においては、一般に知られているTBMと共通の構成を有し、掘進機本体10が掘進機前部10Fと掘進機後部10Rとからなり、掘進機前部10Fは、内殻12、外殻13F、カッタヘッド11、カッタヘッド駆動装置11Dなどから構成され、掘進機後部10Rは、外殻13R、テールシール14、充填材注入管15、推進装置16として推進ジャッキなどから構成される。   This variable excavator M1 has a configuration common to a generally known TBM, and the excavator main body 10 includes an excavator front part 10F and an excavator rear part 10R, and the excavator front part 10F has an inner shell. 12, the outer shell 13F, the cutter head 11, the cutter head driving device 11D, etc., and the rear part 10R of the excavator is constituted by the outer shell 13R, the tail seal 14, the filler injection pipe 15, the propulsion device 16 and the like as a propulsion jack. The

掘進機前部10Fの各部は次のような構成、機能を有する。
内殻12はカッタヘッド11、外殻13F(後述する外殻部材131、下部外殻部材131d、閉合部材133、133d、外殻部材駆動装置132、132dなど)を取り付けるためのもので、複数の鋼材などからなるフレームにより略円筒形に形成される。この内殻12の前面に前隔壁121が形成され、その中央にカッタヘッド控室122が設けられる。ここで、前隔壁121はカッタヘッド11を回転可能に支持し、カッタヘッド駆動装置11Dを取り付けるためのもので、前隔壁121はカッタヘッド控室122の周囲が内殻12の内方に向けて断面略L字形に形成され、その垂直壁にカッタヘッド駆動装置の取付部123が設けられ、その垂直壁の前面下端にカッタヘッド11を支持するための軸支持部124が前方に向けて突設される。カッタヘッド控室122は作業者がカッタヘッド11のカッタビットの交換など各種の作業や排土装置114の設置、撤去作業のためカッタヘッド11や切羽へ出入りするために画成されたスペース(部屋)である。
外殻13Fについては後述する。
カッタヘッド11は掘進機本体10の外殻13の径と略同径の円盤状、ドーム円盤状あるいは車輪状のフレームで、フレームの正面に多数のカッタビットが設けられ、外周面に掘削径を拡大するときに用いる複数の拡径カッタビット111が出没可能(外周面内に没入可能にかつ外周面から掘進機本体10の軸に対して直角方向所定の長さまで突出可能)に設けられ、また、背面の中央に回転軸110が突設されてその外周面に周方向にピニオンギア110Gが設けられる。このカッタヘッド11は背面の回転軸110が内殻12前面の前隔壁121の軸支持部124に回転可能に支持される。なお、このカッタヘッド11と前隔壁121との間にはシール材112が介設されて、カッタヘッド11と前隔壁121との間から掘削土砂や地下水の侵入を防止される。
カッタヘッド駆動装置11Dはカッタヘッド11を回転するための駆動モータで、その回転軸に駆動ギア113Gが設けられる。このカッタヘッド駆動装置11Dは駆動ギア113Gを前方に向けて内殻12前面の前隔壁121の取付部123に取り付けられ、駆動ギア113Gがカッタヘッド11の回転軸110のピニオンギア110Gに噛合される。
なお、この可変径掘進機M1では、カッタヘッド11の内部からカッタヘッド控室122を介して掘進機本体10内に排土装置114としてベルトコンベアが通され、カッタヘッド11で地盤を掘削したときに出るズリをこのベルトコンベア114により排土する形式になっている。
Each part of the excavator front part 10F has the following configuration and functions.
The inner shell 12 is for attaching a cutter head 11 and an outer shell 13F (an outer shell member 131, a lower outer shell member 131d, a closing member 133, 133d, an outer shell member driving device 132, 132d, etc., which will be described later). It is formed in a substantially cylindrical shape by a frame made of steel or the like. A front partition 121 is formed on the front surface of the inner shell 12, and a cutter head holding chamber 122 is provided in the center thereof. Here, the front partition 121 is for rotatably supporting the cutter head 11 and for attaching the cutter head driving device 11D. The front partition 121 has a cross section in which the periphery of the cutter head holding chamber 122 faces the inside of the inner shell 12. An attachment portion 123 of the cutter head driving device is provided on the vertical wall of the vertical wall, and a shaft support portion 124 for supporting the cutter head 11 is projected forward from the lower end of the front surface of the vertical wall. The The cutter head waiting room 122 is a space (room) defined for an operator to enter and exit the cutter head 11 and the face for various operations such as exchanging the cutter bit of the cutter head 11, installation and removal of the soil removal device 114. It is.
The outer shell 13F will be described later.
The cutter head 11 is a disk-shaped, dome-shaped or wheel-shaped frame having a diameter substantially the same as the diameter of the outer shell 13 of the excavating machine main body 10. A plurality of diameter-enlarged cutter bits 111 used for enlarging are provided so as to be able to protrude and retract (can be immersed in the outer peripheral surface and can protrude from the outer peripheral surface to a predetermined length in a direction perpendicular to the axis of the excavator main body 10). The rotating shaft 110 projects from the center of the back surface, and a pinion gear 110G is provided on the outer peripheral surface in the circumferential direction. The cutter head 11 is rotatably supported by a shaft support portion 124 of a front partition 121 on the front surface of the inner shell 12 with a rotating shaft 110 on the back surface. In addition, a sealing material 112 is interposed between the cutter head 11 and the front partition wall 121, so that excavation soil and groundwater can be prevented from entering between the cutter head 11 and the front partition wall 121.
The cutter head drive device 11D is a drive motor for rotating the cutter head 11, and a drive gear 113G is provided on the rotation shaft thereof. The cutter head drive device 11D is attached to the attachment portion 123 of the front partition wall 121 on the front surface of the inner shell 12 with the drive gear 113G facing forward, and the drive gear 113G is engaged with the pinion gear 110G of the rotating shaft 110 of the cutter head 11. .
In this variable diameter excavator M1, a belt conveyor is passed as excavator 114 from the inside of the cutter head 11 through the cutter head holding chamber 122 into the excavator main body 10, and when the ground is excavated by the cutter head 11. It is in the form of discharging soil from the belt conveyor 114.

掘進機後部10Rの各部は次のような構成、機能を有する。
外殻13Rは掘進機後部10Rの胴部をなすもので、複数の鋼材などからなるプレートやフレームなどにより略円筒形に形成され、掘進機前部10Fの外殻13Fの後方に中隔壁125を介して連接される。ここで中隔壁125は、円環状に形成され、内殻12の後部に固定されて、内方に向けて突状に設けられる。この外殻13Rの内周中間部に後隔壁139が形成されて、この後隔壁139と中隔壁125との間に推進ジャッキの取付部140が設けられる。この推進ジャッキの取付部140の後方はセグメントの組立部になっていて、後端部にテールシール14が取り付けられて、外殻13Rとセグメントとの間の隙間から土砂や地下水の侵入を防止される。
充填材注入管15は外殻13Rの周囲に生じた空隙(後述する一次空隙)に充填材を吐出するための配管で、掘進機後部10R内に配管され、その基端が充填材の供給源に接続され、その先端が外殻13Rの前端側で外殻13Rの内周面と外周面との間に形成された充填材吐出口150に接続される。ここで充填材は、例えば気泡、気泡スチレン粒を含み、圧縮性を有する可塑性流動体が好ましい。
推進ジャッキ16は可変径掘進機M1を地盤中で掘進させるもので、油圧ジャッキなどが採用される。この推進ジャッキ16は伸縮ロッド161を掘進機後部10Rの後方に向けて中隔壁125と後隔壁139との間の取付部140に取り付けられる。
Each part of the excavator rear part 10R has the following configuration and functions.
The outer shell 13R forms the trunk of the excavator rear portion 10R, and is formed in a substantially cylindrical shape by a plate or a frame made of a plurality of steel materials, and an intermediate partition wall 125 is provided behind the outer shell 13F of the excavator front portion 10F. Connected through. Here, the middle partition 125 is formed in an annular shape, is fixed to the rear portion of the inner shell 12, and is provided in a projecting shape toward the inside. A rear partition wall 139 is formed at an inner peripheral middle portion of the outer shell 13R, and a propulsion jack mounting portion 140 is provided between the rear partition wall 139 and the intermediate partition wall 125. The rear portion of the mounting portion 140 of this propulsion jack is an assembly portion of the segment, and a tail seal 14 is attached to the rear end portion to prevent intrusion of earth and sand and groundwater from the gap between the outer shell 13R and the segment. The
The filler injection pipe 15 is a pipe for discharging the filler into a gap (a primary gap to be described later) generated around the outer shell 13R. The filler injection pipe 15 is piped in the rear part 10R of the excavator, and its base end is a supply source of the filler. The front end of the outer shell 13R is connected to a filler discharge port 150 formed between the inner peripheral surface and the outer peripheral surface of the outer shell 13R. Here, the filler is preferably a plastic fluid containing, for example, bubbles and bubble styrene particles and having compressibility.
The propulsion jack 16 is for digging the variable diameter excavator M1 in the ground, and a hydraulic jack or the like is employed. The propulsion jack 16 is attached to the attachment portion 140 between the middle partition wall 125 and the rear partition wall 139 with the telescopic rod 161 facing the rear of the excavator rear portion 10R.

この可変径掘進機M1においては、掘進機前部10Fの外殻13Fは掘進機前部10Fの胴部をなすもので、周方向に分割されて複数の外殻部材131、131dと、複数の外殻部材131、131d間に設置され、各外殻部材131、131d間を閉塞するための複数の閉合部材133、133dとからなり、内殻12と複数の外殻部材131、131dの全部又は一部との間に全部又は一部の外殻部材131、131dを外殻13Fの径方向に移動するための外殻部材駆動装置132、132dが設置されて、拡径可能に構成される。
この場合、外殻13Fは上部中央から左右両側に向けて中心角45度の6つの外殻部材131、及び中心角90度の1つの下部外殻部材131dと、6つの外殻部材131間に設置される5つの閉合部材133、及び下部外殻部材131dとその両側の各外殻部材131との間に設置される2つの下部閉合部材133dとからなる。下部外殻部材131dは掘進機前部13Fの底部をなす。なお、これら外殻部材131、131dの中心角や数はこれに限定されるものではなく、掘削断面の大きさや地盤の条件などにより適宜決定されるものである。
In this variable diameter excavator M1, the outer shell 13F of the excavator front part 10F forms the trunk of the excavator front part 10F, and is divided in the circumferential direction into a plurality of outer shell members 131 and 131d, It is provided between the outer shell members 131 and 131d and includes a plurality of closing members 133 and 133d for closing the space between the outer shell members 131 and 131d, and the inner shell 12 and the plurality of outer shell members 131 and 131d are all or Outer shell member driving devices 132 and 132d for moving all or part of the outer shell members 131 and 131d in the radial direction of the outer shell 13F are installed between them, and the diameter can be increased.
In this case, the outer shell 13F has six outer shell members 131 having a central angle of 45 degrees from the upper center toward both left and right sides, one lower outer shell member 131d having a central angle of 90 degrees, and the six outer shell members 131. It consists of five closing members 133 installed, and two lower closing members 133d installed between the lower outer shell member 131d and the outer shell members 131 on both sides thereof. The lower outer shell member 131d forms the bottom of the excavator front part 13F. The central angles and the number of the outer shell members 131 and 131d are not limited to this, and are appropriately determined depending on the size of the excavation cross section, the ground conditions, and the like.

複数の外殻部材131、131dはそれぞれ、断面略弧状の部材からなり、これらの外殻部材131、131dはすべて、内殻12上に複数の進退駆動式の外殻部材駆動装置132により支持され、各外殻部材131、131dの全体が外殻13の軸心と略平行な状態で、外殻13の径方向に移動可能に構成される。
この場合、6つの外殻部材131はそれぞれ、鋼材などのプレートにより内側面が開口された略箱形に形成され、外殻13の外面をなす断面略円弧状(又は断面略弓形)の外板131−1と、略円弧状(略弓形)を呈する前後の側板131−2、3と、略長方形の左右の側板131−4、5とからなる。なお、前後の各側板131−2、3は外板131−1に対して略直角に延び、左右の各側板131−4、5は外板131−1に対して末広がりに所定の角度で斜めに形成される。1つの下部外殻部材131dもまた、各外殻部材131とは中心角が異なるだけで、各外殻部材131と同様に、鋼材などのプレートにより内側面が開口された略箱形に形成され、外殻13Fの外面をなす断面略円弧状(又は断面略弓形)の外板131d−1と、略円弧状(略弓形)を呈する前後の側板131d−2、3と、略長方形の左右の側板131d−4、5とからなる。なお、前後の各側板131d−2、3は外板131d−1に対して略直角に延び、左右の各側板131d−4、5は外板131d−1に対して末広がりに所定の角度で斜めに形成される。
複数の外殻部材駆動装置132、132dはそれぞれ、油圧ジャッキが採用される。この場合、複数の油圧ジャッキ132、132dはそれぞれ、各油圧ジャッキ132、132dの伸縮ロッド132R、132dRを各外殻部材131、131dに向けて、各外殻部材131、131dに対応する内殻12の各面に、各外殻部材131、131dの外殻13軸方向に対して直交する方向の断面(すなわち、円弧状の断面)の中心を通る半径方向の軸線(図1中、軸線A、B、C、D…Gで表示)の両側にそれぞれ当該軸線と略平行に配置されて、内殻12の各面に内殻12の周方向に揺動可能に取り付けられ、各伸縮ロッド132Rの先端が各外殻部材131、131dの内側面に軸を介して外殻部材131、131dの周方向に揺動可能に連結される。
このようにして各外殻部材131、131dが内殻12上に外殻13Fの軸心と略平行な状態で配置され、各外殻部材駆動装置132、132dにより、外殻13Fの軸心と略平行の状態で外殻13Fの径方向に移動されることにより、掘進機前部10Fの外殻13Fが任意の径に拡縮自在に構成される。
Each of the plurality of outer shell members 131 and 131d is made of a member having a substantially arc-shaped cross section, and all of these outer shell members 131 and 131d are supported on the inner shell 12 by a plurality of advancing and retracting outer shell member driving devices 132. The entire outer shell members 131 and 131d are configured to be movable in the radial direction of the outer shell 13 in a state of being substantially parallel to the axis of the outer shell 13.
In this case, each of the six outer shell members 131 is formed in a substantially box shape whose inner surface is opened by a plate such as a steel material, and has a substantially arc-shaped (or substantially arc-shaped) outer plate forming the outer surface of the outer shell 13. 13-1, front and rear side plates 131-2 and 3 having a substantially arc shape (substantially arcuate), and left and right side plates 131-4 and 5 having a substantially rectangular shape. The front and rear side plates 131-2 and 3 extend substantially at right angles to the outer plate 131-1, and the left and right side plates 131-4 and 5 are obliquely inclined at a predetermined angle with respect to the outer plate 131-1. Formed. One lower outer shell member 131d is also formed in a substantially box shape whose inner surface is opened by a plate made of steel or the like, similarly to each outer shell member 131, except that the central angle is different from each outer shell member 131. The outer plate 131d-1 having a substantially arcuate cross section (or a substantially arcuate cross section) forming the outer surface of the outer shell 13F, the front and rear side plates 131d-2, 3 having a substantially arcuate shape (substantially arcuate), It consists of side plates 131d-4 and 5. The front and rear side plates 131d-2 and 3 extend substantially at right angles to the outer plate 131d-1, and the left and right side plates 131d-4 and 5 are diagonally inclined at a predetermined angle with respect to the outer plate 131d-1. Formed.
Each of the plurality of outer shell member driving devices 132 and 132d employs a hydraulic jack. In this case, the plurality of hydraulic jacks 132, 132d are respectively directed to the inner shells 12 corresponding to the outer shell members 131, 131d with the telescopic rods 132R, 132dR of the hydraulic jacks 132, 132d facing the outer shell members 131, 131d. Of each of the outer shell members 131 and 131d, the radial axis passing through the center of the cross section (that is, the arc-shaped cross section) in the direction orthogonal to the axial direction of the outer shell 13 of each outer shell member 131 and 131d (in FIG. B, C, D... (Indicated by B, G) are arranged substantially in parallel with the axis, and are attached to the respective surfaces of the inner shell 12 so as to be swingable in the circumferential direction of the inner shell 12. The tip is coupled to the inner side surface of each outer shell member 131, 131d via a shaft so as to be swingable in the circumferential direction of the outer shell member 131, 131d.
In this way, the outer shell members 131 and 131d are arranged on the inner shell 12 in a state substantially parallel to the axis of the outer shell 13F. The outer shell member driving devices 132 and 132d By moving in the radial direction of the outer shell 13F in a substantially parallel state, the outer shell 13F of the excavator front portion 10F is configured to be freely expandable and contractable to an arbitrary diameter.

複数の閉合部材133、133dは各外殻部材131間に設置される5つの閉合部材133と下部外殻部材131dとその両側の外殻部材131との間に設置される2つの下部閉合部材131dとからなる。
各閉合部材133は外殻13Fの径方向に移動する相隣る各外殻部材131間を当該各外殻部材131の内側面側で遮蔽可能な大きさを有する遮蔽部材134と、遮蔽部材134と外殻部材131との間に介設されるシール材135と、遮蔽部材135を各外殻部材131に当接させ外殻部材131の外殻13Fの径方向への移動に追従して駆動する遮蔽部材駆動装置136とからなる。
この場合、遮蔽部材134は相隣る各外殻部材131の相対する側板131−4、5間に生ずる間隔の変化に関わらず、相隣る各外殻部材131の側板131−4、5の下縁に接して側板131−4、5間を遮蔽可能な所定の幅と長さを有する鋼材などのプレートからなり、この遮蔽部材134により地盤の土砂や地下水の侵入が防止される。なお、遮蔽部材134の外面は断面略(円)弧状を呈する。
シール材135は各外殻部材131の左右の各側板131−4、5の下端部に沿って溝が形成されてこの溝に取り付けられて、遮蔽部材134と各外殻部材131−4、131−5との間に介装される。
遮蔽部材駆動装置136に複数の油圧ジャッキが採用される。この場合、内殻12の相隣る各外殻部材131の間でその直下に当たる各位置に各遮蔽部材134が各外殻部材131の左右の各側板131−4、131−5の下端部に接して収納可能に複数の凹部126が形成されて、この凹部126の底面に複数の油圧ジャッキ136が取り付けられ、各油圧ジャッキ136の伸縮ロッド136Rが遮蔽部材134の内面に連結される。
各下部閉合部材133dは、各閉合部材133と同様に、外殻133Fの径方向に移動する下部外殻部材131dとその両側の各外殻部材131との間を当該各外殻部材131d、131の内側面側で遮蔽可能な大きさを有する遮蔽部材134dと、遮蔽部材134dと外殻部材131d、131との間に介設されるシール材135d、135と、遮蔽部材134dを各外殻部材131d、131に当接させ各外殻部材131d、131の外殻13Fの径方向への移動に追従して駆動する遮蔽部材駆動装置136dとからなる。
この場合、遮蔽部材134dは下部外殻部材131dの側板131d−4、5とその両側の各外殻部材131の側板131−5、4との間に生ずる間隔の変化に関わらず、下部外殻部材131d、各外殻部材131の各側板131d−4、5、131−4、5の下端部に接して各側板131d−4、5、131−5、4間を遮蔽可能な所定の幅と長さを有する鋼材などのプレートからなり、この遮蔽部材134dにより地盤の土砂や地下水の侵入が防止される。なお、遮蔽部材134dの外面は断面略(円)弧状を呈する。
シール材135dは下部外殻部材131dの左右の各側板131d−4、5の下端部、シール材135は下部外殻部材131d両側の各外殻部材131の下部外殻部材131側の一方の側板131d−5、4の下端部に沿って溝が形成されてこの溝に取り付けられて、遮蔽部材134dと各外殻部材131d、131との間に介装される。
遮蔽部材駆動装置136dに複数の油圧ジャッキが採用される。この場合、内殻12の下部外殻部材131dとその両側の各外殻部材131の間でその直下に当たる各位置に各遮蔽部材134dが各外殻部材131d、131の左右の各側板131d−4、5、131−4、5の下縁部に接して収納可能に複数の凹部126dが形成されて、この凹部126dの底面において外殻部材131側に複数の油圧ジャッキ136dが回転支持ブロック137を介して内殻12の周方向に揺動可能に取り付けられ、各油圧ジャッキ136dの伸縮ロッド136dRが遮蔽部材134d内面に軸を介して内殻12の周方向に揺動可能に連結され、また、この凹部126dの底面において下部外殻部材131d側に複数の油圧ジャッキ136dが固定され、各油圧ジャッキ136dの伸縮ロッド136dRが遮蔽部材134dの内面に軸を介して内殻12の周方向に揺動可能に連結される。
また、この下部閉合部材133dにおいては、下部外殻部材131dとその両側の各外殻部材131の内側面で各遮蔽部材134dの左右両側面から所定の距離だけ離れた所定の位置に逸脱防止部材138が突設され、各遮蔽部材134dの左右両側に所定の間隔を介して配置される。この逸脱防止部材138は下部外殻部材131dとその両側の各外殻部材131の内側面に固定され、各遮蔽部材134dの左右両側に沿って延びるプレートで、この逸脱防止部材138により各下部閉合部材133dの周方向への逸脱が防止される。
このようにして各遮蔽部材134dは内殻12上に外殻13Fの軸心と略平行な状態で配置され、各外殻部材131、131dの拡径又は縮径に伴い、相隣る各外殻部材131、131d間の離隔の変化(相隣る各外殻部材131、131dの左右両側の側板131−4、5、131d−4、5が徐々に離間したり近接したりする変化)に対応して、各遮蔽部材駆動装置136、136dにより、外殻13Fの軸心と略平行の状態で外殻13Fの径方向に移動されることにより、外殻13Fの径方向に移動される各外殻部材131、131d間を常に遮蔽(閉合)可能に構成される。
The plurality of closing members 133 and 133d are five lower closing members 131d installed between the five closing members 133 installed between the outer shell members 131, the lower outer shell member 131d, and the outer shell members 131 on both sides thereof. It consists of.
Each closing member 133 includes a shielding member 134 having a size capable of shielding between adjacent outer shell members 131 moving in the radial direction of the outer shell 13 </ b> F on the inner surface side of each outer shell member 131, and a shielding member 134. The sealing member 135 interposed between the outer shell member 131 and the shielding member 135 is brought into contact with each outer shell member 131 to drive following the movement of the outer shell member 131 in the radial direction of the outer shell 13F. And a shielding member driving device 136.
In this case, the shielding member 134 is formed on the side plates 131-4 and 5 of the adjacent outer shell members 131 regardless of the change in the interval between the opposing side plates 131-4 and 5 of the adjacent outer shell members 131. It consists of plates, such as steel materials which have the predetermined width and length which can shield between the side plates 131-4 and 5 in contact with the lower edge, and this shielding member 134 prevents the invasion of ground soil and groundwater. The outer surface of the shielding member 134 has a substantially circular (circular) cross section.
The sealing material 135 is formed with grooves along the lower ends of the left and right side plates 131-4, 5 of each outer shell member 131, and is attached to the grooves. The shielding member 134 and the outer shell members 131-4, 131 are then attached. -5.
A plurality of hydraulic jacks are employed for the shielding member driving device 136. In this case, each shielding member 134 is located at the lower end of each of the left and right side plates 131-4 and 131-5 of each outer shell member 131 at each position between the outer shell members 131 adjacent to each other immediately below the inner shell 12. A plurality of recesses 126 are formed so as to be able to come into contact with each other, a plurality of hydraulic jacks 136 are attached to the bottom surface of the recesses 126, and the telescopic rods 136 </ b> R of each hydraulic jack 136 are connected to the inner surface of the shielding member 134.
Similarly to each closing member 133, each lower closing member 133d has a space between the lower outer shell member 131d moving in the radial direction of the outer shell 133F and the outer shell members 131 on both sides thereof. A shielding member 134d having a size that can be shielded on the inner surface side thereof, seal members 135d and 135 interposed between the shielding member 134d and the outer shell members 131d and 131, and the shielding member 134d. The shielding member driving device 136d is driven to follow the movement of the outer shell members 131d and 131 in the radial direction of the outer shell 13F in contact with 131d and 131.
In this case, the shielding member 134d is formed of the lower outer shell 131d regardless of the change in the distance between the side plates 131d-4 and 5 of the lower outer shell member 131d and the side plates 131-5 and 4 of the outer shell members 131 on both sides thereof. A predetermined width capable of shielding between the side plates 131d-4, 5, 131-5, 4 in contact with the lower ends of the side plates 131d-4, 5, 131-4, 5 of the member 131d and the outer shell members 131; It consists of a plate of steel or the like having a length, and the shielding member 134d prevents invasion of ground soil and groundwater. The outer surface of the shielding member 134d has a substantially circular (circular) arc shape in cross section.
The sealing material 135d is the lower end of each of the left and right side plates 131d-4 and 5 of the lower outer shell member 131d, and the sealing material 135 is one side plate on the lower outer shell member 131 side of each outer shell member 131 on both sides of the lower outer shell member 131d. A groove is formed along the lower end of 131d-5, 4 and attached to this groove, and is interposed between the shielding member 134d and the outer shell members 131d, 131.
A plurality of hydraulic jacks are employed in the shielding member driving device 136d. In this case, each shielding member 134d is placed at a position directly below the lower outer shell member 131d of the inner shell 12 and the outer shell members 131 on both sides thereof, and the left and right side plates 131d-4 of the outer shell members 131d and 131, respectively. 5, 131-4, a plurality of recesses 126d are formed so as to be able to be stored in contact with the lower edge portions, and a plurality of hydraulic jacks 136d are provided on the bottom surface of the recesses 126d on the outer shell member 131 side. The telescopic rod 136dR of each hydraulic jack 136d is connected to the inner surface of the shielding member 134d so as to be swingable in the circumferential direction of the inner shell 12 through the shaft. A plurality of hydraulic jacks 136d are fixed to the bottom surface of the recess 126d on the lower outer shell member 131d side, and the telescopic rod 136dR of each hydraulic jack 136d is a shielding member 1. It is swingably connected in the circumferential direction of the inner shell 12 via the shaft to the inner surface of 4d.
Further, in this lower closing member 133d, the deviation preventing member is located at a predetermined position on the inner side surfaces of the lower outer shell member 131d and the outer shell members 131 on both sides of the lower outer shell member 131d by a predetermined distance from the left and right side surfaces of each shielding member 134d. 138 protrudes and is arranged on both the left and right sides of each shielding member 134d with a predetermined interval. The deviation prevention member 138 is a plate that is fixed to the inner side surface of the lower outer shell member 131d and the outer shell members 131 on both sides thereof and extends along the left and right sides of each shielding member 134d. Deviation in the circumferential direction of the member 133d is prevented.
In this way, each shielding member 134d is disposed on the inner shell 12 in a state substantially parallel to the axis of the outer shell 13F, and the outer shell members 131 and 131d are each adjacent to each other as the diameter increases or decreases. Due to a change in the separation between the shell members 131 and 131d (a change in which the side plates 131-4, 5 and 131d-4 and 5 on the left and right sides of the adjacent outer shell members 131 and 131d are gradually separated or approached). Correspondingly, each of the shield member driving devices 136 and 136d moves in the radial direction of the outer shell 13F in a state substantially parallel to the axis of the outer shell 13F, thereby moving in the radial direction of the outer shell 13F. The outer shell members 131 and 131d can be shielded (closed) at all times.

なお、これら複数の外殻部材131、131d及び閉合部材134、134dと内殻12との間はこれらの部材により密閉区画されて環状の空間になっていて、この空間に既述の外殻部材駆動装置132、132d、遮蔽部材駆動装置136、136dが設置される。そして、この空間にはさらに、エア、発泡ウレタン等あるいは気体を混入された塑性流動体が充填されて補充機構とすると好適である。この場合、この塑性流動体は充填・排出可能であることが好ましい。
また、各外殻部材131、131dの径を拡大縮小する伸縮機構として油圧ジャッキに代えてエアジャッキが使用されてもよく、各閉合部材133、133dの遮蔽部材134、134dを径方向に移動する伸縮機構として油圧ジャッキに代えてエアジャッキやばねが使用されてもよい。
このようにすることにより、その振動吸収性能により、例えば可変径掘進機M1の地盤中での掘進において、カッタヘッド11で切羽を掘削するときに発生する振動を掘進機本体10周辺の地盤に伝達するのを防ぐことができ、騒音の発生を抑えることができる。
The outer shell members 131 and 131d and the closing members 134 and 134d and the inner shell 12 are hermetically partitioned by these members to form an annular space, and the outer shell member described above is formed in this space. Driving devices 132 and 132d and shielding member driving devices 136 and 136d are installed. It is preferable that this space is further filled with a plastic fluid mixed with air, urethane foam, or the like, or a gas to serve as a replenishment mechanism. In this case, it is preferable that this plastic fluid can be filled and discharged.
An air jack may be used instead of the hydraulic jack as an expansion / contraction mechanism for enlarging or reducing the diameter of each outer shell member 131, 131d, and the shielding members 134, 134d of the respective closing members 133, 133d are moved in the radial direction. An air jack or a spring may be used as the expansion / contraction mechanism instead of the hydraulic jack.
In this way, due to the vibration absorption performance, for example, in excavation in the ground of the variable diameter excavator M1, vibration generated when the face is excavated by the cutter head 11 is transmitted to the ground around the excavator main body 10. Can be prevented, and the generation of noise can be suppressed.

また、この掘進機前部10Fにおいては、これら複数の外殻部材131、131d及び閉合部材133、133dの前後にそれぞれ、各外殻部材131、131d及び各閉合部材133、133dの前後において掘進機本体10の内部と外部とを遮断するための前後の遮断部材171、172が設けられる。この前後の遮蔽部材171、172は内殻12に固定され、各外殻部材131、131dの外殻13Fの径方向への移動により各外殻部材131、131d及び各閉合部材133、133dの前後端が当接して摺動可能に配置される鍔状のプレートで、各外殻部材131、131d及び各閉合部材133、133dの前後端と前後の遮断部材171、172との間にシール材が介設される。この場合、前の遮蔽部材171は内殻12の前隔壁121の外周を延長して円環状に突出形成され、後の遮蔽部材172は内殻12後部の中隔壁125の外周を延長して円環状に突出形成されて、外殻13Fの縮径時は各外殻部材131、131dの外板131−1、131d−1が前後の各遮断部材171、172の外周縁部と略同じ位置又はそれよりも内側に没入され、各外殻部材131、131dの前後の各側板131−2、3、131d−2、3の全面が前後の各遮断部材171、172に接触し、外殻13Fが拡径するとき、すなわち、各外殻部材131、131dが外側方向に移動するときに、各外殻部材131、131dの外板131−1、131d−1が前後の各遮蔽部材171、172の外周縁部より外側に突出し、各外殻部材131、131dの前後の各側板131−2、3、131d−2、3の一部(この場合、開口側の縁部)が前後の各遮断部材171、172に重なる(オーバーラップする)ように形成される。また、シール材は前後の遮断部材171、172の内面に形成された溝に装着されて、前後の遮断部材171、172と各外殻部材131、131d及び各閉合部材133、133dの前後端との間に介装される。この前後の遮断部材171、172により、外殻13Fの拡径に際し、各外殻部材131、131d及び各閉合部材133、133dの前後において掘進機本体10の内部と外部が遮断される。   Further, in the excavator front part 10F, the excavator is provided before and after the outer shell members 131 and 131d and the closing members 133 and 133d, respectively, before and after the outer shell members 131 and 131d and the closing members 133 and 133d. Front and rear blocking members 171 and 172 for blocking the inside and the outside of the main body 10 are provided. The front and rear shielding members 171 and 172 are fixed to the inner shell 12, and the outer shell members 131 and 131d and the closing members 133 and 133d are moved forward and backward by the movement of the outer shell members 131 and 131d in the radial direction of the outer shell 13F. It is a bowl-shaped plate that is slidably disposed with its ends abutting, and a sealing material is provided between the front and rear ends of the outer shell members 131 and 131d and the closing members 133 and 133d and the front and rear blocking members 171 and 172. It is installed. In this case, the front shielding member 171 extends in an annular shape by extending the outer periphery of the front partition 121 of the inner shell 12, and the rear shielding member 172 extends the outer periphery of the middle partition 125 at the rear of the inner shell 12. When the diameter of the outer shell 13F is reduced, the outer plates 131-1 and 131d-1 of the outer shell members 131 and 131d are positioned at substantially the same positions as the outer peripheral edge portions of the front and rear blocking members 171 and 172. The entire surface of each of the side plates 131-2, 131, 131d-2 and 3 before and after the outer shell members 131 and 131d comes into contact with the front and rear blocking members 171 and 172, and the outer shell 13F is When the diameter is increased, that is, when the outer shell members 131 and 131d are moved outward, the outer plates 131-1 and 131d-1 of the outer shell members 131 and 131d are disposed on the front and rear shielding members 171 and 172, respectively. Projects outward from the outer peripheral edge, and Part of each side plate 131-2, 131, 131d-2, 3 (in this case, the edge on the opening side) of the members 131, 131d overlaps (overlaps) the front and rear blocking members 171, 172. Formed. The sealing material is mounted in grooves formed on the inner surfaces of the front and rear blocking members 171 and 172, and the front and rear blocking members 171 and 172, the outer shell members 131 and 131d, and the front and rear ends of the closing members 133 and 133d, respectively. It is inserted between. The front and rear blocking members 171 and 172 block the inside and the outside of the excavator main body 10 before and after the outer shell members 131 and 131d and the closing members 133 and 133d when the diameter of the outer shell 13F is increased.

このようにして可変径掘進機M1は、通常の良好な地盤では、掘進機前部10Fの各外殻部材駆動装置132、132d、すなわち油圧ジャッキ132、132dの伸縮ロッド132R、132dR、遮蔽部材駆動装置136、136d、すなわち油圧ジャッキ136、136dの伸縮ロッド136R、136dRが完全に収縮されて外殻13Fの径が最も小さい状態で、カッタヘッド11が回転されて前方地山を掘削するとともに、掘削された土砂はカッタヘッド11からベルトコンベア114により掘進機本体10内部に取り込まれて後方へ排土される一方、掘進機本体10内部でエレクタによりセグメントが組み立てられて地山を順次覆工するとともに、推進装置16、すなわち、推進ジャッキ16により覆工体(セグメント)に反力を取って掘進される。
そして、この可変径掘進機M1が地盤の掘進中に膨張性地盤あるいは拘束性地盤に遭遇した場合に、可変径掘進機M1が膨張性地盤からの過剰な地盤圧等により機体が拘束されて掘進不能になるのを回避するため、また、この可変径掘進機M1の後部で組み立てられた覆工体に過剰な地盤圧が作用してその構造が不安定になったり圧潰したりするのを防止するため、可変掘進機Mは一旦掘進を停止し、次のような手順で地盤の掘削が進められる。
[可変径掘進機による膨張性地盤の掘進手順]
(1)可変径掘進機M1が地盤の掘進中に膨張性地盤あるいは拘束性地盤に遭遇することを地盤探査などの測定手段を用いて予知する。
例えば、図2(1)に示すように、可変径掘進機M1内から前方探査ボーリングにより、膨張性地盤の位置を確認する。
(2)膨張性地盤の直前(約10m程度手前)で、拡径カッタビット111で掘進機前部10Fの下部90度程度の範囲をオーバーカットしながら掘進し、掘進機前部10Fの下部を余掘りする。
この場合、図2(2)に示すように、可変径掘進機M1はカッタヘッド11の外周面から下部側の拡径カッタビット111のみが伸長されて所定の拡径位置に固定され、この拡径カッタビット111で掘進機前部10Fの下部90度程度の範囲を大きく掘削しながら掘進して停止される。
(3)掘進機前部10Fの外殻13Fの下部を拡径する。
この場合、図2(2)に示すように、掘進機前部10Fの下部外殻部材131dがこの下部外殻部材131dとその両側の各外殻部材131との間の各閉合部材133dとともに拡径される。すなわち、下部外殻部材131dは下部外殻部材駆動装置132d、すなわち、油圧ジャッキ132dの伸縮ロッド132dRの伸長により、外側に向けて移動され、各閉合部材133dは各遮蔽部材134dが遮蔽部材駆動装置136d、すなわち、油圧ジャッキ136dの伸縮ロッド136dRの伸長により、外側に向けて移動される。このとき、下部外殻部材131d、各遮蔽部材134dの油圧ジャッキ132d、136dは相互に連携し、移動速度を調整されて伸長され、下部外殻部材131dが下部外殻部材131dとその両側の各外殻部材131との間が各遮蔽部材134dで遮蔽されながら、拡径方向に移動され、掘進機前部10Fの下部が拡張される。
なお、この場合、下部閉合部材133dは、その両側の逸脱防止部材138により、各下部閉合部材133dの周方向への逸脱が防止される。また、この外殻13Fの拡径では、下部外殻部材131dの移動速度と各閉合部材133dの移動速度が調整されるので、各遮蔽部材134dは下部外殻部材131dの側板131d−4、5とその両側の各外殻部材131の側板131−4、5との間に生ずる間隔の変化に関わらず、下部外殻部材131d、各外殻部材131の各側板131d−4、5、131−4、5の下端部に接し、また、各遮蔽部材134dと下部外殻部材131d、各外殻部材131との間にはシール材135が介装されているので、各遮蔽部材134dと下部外殻部材131d、各外殻部材131との間から地盤の土砂や地下水の侵入が確実に防止される。さらに、下部外殻部材131d及びその両側の閉合部材133dの前後に遮断部材171、172が設けられ、下部外殻部材131d及び各閉合部材133dの前後端と前後の遮断部材171、172との間にシール材135dが介設されているので、外殻13Fの拡径に際し、下部外殻部材131d及び各閉合部材133dの前後から地盤の土砂や地下水の侵入が確実に防止される。
(4)拡径カッタビット111で掘進機前部10Fの全周をオーバーカットしながら掘削し、掘進機前部10Fの全周を余掘りする。
この場合、図2(3)に示すように、可変径掘進機M1はカッタヘッド11の外周面から上部側各拡径カッタビット111が伸長されて所定の拡径位置に固定され、これらの拡径カッタビット111で掘進機前部10Fの周囲全体を大きく掘削しながら掘進して停止される。なお、崩壊性の地盤の場合は、地盤が崩壊しないように、必要により地盤改良するとよい。
(5)掘進機前部10Fの上部約270度の外殻13Fを拡径し、掘進機前部10F全体を拡径する。
この場合、掘進機前部10Fの各外殻部材131が各外殻部材131間の各閉合部材133とともに拡径される。すなわち、各外殻部材131は外殻部材駆動装置132、すなわち、油圧ジャッキ132の伸縮ロッド132Rの伸長により、外側に向けて移動され、各閉合部材133は各遮蔽部材134が遮蔽部材駆動装置136、すなわち、油圧ジャッキ136の伸縮ロッド136Rの伸長により、外側に向けて移動される。このとき、各外殻部材131、各遮蔽部材134の油圧ジャッキ132、136は相互に連携し、移動速度を調整されて伸長され、各外殻部材131が各外殻部材131の間が各遮蔽部材134で遮蔽されながら、拡径方向に移動され、掘進機前部10Fの全周が拡張される。
なお、この外殻13Fの拡径では、各外殻部材131の移動速度と各閉合部材133の移動速度が調整されるので、各遮蔽部材134は相隣る各外殻部材131の側板131−4、5間に生ずる間隔の変化に関わらず、各外殻部材131の各側板131−4、5の下端部に接し、また、各遮蔽部材134と各外殻部材131との間にシール材135が介装されているので、各遮蔽部材134と各外殻部材131との間から地盤の土砂や地下水の侵入が確実に防止される。さらに、各外殻部材131及び各閉合部材133の前後に遮断部材171、172が設けられ、各外殻部材131及び各閉合部材133の前後端と前後の遮蔽部材171、172との間にシール材が介設されているので、外殻13Fの拡径に際し、各外殻部材131及び各閉合部材133の前後から地盤の土砂や地下水の侵入が確実に防止される。
(6)図2(4)に示すように、掘進機前部10Fが拡径された可変径掘進機M1により、膨張性地盤の掘進を開始する。
この場合、可変径掘進機M1は掘進機前部10Fの外殻13Fの径が最も大きい状態で、カッタヘッド11が回転されて前方地山を掘削するとともに掘削された土砂はカッタヘッド111からベルトコンベア114により掘進機本体10内部に取り込まれて後方へ排土される一方、掘進機本体10内部でエレクタによりセグメントが組み立てられて地山を順次覆工するとともに、推進装置16、すなわち、推進ジャッキ16により覆工体(セグメント)に反力を取って掘進される。この膨張性地盤を拡径された掘進機本体10で掘進すると、時間の経過とともに、地盤の膨張が発生するが、通常であれば、膨張量は僅かであり、掘進機本体10が拘束されることはない。掘進機後部10R付近から地盤が膨張を開始しても、掘進機後部10Rは膨張量に応じた外径差が付けられて小径になっており、拘束されることはない。この掘進機後部10Rはセグメントの組立部で、拡縮径機能を有さず、通常の掘削径であり、掘進機前部10Fの外殻13Fが拡径されると、掘進機後部10Rの径は小さいので、掘進機後部10Rの周囲の地盤に段差が生じ、掘進機後部10Rの周囲に空間が発生する。ここで、この空間を一次間隙という。地盤の膨張に時間がかかり、掘進機後部10Rの周囲が空洞になる場合は、この一次間隙に圧縮性及び可撓性を有する充填材を注入し、地盤を保持する。この充填材は、例えば、粘土やベントナイト、高分子吸収剤、水の混合体で、空気を混合する、あるいは発泡ガラス粒子あるいは発泡スチレン粒子を混合するなど、地盤の膨張圧に圧縮されるような材質にすることが好ましい。このようにして地盤が掘進機本体10に対して締付けや過剰の圧力を作用させないようにする。また、掘進機本体10の推進に対する抵抗力を軽減する。また、セグメントとテールプレートとの間隙である2次間隙には一般に使用される裏込め材を注入、充填する。この裏込め材は膨張性地盤の膨張量に応じて気泡や発泡材を含む可縮性を有するものが好ましい。
そして、この可変径掘進機M1の掘進中に、地盤の膨張により機体が地盤に拘束された場合は、掘進機前部10Fの外殻13F、すなわち、各外殻部材131、131dが各閉合部材133、133d(図1参照)とともにそれぞれの駆動装置132、132d、136、136d(図1参照)の駆動により内側に向けて移動され、掘進機前部10Fの外殻13Fの径が縮小される。すなわち、各外殻部材131、131dは油圧ジャッキ132、132dの伸縮ロッド132R、132dRの収縮により、内側に向けて移動され、各閉合部材133、133dは各遮蔽部材134、134dが油圧ジャッキ136、136dの伸縮ロッド136R、136dRの収縮により、内側に向けて移動される。このとき、各外殻部材131、131d、各遮蔽部材134、134dの油圧ジャッキ132、132d、136、136dは相互に連携し、移動速度を調整されて伸長され、各外殻部材131、131dが各外殻部材の131、131d間が各遮蔽部材134、134dで遮蔽されながら、拡径方向に移動され、掘進機前部10Fの全周が縮小される。なお、この外殻13Fの縮径でも、各外殻部材131、131dの移動速度と各閉合部材133、133dの移動速度が調整されるので、各遮蔽部材134、134dは相隣る各外殻部材131、131dの側板131−4、5、131d−4、5間に生ずる間隔の変化に関わらず、各外殻部材131、131dの各側板131−4、5、131d−4、5の下端部に接し、また、各遮蔽部材134、134dと各外殻部材131、131dとの間にシール材135、135dが介装されているので、各遮蔽部材134、134dと各外殻部材131、131dとの間から地盤の土砂や地下水の侵入が確実に防止される。さらに、各外殻部材131、131d及び各閉合部材133、133dの前後に遮断部材171、172が設けられ、各外殻部材131、131d及び各閉合部材133、133dの前後端と前後の遮断部材171、172との間にシール材が介設されているので、外殻13Fの縮径に際し、各外殻部材131、131d及び各閉合部材133、133dの前後から地盤の土砂や地下水の侵入が確実に防止される。これにより、可変径掘進機M1に対する地盤の拘束力が減少解除されて、可変径掘進機M1の拘束地盤からの脱出が容易となり、可変径掘進機M1の掘進が引き続き可能となる。
また、地盤が膨張して地盤圧が過剰に上昇する場合は、この地盤を拡径された掘進機本体10で機体長分以上通過し、掘進機後部10Rと掘削断面との間に生じる一次空隙には既述の圧縮性、可撓性を有する充填剤を充填しておく。このようにすることで、地盤が膨張したときにその過剰な圧力が低減され、覆工体(セグメント)に過剰な地盤圧が作用しなくなる。
In this way, the variable-diameter excavator M1 has the outer shell member drive devices 132 and 132d of the excavator front part 10F, that is, the telescopic rods 132R and 132dR of the hydraulic jacks 132 and 132d, the shielding member drive, in the normal good ground. With the devices 136 and 136d, that is, the telescopic rods 136R and 136dR of the hydraulic jacks 136 and 136d completely contracted and the diameter of the outer shell 13F being the smallest, the cutter head 11 is rotated to excavate the front ground. The earth and sand thus taken are taken into the excavator main body 10 by the belt conveyor 114 from the cutter head 11 and discharged to the rear, while the segments are assembled by the elector inside the excavator main body 10 to sequentially cover the ground. , Reaction force to the lining body (segment) by the propulsion device 16, that is, the propulsion jack 16 It is excavation taking.
When the variable diameter excavator M1 encounters an inflatable ground or a constrained ground while excavating the ground, the variable diameter excavator M1 is confined by excessive ground pressure from the inflatable ground. In order to avoid disabling, it is also possible to prevent the structure from becoming unstable or crushing due to excessive ground pressure acting on the lining body assembled at the rear of the variable diameter excavator M1. Therefore, the variable excavator M temporarily stops excavation, and the excavation of the ground proceeds in the following procedure.
[Procedure for exploring expansive ground using variable diameter excavator]
(1) Predicting that the variable diameter excavator M1 encounters an inflatable ground or a constrained ground while excavating the ground using a measuring means such as ground exploration.
For example, as shown in FIG. 2 (1), the position of the expandable ground is confirmed by forward exploration boring from within the variable diameter excavator M1.
(2) Immediately before the expansive ground (approx. About 10m before), digging while overcutting the range of about 90 degrees below the front part of the excavator 10F with the enlarged diameter cutter bit 111, and lowering the lower part of the front part 10F of the excavator Excavate.
In this case, as shown in FIG. 2 (2), the variable diameter excavator M1 extends from the outer peripheral surface of the cutter head 11 only by the lower diameter expansion cutter bit 111 and is fixed at a predetermined diameter expansion position. The diameter cutter bit 111 is excavated and stopped while greatly excavating the range of about 90 degrees below the excavator front part 10F.
(3) The diameter of the lower part of the outer shell 13F of the excavator front part 10F is expanded.
In this case, as shown in FIG. 2 (2), the lower outer shell member 131d of the excavator front portion 10F expands together with the closing members 133d between the lower outer shell member 131d and the outer shell members 131 on both sides thereof. Diameter. That is, the lower outer shell member 131d is moved outward by the extension of the lower outer shell member driving device 132d, that is, the telescopic rod 132dR of the hydraulic jack 132d, and each closing member 133d is moved by the shielding member 134d. 136d, that is, the extension rod 136dR of the hydraulic jack 136d is extended to move outward. At this time, the lower outer shell member 131d and the hydraulic jacks 132d and 136d of the respective shielding members 134d cooperate with each other and are extended by adjusting the moving speed, so that the lower outer shell member 131d is connected to the lower outer shell member 131d and each of the both sides thereof. While the space between the outer shell member 131 and the outer shell member 131 is shielded by each shielding member 134d, the outer shell member 131 is moved in the diameter increasing direction, and the lower portion of the excavator front portion 10F is expanded.
In this case, the lower closing member 133d is prevented from deviating in the circumferential direction of the lower closing members 133d by the deviation preventing members 138 on both sides thereof. Further, since the moving speed of the lower outer shell member 131d and the moving speed of each closing member 133d are adjusted in the diameter expansion of the outer shell 13F, each shielding member 134d is connected to the side plate 131d-4, 5 of the lower outer shell member 131d. And the side plates 131d-4, 5, 131- of the lower outer shell member 131d and the outer shell member 131, regardless of the change in the distance between the outer shell member 131 and the side plates 131-4, 5 of the outer shell member 131 on both sides thereof. 4 and 5, and the seal member 135 is interposed between each shielding member 134 d, the lower outer shell member 131 d, and each outer shell member 131. Intrusion of ground soil and groundwater from between the shell member 131d and each outer shell member 131 is reliably prevented. Further, blocking members 171 and 172 are provided before and after the lower outer shell member 131d and the closing members 133d on both sides of the lower outer shell member 131d, and between the lower outer shell member 131d and the front and rear ends of each closing member 133d and the front and rear blocking members 171 and 172. Since the sealing material 135d is interposed between the lower outer shell member 131d and each of the closing members 133d, the earth and sand and groundwater can be reliably prevented from entering before and after the lower shell member 131d.
(4) Excavation is performed while overcutting the entire circumference of the excavator front part 10F with the diameter-enlarged cutter bit 111, and the entire circumference of the excavator front part 10F is dug.
In this case, as shown in FIG. 2 (3), in the variable diameter excavator M1, each of the upper side enlarged diameter cutter bits 111 is extended from the outer peripheral surface of the cutter head 11 and fixed at a predetermined enlarged diameter position. With the diameter cutter bit 111, the entire periphery of the excavator front part 10F is excavated and stopped while being excavated. In the case of a collapsible ground, the ground may be improved as necessary so that the ground does not collapse.
(5) The diameter of the outer shell 13F of about 270 degrees in the upper part of the excavator front part 10F is expanded, and the entire excavator front part 10F is expanded.
In this case, each outer shell member 131 of the excavator front part 10 </ b> F is expanded in diameter together with each closing member 133 between the outer shell members 131. That is, each outer shell member 131 is moved outward by the extension of the outer shell member driving device 132, that is, the telescopic rod 132R of the hydraulic jack 132, and each closing member 133 is moved by the shielding member 134 by the shielding member driving device 136. That is, when the telescopic rod 136R of the hydraulic jack 136 is extended, the hydraulic jack 136 is moved outward. At this time, the hydraulic jacks 132 and 136 of each outer shell member 131 and each shielding member 134 cooperate with each other and are extended by adjusting the moving speed, and each outer shell member 131 is shielded between each outer shell member 131. While being shielded by the member 134, it is moved in the diameter increasing direction, and the entire circumference of the excavator front part 10F is expanded.
In addition, since the moving speed of each outer shell member 131 and the moving speed of each closing member 133 are adjusted in the diameter expansion of the outer shell 13F, each shielding member 134 is a side plate 131- of each adjacent outer shell member 131. Regardless of the change in the spacing between the four and five, the sealing material is in contact with the lower ends of the side plates 131-4 and 5 of each outer shell member 131, and between each shielding member 134 and each outer shell member 131. Since 135 is interposed, intrusion of earth and sand and groundwater from the ground between each shielding member 134 and each outer shell member 131 is reliably prevented. Further, blocking members 171 and 172 are provided in front of and behind each outer shell member 131 and each closing member 133, and a seal is provided between the front and rear ends of each outer shell member 131 and each closing member 133 and the front and rear shielding members 171 and 172. Since the material is interposed, when the diameter of the outer shell 13F is increased, intrusion of ground soil and groundwater from the front and rear of each outer shell member 131 and each closing member 133 is reliably prevented.
(6) As shown in FIG. 2 (4), the excavation of the expandable ground is started by the variable-diameter excavator M1 in which the excavator front portion 10F is expanded.
In this case, the variable diameter excavator M1 has the largest diameter of the outer shell 13F of the excavator front part 10F, the cutter head 11 is rotated to excavate the front ground, and the excavated earth and sand are belted from the cutter head 111. The conveyor 114 takes in the excavator main body 10 and discharges it to the rear, while the segments are assembled by the elector inside the excavator main body 10 to cover the ground in order, and the propulsion device 16, that is, the propulsion jack 16 digs with the reaction force applied to the lining body (segment). When this expandable ground is dug with the expanded excavator body 10, the ground expands with time, but normally the amount of expansion is small and the excavator body 10 is restrained. There is nothing. Even if the ground starts to expand from around the excavator rear portion 10R, the excavator rear portion 10R has a small diameter with an outer diameter difference corresponding to the amount of expansion, and is not restrained. This excavator rear part 10R is an assembly part of a segment, does not have an expansion / contraction diameter function, and has a normal excavation diameter. When the outer shell 13F of the excavator front part 10F is expanded, the diameter of the excavator rear part 10R is Since it is small, a level | step difference will arise in the ground around the excavator rear part 10R, and a space will be generated around the excavator rear part 10R. Here, this space is called a primary gap. When it takes time to expand the ground and the surroundings of the rear part 10R of the excavator become hollow, a filler having compressibility and flexibility is injected into the primary gap to hold the ground. This filler is, for example, a mixture of clay, bentonite, polymer absorbent, water, mixed with air, or mixed with expanded glass particles or expanded styrene particles. It is preferable to use a material. In this way, the ground is prevented from exerting tightening or excessive pressure on the excavator main body 10. Further, the resistance to the propulsion of the excavator main body 10 is reduced. Also, a commonly used backfill material is injected and filled in the secondary gap, which is the gap between the segment and the tail plate. The backfilling material preferably has a contractibility including bubbles and foaming material according to the expansion amount of the expandable ground.
When the machine body is constrained by the ground due to the expansion of the ground during the excavation of the variable diameter excavator M1, the outer shell 13F of the excavator front part 10F, that is, the outer shell members 131 and 131d are respectively closed members. 133, 133d (see FIG. 1) and the respective driving devices 132, 132d, 136, 136d (see FIG. 1) are moved inward to reduce the diameter of the outer shell 13F of the excavator front 10F. . That is, the outer shell members 131 and 131d are moved inward by contraction of the telescopic rods 132R and 132dR of the hydraulic jacks 132 and 132d, and the closing members 133 and 133d are respectively connected to the hydraulic jacks 136 and 134d. Due to the contraction of the 136d telescopic rods 136R and 136dR, they are moved inward. At this time, the hydraulic jacks 132, 132d, 136, 136d of the outer shell members 131, 131d and the shielding members 134, 134d cooperate with each other and are extended by adjusting the moving speed, so that the outer shell members 131, 131d While the space between the outer shell members 131 and 131d is shielded by the shielding members 134 and 134d, the outer shell member is moved in the diameter increasing direction, and the entire circumference of the excavator front portion 10F is reduced. Even when the diameter of the outer shell 13F is reduced, the moving speed of the outer shell members 131 and 131d and the moving speed of the closing members 133 and 133d are adjusted, so that the shielding members 134 and 134d are adjacent to the outer shells. The lower ends of the side plates 131-4, 131d-4, 5 of the outer shell members 131, 131d, regardless of the change in the spacing between the side plates 131-4, 131d-4, 5 of the members 131, 131d. Since the sealing members 135 and 135d are interposed between the shielding members 134 and 134d and the outer shell members 131 and 131d, the shielding members 134 and 134d and the outer shell members 131, Intrusion of ground soil and groundwater from between 131d is reliably prevented. Further, blocking members 171 and 172 are provided before and after the outer shell members 131 and 131d and the closing members 133 and 133d, respectively, and the front and rear ends of the outer shell members 131 and 131d and the closing members 133 and 133d and the blocking members at the front and rear. Since the sealing material is interposed between 171 and 172, when the diameter of the outer shell 13F is reduced, the earth and sand and groundwater enter the ground from the front and rear of each outer shell member 131 and 131d and each closing member 133 and 133d. It is surely prevented. Thereby, the restraining force of the ground with respect to the variable diameter excavator M1 is reduced and released, the escape of the variable diameter excavator M1 from the constrained ground becomes easy, and the variable diameter excavator M1 can continue to excavate.
In addition, when the ground expands and the ground pressure increases excessively, the ground excavator main body 10 that has been expanded in diameter passes over the length of the body, and a primary gap is generated between the excavator rear 10R and the excavation cross section. Is filled with the above-described filler having compressibility and flexibility. By doing in this way, when the ground expands, the excessive pressure is reduced, and the excessive ground pressure does not act on the lining body (segment).

以上説明したように、この可変径掘進機M1では、掘進機本体10の前部の外殻13Fが、周方向に分割されて複数の外殻部材131、131dと、複数の外殻部材131、131d間に設置され、各外殻部材131、131d間を閉塞するための複数の閉合部材133、133dとからなり、内殻12と複数の外殻部材131、131dとの間に各外殻部材131、131dを外殻13Fの径方向に移動するための外殻部材駆動装置132、132dが設置されて、拡径可能に構成されているので、さまざまな地盤の掘削に際して、膨張性地盤や拘束性の地盤に遭遇しこの地盤から過剰な地盤圧が機体に作用するような場合には、拡径カッタビット111で掘進機前部10Fの全周をオーバーカットしながら掘削し、掘進機前部10Fの外殻13Fを拡径して掘進していくことで、機体が地盤に拘束されたときに、掘進機前部10Fの外殻を縮径することにより、機体に対する地盤の拘束力を減少解除して、機体を地盤から容易に脱出させることができ、したがって、機体が地盤に拘束されて掘進不能になるのを回避でき、膨張性地盤などでも掘進機本体10の順調な掘進を図ることができる。また、このように拡径カッタビット111で掘進機前部10Fの全周をオーバーカットしながら、掘進機前部10Fの外殻13Fを拡径して掘進し、掘進機本体10の周囲を大きく掘削していくことで、地盤の膨張が発生したときに、地盤の膨張を吸収し、地盤の過剰な地盤圧を減少させて、この地盤圧が覆工体(セグメント)に作用して、覆工体の構造が不安定になったり覆工体が圧潰したりするのを防止することができる。これにより、低減された圧力に対する合理的な強度の覆工体(例えばセグメント)を使用することができる。   As described above, in this variable diameter excavator M1, the outer shell 13F at the front portion of the excavator main body 10 is divided in the circumferential direction to form a plurality of outer shell members 131, 131d, a plurality of outer shell members 131, The outer shell members 131 and 131d are installed between the outer shell members 131 and 131d, and each outer shell member is interposed between the inner shell 12 and the outer shell members 131 and 131d. The outer shell member driving devices 132 and 132d for moving the 131 and 131d in the radial direction of the outer shell 13F are installed and configured to be able to expand the diameter. When excessive ground pressure is applied to the aircraft from this ground, excavation is performed while overcutting the entire circumference of the front part 10F of the excavator with the enlarged diameter cutter bit 111, and the front part of the excavator Outside 10F By expanding the diameter of 13F and excavating, when the aircraft is restrained by the ground, by reducing the diameter of the outer shell of the front portion of the excavating machine 10F, the restraining force of the ground against the aircraft is reduced and released. The machine body can be easily escaped from the ground. Therefore, it is possible to prevent the machine body from being restrained by the ground and becoming unable to dig, and the digging machine main body 10 can be smoothly digged even on an inflatable ground. In addition, while enlarging the outer shell 13F of the excavator front part 10F while overcutting the entire circumference of the excavator front part 10F with the diameter-expanding cutter bit 111 in this way, the circumference of the excavator main body 10 is enlarged. By excavating, when the expansion of the ground occurs, the expansion of the ground is absorbed, the excessive ground pressure of the ground is reduced, and this ground pressure acts on the lining body (segment) to cover it. It is possible to prevent the structure of the work body from becoming unstable and the cover body from being crushed. Thereby, it is possible to use a lining body (for example, a segment) having a reasonable strength against a reduced pressure.

なお、第1の実施の形態では、すべての外殻部材131、131dが外殻13Fの径方向に移動可能に構成されるものとして例示したが、一部の外殻部材131、131d及び閉合部材133、133dが外殻13Fの径方向に移動可能に構成されるものとしてもよい。例えば、掘進機前部10Fの下部外殻部材131dを除く他の各外殻部材131、すなわち、上部及び左右両側部の各外殻部材131が既述のとおり移動(拡縮)可能に構成され、下部外殻部材131dは移動可能とせず、つまり、下部外殻部材131dの油圧ジャッキ132が固定柱や固定フレームなどの連結部材に置き換えられて、内殻12に連結部材により固定されて一体化されてもよい(この場合、内殻12の断面の中心と下部外殻部材131dの断面の中心は略同一となる。)。この場合、下部外殻部材131d以外の外殻部材131の周囲がカッタヘッド11外周面の拡径カッタビット111で掘削されるので、拡径カッタビット111が下部外殻部材131dの周囲を回転するときは縮径方向に移動する機構、すなわちコピーカッター機構を備えると、好適である。また、拡径カッタビット111がカッタヘッド11の外周面の一部に配置固定されて、この拡径カッタビット111が下部外殻部材131d以外の外殻部材131の周囲のみを往復回動するような機構が採用されてもよい。
また、この実施の形態では、掘削穴がセグメントにより覆工されるものとしたが、覆工方式はセグメントに限定されるものではない。地質条件により、吹付け方式、ライナーなどを組み立て支保を行う支保工方式が採用されてもよく、また、膨張性地盤の膨張量などによっては支保工を可縮支保工(可変径支保工)とすることも可能である。
さらに、この実施の形態では、可変径掘進機M1はTBMとして例示されているが、縦穴を掘進する地中掘進機を含む地盤を掘削する各種掘進機にも上記と同様に適用でき、上記と同様の作用効果を得ることができる。
In the first embodiment, all the outer shell members 131 and 131d are illustrated as being configured to be movable in the radial direction of the outer shell 13F. However, some outer shell members 131 and 131d and closing members are configured. 133 and 133d may be configured to be movable in the radial direction of the outer shell 13F. For example, each outer shell member 131 excluding the lower outer shell member 131d of the front part 10F of the excavator, that is, each outer shell member 131 on the upper and left and right sides is configured to be movable (expandable) as described above. The lower outer shell member 131d is not movable, that is, the hydraulic jack 132 of the lower outer shell member 131d is replaced with a connecting member such as a fixed column or a fixed frame, and is fixed to the inner shell 12 by the connecting member and integrated. (In this case, the center of the cross section of the inner shell 12 and the center of the cross section of the lower outer shell member 131d are substantially the same). In this case, since the periphery of the outer shell member 131 other than the lower outer shell member 131d is excavated by the enlarged diameter cutter bit 111 on the outer peripheral surface of the cutter head 11, the enlarged diameter cutter bit 111 rotates around the lower outer shell member 131d. In some cases, it is preferable to provide a mechanism that moves in the direction of diameter reduction, that is, a copy cutter mechanism. Further, the diameter-enlarged cutter bit 111 is disposed and fixed on a part of the outer peripheral surface of the cutter head 11 so that the diameter-enlarged cutter bit 111 reciprocally rotates only around the outer shell member 131 other than the lower outer shell member 131d. Various mechanisms may be employed.
In this embodiment, the excavation hole is covered by the segment, but the covering method is not limited to the segment. Depending on the geological conditions, a spraying method or a support method that assembles and supports liners, etc. may be adopted. Depending on the amount of expansion of the expandable ground, the support method can be reduced (variable diameter support method). It is also possible to do.
Furthermore, in this embodiment, the variable diameter excavator M1 is exemplified as a TBM, but it can be applied to various excavators that excavate the ground including the underground excavator that excavates a vertical hole. Similar effects can be obtained.

図3に第2の実施の形態を示している。
この実施の形態の可変径掘進機M2は、掘進機前部20Fの外殻23Fの形状、及び充填材注入管25の取付位置が第1の実施の形態と異なるので、ここでは、この異なる点についてのみ新たな符号を付して説明する。なお、第1の実施の形態と共通の部材には、第1の実施の形態と同じ符号を付している。
図3に示すように、掘進機前部20Fの外殻23の複数の外殻部材231(下部外殻部材131dは除く。)はそれぞれ、断面略弧状の部材からなり、かつ各外殻部材231の外側面が前端から後端に向けて漸次縮径されるテーパ状に形成される。
この場合、下部外殻部材131dを除く6つの外殻部材231はそれぞれ、鋼材などのプレートにより内側面が開口された略箱形に形成され、外殻23Fの外面をなす断面略円弧状(又は断面略弓形)の外板231−1と、略円弧状(略弓形)を呈する前後の側板231−2、3と、略長方形の左右の側板231−4、5とからなり、前側の側板231−2に対して後側の側板231−3の高さ方向の寸法(後側の側板231−3の開口側縁部と外板側縁部との寸法)が低く(短く)、外板231−1が前端から後端に向けて漸次縮径されたテーパ状に形成される。なお、前後の各側板231−2、3は外板231−1に対して略直角に延び、左右の各側板231−4、5は外板231−1に対して末広がりに所定の角度で斜めに形成される点は第1の実施の形態と同様である。
このようにして下部外殻部材131dを除く各外殻部材231が内殻12上に外殻23Fの軸心と略平行な状態で配置され、各外殻部材駆動装置132により、外殻23Fの軸心と略平行の状態で外殻23Fの径方向に移動されることにより、掘進機前部20Fの外殻23Fが任意の径に拡縮自在に構成される。
このように下部外殻部材131dを除く各外殻部材231がテーパ状になっていることで、膨張性地盤などで急激な地盤の膨張に対応することができる。
充填材注入管25は、既述のとおり、外殻23Fの周囲に生じた空隙(後述する一次空隙)に充填材を吐出するための配管で、ここでは掘進機前部20F内に配管され、その基端が充填材の供給源に接続され、その先端が外殻23Fの前後方向中央に外殻23Fの内周面と外周面との間を貫通して形成された充填材吐出口250に接続される。ここで充填材は、気泡、気泡スチレン粒を含み、圧縮性を有する可塑性流動体である点は第1の実施の形態と同様である。
このようにして掘進機前部20Fは掘進機前部20Fの外殻23Fが拡径されると、掘進機前部20Fの外殻23Fはテーパ状で前端側から後端に向けて径が小さくなるので、掘進機前部20Fの後部側から後方の周囲の地盤に段差が生じ、掘進機前部20Fの後部側から後方の周囲に一次間隙が発生し、地盤の膨張に時間がかかり、掘進機本体10の周囲が空洞になる場合は、一次間隙に圧縮性でかつ可撓性を有する充填材を注入し、地盤を保持する。
このように掘進機前部20Fに充填材注入管25が配管され、外殻23Fに充填材吐出口250が設けられて、一次間隙に圧縮性及び可撓性を有する充填材を注入し、地盤を保持するようにすることで、地盤が掘進機本体10に対して締付けや過剰の圧力を作用させないようにし、また、掘進機本体10の推進に対する抵抗力を軽減することができる。
FIG. 3 shows a second embodiment.
The variable diameter excavator M2 of this embodiment is different from the first embodiment in the shape of the outer shell 23F of the excavator front portion 20F and the mounting position of the filler injection pipe 25. Only the above will be described with a new reference numeral. In addition, the same code | symbol as 1st Embodiment is attached | subjected to the member common to 1st Embodiment.
As shown in FIG. 3, the plurality of outer shell members 231 (excluding the lower outer shell member 131 d) of the outer shell 23 of the excavator front portion 20 </ b> F are each made of a member having a substantially arc-shaped cross section, and each outer shell member 231. The outer surface of the taper is tapered so that the diameter is gradually reduced from the front end toward the rear end.
In this case, each of the six outer shell members 231 except for the lower outer shell member 131d is formed in a substantially box shape whose inner side surface is opened by a plate such as a steel material, and has a substantially arc-shaped cross section (or an outer surface of the outer shell 23F) (or The front side plate 231 includes an outer plate 231-1 having a substantially arcuate cross-section, front and rear side plates 231-2 and 3 having a substantially arc shape (substantially arcuate), and left and right side plates 231-4 and 5 having substantially rectangular shapes. -2 is smaller (shorter) in the height direction of the rear side plate 231-3 (dimensions between the opening side edge portion and the outer plate side edge portion of the rear side plate 231-3) than the outer plate 231. -1 is formed in a tapered shape having a diameter gradually reduced from the front end toward the rear end. The front and rear side plates 231-2 and 3 extend substantially at right angles to the outer plate 231-1, and the left and right side plates 231-4 and 5 are oblique to the outer plate 231-1 at a predetermined angle. The points formed in are the same as in the first embodiment.
In this way, the outer shell members 231 except for the lower outer shell member 131d are arranged on the inner shell 12 in a state substantially parallel to the axis of the outer shell 23F. By moving in the radial direction of the outer shell 23F in a state substantially parallel to the axis, the outer shell 23F of the excavator front portion 20F is configured to be freely expandable and contractable to an arbitrary diameter.
Thus, since each outer shell member 231 except for the lower outer shell member 131d is tapered, it is possible to cope with rapid expansion of the ground due to the expandable ground or the like.
As described above, the filler injection pipe 25 is a pipe for discharging the filler into a gap (a primary gap described later) generated around the outer shell 23F. Here, the filler injection pipe 25 is piped into the front part 20F of the excavator, The base end thereof is connected to a filler supply source, and the tip thereof is connected to a filler discharge port 250 formed at the center in the front-rear direction of the outer shell 23F so as to penetrate between the inner peripheral surface and the outer peripheral surface of the outer shell 23F. Connected. Here, the filler is the same as in the first embodiment in that it is a plastic fluid containing bubbles and bubble styrene particles and having compressibility.
In this way, when the outer shell 23F of the excavator front part 20F is expanded in diameter, the outer shell 23F of the excavator front part 20F is tapered and decreases in diameter from the front end side toward the rear end. As a result, there is a step in the ground around the rear from the rear side of the front part 20F of the excavator, a primary gap is generated from the rear side of the front part 20F of the excavator 20 to the rear, and it takes time for the ground to expand. When the periphery of the machine main body 10 is hollow, a compressible and flexible filler is injected into the primary gap to hold the ground.
In this way, the filler injection pipe 25 is piped to the front part 20F of the excavator, the filler discharge port 250 is provided in the outer shell 23F, and the filler having compressibility and flexibility is injected into the primary gap. By holding the above, it is possible to prevent the ground from being tightened or excessively applied to the excavator main body 10 and to reduce the resistance to the propulsion of the excavator main body 10.

図4に第3の実施の形態を示している。
この実施の形態の可変径掘進機M3は、内殻32とカッタヘッド31の構造が第1の実施の形態と若干異なり、各閉合部材133にジェット水を噴射させる設備が新たに設けられたことが第1の実施の形態と若干異なるので、ここでは、これらの点について新たな符号を付して説明する。なお、第1の実施の形態と共通の部材には、第1の実施の形態と同じ符号を付している。
内殻32はカッタヘッド31、外殻13を取り付けるためのもので、鋼材などからなる複数のフレームにより略円筒形に形成される。この内殻32の前面に前隔壁321が形成される。ここで、前隔壁321はカッタヘッド31を回転可能に支持し、カッタヘッド駆動装置31Dを取り付けるためのもので、前隔壁321は内殻32の前面全体に形成され、この前面壁321にカッタヘッド31の旋回輪挿通部322が前面壁321の中心と同芯的に略円環状に形成されてこの旋回輪挿通部322に軸受323が取り付けられ、この前隔壁321の内側で軸受323に近接する位置にカッタヘッド駆動装置の取付部324が設けられる。
カッタヘッド31は掘進機本体10の外殻13の径と略同径の円盤状、ドーム円盤状あるいは車輪状のフレームで、フレームの正面に多数のカッタビットが設けられ、外周面に掘削径を拡大するときに用いる複数の拡径カッタビット311が出没可能(外周面内に没入可能にかつ外周面から掘進機本体10の軸に対して直角方向所定の長さまで突出可能)に設けられ、また、背面の中央に旋回輪310が突設されてその外周面に周方向にピニオンギア310Gが設けられる。このカッタヘッド31は背面の旋回輪310が内殻32前面の前隔壁321の軸受323に回転可能に支持される。
カッタヘッド駆動装置32Dはカッタヘッド31を回転するための駆動モータで、その回転軸に駆動ギア313Gが設けられる。このカッタヘッド駆動装置31Dは駆動ギア313Gを前方に向けて内殻32前面の前隔壁321の取付部324に取り付けられ、駆動ギア313Gがカッタヘッド31の旋回輪310のピニオンギア310Gに噛合される。
また、この場合、前隔壁321の下部に排土口325が設けられ、この排土口325から掘進機本体10内に排土装置326としてスクリューコンベアが通されて、カッタヘッド31で地盤を掘削したときに出るズリをスクリューコンベア326により排土する形式になっている。
なお、この内殻32とカッタヘッド31の構造は掘進機の形式の例示であり、外殻13Fの拡縮構造が各種形式の掘進機に適用できることを示すものである。
ジェット水を噴射させる設備は、各閉合部材133、133dの遮蔽部材134、134dの左右方向中央に1列に遮蔽部材134、134dの内側面と外側面との間を貫通して複数のジェット水噴射孔380が形成され、これらのジェット水噴射孔380に配管又はホース381を介してジェット水噴射装置(図示省略)が接続されて構成される。
このようにすることで、拡径された各外殻部材131、131dが縮径するときに、相隣る各外殻部材131、131dの左右両側の各側板131−4、5、131d−4、5間が近接していくが、このときに、ジェット水噴射装置からジェット水が供給され、各閉合部材133、133dのジェット水噴射孔380、380dから噴射されることで、各外殻部材131、131dの側板131−4、5、131d−4、5間から土砂を排除して、土砂の噛み込みを防ぐことができる。
FIG. 4 shows a third embodiment.
The variable diameter excavator M3 of this embodiment is slightly different from the first embodiment in the structure of the inner shell 32 and the cutter head 31, and is newly provided with equipment for injecting jet water to each closing member 133. Since these are slightly different from those of the first embodiment, these points will be described with new reference numerals. In addition, the same code | symbol as 1st Embodiment is attached | subjected to the member common to 1st Embodiment.
The inner shell 32 is for attaching the cutter head 31 and the outer shell 13, and is formed in a substantially cylindrical shape by a plurality of frames made of steel or the like. A front partition 321 is formed on the front surface of the inner shell 32. Here, the front partition 321 rotatably supports the cutter head 31 and attaches the cutter head driving device 31D. The front partition 321 is formed on the entire front surface of the inner shell 32, and the cutter head is attached to the front wall 321. 31 is formed in a substantially annular shape concentrically with the center of the front wall 321, and a bearing 323 is attached to the swivel ring insertion part 322, and close to the bearing 323 inside the front partition 321. The attachment part 324 of the cutter head driving device is provided at the position.
The cutter head 31 is a disk-shaped, dome-shaped or wheel-shaped frame having a diameter substantially the same as the diameter of the outer shell 13 of the excavating machine main body 10. A plurality of diameter-enlarged cutter bits 311 used for enlarging are provided so as to be able to protrude and retract (can be immersed in the outer peripheral surface and can protrude from the outer peripheral surface to a predetermined length in a direction perpendicular to the axis of the excavator main body 10) A revolving wheel 310 is projected at the center of the back surface, and a pinion gear 310G is provided on the outer peripheral surface in the circumferential direction. In this cutter head 31, a swivel ring 310 on the back is rotatably supported by a bearing 323 of a front partition 321 on the front of the inner shell 32.
The cutter head drive device 32D is a drive motor for rotating the cutter head 31, and a drive gear 313G is provided on the rotation shaft thereof. This cutter head drive device 31D is attached to the attachment portion 324 of the front partition 321 on the front surface of the inner shell 32 with the drive gear 313G facing forward, and the drive gear 313G meshes with the pinion gear 310G of the swivel ring 310 of the cutter head 31. .
Further, in this case, a soil discharge port 325 is provided at the lower portion of the front partition wall 321, and a screw conveyor is passed as a soil discharge device 326 from the soil discharge port 325 into the excavator body 10, and the ground is excavated by the cutter head 31. In this case, the slip that is generated at the time is discharged by the screw conveyor 326.
The structure of the inner shell 32 and the cutter head 31 is an example of a type of excavator, and shows that the expansion / contraction structure of the outer shell 13F can be applied to various types of excavators.
The facility for injecting the jet water includes a plurality of jet water penetrating between the inner side surface and the outer side surface of the shielding members 134 and 134d in a line in the center in the left-right direction of the shielding members 134 and 134d of the respective closing members 133 and 133d. An injection hole 380 is formed, and a jet water injection device (not shown) is connected to the jet water injection hole 380 via a pipe or a hose 381.
By doing in this way, when each outer shell member 131, 131d whose diameter has been expanded is reduced in diameter, the side plates 131-4, 5, 131d-4 on the left and right sides of the adjacent outer shell members 131, 131d. However, at this time, jet water is supplied from the jet water injection device and is injected from the jet water injection holes 380 and 380d of the respective closing members 133 and 133d, so that each outer shell member The earth and sand can be excluded from between the side plates 131-4 and 131 and 131d-4 and 5 of 131 and 131d, and the biting of the earth and sand can be prevented.

図5に第4の実施の形態を示している。
この実施の形態の可変径掘進機M4では、各閉合部材433の遮蔽部材434の径方向への移動形式が第1の実施の形態と異なるので、ここでは、この異なる点についてのみ新たな符号を付して説明する。なお、第1の実施の形態と共通の部材には、第1の実施の形態と同じ符号を付している。
また、この実施の形態は相隣る各外殻部材131が等しい弦長を有する場合に採用される。
図5に示すように、閉合部材433は、外殻13の径方向に移動する相隣る各外殻部材131間を当該各外殻部材131の内側面側で遮蔽可能な大きさを有する遮蔽部材434と、遮蔽部材434を各外殻部材131の内側面に当接させて保持する保持部材435と、各外殻部材131の外殻13の径方向の移動とともに遮蔽部材434を径方向に移動案内可能な径方向ガイド436及び遮蔽部材434上で相隣る各外殻部材131を周方向に移動案内可能な周方向ガイド437と、遮蔽部材434と外殻部材131との間に介設されるシール材438とにより構成される。
この場合、遮蔽部材434は相隣る各外殻部材131の相対する側板131−4、131−5間に生ずる間隔の変化に関わらず、相隣る各外殻部材131の各側板131−4、131−5の下端部に接して各側板131−4、131−5間を遮蔽可能な所定の幅と長さを有する鋼材などのプレートからなり、この遮蔽部材434により地盤の土砂や地下水の侵入が防止される。なお、遮蔽部材434の外面は断面略(円)弧状を呈する。また、この遮蔽部材434の四隅に周方向ガイド437の一部として遮蔽部材434の外側面と内側面との間を貫通して周方向に向け長い所定の長さを有する長穴434aが形成される。
保持部材435は、相隣る各外殻部材131の内側面で前部、後部の左右両端部に固定されて遮蔽部材434四隅の各長穴434aに各外殻部材131の径方向の移動とともに各長穴434aに沿って周方向に移動可能に挿通される周方向ガイド437の一部をなす4本のガイドロッド435aと、遮蔽部材434の内側面で各長穴434aの位置に各ガイドロッド435aに挿通されて周方向に移動可能に配置される周方向ガイド437の一部をなすガイド台車435bと、各ガイド台車435bに対して内側で各ガイドロッド435aの周囲に巻装され、各ガイド台車435bと各ガイドロッド435aの内側端に着脱可能に取り付けられる抑え部材435cとの間に圧縮されて各ガイド台車435bを遮蔽部材434に圧接する4本のコイルスプリング435dとにより構成される。ここで各ガイドロッド435aにボルトが使用される。各ガイド台車435bは略直方体のブロックにより形成され、上下面の中央にロッド挿通孔を有する台車本体435b−1と、台車本体435b−1の前面の左端と後面の左端との間、前面の右端と後面の右端との間に挿通される2本の車軸435b−2と、各車軸435b−2の両端に取り付けられる4つの車輪435b−3とからなる。
径方向ガイド436は、遮蔽部材434の内側面の中央に固定されて垂下される所定の長さを有する細長いガイドプレート436−1と、内殻12のガイドプレート436−1に対応する位置にこのガイドプレート436−1を挿通可能に形成されるガイド孔436−2、及びこのガイド孔436−2から径方向に延び、ガイドプレート436−1が嵌合可能に筒状に形成されるガイド筒436−3とからなる。
周方向ガイド437は既述の各長穴434aと各ガイドロッド435aと各ガイド台車435bとにより構成される。
シール材438は各外殻部材131の内側面で左右の各縁部に沿って溝が形成されてこの溝に取り付けられて、遮蔽部材434と外殻部材131との間に介装される。
このようにして各遮蔽部材434は、内殻12上に外殻13の軸心と略平行な状態で配置され、各外殻部材131の拡径又は縮径に伴い、相隣る各外殻部材131間の離隔の変化(相隣る各外殻部材131の左右両側の側板131−4、131−5が徐々に離間したり近接したりする変化)に対応して、径方向ガイド436及び周方向ガイド437の案内により、外殻13の軸心と略平行の状態で外殻13の径方向に移動されることにより、外殻13の径方向に移動される各外殻部材131間を常に遮蔽(閉合)可能に構成される。
すなわち、各外殻部材131の各外殻部材駆動装置132(図1参照)により拡径又は縮径すると、各遮蔽部材434はコイルスプリング435dの押し付け力により各外殻部材131の内側面に圧接された状態を維持されたまま、ガイドプレート436−1のガイド筒436−3内での摺動案内により各外殻部材131とともに径方向に移動され、各遮蔽部材434上で各外殻部材131は各ガイドロッド435aの遮蔽部材434の各長穴434a内での移動案内により周方向に移動されて、各遮蔽部材434は各外殻部材131に追従し、各遮蔽部材434により各外殻部材131間が常に止水性を確保されて遮蔽される。
このようにこの遮蔽部材434の移動形式では、油圧ジャッキなどを使わないので、機構が簡単になり、コストを低減することができる。
FIG. 5 shows a fourth embodiment.
In the variable diameter excavator M4 of this embodiment, the movement type of each closing member 433 in the radial direction of the shielding member 434 is different from that of the first embodiment. A description will be given. In addition, the same code | symbol as 1st Embodiment is attached | subjected to the member common to 1st Embodiment.
Further, this embodiment is employed when adjacent outer shell members 131 have the same chord length.
As shown in FIG. 5, the closing member 433 has a size that can shield the adjacent outer shell members 131 moving in the radial direction of the outer shell 13 on the inner surface side of the outer shell members 131. The member 434, the holding member 435 that holds the shielding member 434 in contact with the inner surface of each outer shell member 131, and the shielding member 434 in the radial direction along with the radial movement of the outer shell 13 of each outer shell member 131. A radial guide 436 that can be moved and a circumferential guide 437 that can move and guide the adjacent outer shell members 131 on the shielding member 434 in the circumferential direction, and the shielding member 434 and the outer shell member 131 are interposed. It is comprised with the sealing material 438 made.
In this case, the shielding member 434 has the side plates 131-4 of the adjacent outer shell members 131 regardless of the change in the distance between the opposing side plates 131-4 and 131-5 of the adjacent outer shell members 131. , 131-5, and a plate made of steel or the like having a predetermined width and length that can shield between the side plates 131-4 and 131-5. Intrusion is prevented. The outer surface of the shielding member 434 has a substantially circular (circular) cross section. In addition, elongated holes 434a having a predetermined length extending in the circumferential direction are formed in the four corners of the shielding member 434 as a part of the circumferential guide 437 so as to penetrate between the outer surface and the inner surface of the shielding member 434. The
The holding member 435 is fixed to the left and right ends of the front part and the rear part on the inner side surfaces of the adjacent outer shell members 131, and the outer shell members 131 move in the radial directions of the elongated holes 434 a at the four corners of the shielding member 434. Four guide rods 435a that form part of a circumferential guide 437 that is movably inserted in the circumferential direction along each elongated hole 434a, and each guide rod at the position of each elongated hole 434a on the inner surface of the shielding member 434 A guide carriage 435b that is part of a circumferential guide 437 that is inserted through 435a and arranged to be movable in the circumferential direction, and is wound around each guide rod 435a inside each guide carriage 435b. Four guides 435b that are compressed between the carriage 435b and a holding member 435c that is detachably attached to the inner end of each guide rod 435a, press the guide carriage 435b against the shielding member 434. Yl constituted by a spring 435d. Here, a bolt is used for each guide rod 435a. Each guide carriage 435b is formed by a substantially rectangular parallelepiped block, and has a carriage main body 435b-1 having a rod insertion hole in the center of the upper and lower surfaces, a left end of the front face of the carriage main body 435b-1, and a left end of the rear face. And two right axles 435b-2 inserted between the rear ends and four wheels 435b-3 attached to both ends of each axle 435b-2.
The radial guide 436 is fixed at the center of the inner surface of the shielding member 434 and is elongated at a position corresponding to the elongated guide plate 436-1 having a predetermined length and the guide plate 436-1 of the inner shell 12. A guide hole 436-2 that can be inserted through the guide plate 436-1, and a guide cylinder 436 that extends in the radial direction from the guide hole 436-2 and can be fitted into the guide cylinder 436-1. -3.
The circumferential guide 437 includes the long holes 434a, the guide rods 435a, and the guide carriages 435b.
The sealing material 438 has grooves formed along the left and right edges on the inner surface of each outer shell member 131, is attached to the grooves, and is interposed between the shielding member 434 and the outer shell member 131.
In this way, each shielding member 434 is arranged on the inner shell 12 in a state substantially parallel to the axis of the outer shell 13, and each outer shell adjacent to each other as the diameter of each outer shell member 131 increases or decreases. Corresponding to the change in the separation between the members 131 (change in which the side plates 131-4 and 131-5 on the left and right sides of the adjacent outer shell members 131 are gradually separated or approached), the radial guide 436 and By being guided in the radial direction of the outer shell 13 by being guided by the circumferential guide 437 in the radial direction of the outer shell 13 in a state substantially parallel to the axis of the outer shell 13, the outer shell members 131 moved in the radial direction between the outer shell members 131. It is configured so that it can always be shielded (closed).
That is, when the diameter of the outer shell member 131 is increased or reduced by the outer shell member driving device 132 (see FIG. 1), the shielding member 434 is pressed against the inner surface of the outer shell member 131 by the pressing force of the coil spring 435d. With the maintained state maintained, the guide plate 436-1 is moved in the radial direction together with each outer shell member 131 by sliding guide within the guide cylinder 436-3, and each outer shell member 131 is moved on each shielding member 434. Is moved in the circumferential direction by movement guides in the long holes 434a of the shielding members 434 of the guide rods 435a, and the shielding members 434 follow the outer shell members 131. Between 131, the water-stopping property is always secured and shielded.
As described above, since the moving type of the shielding member 434 does not use a hydraulic jack or the like, the mechanism becomes simple and the cost can be reduced.

図6に第5の実施の形態を示している。
この実施の形態の可変径掘進機M5では、閉合部材533、533dの構造が第1の実施の形態と異なるので、ここでは、この異なる点についてのみ新たな符号を付して説明する。なお、第1の実施の形態と共通の部材には、第1の実施の形態と同じ符号を付している。
図6に示すように、各閉合部材533は、筒状内殻12に固設され、外殻13の径方向に移動する相隣る各外殻部材131の各側面を摺動案内するガイド面534Gを有する遮蔽部材534と、遮蔽部材534と外殻部材131との間に介設されるシール材(図示省略)とからなる。
各遮蔽部材534は、各外殻部材131の径方向の移動に際して相隣る各外殻部材131の斜めの各側板131−4、131−5が摺動可能に、左右の両側面が各外殻部材131の伸縮方向に合せた角度の断面略台形の長い梁状に形成され、左右の両側面がガイド面534Gになっている。各遮蔽部材534は各外殻部材131の斜めの各側板131−4、131−5間にこの間隔全体を埋め込む、つまり隙間ができないようにして配置され、内側面が内殻12に固定される。
なお、シール材は各遮蔽部材534の左右の各ガイド面534Gの外側縁部付近に沿って溝が形成されてこの溝に取り付けられ、各閉合部材533と各外殻部材131との間に介装される。
各閉合部材533dは、外殻13の径方向に移動する相隣る各外殻部材131d、131の各側面を摺動案内するガイド面534dGを有する遮蔽部材534dと、遮蔽部材534dと各外殻部材131d、131との間に介設されるシール材(図示省略)とからなる。
各遮蔽部材534dは、各外殻部材131d、131の径方向の移動に際して相隣る各外殻部材131d、131の斜めの各側板131d−4、131−5、131d−5、131−4が摺動可能に、左右の両側面が各外殻部材131d、131の伸縮方向に合せた角度の断面略台形の長い梁状に形成され、左右の両側面がガイド面534dGになっている。各遮蔽部材534dは各外殻部材131d、131の斜めの各側板131d−4、、131−5間、131d−5、131−4間にこの間隔全体を埋め込む、つまり隙間ができないようにして配置され、内側面が内殻12に固定される。
なお、シール材は各遮蔽部材534dの左右の各ガイド面534dGの外側縁部付近に沿って溝が形成されてこの溝に取り付けられ、各閉合部材533dと各外殻部材131d、131との間に介装される。
このようにして各閉合部材533、533dは遮蔽部材534、534dが内殻12上に外殻13の軸心と略平行な状態で配置され、各外殻部材131、131dの拡径又は縮径に伴い、相隣る各外殻部材131、131dの左右の側板131−4、131−5、131d−4、131d−5が遮蔽部材534、534dの各ガイド面534G、534dGを摺動して外殻13の径方向に移動されることにより、外殻13の径方向に移動される各外殻部材131、131d間を常に遮蔽(閉合)可能に構成される。
すなわち、外殻13の拡径又は縮径により、各外殻部材131、131dが径方向及び周方向に移動すると、各外殻部材131の左右の各側板131−4、131−5は遮蔽部材534の左右の各ガイド面534Gをシール材を介して摺動し、外殻部材131dの左右の各側板131d−4、131d−5は遮蔽部材534dの左右の各ガイド面534dGをシール材を介して摺動し、各外殻部材131、131d間が常に止水性を確保されて遮蔽される。
このようにこの閉合部材533では、油圧ジャッキなどを使わず、また、部品点数が少ないので、構造が簡単で、コストを低減することができる。
FIG. 6 shows a fifth embodiment.
In the variable diameter excavator M5 of this embodiment, since the structure of the closing members 533 and 533d is different from that of the first embodiment, only this different point will be described with a new reference numeral. In addition, the same code | symbol as 1st Embodiment is attached | subjected to the member common to 1st Embodiment.
As shown in FIG. 6, each closing member 533 is fixed to the cylindrical inner shell 12, and is a guide surface that slides and guides each side surface of each adjacent outer shell member 131 that moves in the radial direction of the outer shell 13. It consists of a shielding member 534 having 534G, and a sealing material (not shown) interposed between the shielding member 534 and the outer shell member 131.
Each shielding member 534 is slidable on each of the oblique side plates 131-4 and 131-5 of each adjacent outer shell member 131 when the outer shell member 131 is moved in the radial direction, and both left and right side surfaces are respectively external. It is formed in a long beam shape having a substantially trapezoidal cross section with an angle that matches the expansion / contraction direction of the shell member 131, and the left and right side surfaces are guide surfaces 534G. Each shielding member 534 is arranged so as to embed the entire gap between the oblique side plates 131-4 and 131-5 of each outer shell member 131, that is, so that there is no gap, and the inner surface is fixed to the inner shell 12. .
Note that a groove is formed along the vicinity of the outer edge of each of the left and right guide surfaces 534G of each shielding member 534, and the sealing material is attached to the groove, and the sealing material is interposed between each closing member 533 and each outer shell member 131. Be dressed.
Each closing member 533d includes a shielding member 534d having a guide surface 534dG that slides and guides each side surface of the adjacent outer shell members 131d and 131 that move in the radial direction of the outer shell 13, and the shielding member 534d and each outer shell. It consists of a sealing material (not shown) interposed between the members 131d and 131.
Each shielding member 534d has a slanting side plate 131d-4, 131-5, 131d-5, 131-4 of each adjacent outer shell member 131d, 131 when the outer shell member 131d, 131 moves in the radial direction. The left and right side surfaces are slidably formed in a long beam shape having a substantially trapezoidal cross section with an angle corresponding to the expansion and contraction direction of each outer shell member 131d, 131, and the left and right side surfaces are guide surfaces 534dG. Each shielding member 534d is arranged so as to embed the entire space between the slant side plates 131d-4, 131-5 of each outer shell member 131d, 131 and between 131d-5, 131-4, that is, no gap is formed. The inner surface is fixed to the inner shell 12.
In addition, a groove is formed along the vicinity of the outer edge of each of the left and right guide surfaces 534dG of each shielding member 534d, and the sealing material is attached to this groove, and the sealing material is provided between each closing member 533d and each outer shell member 131d, 131. Is intervened.
In this way, the closing members 533 and 533d are arranged such that the shielding members 534 and 534d are substantially parallel to the axis of the outer shell 13 on the inner shell 12, and the diameters of the outer shell members 131 and 131d are increased or decreased. Accordingly, the left and right side plates 131-4, 131-5, 131d-4, 131d-5 of the adjacent outer shell members 131, 131d slide on the guide surfaces 534G, 534dG of the shielding members 534, 534d. By being moved in the radial direction of the outer shell 13, the outer shell members 131 and 131 d moved in the radial direction of the outer shell 13 can be always shielded (closed).
That is, when the outer shell members 131 and 131d move in the radial direction and the circumferential direction due to the expansion or contraction of the outer shell 13, the left and right side plates 131-4 and 131-5 of the outer shell member 131 are shield members. The left and right guide surfaces 534G of 534 are slid through the sealing material, and the left and right side plates 131d-4 and 131d-5 of the outer shell member 131d are guided through the sealing material through the left and right guide surfaces 534dG of the shielding member 534d. The outer shell members 131 and 131d are always shielded while ensuring water-tightness.
As described above, the closing member 533 does not use a hydraulic jack or the like and has a small number of parts, so that the structure is simple and the cost can be reduced.

図7に第6の実施の形態を示している。
この実施の形態の可変径掘進機M6では、外殻63の各外殻部材631の移動(拡径、縮径)形式及び推進装置66が第1の実施の形態と異なるので、ここでは、この異なる点についてのみ新たな符号を付して説明する。なお、第1の実施の形態と共通の部材には、第1の実施の形態と同じ符号を付している。
また、この場合、内殻32、カッタヘッド31、排土装置(スクリューコンベア)326は第3の実施の形態と概ね同様の構成が採用される。
図7に示すように、この可変径掘進機M6においては、掘進機本体10の前部10F及び中間部10Mがそれぞれ、外殻63F、63Mが、周方向に分割されて複数の外殻部材631と、複数の外殻部材631間に設置され、各外殻部材631間を閉塞するための複数の閉合部材(図示省略)とからなり、前部10F及び中間部10Mの各外殻部材631の全部(又は一部)が、内殻12上に後端が軸を介して連結され、進退駆動式の外殻部材駆動装置132により支持されて、外殻部材631の後端を傾動中心として、前端側の傾動により外殻63の径方向に移動可能に構成され、掘進機本体10の前部10F及び中間部10Mは伸縮部材632を介して連接され、推進装置66は掘進機本体10の前部10Fと中間部10Mとの間に中押し伸縮式の推進装置として装着される。
この場合、外殻63F、63Mの各外殻部材631の形状は第1の実施の形態と概ね同様である。
なお、各外殻部材631の後端軸支部は外殻部材駆動装置(油圧ジャッキ)132に支持されてもよい。
各閉合部材は、特に図示していないが、遮蔽部材と遮蔽部材駆動装置とからなり、各外殻部材631と同様に、遮蔽部材の後端を傾動中心として、前端側の傾動により外殻63の径方向に移動可能に構成される。
伸縮部材632は油圧ジャッキなどが使用される。
中押し伸縮式の推進装置66は油圧ジャッキが使用される。
このようにしてこの可変径掘進機M6は、掘進機本体10の前部10Fと中間部10Mで外殻63の拡径量を変えることが可能となり、地山の膨張量に応じた可変径で掘進が可能である。
また、この可変径掘進機M6では、掘進機本体10の前部10F及び中間部10Mの各外殻部材631が各外殻部材駆動装置132の駆動により後端の軸を中心に傾動可能に構成され、掘進時に各外殻部材631の前部側を後部より大きく拡径することで、地山から受動土圧を受けて、掘進機本体10が中押し伸縮式のジャッキ66の伸縮によりを前進することが可能となる。すなわち、掘進機本体10の中間部10Mの各外殻部材631が傾動されてこの中間部10Mの開かれた外殻63Mで地山に対して反力を取り、中押し伸縮式のジャッキ66を伸ばすことにより、掘進機本体10の前部10Fが前進し、続いて、前部10Fの各外殻部材631が傾動されてこの前部10Fの開かれた外殻63Fで地山に対して反力を取り、中押し伸縮式のジャッキ66を縮めることにより、掘進機本体10の中間部10Mが前進し、この動作の繰り返しにより掘進される。
なお、各外殻部材631の後端軸支部は外殻部材駆動装置(油圧ジャッキ)632に支持されることにより、各外殻部材631が第1の実施の形態と同じ移動(拡径・縮径)形式で移動することができる。
この可変径掘進機M6では、このような各外殻部材631の移動(拡径・縮径)形式により、地山から推進反力を得て掘進することができるので、従来のようにセグメントから反力を取って、掘進機本体10を掘進させる必要がなく、このため、推進ジャッキを小さくしたり省略したりすることができ、また、反力を取るためにセグメントを厚くする必要がないため、セグメントの厚さを小さくしたり、補強構造を簡易にすることができる。
FIG. 7 shows a sixth embodiment.
In the variable diameter excavator M6 of this embodiment, the movement (expansion and reduction) type of each outer shell member 631 of the outer shell 63 and the propulsion device 66 are different from those of the first embodiment. Only different points will be described with new reference numerals. In addition, the same code | symbol as 1st Embodiment is attached | subjected to the member common to 1st Embodiment.
In this case, the inner shell 32, the cutter head 31, and the earth removing device (screw conveyor) 326 have substantially the same configuration as that of the third embodiment.
As shown in FIG. 7, in this variable diameter excavator M6, the front portion 10F and the intermediate portion 10M of the excavator main body 10 are divided into outer shells 63F and 63M in the circumferential direction, respectively, and a plurality of outer shell members 631 are obtained. And a plurality of closing members (not shown) that are installed between the plurality of outer shell members 631 and close the spaces between the outer shell members 631, and each of the outer shell members 631 of the front portion 10F and the intermediate portion 10M. All (or a part) is connected to the inner shell 12 via a shaft at the rear end and supported by the advancing / retracting outer shell member driving device 132, with the rear end of the outer shell member 631 as the center of tilting. It is configured to be movable in the radial direction of the outer shell 63 by tilting the front end side, the front portion 10F and the intermediate portion 10M of the excavator main body 10 are connected via an elastic member 632, and the propulsion device 66 is connected to the front of the excavator main body 10. Between the portion 10F and the intermediate portion 10M It is mounted as a telescopic propulsion device.
In this case, the shape of each outer shell member 631 of the outer shells 63F and 63M is substantially the same as that of the first embodiment.
Note that the rear end shaft support portion of each outer shell member 631 may be supported by the outer shell member driving device (hydraulic jack) 132.
Each closing member is composed of a shielding member and a shielding member driving device, although not specifically shown. Like each outer shell member 631, the outer shell 63 is tilted on the front end side with the rear end of the shielding member as the center of tilting. It is configured to be movable in the radial direction.
The expansion / contraction member 632 is a hydraulic jack or the like.
A hydraulic jack is used for the middle push telescopic propulsion device 66.
In this way, the variable diameter excavator M6 can change the amount of expansion of the outer shell 63 by the front portion 10F and the intermediate portion 10M of the excavator main body 10, and can have a variable diameter according to the expansion amount of the natural ground. Drilling is possible.
Further, the variable diameter excavator M6 is configured such that the outer shell members 631 of the front portion 10F and the intermediate portion 10M of the excavator main body 10 can be tilted about the rear end axis by driving of the outer shell member driving devices 132. In addition, by enlarging the front part side of each outer shell member 631 larger than the rear part at the time of excavation, the excavator body 10 moves forward by the expansion and contraction of the middle push telescopic jack 66 under the passive earth pressure from the natural ground. It becomes possible. That is, each outer shell member 631 of the intermediate part 10M of the excavator main body 10 is tilted to take a reaction force against the natural ground with the opened outer shell 63M of the intermediate part 10M, and the intermediate push-extensible jack 66 is extended. As a result, the front portion 10F of the excavator main body 10 moves forward, and subsequently, each outer shell member 631 of the front portion 10F is tilted, and the reaction force against the natural ground by the opened outer shell 63F of the front portion 10F. The intermediate portion 10M of the excavator main body 10 moves forward and is dug by repeating this operation.
The rear end shaft support portion of each outer shell member 631 is supported by an outer shell member driving device (hydraulic jack) 632, so that each outer shell member 631 moves in the same manner as in the first embodiment (expansion / reduction). (Diameter) format.
In this variable diameter excavator M6, it is possible to excavate by obtaining a driving reaction force from the natural ground by such a movement (expansion / reduction) form of each outer shell member 631. It is not necessary to dig the excavator body 10 by taking a reaction force, so that the propulsion jack can be reduced or omitted, and the segment does not need to be thickened to take the reaction force. The thickness of the segment can be reduced and the reinforcing structure can be simplified.

なお、第1乃至第6の各実施の形態は種々に組み合わせ可能である。
また、この発明は土圧式シールドや泥水式シールドなどの機械式シールド・TBMに適用され得る。
The first to sixth embodiments can be variously combined.
The present invention can also be applied to mechanical shields and TBMs such as earth pressure shields and muddy water shields.

M1 可変径掘進機
10 掘進機本体
10F 掘進機前部
10R 掘進機後部
11 カッタヘッド
110 回転軸
110G ピニオンギア
111 拡径カッタビット
112 シール材
11D カッタヘッド駆動装置
113G 駆動ギア
114 排土装置(ベルトコンベア)
12 内殻
121 前面壁
122 カッタヘッド控室
123 カッタヘッド駆動装置の取付部
124 軸支持部
125 中隔壁
126、126d 凹部
13 外殻
13F 外殻
13R 外殻
131 外殻部材
131−1 外板
131−2、3 前後の側板
131―4、5 左右の側板
131d 下部外殻部材
131d−1 外板
131d−2、3 前後の側板
131d―4、5 左右の側板
132 外殻部材駆動装置(油圧ジャッキ)
132R 伸縮ロッド
132d 下部外殻部材駆動装置(油圧ジャッキ)
132dR 伸縮ロッド
133 閉合部材
133d 下部閉合部材
134 遮蔽部材
135 シール材
136 遮蔽部材駆動装置(油圧ジャッキ)
136R 伸縮ロッド
134d 遮蔽部材
135d シール材
136d 下部遮蔽部材駆動装置(油圧ジャッキ)
136dR 伸縮ロッド
137 回転支持ブロック
138 逸脱防止部材
139 後隔壁
140 推進ジャッキの取付部
14 テールシール
15 充填材注入管
150 充填材吐出口
16 推進装置(推進ジャッキ)
161 伸縮ロッド
171、172 前後の遮断部材
M2 可変径掘進機
20F 掘進機前部
23F 外殻
231 外殻部材
231−1 外板
231−2、3 前後の側板
231−4、5 左右の側板
25 充填材注入管
250 充填材吐出口
M3 可変径掘進機
31 カッタヘッド
310 旋回輪
310G ピニオンギア
311 拡径カッタビット
31D カッタヘッド駆動装置
313G 駆動ギア
322 旋回輪挿通部
323 軸受
324 カッタヘッド駆動装置の取付部
325 排土口
326 排土装置(スクリューコンベア)
380 ジェット水噴射孔
381 配管又はホース
M4 可変径掘進機
433 閉合部材
434 遮蔽部材
434a 長穴
435 保持部材
435a ガイドロッド
435b ガイド台車
435b−1 台車本体
435b−2 車軸
435b−3 車輪
435c 抑え部材
435d コイルスプリング
436 径方向ガイド
436−1 ガイドプレート
436−2 ガイド孔
436−3 ガイド筒
437 周方向ガイド
438 シール材
M5 可変径掘進機
533 閉合部材
534 遮蔽部材
534G ガイド面
533d 閉合部材
534d 遮蔽部材
534dG ガイド面
M6 可変径掘進機
63 外殻
631 外殻部材
632 伸縮部材
66 推進装置
M1 variable diameter excavator 10 excavator main body 10F excavator front 10R excavator rear 11 cutter head 110 rotating shaft 110G pinion gear 111 enlarged cutter bit 112 seal material 11D cutter head drive device 113G drive gear 114 earth removal device (belt conveyor )
DESCRIPTION OF SYMBOLS 12 Inner shell 121 Front wall 122 Cutter head waiting room 123 Mounting part of cutter head drive device 124 Shaft support part 125 Middle partition wall 126, 126d Recess 13 Outer shell 13F Outer shell 13R Outer shell 131 Outer shell member 131-1 Outer plate 131-2 3 Front and rear side plates 131-4, 5 Left and right side plates 131d Lower shell member 131d-1 Outer plate 131d-2, 3 Front and rear side plates 131d-4, 5 Left and right side plates 132 Outer shell member drive device (hydraulic jack)
132R Telescopic rod 132d Lower shell member drive device (hydraulic jack)
132dR telescopic rod 133 closing member 133d lower closing member 134 shielding member 135 sealing material 136 shielding member driving device (hydraulic jack)
136R Telescopic rod 134d Shielding member 135d Sealing material 136d Lower shielding member driving device (hydraulic jack)
136dR Telescopic rod 137 Rotation support block 138 Deviation prevention member 139 Rear partition 140 Propulsion jack mounting portion 14 Tail seal 15 Filler injection pipe 150 Filler discharge port 16 Propulsion device (propulsion jack)
161 Telescopic rods 171 and 172 Front and rear blocking members M2 Variable diameter excavator 20F Front of excavator 23F Outer shell 231 Outer shell member 231-1 Outer plate 231-2, Front and rear side plates 231-4, Left and right side plates 25 Filling Material injection pipe 250 Filler discharge port M3 Variable diameter excavator 31 Cutter head 310 Turning wheel 310G Pinion gear 311 Diameter increasing cutter bit 31D Cutter head driving device 313G Driving gear 322 Turning wheel insertion portion 323 Bearing 324 Mounting portion of cutter head driving device 325 Earth removal port 326 Earth removal device (screw conveyor)
380 Jet water injection hole 381 Piping or hose M4 Variable diameter excavator 433 Closure member 434 Shield member 434a Elongated hole 435 Holding member 435a Guide rod 435b Guide carriage 435b-1 Bogie body 435b-2 Axle 435b-3 Wheel 435c Coil member 435d Coil Spring 436 Radial guide 436-1 Guide plate 436-2 Guide hole 436-3 Guide cylinder 437 Circumferential guide 438 Seal material M5 Variable diameter excavator 533 Closing member 534 Shielding member 534G Guide surface 533d Closing member 534d Shielding member 534dG Guide surface M6 variable diameter excavator 63 outer shell 631 outer shell member 632 telescopic member 66 propulsion device

Claims (10)

カッタヘッドと、
筒形構造の内殻、及び前記内殻の周囲を包囲する筒形構造の外殻からなる掘進機本体と、
前記掘進機本体を推進するための推進装置と、
を備え、
前記掘進機本体の少なくとも前部は、前記外殻が、周方向に分割されて複数の外殻部材と、前記複数の外殻部材間に設置され、前記各外殻部材間を閉塞するための複数の閉合部材とからなり、前記内殻と前記複数の外殻部材の全部又は一部との間に前記全部又は一部の外殻部材を前記外殻の径方向に移動するための外殻部材駆動装置が設置されて、拡径可能に構成される、
ことを特徴とする可変径掘進機。
With a cutter head,
An excavator body comprising an inner shell having a cylindrical structure and an outer shell having a cylindrical structure surrounding the inner shell;
A propulsion device for propelling the machine body;
With
At least a front portion of the excavator main body is configured such that the outer shell is divided in the circumferential direction and installed between the plurality of outer shell members and the plurality of outer shell members, and closes between the outer shell members. An outer shell for moving the whole or part of the outer shell member in the radial direction of the outer shell between the inner shell and the whole or part of the outer shell member. A member driving device is installed and configured to be able to expand the diameter.
Variable diameter excavator characterized by that.
外殻部材の全部又は一部は、内殻上に進退駆動式の外殻部材駆動装置により支持され、外殻部材全体が外殻の軸心と略平行な状態で、前記外殻の径方向に移動可能に構成され、推進装置は掘進機本体の後部側に装着される請求項1に記載の可変径掘進機。   All or part of the outer shell member is supported on the inner shell by an advancing / retreating outer shell member driving device, and the outer shell member is entirely parallel to the axis of the outer shell in the radial direction of the outer shell. The variable diameter excavator according to claim 1, wherein the propulsion device is mounted on a rear side of the excavator main body. 掘進機本体の前部及び中間部がそれぞれ、外殻が、周方向に分割されて複数の外殻部材と、前記複数の外殻部材間に設置され、前記各外殻部材間を閉塞するための複数の閉合部材とからなり、前記外殻の前部及び中間部の前記外殻部材の全部又は一部は、内殻上に後端が軸を介して連結され、進退駆動式の外殻部材駆動装置により支持されて、前記外殻部材の後端を傾動中心として、前端側の傾動により前記外殻の径方向に移動可能に構成され、前記掘進機本体の前部及び中間部は伸縮部材を介して連接され、推進装置は前記掘進機本体の前部と中間部との間に中押し伸縮式の推進装置として装着される請求項1に記載の可変径掘進機。   Each of the front part and the intermediate part of the excavator main body is divided between the outer shell members by dividing the outer shell in the circumferential direction, and closes between the outer shell members. A front end of the outer shell and all or a part of the outer shell members of the intermediate portion are connected to the inner shell via a shaft at the rear end, and the forward / backward drive type outer shell It is supported by a member driving device, and is configured to be movable in the radial direction of the outer shell by tilting the front end with the rear end of the outer shell member as a tilting center, and the front and middle portions of the excavator main body extend and contract The variable diameter excavator according to claim 1, wherein the variable diameter excavator is connected through a member, and the propulsion device is mounted as a middle push telescopic propulsion device between a front portion and an intermediate portion of the excavator main body. 複数の外殻部材はそれぞれ、断面略弧状の部材からなる請求項1乃至3のいずれかに記載の可変径掘進機。   The variable diameter excavator according to any one of claims 1 to 3, wherein each of the plurality of outer shell members is a member having a substantially arc-shaped cross section. 複数の外殻部材はそれぞれ、断面略弧状の部材からなり、かつ外殻部材の全部又は一部は外側面が前端から後端に向けて漸次縮径されるテーパ状に形成される請求項1乃至3のいずれかに記載の可変径掘進機。   The plurality of outer shell members are each formed of a member having a substantially arc-shaped cross section, and all or a part of the outer shell members are formed in a tapered shape whose outer surface is gradually reduced in diameter from the front end toward the rear end. The variable diameter excavator according to any one of 1 to 3. 複数の外殻部材及び閉合部材の前後に内殻に固定されて前記各外殻部材の前記外殻の径方向への移動により前記各外殻部材及び前記各閉合部材の前後端が摺動可能に配置され、前記外殻の拡径に際して、前記各外殻部材及び前記各閉合部材の前後において掘進機本体の内部と外部とを遮断するための前後の遮断部材を備え、前記各外殻部材及び前記閉合部材の前後端と前記前後の遮断部材との間にシール材が介設される請求項1乃至5のいずれかに記載の可変径掘進機。   The outer shell member and the closing member are fixed to the inner shell before and after the outer shell member, and the front and rear ends of the outer shell member and the closing member are slidable by the movement of the outer shell member in the radial direction of the outer shell. Each of the outer shell members is provided with front and rear blocking members for blocking the inside and the outside of the main body of the excavator before and after the outer shell members and the closing members when the diameter of the outer shell is increased. The variable diameter excavator according to any one of claims 1 to 5, wherein a sealing material is interposed between the front and rear ends of the closing member and the front and rear blocking members. 閉合部材は、外殻の径方向に移動する相隣る各外殻部材間を当該各外殻部材の内側面側で遮蔽可能な大きさを有する遮蔽部材と、前記遮蔽部材と前記外殻部材との間に介設されるシール材と、前記遮蔽部材を前記各外殻部材に当接させ前記外殻部材の前記外殻の径方向への移動に追従して駆動する遮蔽部材駆動装置とからなる請求項1乃至6のいずれかに記載の可変径掘進機。   The closing member includes a shielding member having a size capable of shielding between adjacent outer shell members moving in the radial direction of the outer shell on the inner surface side of each outer shell member, and the shielding member and the outer shell member. And a shielding member driving device that drives the tracking member by following the movement of the outer shell member in the radial direction by bringing the shielding member into contact with each outer shell member. The variable diameter excavator according to any one of claims 1 to 6. 閉合部材は、外殻の径方向に移動する相隣る各外殻部材間を当該各外殻部材の内側面側で遮蔽可能な大きさを有する遮蔽部材と、前記遮蔽部材を前記各外殻部材の内側面に当接させて保持する保持部材と、前記各外殻部材の外殻の径方向の移動とともに前記遮蔽部材を径方向に移動案内可能な径方向ガイド及び前記遮蔽部材上で前記相隣る各外殻部材を周方向に移動案内可能な周方向ガイドと、前記遮蔽部材と前記外殻部材との間に介設されるシール材とからなる請求項1乃至6のいずれかに記載の可変径掘進機。   The closing member includes a shielding member having a size capable of shielding between adjacent outer shell members moving in the radial direction of the outer shell on the inner surface side of each outer shell member, and the shielding member for each outer shell. A holding member that is held in contact with an inner surface of the member, a radial guide that can move and guide the shielding member in the radial direction together with the radial movement of the outer shell of each outer shell member, and the shielding member on the shielding member 7. The apparatus according to claim 1, comprising: circumferential guides capable of moving and guiding adjacent outer shell members in the circumferential direction; and a sealing material interposed between the shielding member and the outer shell member. The variable-diameter machine described. 閉合部材は、外殻の径方向に移動する相隣る各外殻部材の各側面を摺動案内するガイド面を有する遮蔽部材と、前記遮蔽部材と前記外殻部材との間に介設されるシール材とからなる請求項1乃至6のいずれかに記載の可変径掘進機。   The closing member is interposed between the shielding member having a guide surface that slides and guides each side surface of each adjacent outer shell member that moves in the radial direction of the outer shell, and between the shielding member and the outer shell member. The variable diameter excavator according to claim 1, comprising a sealing material. 閉合部材に内側面と外側面との間を貫通してジェット水噴射孔を形成され、前記ジェット水噴射孔に配管又はホースを介してジェット水噴射装置が接続される請求項1乃至9のいずれかに記載の可変径掘進機。   10. The jet water injection device according to claim 1, wherein a jet water injection hole is formed through the closing member between the inner side surface and the outer side surface, and a jet water injection device is connected to the jet water injection hole via a pipe or a hose. The variable diameter excavator described in Crab.
JP2016021488A 2016-02-08 2016-02-08 Variable diameter machine Expired - Fee Related JP6692172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016021488A JP6692172B2 (en) 2016-02-08 2016-02-08 Variable diameter machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021488A JP6692172B2 (en) 2016-02-08 2016-02-08 Variable diameter machine

Publications (2)

Publication Number Publication Date
JP2017141544A true JP2017141544A (en) 2017-08-17
JP6692172B2 JP6692172B2 (en) 2020-05-13

Family

ID=59627735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021488A Expired - Fee Related JP6692172B2 (en) 2016-02-08 2016-02-08 Variable diameter machine

Country Status (1)

Country Link
JP (1) JP6692172B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112211642A (en) * 2020-10-22 2021-01-12 中铁工程装备集团有限公司 Diameter-variable shield and diameter-variable method
CN113638740A (en) * 2021-08-27 2021-11-12 中国铁建重工集团股份有限公司 Shield machine with variable shield body diameter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921897A (en) * 1982-07-26 1984-02-03 三井建設株式会社 Expansion shiled excavation method
US4874267A (en) * 1986-12-18 1989-10-17 James Howden & Company Limited Tunnel boring machine
JPH0893381A (en) * 1994-07-25 1996-04-09 Tobishima Corp Shielding excavator with variable section
JPH1122385A (en) * 1997-07-04 1999-01-26 Okumura Corp Tunnel excavation machine
JP2003293683A (en) * 2002-04-05 2003-10-15 Sumitomo Mitsui Construction Co Ltd Excavating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921897A (en) * 1982-07-26 1984-02-03 三井建設株式会社 Expansion shiled excavation method
US4874267A (en) * 1986-12-18 1989-10-17 James Howden & Company Limited Tunnel boring machine
JPH0893381A (en) * 1994-07-25 1996-04-09 Tobishima Corp Shielding excavator with variable section
JPH1122385A (en) * 1997-07-04 1999-01-26 Okumura Corp Tunnel excavation machine
JP2003293683A (en) * 2002-04-05 2003-10-15 Sumitomo Mitsui Construction Co Ltd Excavating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112211642A (en) * 2020-10-22 2021-01-12 中铁工程装备集团有限公司 Diameter-variable shield and diameter-variable method
CN113638740A (en) * 2021-08-27 2021-11-12 中国铁建重工集团股份有限公司 Shield machine with variable shield body diameter
CN113638740B (en) * 2021-08-27 2024-04-19 中国铁建重工集团股份有限公司 Shield machine with variable diameter shield body

Also Published As

Publication number Publication date
JP6692172B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
JP6692172B2 (en) Variable diameter machine
JP2016151170A (en) Tunnel excavator and tunnel construction method
JPH03180690A (en) Tunnel excavator
JP2002047881A (en) Pipeline construction method
JP7101543B2 (en) Shield excavator and tunnel construction method
JP3486999B2 (en) Shield excavation method and shield excavator
JP4183040B2 (en) Method for retreating shield machine and jig for retreating shield
JP4274891B2 (en) Partial widening method of shield tunnel
KR20150141388A (en) Groundwater pressure control means comprises a shield t b m tunnel structure
KR102207553B1 (en) Tube propulsion apparatus capable of arrival directly in the underground structure
JP2712686B2 (en) Shield machine
JP6241923B2 (en) How to dig a shield machine
JP3220421B2 (en) Existing pipeline update device
JPS6343278Y2 (en)
JP2637160B2 (en) Shield method
JP2585365B2 (en) Shield method
JP4148953B2 (en) Widening type shield machine and its excavation method
JPS6347499A (en) Method of tunnel joining construction in shield excavation
JP2022085245A (en) Material supply device
JP3220422B2 (en) Tunnel excavator for updating existing pipeline
JPH1077783A (en) Shield tunnel regeneration construction method, device thereof, and segment for the construction method
JP2728641B2 (en) Branch type shield machine and branch type shield method
JPH0726515B2 (en) Underground docking shield machine
JP2006037594A (en) Underground conduit construction method
JP4299233B2 (en) Shield machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200414

R150 Certificate of patent or registration of utility model

Ref document number: 6692172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees