JP2017140334A - Durability test apparatus and durability test method of medical test object - Google Patents

Durability test apparatus and durability test method of medical test object Download PDF

Info

Publication number
JP2017140334A
JP2017140334A JP2016025374A JP2016025374A JP2017140334A JP 2017140334 A JP2017140334 A JP 2017140334A JP 2016025374 A JP2016025374 A JP 2016025374A JP 2016025374 A JP2016025374 A JP 2016025374A JP 2017140334 A JP2017140334 A JP 2017140334A
Authority
JP
Japan
Prior art keywords
test
flow
fluid
test fluid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016025374A
Other languages
Japanese (ja)
Other versions
JP6551845B2 (en
Inventor
岩▲崎▼ 清隆
Kiyotaka Iwasaki
清隆 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2016025374A priority Critical patent/JP6551845B2/en
Publication of JP2017140334A publication Critical patent/JP2017140334A/en
Application granted granted Critical
Publication of JP6551845B2 publication Critical patent/JP6551845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a durability test apparatus installing a test object in a pulsatile flow simulating a blood flow state of a human body such as a coronary circulation environment, and applying a bending load or the like to an installation part of the test object under a discretionary condition synchronized with a pressure waveform and/or a flow waveform of the blood flow.SOLUTION: A durability test apparatus 10 according to the present invention includes: a flow passage 11 in which a test fluid flows; an installation part 12 that is provided halfway through the flow passage 11, at which a test object T is installed, and that is configured to be bendingly deformable; flow generation means 14 making the test fluid circulating in the flow passage 11 a pulsatile flow; flow state detection means 15 for detecting a pressure and/or a flow rate of the test fluid; actuating means 17 applying an external load to the installation part 12 and actuating to bendingly deform it; and control means 18 controlling the actuation of the actuating means 17 according to the state of the pressure and/or the flow rate detected by the flow state detection means 15.SELECTED DRAWING: Figure 1

Description

本発明は、冠動脈に用いられるステントその他の医療機器等の耐久性試験装置及び耐久性試験方法に係り、更に詳しくは、人体での使用環境を模擬して前記耐久性試験を人工的に行えるようにする医療用試験対象物の耐久性試験装置及び耐久性試験方法に関する。   The present invention relates to a durability test apparatus and a durability test method for stents and other medical devices used for coronary arteries, and more specifically, the durability test can be artificially performed by simulating a use environment in a human body. The present invention relates to a durability test apparatus and a durability test method for a medical test object.

人体の心臓から拍出された血液は、大動脈を通り、当該大動脈から全身に分岐する各種動脈に行き渡り、対応する各種静脈から大静脈に合流して心臓に戻る体循環が行われている。ここで、大動脈から分岐する動脈としては、心筋に張り巡らされた冠動脈があり、この冠動脈は、大動脈の基部から大静脈の基部に戻るように血液を循環させ、心臓にエネルギーや酸素を供給している。このような冠動脈による血液の循環は、冠循環と呼ばれている。   The blood pumped out from the human heart passes through the aorta, reaches the various arteries that branch from the aorta to the whole body, joins the corresponding veins to the vena cava, and performs systemic circulation that returns to the heart. Here, the artery that branches from the aorta is a coronary artery stretched around the myocardium, which circulates blood from the base of the aorta to the base of the vena cava and supplies energy and oxygen to the heart. ing. Such blood circulation through the coronary artery is called coronary circulation.

ところで、動脈硬化等によって冠動脈が狭窄、閉塞すると、心筋梗塞と呼ばれる心筋壊死が発生する。このような冠動脈の狭窄、閉塞に対する治療法としては、薬物療法の他、カテーテル療法、及び冠動脈バイパス手術療法が知られている。カテーテル療法は、狭窄した冠動脈内でバルーンを膨らませることで狭くなった血流路を拡張し、その拡張部位にステントと呼ばれる血管拡張具を留置することで、血流路の拡張状態を維持するものである。   By the way, when the coronary artery is narrowed or occluded due to arteriosclerosis or the like, myocardial necrosis called myocardial infarction occurs. As a treatment for such stenosis and occlusion of the coronary artery, catheter therapy and coronary artery bypass surgery are known in addition to drug therapy. Catheter therapy expands the blood flow path that is narrowed by inflating the balloon in the stenotic coronary artery, and maintains the expanded state of the blood flow path by placing a vascular dilator called a stent at the expanded site. Is.

冠動脈内に留置されるステントとしては、これまでの金属製ステントの他に、近時、血管留置後、数ヶ月から数年間で生体内に吸収されて消失する生体吸収性ステントが出現し、現在、臨床試験が行われている。国際標準化機構(ISO)の規格では、当該生体吸収性ステントを含む心臓血管内吸収性インプラントに関しては、力学的評価、繰り返し疲労耐久性、分解の物理的特性、及び材料の組成評価の4項目を生体外で非臨床的に評価すべきとの指針があるが、各評価項目の具体的試験法は未だ確立されておらず、当該具体的試験法の確立が広く要請されている。   As stents placed in coronary arteries, in addition to conventional metal stents, recently, bioabsorbable stents that have been absorbed into the body and disappeared within a few months to years after placement of blood vessels have appeared. Clinical trials are being conducted. According to the International Organization for Standardization (ISO) standards, four items of mechanical evaluation, repeated fatigue endurance, physical properties of degradation, and material composition evaluation have been made for the cardiovascular absorbable implant including the bioabsorbable stent. Although there is a guideline that non-clinical evaluation should be performed in vitro, specific test methods for each evaluation item have not yet been established, and establishment of such specific test methods is widely requested.

ところで、特許文献1には、冠動脈ステントの性能評価シミュレータが開示されている。当該ステント性能評価シミュレータは、冠循環を模擬した回路構成になっており、液体流路と、この液体流路内を循環する液体に拍動流を付与するポンプと、流体流路の途中で分岐する分岐管路と、当該分岐管路の途中に設けられた可撓性チューブとを備えている。この可撓性チューブ内には、評価対象となるステントが留置され、当該ステントは、拍動流が付与された液体にさらされた状態となる。従って、このシミュレータでは、実際の使用時における血液の拍動条件に近い条件でステントの耐久性を調べることが可能となる。   By the way, Patent Document 1 discloses a performance evaluation simulator for coronary stents. The stent performance evaluation simulator has a circuit configuration that simulates coronary circulation, and has a liquid flow path, a pump that applies a pulsating flow to the liquid circulating in the liquid flow path, and a branch in the middle of the fluid flow path And a flexible tube provided in the middle of the branch pipeline. A stent to be evaluated is placed in the flexible tube, and the stent is exposed to a liquid to which pulsatile flow is applied. Therefore, with this simulator, it is possible to examine the durability of the stent under conditions close to blood pulsation conditions during actual use.

また、特許文献2には、身体の動き等による生体力学的負荷に起因する血管の挙動を模擬して、当該挙動を考慮したステントの耐久性試験を行うことができる血管動作シミュレータが開示されている。この血管動作シミュレータは、液体が充填された状態の模擬血管内にステントを留置した上で、当該模擬血管がモータ等の駆動手段で屈曲変形されるようになっている。   Patent Document 2 discloses a blood vessel motion simulator that can simulate the behavior of blood vessels caused by biomechanical loads due to body movements and the like, and perform a stent durability test in consideration of the behaviors. Yes. In this blood vessel operation simulator, a stent is placed in a simulated blood vessel filled with a liquid, and then the simulated blood vessel is bent and deformed by a driving means such as a motor.

特許第4166905号公報Japanese Patent No. 4166905 特許第4968821号公報Japanese Patent No. 4968882

本発明者らの研究に基づく知見によれば、冠動脈内に留置される生体吸収性ステントに対する非臨床的な耐久性試験を正確に行うには、冠循環環境に相当する流れ状態の中にステントを配置し、経時的な分解等のステントの物理的特性の変化を確認する他に、ステントを留置した血管全体が冠動脈流の拍動状態に起因して屈曲、伸縮、ねじれ等の運動事象を考慮する必要がある。ここでは、患者個人やステントの留置部分により、心臓の拡張期や収縮期に対する血管の前記各運動の状態が相違することから、想定する各ケースに応じて冠動脈流の流れ状態と前記運動を同期させる必要がある。例えば、心臓の拡張期に血管が緩く屈曲する一方で心臓の収縮期に血管が大きく屈曲するケースやその逆のケースもあり得る。また、血圧値が極大のときに血管が最大に屈曲するケースもある。   According to the findings based on the study by the present inventors, in order to accurately perform a non-clinical durability test on a bioabsorbable stent placed in the coronary artery, the stent is in a flow state corresponding to the coronary circulation environment. In addition to confirming changes in the physical properties of the stent such as degradation over time, the entire blood vessel in which the stent is placed is subject to movement events such as bending, stretching, and twisting due to the pulsatile state of the coronary artery flow. It is necessary to consider. Here, the state of each movement of the blood vessels during the diastole or systole of the heart differs depending on the individual patient and the indwelling part of the stent, so the coronary flow state and the movement are synchronized according to each assumed case. It is necessary to let For example, there may be a case where the blood vessel bends gently during the diastole of the heart while the blood vessel bends greatly during the systole of the heart and vice versa. In some cases, the blood vessel bends to the maximum when the blood pressure value is maximum.

しかしながら、特許文献1のステント性能評価シミュレータにあっては、ステントが留置される可撓性チューブ自体を強制的に屈曲、伸縮、ねじれ等の変形させるための構造そのものが無く、冠動脈流の拍動状態に対応して可撓性チューブに屈曲、伸縮、ねじれ等の運動をさせる耐久性試験を行うことはできない。また、特許文献2の血管動作シミュレータは、浅大腿静脈等にステントを留置した際等のように、身体の動き等による生体力学的負荷に起因する血管の挙動を考慮した耐久性試験を行うためのものであって、冠動脈中にステントを留置した際等における流体の圧力や流量の状態に対応した模擬血管への屈曲、ねじれ、伸縮等の外的負荷を任意に設定変更することはできない。   However, in the stent performance evaluation simulator of Patent Document 1, there is no structure for forcibly deforming the flexible tube itself in which the stent is placed, such as bending, expansion, contraction, and twisting, and the pulsation of coronary flow It is impossible to conduct a durability test that causes the flexible tube to move such as bending, expansion / contraction, and twisting according to the state. In addition, the blood vessel motion simulator of Patent Document 2 performs a durability test in consideration of the behavior of blood vessels caused by biomechanical loads due to body movements, such as when a stent is placed in a superficial femoral vein or the like. The external load such as bending, twisting, and expansion / contraction to the simulated blood vessel corresponding to the fluid pressure and flow rate when the stent is placed in the coronary artery cannot be arbitrarily changed.

本発明は、このような課題を解決するために案出されたものであり、その目的は、冠循環環境等の人体の血流状態を模擬した拍動流中に試験対象物を設置するとともに、血流の圧力波形及び/又は流量波形に同期した任意の条件で、試験対象物の設置部に対して屈曲、ねじれ、伸縮等を発生させる外的負荷を与えることができる医療用試験対象物の耐久性試験装置及び耐久性試験方法を提供することにある。   The present invention has been devised to solve such problems, and its purpose is to install a test object in a pulsatile flow that simulates a blood flow state of a human body such as a coronary circulation environment. A medical test object capable of applying an external load that causes bending, twisting, expansion and contraction, etc. to the installation part of the test object under arbitrary conditions synchronized with the blood pressure waveform and / or the flow waveform An endurance test apparatus and a durability test method are provided.

前記目的を達成するため、本発明は、主として、所定の試験用流体を循環させる流体回路により構成され、当該流体回路の途中に医療用試験対象物を設置し、前記試験用流体に人体の血流状態を模擬した流れを与えて前記医療用試験対象物の耐久性試験を行うための装置であって、前記試験用流体が流れる流路と、当該流路の途中に設けられて前記試験対象物が設置されるとともに、屈曲変形、ねじれ変形及び/又は伸縮変形が可能に構成された設置部と、前記流路内を循環する前記試験用流体を拍動流の状態にする流れ生成手段と、前記試験用流体の圧力及び/又は流量を検出する流れ状態検出手段と、前記設置部に外的負荷を加えて屈曲変形、ねじれ変形及び/又は伸縮変形させるように動作する動作手段と、前記流れ状態検出手段で検出された圧力及び/又は流量の状態に応じて、前記動作手段の動作を制御する制御手段とを備える、という構成を採っている。   In order to achieve the above object, the present invention mainly comprises a fluid circuit that circulates a predetermined test fluid, a medical test object is placed in the middle of the fluid circuit, and human blood is placed in the test fluid. An apparatus for performing a durability test of the medical test object by providing a flow simulating a flow state, the flow path for the test fluid flowing, and the test object provided in the middle of the flow path An installation part configured to allow bending deformation, torsional deformation, and / or expansion / contraction deformation, and a flow generation unit that pulsates the test fluid circulating in the flow path. A flow state detecting means for detecting the pressure and / or flow rate of the test fluid; an operating means that operates to apply an external load to the installation portion to cause bending deformation, torsion deformation, and / or expansion / contraction deformation; Detect with flow state detection means It has been in accordance with the state of the pressure and / or flow, and control means for controlling the operation of said operation means, and employs a configuration that.

本発明によれば、実際の冠循環環境における拍動流を模擬した試験用流体の流れ状態に試験対象物を置いた上で、試験用流体の圧力及び/又は流量の周期的な変化に同期して、試験対象物の設置部に対し所望とする任意のタイミングで屈曲負荷、ねじれ負荷、及び/又は伸縮負荷を与えることができる。従って、冠動脈に留置される生体吸収性ステント等の試験対象物の耐久性試験を実際の人体に留置した様々なケースを想定しながら同様の状況にて行うことができ、冠動脈に留置される生体吸収性ステント等についても、非臨床的な人工試験装置を用いて簡易かつ正確に耐久性評価を行うことができる。   According to the present invention, a test object is placed in a flow state of a test fluid that simulates a pulsatile flow in an actual coronary circulation environment, and then synchronized with a periodic change in pressure and / or flow rate of the test fluid. Thus, a bending load, a torsion load, and / or an expansion / contraction load can be applied to the installation portion of the test object at any desired timing. Therefore, the durability test of a test object such as a bioabsorbable stent placed in the coronary artery can be performed in the same situation while assuming various cases where the test object is placed in an actual human body. For absorptive stents and the like, durability evaluation can be easily and accurately performed using a non-clinical artificial test apparatus.

本実施形態に係る耐久性試験装置の構成を表す概念図。The conceptual diagram showing the structure of the durability test apparatus which concerns on this embodiment. (A)、(B)は、動作手段により設置部に屈曲負荷が作用している状態を説明するための概念図である。(A), (B) is a conceptual diagram for demonstrating the state in which the bending load is acting on the installation part by the operation means.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1には、本実施形態に係る医療機器等の耐久性試験装置の構成を表す概念図が示されている。この図において、前記耐久性試験装置10は、所定の試験用流体を循環させる流体回路により構成され、当該流体回路の途中に医療機器や医療用材料等の試験対象物Tを設置し、試験用流体に人体の血流状態を模擬した流れを与えて人体への使用時と同様の状態を模擬的に作り出すことにより、試験対象物Tの耐久性試験を非臨床的に行うための装置である。ここで、試験対象物Tとしては、例えば、生体吸収性ステント等の各種ステントが挙げられる。また、試験用流体としては、リン酸緩衝生理食塩水(PBS)等の液体が挙げられる。   FIG. 1 is a conceptual diagram showing the configuration of a durability test apparatus such as a medical device according to this embodiment. In this figure, the durability test apparatus 10 is constituted by a fluid circuit that circulates a predetermined test fluid, and a test object T such as a medical device or a medical material is installed in the middle of the fluid circuit to perform the test. This is a device for non-clinically testing the durability of the test object T by giving the fluid a flow that simulates the blood flow state of the human body and simulating the same state as when used on the human body. . Here, examples of the test object T include various stents such as a bioabsorbable stent. Examples of the test fluid include liquids such as phosphate buffered saline (PBS).

前記耐久性試験装置10は、空気非接触の状態で試験用流体が一方向に循環するように構成された環状の流路11と、流路11の途中に設けられて試験対象物Tが設置されるとともに、屈曲変形可能に構成された設置部12と、流路11内を循環する試験用流体を拍動流の状態にする流れ生成手段14と、設置部12の入口側における試験用流体の圧力及び/又は流量の状態を検出する流れ状態検出手段15と、設置部12に外力負荷を与えて屈曲変形させるように動作する動作手段17と、流れ状態検出手段15で検出された圧力及び/又は流量の状態に応じて、動作手段17の動作を制御する制御手段18とを備えている。   The durability test apparatus 10 includes an annular flow path 11 configured so that a test fluid circulates in one direction in a non-air contact state, and a test object T provided in the middle of the flow path 11. In addition, the installation part 12 configured to be bent and deformable, the flow generating means 14 for bringing the test fluid circulating in the flow path 11 into a pulsating state, and the test fluid on the inlet side of the installation part 12 The flow state detection means 15 for detecting the pressure and / or flow rate state of the gas, the operating means 17 that operates to apply an external force load to the installation portion 12 to bend and deform, and the pressure and the pressure detected by the flow state detection means 15 And / or a control unit 18 for controlling the operation of the operation unit 17 in accordance with the flow rate state.

前記流路11は、特に限定されるものではないが、樹脂製等の弾性チューブからなり、その途中2箇所に設けられた逆流防止弁20により、試験用流体が図1中時計周りとなる一方向のみに循環するように構成されている。   Although the flow path 11 is not particularly limited, the flow path 11 is made of an elastic tube made of resin or the like, and the test fluid is rotated clockwise in FIG. It is configured to circulate only in the direction.

前記設置部12は、所定の大きさ以上の外力により変形可能な弾性チューブによって構成されており、流路11に対して着脱自在に設けられるとともに、試験対象物Tを収容して保持しながら流路11に連通する内部空間を備えている。本実施形態において、設置部12には、試験対象物Tとして生体吸収性ステントが拡張した状態で留置されており、拍動流が付与された状態の試験用流体は、試験対象物Tが保持された設置部12の内部空間を通過することになる。   The installation portion 12 is composed of an elastic tube that can be deformed by an external force of a predetermined size or more, and is provided detachably with respect to the flow path 11 and flows while holding and holding the test object T. An internal space communicating with the path 11 is provided. In the present embodiment, the bioresorbable stent is inflated as the test object T in the installation portion 12, and the test object T holds the test fluid in a state where pulsatile flow is applied. It will pass through the internal space of the installation part 12 made.

前記流れ生成手段14は、流路11内で試験用流体を流すための動力となるポンプ22と、設置部12とポンプ22の上流側との間に配置されたコンプライアンスチューブ23と、設置部12とポンプ22の下流側との間に配置された容量増加用チューブ24と、設置部12の下流側でコンプライアンスチューブ23との間に配置された抵抗付与部25とにより構成されている。   The flow generation means 14 includes a pump 22 that serves as power for flowing the test fluid in the flow path 11, a compliance tube 23 disposed between the installation unit 12 and the upstream side of the pump 22, and the installation unit 12. And a capacity increasing tube 24 arranged between the pump 22 and the downstream side of the pump 22, and a resistance applying unit 25 arranged between the compliance tube 23 and the downstream side of the installation unit 12.

本実施形態では、前記ポンプ22として、流路11に沿ってローラ26が回転し、当該ローラ26が一定間隔で流路11を周期的に押し潰しながら扱くことにより、試験用流体を吸排するローラポンプが採用されている。なお、本発明においては、流路11を流れる試験用流体を拍動流の状態にできる限りにおいて、他のポンプに代替することも可能である。また、ポンプ22の入口側及び出口側にそれぞれ前記逆流防止弁20が配置されている。   In the present embodiment, as the pump 22, a roller 26 rotates along the flow path 11, and the roller 26 sucks and discharges the test fluid by handling the flow path 11 while periodically crushing the flow path 11. A roller pump is used. In the present invention, other pumps can be substituted as long as the test fluid flowing in the flow path 11 can be in a pulsatile state. Further, the backflow prevention valves 20 are arranged on the inlet side and the outlet side of the pump 22 respectively.

前記コンプライアンスチューブ23は、その内部を通過する試験用流体の圧力変化に応じて内径が拡縮可能に弾性変形する弾性チューブにより形成されており、流路11を構成するチューブよりも大きな内径となっている。なお、特に限定されるものではないが、本実施形態のコンプライアンスチューブ23は、シリコーン製のものが用いられている。このコンプライアンスチューブ23では、次の圧力調整作用を奏するようになっている。すなわち、ポンプ22のローラ26での流路11の押圧が解除されたタイミングで、ポンプ22側に真空吸引力(陰圧)が発生するが、その際に、コンプライアンスチューブ23の弾性によってその内径が収縮することで、前記真空吸引力の発生による試験用流体の圧力低下が抑制され、人体の冠動脈流における血圧幅を模擬した試験用流体の圧力変動幅を再現可能になる。   The compliance tube 23 is formed of an elastic tube that elastically deforms so that its inner diameter can be expanded and contracted according to a change in pressure of the test fluid that passes through the compliance tube 23, and has a larger inner diameter than the tube constituting the flow path 11. Yes. In addition, although it does not specifically limit, the thing made from silicone is used for the compliance tube 23 of this embodiment. The compliance tube 23 has the following pressure adjustment action. That is, at the timing when the pressure of the flow path 11 by the roller 26 of the pump 22 is released, a vacuum suction force (negative pressure) is generated on the pump 22 side. By contracting, the pressure drop of the test fluid due to the generation of the vacuum suction force is suppressed, and the pressure fluctuation range of the test fluid simulating the blood pressure range in the coronary artery flow of the human body can be reproduced.

前記容量増加用チューブ24は、流路11を構成するチューブよりも内径が大きくなっており、流路11を流れる試験用流体を一時的に溜め込むリザーバとして機能する。   The capacity increasing tube 24 has an inner diameter larger than that of the tube constituting the flow path 11, and functions as a reservoir for temporarily storing the test fluid flowing in the flow path 11.

前記抵抗付与部は25、流路11に絞り抵抗を付与するクランプ等によって構成されているが、本発明はこれに限定されるものではなく、同様の作用を奏する限りにおいて、弁等の種々の機器を代替的に採用することができる。   The resistance applying portion is constituted by 25, a clamp or the like for applying a restricting resistance to the flow path 11. However, the present invention is not limited to this, and various kinds of valves and the like can be used as long as the same action is achieved. Equipment can be employed alternatively.

以上の構成の流れ生成手段14においては、試験対象物Tが留置される実際の冠循環環境が模擬されるように、コンプライアンスチューブ23及び容量増加用チューブ24の長さ及び内径が設定された上で、抵抗付与部25により流路11に所定の流れ抵抗が付加されるとともに、ポンプ22の駆動制御がなされる。なお、流れ生成手段14としては、流路11内に試験用流体の拍動流を生成できる限りにおいて、前述の構成に限定されず、種々の構成を採用することができる。   In the flow generating means 14 having the above configuration, the length and inner diameter of the compliance tube 23 and the capacity increasing tube 24 are set so that the actual coronary circulation environment in which the test object T is placed is simulated. Thus, a predetermined flow resistance is added to the flow path 11 by the resistance applying unit 25 and the drive control of the pump 22 is performed. The flow generation unit 14 is not limited to the above-described configuration as long as a pulsating flow of the test fluid can be generated in the flow path 11, and various configurations can be adopted.

前記流れ状態検出手段15は、設置部12の入口側における試験用流体の入口圧を計測する圧力計27と、設置部12の入口側における試験用流体の流量を計測する流量計28とからなる。   The flow state detection means 15 includes a pressure gauge 27 that measures the inlet pressure of the test fluid on the inlet side of the installation unit 12 and a flow meter 28 that measures the flow rate of the test fluid on the inlet side of the installation unit 12. .

前記動作手段17は、設置部12の延出方向両端側に取り付けられ、相対的に離間接近可能に配置された保持部30,31と、図1中左側に位置する一方の保持部30に取り付けられ、当該一方の保持部30を他方の保持部31に向かって離間接近させる動力となる駆動装置33とからなる。本実施形態では、駆動装置33として、ボイスコイルモータが用いられているが、同様の作用を奏する限りにおいて、他のアクチュエータに代替することも可能である。また、駆動装置33の駆動により、図2に示されるように、前記一方の保持部30を前記他方の保持部31に対して移動し、これら保持部30,31が繰り返し離間接近することになる。当該各保持部30,31の周期的な離間接近動作により、各保持部30,31に両端側が支持された設置部12に対し、周期的に大きさの異なる屈曲負荷が作用し、設置部12は、直線状態からの屈曲と復元(伸展)を繰り返す屈曲運動がなされることになる。   The operating means 17 is attached to both ends of the installation portion 12 in the extending direction, and is attached to the holding portions 30 and 31 disposed so as to be relatively close to each other and one holding portion 30 located on the left side in FIG. And a driving device 33 serving as power for moving the one holding portion 30 toward and away from the other holding portion 31. In the present embodiment, a voice coil motor is used as the driving device 33, but other actuators can be substituted as long as the same action is achieved. Further, as shown in FIG. 2, by driving the driving device 33, the one holding portion 30 is moved with respect to the other holding portion 31, and the holding portions 30 and 31 are repeatedly separated and approached. . Due to the periodic separating and approaching operation of the holding units 30 and 31, bending loads having different sizes periodically act on the installation unit 12 supported at both ends by the holding units 30 and 31. In this case, a bending motion that repeats bending and restoration (extension) from a straight state is performed.

前記制御手段18では、圧力計27及び/又は流量計28による計測値に基づき、設置部12の入口側における試験用流体の圧力や流量の周期的な変化に基づいて、設置部12の屈曲運動を同期させるように駆動装置33の駆動を制御するようになっている。すなわち、当該制御手段18では、複数パターンの制御が可能となっており、図示しない入力装置による入力指令に基づいて、耐久性試験に際して所望とする制御パターンの選択が可能となっている。具体的に、例えば、前記試験用流体の流量又は圧力が所定値に達したタイミングで、設置部12の屈曲運動を開始するように駆動装置33を駆動制御するトリガー機能を選択することができる。また、試験用流体の圧力又は流量が極大になるタイミングと、設置部12が最大に屈曲するタイミングとを合わせるように、設置部12を周期的に屈曲変形させる際の位相調整を行うディレイ機能を選択することもできる。   In the control means 18, the bending motion of the installation portion 12 is based on periodic changes in the pressure and flow rate of the test fluid on the inlet side of the installation portion 12 based on the measurement value by the pressure gauge 27 and / or the flow meter 28. The drive of the drive device 33 is controlled so as to synchronize. That is, the control means 18 can control a plurality of patterns, and can select a desired control pattern in the durability test based on an input command from an input device (not shown). Specifically, for example, it is possible to select a trigger function for driving and controlling the drive device 33 so as to start the bending motion of the installation unit 12 at the timing when the flow rate or pressure of the test fluid reaches a predetermined value. In addition, a delay function for performing phase adjustment when the installation portion 12 is periodically bent and deformed so that the timing at which the pressure or flow rate of the test fluid is maximized and the timing at which the installation portion 12 is bent to the maximum is matched. You can also choose.

以上の本実施形態によれば、心臓の拡張期と収縮期に対応した冠動脈の屈曲運動を模擬し、当該屈曲運動を考慮した臨床時に近い状況下で試験を行うことができるため、冠動脈に留置される生体吸収性ステント等の耐久性の正確な評価が可能になる。また、設置部12に流れる試験用流体の拍動状態と屈曲運動の同期について、任意の設定により、想定する使用状況に応じた制御を行うことができ、生体吸収性ステント等の留置部位や使用者の個人的差異による細かい想定を考慮した耐久性試験が可能になる。   According to the above embodiment, since the coronary artery bending motion corresponding to the diastolic and systolic phases of the heart can be simulated and the test can be performed in a situation near clinical time considering the bending motion, the indwelling in the coronary artery This makes it possible to accurately evaluate the durability of a bioabsorbable stent or the like. In addition, with regard to the synchronization of the pulsating state and bending motion of the test fluid flowing in the installation unit 12, it is possible to perform control according to the assumed use situation by any setting, and the indwelling site or use of a bioabsorbable stent or the like Durability tests that take into account detailed assumptions due to individual differences among individuals.

なお、前記動作手段17は、設置部12に対し、屈曲変形の他に、若しくは、屈曲変形とともに、ねじれ変形及び/又は伸縮変形させるように外的負荷を与える構成とすることもできる。この構成においても、前記実施形態のように、制御手段18において、圧力計27や流量計28による計測値に基づき、設置部12の入口側における試験用流体の圧力や流量の周期的な変化に基づいて、設置部12の屈曲運動、ねじれ運動及び/又は伸縮運動を同期させるように、駆動装置33の駆動を制御するようになっている。   The operating means 17 may be configured to apply an external load to the installation portion 12 so as to cause torsional deformation and / or expansion / contraction deformation in addition to or along with the bending deformation. Even in this configuration, as in the above-described embodiment, the control means 18 periodically changes the pressure and flow rate of the test fluid on the inlet side of the installation unit 12 based on the measurement values obtained by the pressure gauge 27 and the flow meter 28. Based on this, the drive of the drive device 33 is controlled so as to synchronize the bending motion, twisting motion and / or telescopic motion of the installation part 12.

また、動作手段17としては、前述の構成に限定されるものではなく、同様の作用を奏する限りにおいて、種々の構造や構成を採用することができる。   Further, the operation means 17 is not limited to the above-described configuration, and various structures and configurations can be adopted as long as the same action is achieved.

その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。   In addition, the configuration of each part of the apparatus in the present invention is not limited to the illustrated configuration example, and various modifications are possible as long as substantially the same operation is achieved.

10 耐久性試験装置
11 流路
12 設置部
14 流れ生成手段
15 流れ状態検出手段
17 動作手段
18 制御手段
T 試験対象物
DESCRIPTION OF SYMBOLS 10 Endurance test apparatus 11 Flow path 12 Installation part 14 Flow production | generation means 15 Flow state detection means 17 Operation | movement means 18 Control means T Test object

Claims (5)

所定の試験用流体を循環させる流体回路により構成され、当該流体回路の途中に医療用試験対象物を設置し、前記試験用流体に人体の血流状態を模擬した流れを与えて前記医療用試験対象物の耐久性試験を行うための装置であって、
前記試験用流体が流れる流路と、当該流路の途中に設けられて前記試験対象物が設置されるとともに、屈曲変形、ねじれ変形及び/又は伸縮変形が可能に構成された設置部と、前記流路内を循環する前記試験用流体を拍動流の状態にする流れ生成手段と、前記試験用流体の圧力及び/又は流量を検出する流れ状態検出手段と、前記設置部に外的負荷を加えて屈曲変形、ねじれ変形及び/又は伸縮変形させるように動作する動作手段と、前記流れ状態検出手段で検出された圧力及び/又は流量の状態に応じて、前記動作手段の動作を制御する制御手段とを備えたことを特徴とする医療用試験対象物の耐久性試験装置。
The medical test is configured by a fluid circuit that circulates a predetermined test fluid, a medical test object is installed in the middle of the fluid circuit, and a flow that simulates a blood flow state of a human body is applied to the test fluid. An apparatus for performing a durability test on an object,
A flow path through which the test fluid flows, an installation portion configured to be bent, torsionally deformed and / or stretchable and deformed while the test object is installed in the middle of the flow path; A flow generating means for bringing the test fluid circulating in the flow path into a pulsating state; a flow state detecting means for detecting the pressure and / or flow rate of the test fluid; and an external load applied to the installation portion. In addition, control means for controlling the operation of the operation means in accordance with the state of the pressure and / or flow rate detected by the flow state detection means, and the operation means that operates to cause bending deformation, torsion deformation and / or expansion / contraction deformation. A durability test apparatus for a medical test object.
前記制御手段では、前記試験用流体の圧力及び/又は流量の周期的な変化に同期して前記屈曲変形、ねじれ変形及び/又は伸縮変形がなされるように、前記動作手段の動作を制御することを特徴とする請求項1記載の医療用試験対象物の耐久性試験装置。   The control means controls the operation of the operation means so that the bending deformation, torsional deformation and / or expansion / contraction deformation is performed in synchronization with a periodic change in the pressure and / or flow rate of the test fluid. The durability test apparatus for a medical test object according to claim 1. 前記制御手段では、前記試験用流体の圧力又は流量が所定値に達したタイミングで、前記設置部の変形が開始するように、前記動作手段の動作を制御することを特徴とする請求項2記載の医療用試験対象物の耐久性試験装置。   3. The operation of the operation means is controlled by the control means so that the deformation of the installation portion starts at a timing when the pressure or flow rate of the test fluid reaches a predetermined value. Durability testing equipment for medical test objects. 前記制御手段では、前記試験用流体の圧力又は流量が極大になるタイミングと前記設置部が最大に変形するタイミングとを合わせるように、前記動作手段の動作を制御することを特徴とする請求項2記載の医療用試験対象物の耐久性試験装置。   The control means controls the operation of the operation means so as to match a timing at which the pressure or flow rate of the test fluid is maximized with a timing at which the installation portion is maximally deformed. The durability test apparatus of the medical test object as described. 所定の試験用流体を循環させる流路の途中に設けられた設置部に医療用試験対象物を設置し、前記試験用流体に人体の血流状態を模擬した流れを与えて前記試験対象物の耐久性試験を行うための方法であって、
前記試験用流体を拍動流の状態にして前記流路を循環させた上で、前記試験用流体の圧力及び/又は流量の周期的な変化に基づいて、前記設置部に周期的な外的負荷を与えることで、前記試験用流体の流れ状態に同期して、前記設置部の屈曲、ねじれ、及び/又は伸縮を繰り返し行いながら前記耐久性試験を行うことを特徴とする医療用試験対象物の耐久性試験方法。
A medical test object is installed in an installation part provided in the middle of a flow path for circulating a predetermined test fluid, and a flow simulating the blood flow state of the human body is given to the test fluid to A method for performing a durability test,
The test fluid is pulsated and circulated through the flow path, and the installation portion is periodically externally connected based on periodic changes in the pressure and / or flow rate of the test fluid. A medical test object characterized by performing the durability test while repeatedly bending, twisting, and / or expanding and contracting the installation portion in synchronization with a flow state of the test fluid by applying a load. Durability test method.
JP2016025374A 2016-02-12 2016-02-12 Durability test apparatus and test method for medical test object Active JP6551845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016025374A JP6551845B2 (en) 2016-02-12 2016-02-12 Durability test apparatus and test method for medical test object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016025374A JP6551845B2 (en) 2016-02-12 2016-02-12 Durability test apparatus and test method for medical test object

Publications (2)

Publication Number Publication Date
JP2017140334A true JP2017140334A (en) 2017-08-17
JP6551845B2 JP6551845B2 (en) 2019-07-31

Family

ID=59626855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016025374A Active JP6551845B2 (en) 2016-02-12 2016-02-12 Durability test apparatus and test method for medical test object

Country Status (1)

Country Link
JP (1) JP6551845B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157285A1 (en) * 2020-02-04 2021-08-12 テルモ株式会社 Procedure simulator, and procedure practice method using same
KR102339098B1 (en) * 2020-07-28 2021-12-13 고려대학교 산학협력단 Apparatus and method for pursatile circulationg test of vascular graft

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176153A (en) * 1990-11-02 1993-01-05 Eberhardt Allen C Heart chamber simulator with electronic accelerated heart valve wear and fatigue test apparatus and method
JP2000342692A (en) * 1999-06-04 2000-12-12 Univ Waseda Artificial coronary artery, coronary artery stunt performance evaluation simulator
US20040016301A1 (en) * 2002-07-29 2004-01-29 Moreno Michael R. Method and apparatus for vascular durability and fatigue testing
JP2008020655A (en) * 2006-07-12 2008-01-31 Univ Waseda Blood vessel motion simulator
JP2008018030A (en) * 2006-07-12 2008-01-31 Univ Waseda Vascular motion simulator
JP2008020654A (en) * 2006-07-12 2008-01-31 Univ Waseda Blood vessel motion simulator
JP2008018029A (en) * 2006-07-12 2008-01-31 Univ Waseda Vascular motion simulator
WO2009031329A1 (en) * 2007-09-07 2009-03-12 Waseda University Endurance test apparatus for medical instrument and endurance test method
US20130325117A1 (en) * 2011-04-01 2013-12-05 W. L. Gore & Associates, Inc. Durable high strength polymer composites suitable for implant and articles produced therefrom
JP2015064487A (en) * 2013-09-25 2015-04-09 国立大学法人広島大学 Simulation system, and simulation method of installing stent graft

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176153A (en) * 1990-11-02 1993-01-05 Eberhardt Allen C Heart chamber simulator with electronic accelerated heart valve wear and fatigue test apparatus and method
JP2000342692A (en) * 1999-06-04 2000-12-12 Univ Waseda Artificial coronary artery, coronary artery stunt performance evaluation simulator
US20040016301A1 (en) * 2002-07-29 2004-01-29 Moreno Michael R. Method and apparatus for vascular durability and fatigue testing
JP2008020655A (en) * 2006-07-12 2008-01-31 Univ Waseda Blood vessel motion simulator
JP2008018030A (en) * 2006-07-12 2008-01-31 Univ Waseda Vascular motion simulator
JP2008020654A (en) * 2006-07-12 2008-01-31 Univ Waseda Blood vessel motion simulator
JP2008018029A (en) * 2006-07-12 2008-01-31 Univ Waseda Vascular motion simulator
WO2009031329A1 (en) * 2007-09-07 2009-03-12 Waseda University Endurance test apparatus for medical instrument and endurance test method
US20130325117A1 (en) * 2011-04-01 2013-12-05 W. L. Gore & Associates, Inc. Durable high strength polymer composites suitable for implant and articles produced therefrom
JP2015064487A (en) * 2013-09-25 2015-04-09 国立大学法人広島大学 Simulation system, and simulation method of installing stent graft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157285A1 (en) * 2020-02-04 2021-08-12 テルモ株式会社 Procedure simulator, and procedure practice method using same
KR102339098B1 (en) * 2020-07-28 2021-12-13 고려대학교 산학협력단 Apparatus and method for pursatile circulationg test of vascular graft

Also Published As

Publication number Publication date
JP6551845B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP6866389B2 (en) Vacuum-based compliance repair
Payne et al. Soft robotic ventricular assist device with septal bracing for therapy of heart failure
Morris et al. An experimental evaluation of device/arterial wall compliance mismatch for four stent-graft devices and a multi-layer flow modulator device for the treatment of abdominal aortic aneurysms
US20030110830A1 (en) Methods and apparatuses for measuring the compliance of stents and stented grafts
Andersen History of percutaneous aortic valve prosthesis
Duerig et al. An overview of superelastic stent design
JP5051234B2 (en) Endurance test apparatus and endurance test method for medical equipment
US10605700B2 (en) Fatigue to fracture medical device testing method and system
JP6433021B2 (en) Coronary circulation simulator
US10441448B2 (en) Flow regulation valve for controlling inflation rate of a balloon deploying a scaffold
JP4166905B2 (en) Artificial coronary artery and coronary stent performance evaluation simulator
Dwyer et al. Migration forces of transcatheter aortic valves in patients with noncalcific aortic insufficiency
JP6551845B2 (en) Durability test apparatus and test method for medical test object
Auricchio et al. SMA cardiovascular applications and computer-based design
WO2014144534A1 (en) Flow loop medical device testing system and methods of use
Kumar et al. Design considerations and quantitative assessment for the development of percutaneous mitral valve stent
JP4587776B2 (en) Blood flow simulator and flow conversion device
De Paulis et al. In vitro evaluation of aortic valve prosthesis in a novel valved conduit with pseudosinuses of Valsalva
US20190209759A1 (en) Ventricular assist devices
Kizilski et al. Evaluating the effect of a double-walled aortic stent-graft prototype on pulse wave velocity in an in vitro flow loop
Cui et al. The percutaneous mitral valve stents: finite element based design, crimpability features and fatigue performance
Marom et al. Numerical model of total artificial heart hemodynamics and the effect of its size on stress accumulation
Pathirana Numerical Modelling of Blood Flow for Coarctation of the Aorta: Pre-and Post-treatment Simulations
Purser et al. Evaluation of a shape memory alloy reinforced annuloplasty band for minimally invasive mitral valve repair
CAPUTO DESIGN AND DEVELOPMENT OF A TEST BENCH BASED ON ADDITIVE MANUFACTURING FOR THE STUDY OF PATIENT-RELATED TRANSCATHETER AND VALVE-IN-VALVE AORTIC PROSTHESIS.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190621

R150 Certificate of patent or registration of utility model

Ref document number: 6551845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250